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Assyr Abdulle1, Gilles Vilmart2, and Konstantinos C. Zygalakis3
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Abstract

A new characterization of sufficient conditions for the Lie-Trotter splitting to cap-
ture the numerical invariant measure of nonlinear ergodic Langevin dynamics up to
an arbitrary order is discussed. Our characterization relies on backward error analysis
and needs weaker assumptions than assumed so far in the literature. In particular,
neither high weak order of the splitting scheme nor symplecticity are necessary to
achieve high order approximation of the invariant measure of the Langevin dynamics.
Numerical experiments confirm our theoretical findings.
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weak convergence, modified differential equations, backward error analysis, invariant
measure, ergodicity.

AMS subject classifications. 65C30, 60H35, 37M25.

1 Introduction

In many applications (see [25, 16, 5, 19] and references therein), one is interested in
simulating the invariant measure of a stochastic differential equation (SDE) by running
a numerical scheme that approximates its time dynamics. In particular, one uses the
numerical trajectories to construct an empirical measure either by averaging one single
long trajectory or by averaging over many realisations to obtain a finite ensemble average
(see for example [25]). One immediately is faced with the question regarding the quality
of such an approximation. Another issue is the ergodicity of the numerical approximation
itself. This second question is still an area of active research [20, 33, 28, 31], but is not
addressed here.

In this paper, we focus on the case of second order stochastic dynamics generated by
the Langevin equation, of the form

dq(t) = M−1p(t)dt, (1a)

dp(t) = (−∇V (q(t))− γp(t))dt+
√
2β−1γM1/2dW (t), (1b)
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where the scalar function V : R
d → R denotes the potential, the mass matrix M is

symmetric positive definite, γ > 0 (the friction), β > 0 (related to the temperature)
are fixed constants, p(t), q(t) ∈ R

d, and W (t) denotes a standard d-dimensional Wiener
process. For simplicity, we assume that the mass matrix is the identity matrix M = I, but
we emphasize that our analysis would apply straightforwardly to general positive definite
matrices M . Under appropriate smoothness and growth assumptions on the Hamiltonian
energy (see e.g. [21, 14]),

H(p, q) =
1

2
pT p+ V (q), (2)

one can show that the dynamics generated by (1) are ergodic, i.e. for arbitrary initial con-
ditions q(0), p(0) (assumed deterministic for simplicity), and for all smooth test function
φ ∈ C∞

P (R2d,R) with derivatives of all orders with polynomial growth, the time average of
the trajectories of (1) satisfy with probability 1,

lim
T→∞

1

T

∫ T

0
φ(p(t), q(t))dt =

∫

Rd×Rd

φ(p, q)dµ(p, q).

The invariant measure µ is characterized by the Gibbs density function

ρ∞(p, q) = Ze−βH(p,q), (3)

where Z is the normalization constant, which ensures that
∫
Rd×Rd ρ∞(p, q)dpdq = 1. Sim-

ilarly to [4], we consider the following class of schemes based on the Lie-Trotter splitting,

Xn+1 = Φh ◦Θh,n(Xn), (4)

where Xn = (pn, qn)
T . The integrator Φh approximates the exact flow with time h of the

deterministic Hamiltonian part

dq(t) = p(t)dt, dp(t) = −∇V (q(t))dt, (5)

while Θh,n is a numerical integrator for the stochastic part

dq(t) = 0, (6a)

dp(t) = −γp(t)dt+
√
2β−1γdW (t). (6b)

The exact solution of (6) is given by the variation of constants formula,

q(tn+1) = q(tn), p(tn+1) = e−γhp(tn) +
√
2β−1γ

∫ tn+1

tn

e−γ(h−s)dW (s).

The trajectories of the above stochastic integral itself need not be simulated. Indeed, the
properties of the stochastic integral [26] imply that the solution p(t) of (6) given p(0) is
Gaussian and thus characterized by its mean and covariance. Using this, we obtain the
following flow (qn+1, pn+1) = Θh,n(qn, pn) for (6) which is exact in law,1

qn+1 = qn, pn+1 = e−γhpn +
√
β−1(1− e−2γh)ξn,

1This means that the exact solution (p(h), q(h)) and the numerical solution Θh,n(p(0), q(0)) have the
same law of probability for a given state (p(0), q(0)).
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where ξn ∼ N (0, I) are independent d-dimensional Gaussian random variables.
The aim of this paper is to analyse splitting schemes such as (4) for a variety of different

deterministic integrators Φh used for solving (5), for the numerical approximation of the
invariant measure, i.e. we quantify the error

e(φ, h) := lim
N→∞

1

N

N∑

n=1

φ(pn, qn)−

∫

Rd×Rd

φ(p, q)ρ∞(p, q)dpdq, (7)

for all smooth test function φ ∈ C∞
P (R2d,R). We say that the method has order r for

sampling the invariant measure if |e(φ, h)| ≤ Chr for all h small enough, where C is
independent of h, but depends on the smooth test function φ. In particular, using recent
advances in the theory of modified integrators for SDEs and ODEs [2, 8] and backward
error analysis for SDEs [35, 9, 14, 15, 3], we provide a new characterization of sufficient
conditions for the Lie-Trotter splitting to capture the numerical invariant measure of
nonlinear ergodic Langevin dynamics up to an arbitrary order.

It is well known that controlling the weak error |E(φ(Xn))−E(φ(X(tn))| up to a given
order allows to control the accuracy error |e(φ, h)| for the invariant measure up to the
same order [34],[22]. However, the converse is not true, and new sufficient conditions
independent of the weak order of accuracy for a numerical method to approximate with
high order of accuracy the invariant measure of ergodic SDEs have recently been derived
in [3]. The accuracy of the numerical computation of the invariant measure for Langevin
dynamics has recently been studied in a number of papers [4, 16, 17]. In [4], the splitting
method (4) is proposed and analyzed, while several other splitting methods with high
order for the invariant measure are considered and studied in [16, 17]. It is shown in [4]
that if Φh is a variational integrator (equivalently a symplectic scheme) which preserves
the energy up to order r, then the Lie-Trotter splitting (4) has order r of accuracy for the
invariant measure, although the standard weak error is only of order one. This is another
example illustrating the fact that a high weak order of accuracy is not necessary to achieve
high order for the invariant measure.

In this paper, we provide weaker assumptions to achieve order r in the approximation
of the numerical invariant measure using the splitting (4). Our results show that to achieve
order r for the invariant measure by the splitting (4), neither an order r of accuracy in the
weak sense nor an order r of accuracy in the deterministic sense for Φh in (4) are needed.
This is also related to the results in [6, 7] which provide a detailed analysis of the accuracy
of the numerical invariant measure in the case of a linear drift, i.e. a quadratic potential
V (q). It is shown there that among the class of stochastic Runge-Kutta methods applied
to Langevin dynamics with a linear drift (which does not include the Lie-Trotter splitting
(4)), the (stochastic) implicit midpoint rule is the only (stochastic) Runge-Kutta method
with a nonsingular tableau matrix that reproduces the exact stationary distribution for all
values of damping. See also related results in [19]. Our conclusion for Lie-Trotter splitting
methods (4) is different: we prove in particular that it samples exactly the invariant
measure for a linear drift if the deterministic integrator Φh is a consistent symmetric
Runge-Kutta method.

Our new characterization is expressed in terms of functions arising in the modified
differential equation for the Hamiltonian system. We thus heavily rely on backward error
analysis for our finding. The first error term in the error estimate for the numerical invari-
ant measure can also be expressed in term of functions arising in the modified differential
equation. This is also a new expression for error estimates à la Talay-Tubaro [34].
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To simplify the presentation of our results, we focus on the globally Lipschitz case and
we assume that the potential V is a C∞ function where ∇V has bounded derivatives of any
order (which implies the global Lipschitzness of ∇V ) and satisfies the following standard
growth condition, which guaranties that (1) is ergodic,

qT∇V (q) ≥ C1q
T q − C2, for all q ∈ R

d, (8)

for some constants C1, C2 > 0. We further assume that the numerical flow Φh is globally
Lipschitz in R

2d,
‖Φh(x1)− Φh(x2)‖ ≤ L‖x1 − x2‖, (9)

for all x1, x2 ∈ R
2d and all stepsize h small enough. In a more general non-globally

Lipschitz setting, important in most applications, two implicit schemes are studied in [14],
and the implicitness is used to guarantee the boundedness of the numerical moments along
time. Using implicit schemes for the Hamiltonian part is one way to extend our results
in the non-globally Lipschitz setting. Alternatively, notice that the class of integrators
considered in this paper (which are not assumed implicit) could still be applied rigorously
in the non-globally Lipschitz setting by following the methodology of rejecting exploding
trajectories proposed in [24] and applied to Langevin-type ergodic systems in [25].

We close this introduction by mentioning the we focus here only on the discrepancy
error (7), and do not discuss the Monte-Carlo error that can’t be avoided in practice.
One could use the so-called multi-level Monte-Carlo method (MLMC) [10] which is a
popular technique for reducing the variance. Indeed, it applies not only to first weak order
integrators for SDEs but also to higher orders weak schemes, as shown in [11], where the
antithetic MLMC has been introduced. Also in the context of stiff SDEs, in was shown in
[1] that applying a weak second order method at the finer level of the multilevel Monte-
Carlo method permits to significantly improve the error constant. Finally we mention the
schemes based on Markov Chain Monte-Carlo methods, see e.g. the survey [29], for which
the bias error is reduced to zero, thanks to an appropriate acceptance/rejection criteria
at each step.

The paper is organized as follows. In section 2, we present the basic ingredients of
backward error analysis and the framework in [3] that allows us to characterise the long
time behaviour of numerical integrators of ergodic SDEs. In Section 3, we prove the
main result of this paper, namely sufficient conditions for a Lie-Trotter splitting scheme
to capture the numerical invariant measure of nonlinear ergodic Langevin dynamics up
to an arbitrary order. We also relate this characterization to geometric properties of the
deterministic integrator and present in Section 4 various numerical investigations, both
for linear and nonlinear problems that corroborate such theoretical findings.

2 Preliminaries

In Section 2.1, we discuss some important concepts related to backward error analysis for
ODEs, while in Section 2.2 we discuss the standard framework of backward Kolmogorov
equation and weak Taylor expansions. Finally, in Section 2.3, we recall the order conditions
framework from [3] for the approximation of the invariant measure.
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2.1 Deterministic backward error analysis

Backward error analysis is a powerful tool for the analysis of numerical integrators for
differential equations [30, 18, 13]. In particular, it is the main ingredient for the proof of
the good energy conservation (without drift) of symplectic Runge-Kutta methods when
applied to deterministic Hamiltonian systems over exponentially long time intervals. In
our context it is useful to characterize the “generator” of the deterministic method Φh of
(5). Given a consistent integrator yn+1 = Φh(yn) for a system of ODEs

dy(t)

dt
= f(y(t)), (10)

the idea of backward error analysis is to search for a modified differential equation written
as a formal series in powers of the stepsize h,

dỹ

dt
= f(ỹ) + hf1(ỹ) + h2f2(ỹ) + . . . , ỹ(0) = y0 (11)

such that (formally) yn = ỹ(tn), where tn = nh (in the above differential equation, we omit
the time variable for brevity). This means that the numerical solution can be interpreted as
the exact solution of a modified ODE. The vector fields fj in the series can be constructed
for all reasonable integrators by induction on j [18, 13], setting f0 = f . Notice however that
this series diverges in general for nonlinear systems and needs to be truncated. Considering
the truncated modified ODE at order s

dỹ

dt
= f(ỹ) + hf1(ỹ) + h2f2(ỹ) + . . .+ hsfs(ỹ), ỹ(0) = y0 (12)

we have yn = ỹ(tn) + O(hs+1) for h → 0 for bounded times tn = nh ≤ T . We note that
the flow Φ̃h(y) of the modified differential equation (12) can be expressed as

Φ̃h =

(
M∑

k=0

hkL̃k
D

k!

)
I+O(hM+1), L̃D = F0 + hF1 + h2F2 + . . .+ hsFs, (13)

for all M ≥ 0, where I is the identity map, Fjφ = fj · ∇φ, j = 0, . . . , s and f0 = f . This
is a particular case (φ(y) = Iy) of the general result [13, Sect. III.5.1]

φ ◦ Φ̃h =

(
M∑

k=0

hkL̃k
D

k!

)
φ+O(hM+1), (14)

for all smooth test function φ. The constants symbolized by O in (13), (14), are indepen-
dent of h → 0 but depend on M, s and φ.2

2.2 Order conditions for the numerical invariant measure

A numerical method applied to (1) is called ergodic if it has a unique invariant law µh

with finite moments of any order and

lim
N→∞

1

N

N∑

n=1

φ(pn, qn) =

∫

Rd×Rd

φ(p, q)dµh(p, q).

2For all h small enough, the sum in (13) (and (14)) can be shown to converge for M → ∞ in the case
of analytic vector fields fj (and analytic test functions φ), which permits to remove the O remainder.
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The aim of this subsection is to briefly describe the conditions that the numerical method
applied to (1) should satisfy in order to approximate the invariant measure µ with an error
(7) of size O(hr). These conditions relate directly to the expansion of one-step numerical
expectations in powers of h. In particular, let X1 = (p1, q1), x = (p, q) and

U(x, h) = E(φ(X1)|X0 = x)

We assume that it is possible to expand U in powers of h to obtain the following expansion

U(x, h) = φ(x) + hA0φ(x) + h2A1φ(x) + h3A2φ(x) + · · · (15)

where Ai, i = 0, 1, · · · are linear differential operators with coefficients depending on the
choice of the numerical integrator and depending smoothly on the Hamiltonian function
H(p, q) and its derivatives. For a consistent method (i.e. of weak order at least one), we
have A0 = L where L denotes the generator of (1) given by

L := p · ∇q − (∇V (q) + γp) · ∇p + β−1γ∆p. (16)

where ∇p,∇q denote the gradient differential operators with respect to p and q, and ∆p is
the Laplacian with respect to the p variable. Truncating the expansion (15) yields rigorous
estimates thanks to the following result (see for instance [32]).

Example 2.1. Consider the Euler-Maruyama method for (1) defined as

qn+1 = qn + hpn,

pn+1 = pn − h(∇V (qn) + γpn) +
√
2β−1γhξn,

where ξn ∼ N (0, I) are independent d-dimensional Gaussian random variables. A straight-
forward calculation yields that A1 is a differential operator of order 4,

A1φ =
1

2
φ′′(f, f) + β−1γ(∆pφ)

′f +
β−2γ2

2
∆2

pφ with f =

(
−∇V (q)− γp

p

)
,

where φ′′(·, ·) denotes the second differential of φ (bilinear form), and φ′ is the first deriva-
tive (linear form). We refer to [2, 35] for other examples of such weak Taylor series
calculations.

We can now state the conditions which ensure that µh approximates µ to order r.
We have the following theorem which involves the adjoint operators A∗

j of the differential
operators Aj involved in (15), defined as

∫

R2d

A∗
jφ1(x)φ2(x)dx =

∫

R2d

φ1(x)Ajφ2(x)dx

for all smooth test functions φ1, φ2 with compact support on R
2d. The following result is

proved in [3].

Theorem 2.2. For the ergodic system (1), consider a consistent ergodic numerical method
satisfying (15) and

A∗
jρ∞ = 0, for j = 1, · · · , r − 1. (17)
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Then one obtains that the error in (7) satisfies for all test functions φ ∈ C∞
P (R2d,R),

e(φ, h) = hr
∫

∞

0

∫

Rd×Rd

Aru(p, q, t)ρ∞(p, q)dpdqdt+O(hr+1) (18)

where ρ∞ is the invariant measure density given in (3), h is assumed small enough, and
u(x, t) solves the backward Kolmogorov equation

∂u

∂t
(p, q, t) = Lu(p, q, t), t > 0, p, q ∈ R

d, (19a)

u(p, q, 0) = φ(p, q), (19b)

and L is the generator of (1) defined in (16).

Theorem 2.2 generalizes a standard result by Talay [34] and Milstein [22] (see e.g.
[23, Chap. 2.2, 2.3] for a proof) for methods which have weak order r. Here, the order r

assumption is replaced by the weaker condition (17)). An interpretation of (17) is the
following: the invariant measure µ with density ρ∞ of (1) is preserved up to a O(hr) error
by a single time step X0 7→ X1 of the integrator. Precisely, if X0 is a random variable
with law µ, then for all test functions φ ∈ C∞

P (R2d,R) and h → 0,

E(φ(X1)) =

∫

R2d

φ(x)ρ∞(x)dx+O(hr),

where the constant symbolized by O is independent of h assumed small enough.

Remark 2.3. Assuming that ∇V is smooth with bounded derivatives at all orders, (19)
has a unique solution for all test function φ ∈ C∞

P (R2d,R). It admits a rigorous Taylor
expansion up to arbitrary order p for all h small enough

u(x, h) = φ(x) + hLφ(x) +
h2

2
L2φ(x) + . . .+

hp

p!
Lpφ(x) +O(hp+1),

where the function symbolized in O is smooth with respect to x with its all derivatives
having a polynomial growth, independently of the smallness of the stepsize h. Notice that
applying this result to the deterministic problem (12), we recover the statement (14).

3 Accuracy of Lie-Trotter splitting methods in sampling the

invariant measure

In this section, we derive our main results. We first present in Section 3.1 sufficient order
conditions for the Lie-Trotter splitting to achieve order r for the invariant measure. We
discuss the relation of our new characterization with geometric properties such as energy
and volume conservation and show in Section 3.2 that high order for the invariant measure
can be achieved without high order conservation of energy and volume.

3.1 Order conditions to capture the invariant measure to a given order

Using arguments from backward error analysis, we prove the following result for the ac-
curacy of the sampling the invariant measure (3) of Langevin dynamics of the form (1).
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Theorem 3.1. Consider the ergodic system (1). Assume that Φh is a consistent method
for (5) satisfying (9) with modified equation from backward error analysis (11). If the
vector fields in (11) satisfy

div(fjρ∞) = 0, j = 1, . . . , r − 1,

then, assuming ergodicity, the Lie-Trotter splitting (4) has order r of accuracy for the
invariant measure. Precisely, we have for all φ ∈ C∞

P (Rd,R) and h → 0,

e(φ, h) = −hr
∫

∞

0

∫

Rd×Rd

u(p, q, t) div(fr(p, q)ρ∞(p, q))dpdqdt+O(hr+1), (20)

where e(φ, h) is defined in (7) and u(x, t) is defined in (19). The constant symbolized in
O is independent of the stepsize h assumed small enough.

Proof. Consider the method (4) and its corresponding one step expansion in powers of h

E(φ(X1)|X0 = x) = φ(x) + hLφ(x) + · · ·+ hrAr−1φ(x) + hr+1Arφ(x) +O(hr+1).

In order to prove our theorem, it is enough to show that

A∗
jρ∞ = 0 for j = 1, · · · r − 1, A∗

rρ∞ = div(frρ∞). (21)

The result then follows immediately from Theorem 2.2 using the identity

∫

R2d

Aru(x, t)ρ∞(x)dx = −

∫

R2d

u(x, t) div(fr(x)ρ∞(x))dx. (22)

We now start with the calculation of Aj . In particular, given a smooth test function φ

and x ∈ R
2d, using the semi-group property of the Markov process we have

E(φ(X1)|X0 = x) = E(φ(Φh ◦Θh,n)(X0)|X0 = x) = ehLS (φ ◦ Φh)(x), (23)

where ehLSφ denotes the exact flow of the Kolmogorov backward equation corresponding
to (6), with generator LS given by

LS := −γp · ∇p + β−1γ∆p.

We next recall the generator (13) of the truncated modified equation (12) of the integrator
Φh

L̃D = F0 + hF1 + . . .+ hrFr,

where we define the differential operators Fjφ = fj · ∇φ (with f0 = f). We have, using
(23), applying Remark 2.3 for LS , and using (14) with M = s = r,

E(φ(X1)|X0 = x) =

(
r∑

k=0

hkLk
S

k!

)(
r∑

k=0

hkL̃k
D

k!

)
φ(x) +O(hr+1)

= φ(x) + hLφ(x) +
r∑

k=1

hk+1Akφ(x) +O(hr+1)
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where we denote

Ak =
k+1∑

j=0

Lk+1−j
S

( ∑

1 ≤ i ≤ j

n1 + n2 + · · · + ni = j − i

1

i!(k + 1− j)!
Fn1

· · ·Fni

)
,

where the second sum above is over integers n1, . . . , ni ≥ 0 and is equal to the identity I

when j = 0. We obtain for all k ≥ 1,

A∗

kρ∞ =
k+1∑

j=0

( ∑

1 ≤ i ≤ j

n1 + n2 + · · · + ni = j − i

1

i!(k + 1− j)!
F ∗
ni
· · ·F ∗

n1

)
(L∗

S)
k+1−jρ∞.

Using L∗
Sρ∞ = 0 and F ∗

i ρ∞ = 0, i = 1, · · · r−1 we see that for k ≤ r, the only possibly non-
zero term in the above sum is obtained for j = r+1, k = r, i = 1, i.e., F ∗

r ρ∞ = div(frρ∞).
Hence, we deduce (21) which permits to conclude the proof. �

Remark 3.2. Theorem 3.1 remains valid for the analogous scheme Xn+1 = Θh,n◦Φh(Xn)
with a similar analysis.

An immediate consequence of Theorem 3.1 is the following corollary using the identity

div(fjρ∞) =
(
div(fj)− βfj · ∇H

)
ρ∞.

Corollary 3.3. Under the assumptions of Theorem 3.1, if

div(fj)− βfj · ∇H = 0, j = 1, . . . , r − 1, (24)

then, assuming ergodicity, the Lie-Trotter splitting (4) has order r of accuracy for the
invariant measure.

In addition to the estimates on the bias (7), as discussed in [3] for Theorem 2.2, we
also obtain the following exponential convergence estimate (25) which is classical for weak
methods [23, Chap. 2] (see also [33, 20, 25] in the context of non-globally Lipchitz vector
fields).

Remark 3.4. Under the assumptions of Theorem 2.2 or Theorem 3.1 or Corollary 3.3,
there exists constants λ,C,K(x) > 0 such that for all n ≥ 0,

∣∣∣∣E(φ(Xn))−

∫

Rd×Rd

φ(p, q)ρ(p, q)dpdq

∣∣∣∣ ≤ K(x)e−λtn + Chp (25)

where tn = nh, the constants C,K(x), λ are independent of n, h, and h is assumed small
enough (C,K(x) depend on φ and K(x) depends on X0 = x).

The simplest way for condition (24) to be satisfied is to consider a method Φh of order
r, since in this case fj = 0, j = 1, · · · r − 1. Indeed, in this case, standard results from
backward error analysis show that the right-hand side of the modified equation (12) reads
f(ỹ) + hrfr(y) + . . . and the fj = 0, j = 1 . . . , r − 1.
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Relation with results of [4] In the paper [4] the authors show that if a variational
(equivalently symplectic) integrator Φh preserving the energy with order r is used for
solving the deterministic dynamics (5), then the Lie-Trotter splitting (4) has order r of
accuracy for the invariant measure. Now a symplectic method applied to a Hamiltonian
system is volume preserving hence div(fj) = 0 for all j ≥ 0. Furthermore, if the method
Φh has order r, then it also preserves energy up to order r, i.e. for all vectors y,

H(Φh(y)) = H(y) +O(hr+1) (26)

this condition is equivalent to fj · ∇H = 0 for all 1 ≤ j ≤ r − 1. If both terms in (24)
are required to vanish independently, we see that we obtain order r of accuracy for the
invariant measure under weaker assumptions than in [4]. It is not necessary for the method
to be symplectic, only volume preservation up to to order r is required i.e.,

det

(
∂Φh(y)

∂y

)
= 1 +O(hr+1) (27)

which is equivalent to div(fj) = 0 for all 1 ≤ j ≤ r−1. Note that any deterministic method
Φh of order r automatically satisfies (26) and (27), and thus has the desired properties.
We will further see in Section 3.2 that energy and volume conservation up to order r of
the deterministic integrator Φh in (4) are not necessary to get order r of accuracy for
the invariant measure, as one can construct deterministic methods that satisfy (24) with
j = r + 1, while conserving energy and volume only up to order r.

Remark 3.5. In general, it is difficult to construct a numerical scheme which is simul-
taneously energy and volume preserving, so a choice has to be made. Indeed, already for
problems with only one degree of freedom (d = 1), energy preserving means that the nu-
merical method has an exact trajectory {y ∈ R

2d;H(y) = H(y0)}, and thus is a time
transformation of the exact solution. Such scheme can be also volume preserving if and
only if this time transformation has divergence zero, which is not satisfied by known en-
ergy preserving methods such as the AVF method [27] or energy preserving variants of
collocation methods [12].

Order of accuracy in the linear case The following corollary of Theorem 3.1 states
that for (non-partitioned) Runge-Kutta methods and quadratic potentials, the order of
accuracy for the invariant measure of the Lie-Trotter splitting (4) is always odd, i.e. if the
Runge-Kutta method has order r, the order of accuracy for the invariant measure of the
Lie-Trotter splitting is r + 1 if r is even, and r if r is odd. Moreover, if the Runge-Kutta
method is time-symmetric, i.e. Φ−1

h = Φ−h then the Lie-Trotter splitting (4) samples
exactly the invariant measure. We recall [13] that the method Φh is symmetric if and only
if (11) has an expansion in even powers of h, i.e.

f2j+1 = 0 for all j. (28)

Corollary 3.6. In the linear case (i.e. V (q) is quadratic), assume that Φh is a consistent
(non-partitioned) Runge-Kutta method for (5). Then the order of accuracy r for sampling
the invariant measure of the Lie-Trotter splitting (4) is odd. Moreover, if Φh is symmetric,
then the error (7) of (4) is zero for all h small enough.
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Proof. Since the problem is linear, the Hamiltonian vector field in (5) has the form f(y) =
Ay = J−1Sy where S is a constant symmetric matrix and

J =

(
0 I

−I 0

)
(29)

is the 2d× 2d symplectic matrix. For a Runge-Kutta method applied to a linear problem,
then we have the identity Φ(x) = R(hA)x where R(z) is a rational function. The modified
differential equation for backward error analysis of Φh then has the form (see [13, Sect.
IX])

dỹ

dt
= h−1 log(R(hA))ỹ = (A+ α1hA

2 + α2h
2A3 + α3h

3A4 + . . .)ỹ, (30)

with constants α1, α2, α3, . . .. Using (28), we have αj = 0 for all odd j in the case of a
symmetric method. Since fj(y) = αjA

j+1, to conclude the proof using Corollary 3.3, it
is sufficient to show that div(fj) = fj · ∇H = 0 for all even integer j. Indeed, for Φh of
order r, we already have fj = 0 for all 1 ≤ j < r, while for symmetric Φh, we already
have fj = 0 for all odd j. Since j is even, we have that JAj+1 is a symmetric matrix
and thus fj is a Hamiltonian vector field (fj = J−1∇Hj with Hj(y) = 1

2y
TJAj+1y),

which yields div(fj) = 0. In addition, using the skew-symmetry of SAj+1, we obtain
fj(y) · ∇H(y) = αjy

TSAj+1y = 0. This concludes the proof. �

3.2 Energy and volume conservation are sufficient, but not necessary

conditions

Corollary 3.3 shows that energy and volume conservation up to order r of the deterministic
integrator Φh in (4) are sufficient conditions for the splitting method (4) to have order
r for the invariant measure. These are however not necessary, as shown in the following
theorem which proves that applying an appropriate time transformation to a symplectic
integrator of order r permits to increase to order r + 1 the accuracy for the invariant
measure, while the order of accuracy for the conservation of both the energy (26) and
volume (27) remains r. We emphasize that this time transformed numerical method is
only used to illustrate a theoretical finding and we do not advocate its use in practice.
Here, we use the fact that for a symplectic (possibly partitioned) Runge-Kutta method
Φh applied to a (deterministic) Hamiltonian system ẏ = f(y) = J−1∇H(y), the modified
equation for backward error analysis (11) also possesses an Hamiltonian structure of the
form [13, Sect. IX.3]

dỹ

dt
= J−1∇Hh(ỹ), Hh = H + hrHr + hr+1Hr+1 + . . . , (31)

where J in defined in (29), and the formal series Hh is the modified Hamiltonian.

Theorem 3.7. Assume that Φh is a consistent symplectic integrator of order r for (5)
with modified Hamiltonian (31). Consider the modified integrator Φh defined via a time
transformation by

Φh(y) := Φαh(y)h(y), αh(y) := 1− hrβHr(y).

Then, assuming ergodicity, the splitting method

Xn+1 = Φh ◦Θh,n(Xn) (32)

has order r + 1 for the invariant measure of (1).

11



Proof. We denote fh = f + hrfr (fr = J−1∇Hr) and fh = f + hrf r the vector fields
(12) of backward error analysis of Φh and Φh, repectively, truncated at order r. Using
αh = 1 +O(hr), we have fh = αhfh +O(hr+1). We deduce

div(fh)− βfh · ∇H = αh div(fh) +∇αh · fh − βαhfh · ∇H +O(hr+1)

= αh div(fh)− βαh(∇H + hr∇Hr) · fh +O(hr+1)

= O(hr+1)

where we use div(fh) = 0 and an easy computation shows that (∇H + hr∇Hr) · fh = 0.
This yields div(f r)−βf r ·∇H = 0. This shows that Φh fulfils the assumptions of Corollary
3.3 with r replaced by r + 1 in (24), which concludes the proof. �

It is known for deterministic geometric integrators [13, Sect. VIII.2] that a non constant
time transformation destroys in general the geometric properties of symplecticity and
volume conservation. Thus, it is not surprising that the scheme (32) is energy and volume
preserving up to order r but not up to order r + 1. Indeed, we have that div(fh) =
div(αhfh) + O(hp+1) = ∇αh · fh + O(hr+1) = −hrβαh∇Hr · fh + O(hr+1) is O(hr) in
general because ∇Hr · fh 6= 0 (otherwise, Φh would be energy preserving up to order
r+1). This implies that the idea of Theorem 3.7 cannot be applied repeatedly to achieve
arbitrarily high order.

Remark 3.8. The time transformation αh(y) in Theorem 3.7 is non-globally Lipschitz
in general (see e.g. the formula (36) for the symplectic Euler method). This may lead
to a non-globally Lipschitz numerical flow. One possibility to make αh(y) Lipschitz and
bounded is to consider a modification, e.g., αh = 1 − (1 + h|Hr|2)−1βhrHr), which does
not affect f, f̄r in the modified equation of Φh.

4 Numerical experiments

In this section we illustrate the various theoretical results of this paper. We start in Section
4.1 by an example with a quadratic potential, that illustrates the results of Corollary 3.6.
We then illustrate in Section 4.2 the finding of Theorem 3.1 by an example with quartic
potential with various deterministic integrators Φh. This section also corroborates that
symplecticity is not a necessary geometric property to capture the invariant measure of
Langevin dynamics with high order.

4.1 Illustration for quadratic potential

In Figure 1, we consider the Langevin dynamics (1) in R
2 with one degree of freedom

(d = 1) with quadratic potential V (q) = 1
2q

2, which reduces (5) to the harmonic oscillator.
We observe that (4) has the form Xn+1 = UhXn+Vhξn where Uh, Vh are constant matrices.
This yields that Xn is a Gaussian variable for all n, and a calculation shows that the
covariance matrix Σh of the corresponding numerical invariant measure is given by the
Lyapunov equation

UhΣhU
T
h − Σh = VhV

T
h .

We compare in Figure 1 the covariance matrix Σh with the covariance matrix Σ = β−1I of
the exact Gaussian invariant measure and plot the 2-norm of the difference. As predicted
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Figure 1: Accuracy of the numerical invariant measure (covariance matrix error) of the
Lie-Trotter splitting for Langevin dynamics (1) in the linear case (V (q) = 1

2q
2). The lines

corresponds to explicit deterministic integrators of orders p = 1, 2, 3, . . . , 9 (from top to
bottom), respectively. The orders of accuracy for the invariant measure are always odd.

by Corollary 3.6, we observe the expected lines of with odd slopes 1, 3, 3, 5, 5, 7, 7, 9, 9 for
the explicit deterministic integrators Φh(y) = (I +A+ A2

2 + . . .+ Ap

p! )y (with A = J−1) of
order p, where p = 1, 2, 3, . . . , 9, respectively.

4.2 Illustration for quartic potential

Although our analysis applies only to globally Lipschitz vector fields, in Figure 2, we
consider the Langevin dynamics (1) with one degree of freedom with quartic potential
V (q) = (1− q2)2 − 1

2q. We compare the invariant measure error (7) for φ(p, q) = p2 + q2

of the Lie-Trotter splitting method (4) versus the stepsize h for various choices of the
deterministic integrator Φh:

• the explicit Euler method,

pn+1 = pn − h∇V (qn), qn+1 = qn + hpn, (33)

• the Heun method,

pn+1 = pn − h∇V

(
qn +

h

2
pn

)
, qn+1 = qn + h

(
pn −

h

2
∇V (qn)

)
, (34)

• the standard symplectic Euler method,

pn+1 = pn − h∇V (qn), qn+1 = qn + hpn+1, (35)

• A time transformed version of the symplectic Euler method,

pn+1 = pn −αnh∇V (qn), qn+1 = qn +αnhpn+1, αn = 1 +
h

2
βpn · ∇V (qn). (36)
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Figure 2: Invariant measure error (7) for φ(p, q) = p2 + q2 of the Lie-Trotter splitting
method (4) versus the stepsize h for Langevin dynamics (1) with quartic potential V (q) =
(1 − q2)2 − 1

2q (d = 1), with γ = 4, β = 2 and initial condition p(0) = q(0) = −1.5. We
compare various choices of the deterministic integrator Φh: explicit Euler (33), symplectic
Euler (36), Heun explicit RK2 (34), and the modified symplectic Euler method (36). The
curves are obtained as the averages over 10 independent long trajectories of time length
T = 108. The vertical bars measure the standard deviation intervals due to the Monte-
Carlo error among these 10 trajectories.

The explicit Euler method, the standard symplectic Euler method and its time trans-
formed version have deterministic order 1 for (5), while the Heun method has deterministic
order 2. In Figure 2, we plot the error (7) for φ(p, q) = p2+ q2 for the methods considered
above. We consider for each method the average over 10 independent long time trajecto-
ries with length T = 108. The vertical bars represent the standard deviation intervals due
to the Monte-Carlo error among these 10 trajectories. As predicted by Corollary 3.3, the
expected convergence slopes 1 and 2 can be observed in Figure 2. Precisely, the method
(36) has deterministic order 1 and preserves the energy and the volume only up to order
r = 1 in (26), (27), but it has order 2 of accuracy for the invariant measure, as predicted
by Theorem 3.7. We observe in Figure 2 that the order 2 schemes have an accuracy im-
proved by a factor of about 100 compared to the order 1 methods. Again, as mentioned
in Section 3.2, the time transformed symplectic Euler method (1) is only presented to
illustrate Theorem 3.7 and we do not claim that it is the best method at hand to solve
problem (1).

Geometric properties of symplectic and time transformed symplectic methods.
In this experiment we take again the quartic potential V (q) = (1− q2)2− 1

2q, temperature
β = 2 and initial condition p(0) = q(0) = −1.5. In Figure 3, we plot the evolution of the
Hamiltonian energy (2) along time for the standard symplectic Euler method (35) and the
time transformation version (36) as described in Theorem 3.7 for two values of γ.

In the top picture of Figure 3, we consider the deterministic case (γ = 0). In contrast to
the standard symplectic Euler method for which no drift in the energy can be observed, we
obtain a drift in the energy for the time transformed version (36) which is non symplectic.
In the bottom picture, we consider the stochastic case (γ = 4) and plot sample trajectories
for both methods using the same sets of generated random variables. We observe no linear
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Figure 3: Evolution of the Hamiltonian energy (2) along time for the standard symplectic
Euler method (35) and the time transformed version (36) (non symplectic) applied to (1)
with V (q) = (1 − q2)2 − 1

2q (quartic potential). Top picture: deterministic case (γ = 0).
Bottom picture: stochastic case (γ = 4). Stepsize is h = 0.02 and β = 2.

drift in the energy for both methods in this stochastic case. It can be observed in Figure
2 that the modified symplectic Euler method yields order 2 of accuracy compared to the
standard version of order 1, as predicted by Theorem 3.7. This last numerical example
shows that among the standard symplectic Euler method (35) and the time transformed
version (36) (applied in the Lie-Trotter splitting (4)), the most accurate scheme is not the
same in the deterministic and stochastic contexts, as predicted by Theorem 3.7.

5 Conclusion

We have presented an analysis supported by numerical experiments of Lie-Trotter splitting
methods applied to nonlinear Langevin dynamics. In particular, we obtained a new char-
acterization of sufficient conditions for the Lie-Trotter splitting to capture the numerical
invariant measure of nonlinear ergodic Langevin dynamics up to arbitrary order. While
in previous results in the literature symplecticity and energy conservation (up to a given
order) were required to prove high order accuracy for the numerical invariant measure,
we showed that although sufficient, these conditions are not necessary. More precisely,
we showed that the order of convergence of the deterministic integrator provides a lower
bound for the order of convergence for the numerical invariant measure of the Lie-trotter
splitting method. We illustrated this finding by constructing a first order non symplectic
deterministic integrator that, despite its poor geometric properties, captures the invariant
measure of Langevin dynamics to second order.

15



Acknowledgements. The work of AA and GV was partially supported by the Fonds
National Suisse, project No. 200021 140692. and No. 200020 144313/1, respectively.

References

[1] A. Abdulle and A. Blumenthal. Improved stabilized Multilevel Monte Carlo method
for stiff stochastic differential equations. to appear in Proceedings of ENUMATH
2013, Lect. Notes Comput. Sci. Eng., 39, 2014.

[2] A. Abdulle, D. Cohen, G. Vilmart, and K. C. Zygalakis. High order weak methods for
stochastic differential equations based on modified equations. SIAM J. Sci. Comput.,
34(3):1800–1823, 2012.

[3] A. Abdulle, G. Vilmart, and K. C. Zygalakis. High order numerical approximation
of the invariant measure of ergodic SDEs. SIAM J. Numer. Anal., 52(4):1600–1622,
2014.

[4] N. Bou-Rabee and H. Owhadi. Long-run accuracy of variational integrators in the
stochastic context. SIAM Journal on Numerical Analysis, 48(1):278–297, 2010.

[5] N. Bou-Rabee and E. Vanden-Eijnden. Pathwise accuracy and ergodicity of
metropolized integrators for SDEs. Communications on Pure and Applied Mathe-
matics, 63(5):655–696, 2010.

[6] K. Burrage, I. Lenane, and G. Lythe. Numerical methods for second-order stochastic
differential equations. SIAM Journal on Scientific Computing, 29(1):245–264, 2007.

[7] K. Burrage and G. Lythe. Accurate stationary densities with partitioned numerical
methods for stochastic differential equations. SIAM Journal on Numerical Analysis,
47(3):1601–1618, 2009.

[8] P. Chartier, E. Hairer, and G. Vilmart. Numerical integrators based on modified
differential equations. Math. Comp., 76(260):1941–1953 (electronic), 2007.

[9] A. Debussche and E. Faou. Weak backward error analysis for SDEs. SIAM J. Numer.
Anal., 50(3):1735–1752, 2012.

[10] M. B. Giles. Multilevel Monte Carlo path simulation. Operations Research, 56(3):607–
617, 2008.

[11] M. B. Giles and L. Szpruch. Antithetic Multilevel Monte Carlo estimation for multi-
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