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Abstract. Barabanov norms have been introduced in Barabanov (1988) and constitute an
important instrument to analyze the joint spectral radius of a family of matrices and related issues.
However, although they have been studied extensively, even in very simple cases it is very difficult to
construct them explicitly (see, e.g., Kozyakin (2010)). In this paper we give a canonical procedure
to construct them exactly, which associates a polytope extremal norm - constructed by using the
methodologies described in Guglielmi, Wirth and Zennaro (2005) and Guglielmi and Protasov (2013)
- to a polytope Barabanov norm. Hence, the existence of a polytope Barabanov norm has the same
genericity of an extremal polytope norm. Moreover, we extend the result to polytope antinorms,
which have been recently introduced to compute the lower spectral radius of a finite family of matrices
having an invariant cone.
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1. Introduction. When considering the stability under arbitrary switching of a
discrete-time linear switched system

x(k + 1) = Aσ(k)x(k), σ : N → {1, . . . ,m}, A1, . . . , Am given matrices,

one is mainly interested in determining the most unstable switching law (MUSL). This
is equivalent to computing the so-called joint spectral radius of the underlying set of
matrices (see e.g. the recent survey monography by Jungers [J]). If the solution of
the switched system corresponding to the MUSL converges to zero, then the switched
system is stable for any switching law.

It is well-known that the MUSL can be characterized using optimal control tech-
niques. As mentioned in Teichner and Margaliot [TM], such variational approach leads
to a Hamilton–Jacobi–Bellman equation describing the behavior of the switched sys-
tem under the MUSL. The solution of this equation is sometimes referred to as a
Barabanov norm of the switched system. Quoting [TM]: “Although the Barabanov
norm was studied extensively, it seems that there are few examples where it was
actually computed in closed form”.

Barabanov norms are widely studied as they provide a very important tool in the
analysis of the joint spectral radius of a set of matrices (for example they played a
key role in the disprovement of the well-known finiteness conjecture), as well as in
the analysis of the behaviour of the solutions of switched systems. Their duality to
extremal norms has been studied, e.g., by Plischke, Wirth and Barabanov [PW, PWB]
in the analysis of semigroups generated by linear inclusions.

It appears that in the literature an explicit computation of a Barabanov norm
has been provided only in a few cases (see e.g. [M1, TM]).

This is due to the fact that they are defined only implictly and there do not exist
procedures that are able to construct them in an exact way. Nevertheless iterative
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methods able to approximate Barabanov norms have been recently introduced by
Kozyakin [K1, K2], based on a so-called max-relaxation procedure. Such iterative
methods allow us to obtain a sequence of norms converging to a Barabanov norm,
whose unit ball is not a polytope in general.

1.1. Contribution of the paper. In this paper we provide a methodology,
which is supplementary to the one presented by Guglielmi, Wirth and Zennaro [GWZ]
and by Guglielmi and Protasov [GP], for the computation of polytope extremal norms
of sets of matrices (and hence of switched systems), which allows us to construct a
polytope Barabanov norm in a canonical way.

Similarly we consider a dual framework and study the problem of determining
a most stable switching law (MSSL) and the related problem of stabilizability of a
switched system. Also in this case, but restricted to nonnegative systems, we are
able to provide a canonical way, which is dual to the one presented by Guglielmi and
Protasov [GP], to explicitly construct a so-called Barabanov antinorm, which plays
an analogous role to the Barabanov norm.

2. Joint spectral radius. We let F = {A1, A2, . . . , Am} a finite family of ma-
trices with Ai ∈ Cd,d (or Rd,d) for i = 1, . . . ,m.

Moreover let ‖ · ‖ be a norm on Cd (Rd) and ‖A‖ = max‖x‖=1 ‖Ax‖ the corre-
sponding induced matrix norm.

Let I = {1, . . . ,m}. Then, for k = 1, 2, . . ., consider the set of all products of
length (or degree) k

Σk(F) = {Aik · · ·Ai1 | i1, . . . , ik ∈ I} (2.1)

and the number

ρ̂k(F) = max
P∈Σk(F)

‖P‖1/k. (2.2)

Definition 2.1 (joint spectral radius, Rota and Strang [RS] and Strang [S]).
The number

ρ̂(F) = lim sup
k→∞

ρ̂k(F) (2.3)

is said to be the joint spectral radius (j.s.r.) of the family F . Remark that the limit
in (2.3) always exists and does not depend on the considered norm.

Analogously, let ρ(·) denote the spectral radius of a d × d-matrix and then, for
each k = 1, 2, . . ., consider the number

ρ̄k(F) = sup
P∈Σk(F)

ρ(P )1/k. (2.4)

Definition 2.2 (generalized spectral radius, Daubechies and Lagarias [DL]).
The number

ρ̄(F) = lim sup
k→∞

ρ̄k(F) (2.5)

is said to be the generalized spectral radius (g.s.r.) of the family F .
Daubechies and Lagarias [DL] also proved that

ρ̄k(F) ≤ ρ̄(F) ≤ ρ̂(F) ≤ ρ̂k(F) for all k ≥ 1. (2.6)
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The fundamental equality

ρ̂(F) = ρ̄(F)

has been proved later by Berger and Wang [BW]. Consequently we can simply denote
the spectral radius of F by ρ(F).

An important characterization of the spectral radius ρ(F) of a matrix family is
the generalization of Gelfand’s formula. In order to state this characterization, we
define the norm of the family F as

‖F‖ = ρ̂1(F) = max
i∈I

‖Ai‖.

Proposition 2.3 (Rota and Strang [RS], Elsner [E]). The spectral radius of a
bounded family F of d× d-matrices is characterized by

ρ(F) = inf
‖·‖∈Op

‖F‖, (2.7)

where Op denotes the set of operator norms.
In connection with the possibility for the infimum in (2.7) to be a minimum or

not, we recall the following definitions.
Definition 2.4 (Extremal norm). We say that a norm ‖ · ‖ satisfying

‖F‖ = ρ(F)

is extremal for the family F .
Definition 2.5 (Barabanov norm). We say that an extremal norm ‖ · ‖ for the

family F is a Barabanov norm (or equivalently an invariant norm) if

max
i∈I

‖Aix‖ = ρ(F)‖x‖ ∀x ∈ C
d(Rd). (2.8)

Before stating the well-known result by Barabanov we need the following defini-
tion.

Definition 2.6. A family F = {Ai}i∈I of d× d-matrices is said to be reducible
if there exist a nonsingular d× d-matrix M and two integers d1, d2 ≥ 1, d1 + d2 = d,
such that, for all i ∈ I, it holds that

M−1AiM =

[
A

(11)
i A

(12)
i

O A
(22)
i

]
, (2.9)

where the blocks A
(11)
i , A

(12)
i , A

(22)
i are d1 × d1-, d1 × d2- and d2 × d2-matrices,

respectively. If a family F is not reducible, then it is said to be irreducible.
The following theorem establishes an existence result for a Barabanov norm.
Theorem 2.7 (Barabanov [B]). Assume that a family of matrices F is irre-

ducible. Then there exists an operator norm ‖ · ‖ such that (2.8) holds true, i.e. ‖ · ‖
is a Barabanov norm.

Note that extremal norms as well as Barabanov norms are not unique. For unique-
ness results we refer the reader to the recent publications by Morris [M1, M2], where
a sufficient condition for the uniqueness is presented. However, the property of having
a unique Barabanov norm can be very sensitive to small perturbations to the family
F .
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The following definition is necessary to the subsequent discussion.
Definition 2.8. We say that a set Y ⊂ Cd is absolutely convex if, for all

y1, y2 ∈ Y and λ1, λ2 ∈ C such that |λ1|+ |λ2| ≤ 1, it holds that λ1y1 +λ2y2 ∈ Y. Let
S ⊂ Cd. Then the intersection of all absolutely convex sets containing S is called the
absolutely convex hull of S and is denoted by absco(S).

We conclude this section by defining a so-called Protasov norm.
Definition 2.9. An extremal norm for a family F is said to be a Protasov norm

if its unit ball B is such that

ρ(F)B = absco


 ⋃

1≤i≤m

AiB


 , (2.10)

where AiB denotes the set {z = Aix
∣∣ x ∈ B}.

The previous definition, restricted to real norms and matrices, has been given by
Protasov [P1] and Plische and Wirth [PW].

Remark 2.1. For a generic extremal norm the equality sign “=” in (2.10) is
replaced by the inclusion sign “⊇”.

For a real irreducible family F , a Protasov norm always exists (see [P1]). More-
over, it turns out that a Protasov norm is dual to a Barabanov norm (see [PW]).

These results can be extended to families of complex matrices in a strightforward
way.

3. Complex polytope and adjoint complex polytope norms. A class of
norms which is particularly interesting for us, due to the possibility of a finite compu-
tation and representation, is the one of polytope norms. The forthcoming definition
extends the usual definition of symmetric polytope in the real space Rd.

As commonly done, the notation “⊂” will mean “strict inclusion”.
Definition 3.1. We say that a bounded set P ⊂ Cd is a balanced complex

polytope (in short b.c.p.) if there exists a finite set X = {xi}1≤i≤m of vectors such
that span(X ) = Cd and

P = absco(X ). (3.1)

Moreover, if absco(X ′) ⊂ absco(X ) for all X ′ ⊂ X , then X is called an essential
system of vertices for P, whereas any vector uxi with u ∈ C, |u| = 1, is called a
vertex of P.

Definition 3.2. We say that a bounded set P∗ ⊂ Cd is a balanced complex
polytope of adjoint type (in short a.b.c.p.) if there exists a finite set X = {xi}1≤i≤m

of vectors such that span(X ) = Cd and

P∗ = adj(X ) =
{
y ∈ C

d
∣∣∣ |〈y, xi〉| ≤ 1, i = 1, . . . ,m

}
. (3.2)

Moreover, if adj(X ′) ⊃ adj(X ) for all X ′ ⊂ X , then X is called an essential system
of facets for P∗, whereas any vector uxi with u ∈ C, |u| = 1, is called a facet of P∗.

According to [GZ1], any b.c.p. P is the unit ball of a (complex polytope) norm
‖ ·‖P on Cd and any a.b.c.p. P∗ is the unit ball of a (adjoint complex polytope) norm
‖ · ‖P∗ .

The following result establishes a useful relationship between complex polytope
and adjoint complex polytope norms.
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Lemma 3.3. Let P be a balanced complex polytope and let ‖·‖P the corresponding
complex polytope norm. Moreover, let P∗ = adj(P) and let ‖ · ‖P∗ the corresponding
adjoint complex polytope norm. Then, for any complex d×d-matrix A and its adjoint
A∗, it holds that

‖A‖P∗ = ‖A∗‖P . (3.3)

As a consequence ‖F‖P∗ = ‖F∗‖P .
In Rd the geometry of symmetric polytopes and adjoint symmetric polytopes is

the same, but this fact is not inherited by balanced complex polytopes in Cd. For a
detailed discussion we refer the reader to [GZ1].

3.1. An algorithm to compute a polytope extremal norm. In [GWZ] and
[GP] (under the name of Algorithm (C)) two slightly different algorithms to compute
a complex polytope extremal norm (when it exists) for a finite family F are presented.

The method presented in [GP], which slightly improves the one given in [GWZ],
is summarized by Algorithm 1.

In order to illustrate Algorithm 1 we need to introduce the following definitions.
Definition 3.4 (Spectrum maximizing product). If F is a bounded family of

d × d-matrices, any matrix P ∈ Σk(F) satisfying ρ(P )1/k = ρ(F) for some k ≥ 1 is
called a spectrum maximizing product (s.m.p.) for F .

We remark that, as is well-known, s.m.p.’s are not always guaranteed to exist
(see, e.g., [BTV]).

Definition 3.5 (Dominant s.m.p.). An s.m.p. P of a bounded family of d× d-
matrices F is said to be dominant if there exists a constant q < 1 such that, for any
matrix Q ∈ Σ(F) - other than P and the powers of it and of its cyclic permutations
- it holds that ρ(Q)1/k ≤ q · ρ(F), where k is the degree of Q (i.e., Q ∈ Σk(F)).

Algorithm 1: Basic polytope algorithm for finding extremal norms

Data: F
Result: P
begin

1 Preprocessing: find a product P of length k ≥ 1 such that ρ(P )1/k is
maximal among Σk(F) (P is a candidate s.m.p.);

2 Set R := ρ(P )1/k and F̂ := R−1F ;
3 Compute v1, . . . , vk leading eigenvectors of P and its cyclic permutations;
4 Set V0 := {v1, . . . , vk};
5 Set i = 0;

6 while span(Vi) 6= Cd do

7 Vi+1 := Vi ∪ F̂ Vi;
8 Set i = i+ 1;

9 Set P(i) = absco(Vi);

10 while F̂ Vi 6⊆ P(i) do
11 Set i = i+ 1;

12 Determine an essential system of vertices Vi of absco(Vi−1 ∪ F̂ Vi−1);

13 Set P(i) = absco(Vi);

14 Return P := P(i) (polytope extremal unit ball);
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The main idea behind Algorithm 1 is that of constructing iteratively a complex
polytope which is finally mapped into itself by the family F̂ := F/ρ(F). If the
procedure concludes successfully, it proves that the chosen product P is indeed an
s.m.p. and, at the same time, it provides a polytope extremal norm.

The main difference between Algorithm 1 and the one presented in [GWZ] is that,
in presence of a unique s.m.p. P , the former considers as an initial set of vectors the
leading eigenvector of P along with those of all its permutations, whereas the latter
starts from the sole leading eigenvector of P .

Algorithm 1 includes stopping criteria to detect whether the given product P is
actually an s.m.p. or not. The two algorithms which we refer to have indeed different
stopping criteria. A more sophisticated one is implemented in the algorithm presented
by Guglielmi and Protasov and is based on [GP, Proposition 2]. The algorithm halts

when the polytope P is mapped into itself by the family F̂ .
The most time-consuming part of Algorithm 1 is usually the preprocessing phase,

whose cost is exponential in k. The use of suitable criteria to exclude certain products
(see, e.g., [G] and [GZ2, Section 6]) may help to reduce this cost, but the optimization
of this part remains an interesting research topic.

A sufficient condition for the successful termination of Algorithm 1 within finitely
many iterations is that the starting product P be a dominant s.m.p. of the family F
with a unique and simple leading eigenvector (see [GP, Theorem 4]).

3.2. Monotone norms on cones. We recall that a subset K ⊂ Rd is said to
be a cone if and only if x, y ∈ K, α, β ≥ 0 implies that αx + βy ∈ K. A cone K is
said to be pointed if and only if K ∩ −K = {0}.

In this paper, by cone we mean a convex, closed, pointed cone with nonempty
interior. Any such cone defines a partial order in Rd: we write x �K y (x ≻K y) for
x− y ∈ K (x− y ∈ int K) [BV, Section 2.4.1]. The cone K is an invariant cone for a
matrix A if AK ⊆ K. If K is invariant for all matrices of some set F , then it is said
to be an invariant cone for that set.

In this subsection we consider families of matrices F that share a common invari-
ant cone K ⊂ Rd like, for example, families of nonnegative matrices, in which case
K = Rd

+ =
{
x ∈ Rd

∣∣ xi ≥ 0, i = 1, . . . , d
}
.

For a discussion of the properties of matrices with an invariant cone we refer the
reader to Vandergraft [V].

Here our interest is the construction of an extremal monotone norm. Recall that a
function g(·) is monotone with respect to a coneK if g(x) ≥ g(y) whenever x−y ∈ K.

If ‖ · ‖ is a monotone norm defined on a cone K, then it is extended onto R
d in a

standard way: the unit ball of the extended norm is given by

cos
({

x ∈ K
∣∣ ‖x‖ ≤ 1

})
, (3.4)

where, given a set X , co(X) denotes the convex hull of X and

cos (X) = co
(
X ∪ −X

)

is the symmetric convex hull of X .
All extreme points of the ball defined by (3.4) are in the cones K and −K.

Consider a norm which is an extension to Rd of a monotone norm in K, via (3.4).
Since for any matrix A, such norm is attained at an extreme point of the unit ball,
we see that, if A leaves K invariant, then it attains its norm in the cone K. Thus,

‖A‖ = max
x∈K : ‖x‖≤1

‖Ax‖.
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In particular, if ‖ · ‖ is an extremal norm for a family F , then its extension defined by
(3.4) is extremal as well. Thus, for families with a common invariant cone it suffices
to construct an extremal monotone norm ‖ · ‖ on that cone.

Recall that a face F of a cone K is invariant for a matrix A if Ax ∈ F for all
x ∈ F . The following result is proved in [GP].

Proposition 3.6. If a finite family of matrices F = {Ai}mi=1 has a common
invariant cone K and does not have any common invariant face of that cone, then F
has an extremal monotone norm ‖ · ‖ on K.

If K = Rd
+, then the faces of K are included in coordinate planes, i.e., they are

sets of the type Fi = {x ∈ Rd
+ | xi = 0}, i = 1, . . . , d.

Definition 3.7. A family of nonnegative matrices F = {Ai}i∈I (I set of indeces)
is called positively irreducible if it does not have any common invariant face of the
cone K = Rd

+.

By applying Proposition 3.6 to the case K = Rd
+, we obtain the following result.

Corollary 3.8. A finite positively irreducible family F = {Ai}mi=1 of nonnega-
tive matrices has an extremal monotone norm ‖ · ‖ on Rd

+.

In [GP] a polytope monotone norm was defined, which has been used in the
construction of an extremal monotone norm for a nonnegative family of matrices.

To this aim, we consider the cone K = Rd
+ and, for a given set Q ⊂ K, we define

co−(Q) =
(
co(Q) − K

)
∩ K =

{
x ∈ K

∣∣ x = y − t , y ∈ co (Q) , t ∈ K
}
.

Then, given a set of vertices V = {vj}nj=1, vj ∈ K, j = 1, . . . , n, we define the positive
polytope

P = co−(V )

to which a monotone norm is associated.

In fact, it turns out that, if x ∈ P and y ≤ x, then y ∈ P too.

A variant of Algorithm 1, able to compute, under suitable assumptions, a polytope
monotone norm, is given in [GP]. It is still based on the guess of a candidate s.m.p.
and, as an initial vector, its Perron-Frobenius (leading) eigenvector.

4. Barabanov (complex) polytope norms. Without loss of generality, let
ρ(F) = 1. Moreover, assume that F admits a complex polytope extremal norm, whose
unit ball is given by a balanced complex polytope P .

More precisely, assume that P has been constructed by using Algorithm 1, which
means that every vertex vp, p = 1, . . . , n, of the polytope P has been generated in
such a way that

vp = Aipvjp for some jp ∈ {1, . . . , n} and ip ∈ {1, . . . ,m}. (4.1)

Then let ‖ · ‖P be the extremal norm for F determined by P and ‖ · ‖P∗ be its
dual norm, that is the norm determined by P∗ = adj(P), which is extremal for F∗ as
well (see Guglielmi and Zennaro [GZ1]).

We have the following main result.

Theorem 4.1. Let P be a balanced complex polytope defining an extremal norm
‖ · ‖P for F and assume that (4.1) holds. Then the norm ‖ · ‖P∗ is a Barabanov norm
for F∗.

Proof. Since ρ(F) = 1, by extremality we have that ‖A‖P ≤ 1 for all A ∈ F .
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Now let x ∈ ∂P∗. Then, by definition of dual norm,

1 = ‖x‖P∗ = max
1≤j≤n

|〈x, vj〉| = |〈x, vℓ〉|

for some ℓ ∈ {1, . . . , n}. Now, by (4.1) there exist vq ∈ V and Ap ∈ F such that

|〈x, vℓ〉| = |〈x,Apvq〉| = |〈A∗
px, vq〉| ≤ max

1≤j≤n
|〈A∗

px, vj〉| = ‖A∗
px‖P∗

≤ ‖A∗
p‖P∗‖x‖P∗ = ‖A∗

p‖P∗ = ‖Ap‖P ≤ 1

(see [GZ1, Corollary 5.6]). Therefore, we get

‖A∗
px‖P∗ = 1,

which means that ‖ · ‖P∗ is a Barabanov norm for F∗.
As a consequence, in order to construct a polytope Barabanov norm for F it is

sufficient to apply the procedure described in [GWZ] to F∗ and then consider the
corresponding dual norm which, by Theorem 4.1, is a Barabanov norm for F .

Remark 4.1. If F = F∗ and ‖ · ‖P is an extremal norm for F for which (4.1)
holds, then the norm ‖ · ‖P∗ is a Barabanov norm for F .

We also have the following result, which is the converse of Theorem 4.1.
Theorem 4.2. Let P∗ = adj(P) be an adjoint balanced complex polytope defining

a Barabanov norm ‖ · ‖P∗ for F∗. Then the dual norm ‖ · ‖P is an extremal norm for
F which satisfies (4.1).

Proof. Let vℓ ∈ V be a vertex of P . By [GZ1, Proposition 2.12], there exists
x̂ ∈ ∂P∗ such that

1 = ‖x̂‖P∗ = |〈x̂, vℓ〉| and |〈x̂, vj〉| < 1 ∀j 6= ℓ. (4.2)

Therefore, since ‖ · ‖P∗ is a Barabanov norm for F∗, there exists A∗
p ∈ F∗ such that

1 = |〈x̂, vℓ〉| = ‖A∗
px̂‖P∗ = max

1≤j≤n
|〈A∗

px̂, vj〉|

= max
1≤j≤n

|〈x̂, Apvj〉| = |〈x̂, Apvr〉| for some vr ∈ V.

Since P = P∗, F∗∗ = F and ‖ ·‖P∗ is extremal for F∗, the norm ‖ ·‖P is extremal
for F (see again [GZ1]). Thus Apvr ∈ P and consequently, by (4.2) it follows that

vℓ = Apvr,

which concludes the proof.
Remark 4.2. It is immediate to realize that property (4.1) implies that ‖ · ‖P is

a Protasov norm, i.e., its unit ball P satisfies (2.10).
Therefore, the foregoing Theorems 4.1 and 4.2 might be obtained just as corollaries

of the duality results proved in [PW].
However, we preferred to prove them in an autonomous way since, in the next

sections, we will extend the theory to the case of polytope monotone norms and polytope
antinorms defined on cones.

Example 4.1. Consider the following example by Teichner and Margaliot [TM].
Let F = {A1, A2}, where

A1 =

(
5 0
0 8

)
, A2 =

(
14 6
1 13

)
.
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We consider the adjoint family F∗ = {AT
1 , A

T
2 } and apply the procedure described

in [GWZ]. A real polytope extremal norm for F∗ is P = co (v1, v2,−v1,−v2), where

v1 =

(
1
2

1

)
, v2 =

(
5
32

1
2

)

are the computed vectors.
The corresponding dual norm (the Barabanov one) is given by

P∗ =





1
2x1 + x2 ≤ 1
1
2x1 + x2 ≥ −1

5
32x1 +

1
2x2 ≤ 1

5
32x1 +

1
2x2 ≥ −1

= co

((
− 16

3
11
3

)
,

(
16
3

− 11
3

)
,

(
−16

7

)
,

(
16

−7

))

and is plotted in Figure 4.1. ⋄

Fig. 4.1. The polytope Barabanov norm for Example 4.1.

Example 4.2. We consider the following example by Cicone et al. [CGSZ]. Let
F = {A1, A2}, where

A1 =

(
1 1

−1 0

)
, A2 =

(
0 −1
1 0

)
.

Then we consider the adjoint family F∗. It can be proved that P = AT
1 AT

2 (AT
1 )

2 AT
2 is

an s.m.p., ρ(F∗) = ρ(P )1/5 =
(

3+
√
5

2

)1/5
and a real polytope extremal norm is given

by P = co (V,−V ) with V = {v1, v2, v3, v4, v5, v6}, where v1 is the leading eigenvector
of P ,

v2 = BT
2 v1, v3 = BT

1 v2, v4 = BT
1 v3, v5 = BT

2 v3, v6 = BT
2 v4,

with B1 = A1/R,B2 = A2/R and R = ρ(P )1/5 ≈ 1.212258.
The polytope extremal norm for F∗ (left) and the polytope Barabanov norm for

F (right) are shown in Figure 4.2.
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1.5

−1.5 .0 1.5
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Fig. 4.2. Polytope extremal norm (left) for the family F∗ and polytope Barabanov norm (right)
for the family F of Example 4.2.

−1.5 .0 1.5

−1.5

.0

1.5

Fig. 4.3. A random initial vector x (in red) on the boundary ∂P∗ of the unit ball of the
polytope Barabanov norm for F and the vector B1x (in blue) which also lies on the boundary ∂P∗

(see Example 4.2).

In Figure 4.3 we choose a random initial vector x on the boundary ∂P∗ of the
polytope Barabanov norm and obtain, as we expect, that at least one of the two
vectors B1x,B2x lies on ∂P∗ as well. ⋄

Next we consider the following example (see e.g. [BTV, K2]), which has recently
received particular attention in the literature1.

Example 4.3.

Let F = {A1, A2}, where

A1 =

(
1 1
0 1

)
, A2 =

(
1 0
1 1

)
.

1We thank an anonymous referee for addressing us to the recent results concerning the uniqueness
of the Barabanov norm of this example [M3].
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The family is self-dual so we do not have to introduce F∗. It is easy to observe that
the 2-norm is an extremal norm. In fact

ρ (A1A2)
1

2 = ‖A1‖2 = ‖A2‖2 =
1

2

(
1 +

√
5
)
.

An interesting question is whether there exists an ellipsoid Barabanov norm. In [M3] it
has been proven that the Barabanov norm is unique for this example and an iterative
construction of such a norm is also considered in [K2]. We are going to show that
there exists a polytope Barabanov norm, which implies that no ellipsoid norm can be
a Barabanov norm.

The construction of the polytope Barabanov norm follows. Using the s.m.p.
P = A1A2, we apply Algorithm 1 and obtain the real polytope extremal norm for F
with unit ball P = co (v1, v2, v3, v4,−v1,−v2,−v3,−v4) (see Figure 4.4, left picture)
where

v1 =

(
1

2
1+

√
5

)
, v2 = B1v1 =

(
1

2
3+

√
5

)
,

v3 = B2v1 =

(
2

1+
√
5

1

)
, v4 = B2v3 =

(
2

3+
√
5

1

)
,

with B1 = A1/R,B2 = A2/R and R = ρ(A1A2)
1/2. The corresponding dual norm

(the Barabanov one) turns out to be given by the real polytope norm with unit ball
P∗ = co (u1, u2, u3, u4,−u1,−u2,−u3,−u4) (see Figure 4.4, right picture) where

u1 =

(
0

1

)
, u2 =




√
5−1
2

√
5−1
2


 , u3 =

(
1

0

)
, u4 =




1+
√
5

2

− 1+
√
5

2


 .

We denote by uiuj the segment connecting the vectors ui and uj. It is direct to
check that

B1u1 = u2 ∈ ∂P∗, B2u1 =

(
0

2
1+

√
5

)
∈

◦
P∗,

B1u2 =




2(−1+
√
5)

1+
√
5

−1+
√
5

1+
√
5


 ∈ u2u3 ∈ ∂P∗, B2u2 =




−1+
√
5

1+
√
5

2(−1+
√
5)

1+
√
5


 ∈ u1u2 ∈ ∂P∗,

B1u3 =

(
2

1+
√
5

0

)
∈

◦
P∗, B2u3 = u2 ∈ ∂P∗,

B1u4 = −u1 ∈ ∂P∗, B2u4 = u3 ∈ ∂P∗.

As a consequence, exploiting central symmetry, we can limit ourselves to consider
the boundary of P∗ for x1 > 0 and state that

(i) for all x ∈ u1u2 it holds B1x ∈ u2u3;

(ii) for all x ∈ u2u3 it holds B2x ∈ u1u2;

(iii) for all x ∈ u3u4 it holds B2x ∈ u2u3;
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Fig. 4.4. Polytope extremal norm (left) for the family F∗ and polytope Barabanov norm (right)
for the family F of Example 4.3.

(iv) for all x ∈ u4(−u1) it holds B1x ∈ (−u1)(−u2).
The properties (i)–(iv) above imply that ‖ · ‖P∗ is a polytope Barabanov norm for F ,
which is the unique Barabanov norm [M3].

Note that B1P∗∪B2P∗ ⊂ P∗, which means that the norm associated to P∗ is not
a Protasov norm for F . This is consistent with the fact that its dual norm, associated
to P , is not a Barabanov norm. ⋄

Example 4.4. Consider the family of transition matrices F = {A1, A2} arising
in the construction of the well-known Daubechies wavelet D4 (see, e.g., [D, C]), where

A1 =




5.212854848820774 0 0
1.703224934278843 −4.676287953813834 5.212854848820774

0 −0.239791829285782 1.703224934278843


 ,

A2 =




−4.676287953813834 5.212854848820774 0
−0.239791829285782 1.703224934278843 −4.676287953813834

0 0 −0.239791829285782


 .

Then we consider the adjoint family F∗. It can be proved that P = AT
1 is an

s.m.p., ρ(F∗) = ρ(P ) = 5.212854848820774 and a real polytope extremal norm is

given by P = co (V,−V ) with V = {v1, v2, v3, v4, v5, v6, v7}, where v1 = (1 0 0)
T

is
the leading eigenvector of P ,

v2 = BT
2 v1, v3 = BT

1 v2, v4 = BT
2 v2, v5 = BT

1 v3, v6 = BT
2 v3, v7 = BT

1 v5,

with B1 = A1/ρ(P ), B2 = A2/ρ(P ).
The centrally symmetric polytope which is the unit ball of the Barabanov norm

turns out to have 44 vertices and is plotted in Figure 4.5. ⋄

4.1. Nonnegative matrices: polytope Barabanov monotone norms.
Now assume here that F is nonnegative. Then, according to [GP] (see Algorithm

(P)), the procedure for the construction of a polytope extremal norm can be refined
to give a real polytope monotone norm.
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Fig. 4.5. Polytope Barabanov norm for the family F of Example 4.4.

If a cone K ⊂ Rd
+ is fixed, then for a given set V ⊂ K we have that

P = co−(V )

is a positive polytope to which a monotone norm is associated.
Here we describe the construction of a polytope Barabanov monotone norm start-

ing from a polytope extremal monotone norm.

Definition 4.3 (Dual monotone norm). Given a monotone norm ‖ · ‖ on the
cone K we define the dual norm as

‖x‖∗ = max
u∈K : ‖u‖=1

〈x, u〉, x ∈ K. (4.3)

It is direct to check that the definition (4.3) gives indeed a monotone norm. In
fact, if x− y ∈ K, then ‖x‖∗ ≥ ‖y‖∗. Moreover, ‖ · ‖∗ is nonnegative, continuous and
convex, since the maximum of n ≥ 1 linear functionals is a convex function.

Lemma 4.4. Assume that ‖ · ‖ is an extremal monotone norm for F . Then ‖ · ‖∗
is an extremal monotone norm for F∗.

Proof.
Assume that ρ(F) = 1 and let x ∈ K be such that ‖x‖∗ = 1. We write

‖AT
i x‖∗x = max

y∈K : ‖y‖=1
〈AT

i x, y〉 = max
y∈K : ‖y‖=1

〈x,Aiy〉

= max
y∈K : ‖y‖=1

‖Aiy‖
〈
x,

Aiy

‖Aiy‖

〉
≤ max

y∈K : ‖y‖=1

〈
x,

Aiy

‖Aiy‖

〉
, (4.4)

where we use the fact that ‖Aiy‖ ≤ 1 by extremality of ‖ · ‖.
Therefore, since

∥∥∥ Aiy

‖Aiy‖
∥∥∥ = 1,
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we obtain

‖AT
i x‖∗ ≤ max

u∈K : ‖u‖=1
〈x, u〉 = ‖x‖∗ = 1.

This completes the proof.

Definition 4.5. Let a family F have a common invariant cone K. A norm ‖ · ‖
is called invariant if there is a constant λ > 0 such that

max
i=1,...,m

‖Aix‖ = λ ‖x‖ ∀x ∈ K.

Moreover, if λ = ρ(F), then ‖ · ‖ is called a Barabanov norm.
Assume that ρ(F) = 1 and V has been computed by Algorithm (P) presented

in [GP] applied to F∗, which means that every vertex vp, p = 1, . . . , n, of the poly-
tope P = co−(V ), which determines an extremal monotone polytope norm, has been
generated in such a way that

vp = AT
ipvjp for some jp ∈ {1, . . . , n} and ip ∈ {1, . . . ,m}. (4.5)

Then we have the following (constructive) result which shows the existence of a
related polytope Barabanov monotone norm.

Theorem 4.6. Assume that ρ(F) = 1 and, for a finite set V = {vi}ni=1 ⊂ K, let
P = co−(V ) be a positive polytope which determines a polytope extremal monotone
norm ‖ · ‖ for the family F∗ = {AT

i }mi=1. Moreover, assume that (4.5) is fulfilled for
p = 1, . . . , n. Then the dual norm ‖ · ‖∗ is a polytope Barabanov monotone norm for
F .

Proof. Definition (4.3) implies that

‖x‖∗ = max
1≤j≤n

〈x, vj〉.

Therefore, its unit ball {x ∈ K
∣∣ ‖x‖∗ ≤ 1} is just P∗ = adj(P).

Since F∗∗ = F , Lemma 4.4 implies that ‖ · ‖∗ is an extremal monotone norm for
F . Thus

‖Aix‖∗ ≤ 1 ∀x ∈ ∂P∗, i = 1, . . . ,m. (4.6)

In order to prove the theorem we have to show that for every x ∈ ∂P∗ there exists
i ∈ {1, . . . ,m} such that ‖Aix‖∗ = 1.

To this aim observe that

max
1≤i≤m

‖Aix‖∗ = max
1≤i≤m

max
1≤j≤n

〈Aix, vj〉 = max
1≤i≤m

max
1≤j≤n

〈x,AT
i vj〉. (4.7)

Now let vk be such that

〈x, vk〉 = max
1≤j≤n

〈x, vj〉 = ‖x‖∗ = 1. (4.8)

By (4.5), there esist r, s such that vk = AT
r vs. Therefore, (4.7) yields

max
1≤i≤m

‖Aix‖∗ ≥ 〈x, vk〉,

which, together with (4.6) and (4.8), concludes the proof.
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1

Fig. 4.6. The polytope extremal monotone norm for F∗ (left) and the polytope Barabanov
monotone norm for F (right) of Example 4.1.

Example 4.5. Let us consider again Example 4.1, where the matrices A1 and A2

are nonnegative. It is immediate to construct a polytope extremal monotone norm
for F∗, which is given by

P = co−(v1), v1 =

(
1
2

1

)
.

This implies that the corresponding polytope Barabanov monotone norm for F (see
Figure 4.6) has the set

P∗ =





x1 ≥ 0
x2 ≥ 0

1
2x1 + x2 ≤ 1

(4.9)

as unit ball. Note that P∗ intersects the principal axes in

u1 =

(
0
1

)
, u2 =

(
2
0

)
.

Using the fact that ρ(F) = 16, we can conclude that (4.9) provides a polytope Bara-
banov monotone norm by noticing that the vectors

1

16
A2u1 =

(
3
8

13
16

)
and

1

16
A2u2 =

(
7
4

1
8

)

fulfil the equality 1
2x1 + x2 = 1 and, hence, belong to the boundary of P∗.

This means that for every x ∈ ∂P∗ there exists a trajectory for the scaled family
{B1, B2} = {A1/16, A2/16} which belongs to ∂P∗. If x = (0 β)

T
or x = (2β 0)

T
,

β ≤ 1, then Bn
1 x ∈ ∂P∗ for all n ≥ 1. If x is such that 1

2x1 + x2 = 1, then Bn
2 x ∈ P∗

for all n ≥ 1. ⋄
Remark 4.3. The results of this section generalize and improve the theory de-

veloped by Teichner and Margaliot [TM], yielding a more general approach.
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Fig. 4.7. The polytope Barabanov monotone norm P∗ for Example 4.6 (left) with a random
initial vector x (in red) on the boundary ∂P∗ and the vector B1x (in blue) which also lies on the
boundary ∂P∗ (right).

Example 4.6. Consider the following example by Jungers and Blondel [JB].
Let F = {A1, A2}, where

A1 =

(
1 0
1 1

)
, A2 =

(
0 1
1 0

)
.

We consider the adjoint family F∗ = {AT
1 , A

T
2 } and apply the procedure described in

[GP].

It turns out that an s.m.p. for F∗ is given by P = AT
1

(
AT

2

)3
and that the unit

ball of a polytope extremal monotone norm for F∗ is co− (v1, v2, v3, v4), where v1
is the leading eigenvector of P , v2 = BT

2 v1, v3 = BT
2 v2 and v4 = BT

2 v3, where
Bi = Ai/ρ(P )1/4, i = 1, 2.

The corresponding polytope Barabanov monotone norm for F is given in Figure
4.7. ⋄

Example 4.7. Let us consider again Example 4.3.
Since F is nonnegative it also admits a polytope Barabanov monotone norm.
A polytope extremal monotone norm for F turns out to have unit ball given by

co− ({v1, v3}); correspondingly, the polytope Barabanov monotone norm has unit ball
co− ({u1, u2, u3}), where the vectors {vi} and {uj} are those defined in Example 4.3.

Interestingly, if we extend the Barabanov monotone norm to the whole space R2

we do not get a Barabanov norm for F , but only an extremal norm. If this were not
true, then we would contradict the uniqueness of the Barabanov norm proved in [M3]
(see also [M2]). The polytope monotone norms are illustrated in Figure 4.8. ⋄

5. Lower spectral radius of families with an invariant cone. Consider a
family F = {A1, A2, . . . , Am} (non necessarily possessing an invariant cone) and let

ρ̌k(F) = min
P∈Σk(F)

‖P‖1/k. (5.1)

Definition 5.1 (lower spectral radius [G]). The number

ρ̌(F) = lim inf
k→∞

ρ̌k(F) (5.2)
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Fig. 4.8. Polytope extremal monotone norm (left) and polytope Barabanov monotone norm
(right) for the family F of Example 4.3.

is said to be the lower spectral radius (l.s.r.) of the family F .
Thus the l.s.r. is the exponent of minimal asymptotic growth of the products of

operators from the family F . The limit in (5.2) always exists and does not depend on
the norm. A simple observation is that the l.s.r. can be estimated by means of the
standard spectral radius as follows:

ρ̌(F) ≤ min
P∈Σk(F)

ρ(P ) 1/k ≤ min
P∈Σk(F)

‖P‖ 1/k. (5.3)

In contrast to inequality (2.6) for the j.s.r., estimation (5.3) only gives upper bounds.
Now assume that the family F has an invariant cone K. Here the role of the

norms is taken by the antinorms (see [P2]).
Definition 5.2. Given a cone K ⊂ Rd, an antinorm a(·) is a continuous nonneg-

ative nontrivial (not identically zero) concave positively homogeneous function defined
on K.

Moreover, if a(x) ≥ a(y) whenever x − y ∈ K, then the antinorm is said to be
monotone.

Definition 5.3. Let a(·) be an antinorm on a cone K. Then the set

A = {x ∈ K
∣∣ a(x) ≥ 1}

is the corresponding unit antiball.
The following result is proved in [GP].
Proposition 5.4. If for an antinorm a(·) and for a constant λ > 0 it holds that

a(Aix) ≥ λa(x) ∀x ∈ K and ∀Ai ∈ F ,

then ρ̌(F) ≥ λ.
Definition 5.5. An antinorm a(·) is called extremal for the family F if

a(Aix) ≥ ρ̌(F) a(x) ∀x ∈ K , ∀Ai ∈ F .

We also define a Barabanov antinorm.
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Definition 5.6. Let a family F have a common invariant cone K. An antinorm
a(·) is called invariant if there exists a constant λ > 0 such that

min
i=1,...,m

a(Aix) = λa(x) , ∀x ∈ K.

Moreover, if λ = ρ̌(F), then a(·) is called a Barabanov antinorm.

5.1. Polytope extremal antinorms. Here we discuss general antinorms and,
in particular, antinorms of polytope type and their use in the computation of the
lower spectral radius of a family F of matrices having an invariant cone K.

To this aim, we shall make use of sets of the type

co+(X) = co(X) + K =
{
x+ z

∣∣ x ∈ co (X) , z ∈ K
}
, (5.4)

where X is a subset of K.
Definition 5.7. Given a finite set V = {vi}ni=1 ⊂ K, the set P = co+(V ) is

said to be a positive infinite polytope.
If the unit antiball A of an antinorm a(·) is a positive infinite polytope P , then

it is said to be a polytope antinorm and it turns out to be monotone.
In fact, it turns out that, if x ∈ P and y ≥ x, then y ∈ P too.

Theorem 5.8 (see [GP]). For every family of matrices F with a common in-
variant cone K there exists an extremal monotone antinorm a(·) on K.

From now on we assume that F is nonnegative and

K ⊆ R
d
+. (5.5)

5.2. An algorithm to compute a polytope extremal monotone anti-
norm. In [GP] (under the name of Algorithm (L)) a method to compute a polytope
extremal monotone antinorm (when it exists) for a finite family F is presented, which
is summarized by Algorithm 2.

In order to illustrate Algorithm 2 we need to introduce the following definitions.
Definition 5.9 (Spectrum minimizing product). If F is a bounded family of

d × d-matrices, any matrix P ∈ Σk(F) satisfying ρ(P )1/k = ρ̌(F) for some k ≥ 1 is
called a spectrum minimizing product (s.l.p.) for F .

To avoid confusion with s.m.p., we denote such a product as s.l.p., acronym of
“spectral lowest product”.

Definition 5.10 (Under-dominant s.l.p.). An s.l.p. P of a bounded family of
d × d-matrices F is said to be under-dominant if there exists a constant p > 1 such
that, for any matrix Q ∈ Σ(F) - other than P and the powers of it and of its cyclic
permutations - it holds that ρ(Q)1/k ≥ p · ρ̌(F), where k is the degree of Q (i.e.,
Q ∈ Σk(F)).

The idea behind Algorithm 2 is to compute a candidate s.l.p. P ∈ Σk(F), to
define the family F̌ := (1/ρ(P )1/k)F and to construct a positive infinite polytope P ,
which is mapped into itself by the family F̌.

A sufficient condition for the successful termination of Algorithm 2 within finitely
many iterations is that the starting product P be an under-dominant s.l.p. of the
family F (see [GP, Theorem 7]).

6. Polytope Barabanov antinorms. Here we describe polytope Barabanov
antinorms and a canonical procedure for the determination of a polytope Barabanov
antinorm strating from the knowledge of a polytope extremal monotone antinorm.
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Algorithm 2: Basic polytope algorithm for finding extremal monotone anti-
norms
Data: F
Result: P
begin

1 Preprocessing: find a product P of length k ≥ 1 such that ρ(P )1/k is
minimal among Σk(F) (P is a candidate s.l.p.);

2 Set R := ρ(P )1/k and F̌ := R−1F ;
3 Compute v1, . . . , vk leading eigenvectors of P and its cyclic permutations;
4 Set V0 := {v1, . . . , vk};
5 Set i = 0;

6 Set P(0) = co+(V0);

7 while F̌ Vi 6⊆ P(i) do
8 Set i = i+ 1;

9 Determine an essential system of vertices Vi of co+(Vi−1 ∪ F̌ Vi−1);

10 Set P(i) = co+(Vi);

11 Return P := P(i) (extremal positive infinite polytope unit antiball);

Definition 6.1. Given an antinorm a(·) on a cone K ⊆ R
d
+, we define the dual

antinorm as

a∗(x) = min
u∈K : a(u)=1

〈x, u〉, x ∈ K. (6.1)

The continuity and the nonnegativity of a∗(·) are immediate to verify. Therefore,
since the minimum of n ≥ 1 linear functionals is a concave function, it turns out that
(6.1) defines an antinorm.

Lemma 6.2. Assume that a(·) is an extremal antinorm for F . Then a∗(·) is an
extremal antinorm for F∗.

Proof. Assume that ρ̌(F) = 1 and let x ∈ K be such that a∗(x) = 1. We write

a∗(A∗
i x) = min

y∈K : a(y)=1
〈A∗

i x, y〉 = min
y∈K : a(y)=1

〈x,Aiy〉

= min
y∈K : a(y)=1

a(Aiy)

〈
x,

Aiy

a(Aiy)

〉
≥ min

y∈K : a(y)=1

〈
x,

Aiy

a(Aiy)

〉
, (6.2)

where we use the fact that a(Aiy) ≥ 1 by extremality of f . Therefore, since

a

(
Aiy

a(Aiy)

)
= 1,

we obtain

a∗(A∗
i x) ≥ min

u∈K : a(u)=1
〈x, u〉 = a∗(x) = 1.

This completes the proof.
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Assume that ρ̌(F) = 1 and V has been computed by Algorithm 2 applied to
F∗, which means that every vertex vp, p = 1, . . . , n, of the positive infinite polytope
P = co+(V ), which determines an extremal monotone antinorm, is such that

vp = AT
ipvjp for some jp ∈ {1, . . . , n} and ip ∈ {1, . . . ,m}. (6.3)

Then we have the following (constructive) result, which shows the existence of a
related Barabanov antinorm.

Theorem 6.3. Assume that ρ̌(F) = 1 and, for a finite set V = {vi}ni=1 ⊂
K ⊆ Rd

+, let P = co+(V ) be a positive infinite polytope which determines an extremal
monotone antinorm a(·) for the family F∗ = {AT

i }mi=1. Moreover, assume that (6.3)
is fulfilled for p = 1, . . . , n. Then the dual antinorm (6.1) is a Barabanov antinorm
for F .

Proof. Definition (6.1) implies that a∗(x) = min1≤j≤n〈x, vj〉. Therefore, its unit
antiball {x ∈ K

∣∣ a∗(x) ≥ 1} is just P∗ = adj(P). Since F∗∗ = F , Lemma 6.2 implies
that a∗(·) is an extremal monotone antinorm for F . Thus

a∗(Aix) ≥ 1 ∀x ∈ ∂P∗, i = 1, . . . ,m. (6.4)

In order to prove the theorem we have to show that for every x ∈ ∂P∗ there exists
i ∈ {1, . . . ,m} such that a∗(Aix) = 1. To this aim observe that

min
1≤i≤m

a∗(Aix) = min
1≤i≤m

min
1≤j≤n

〈Aix, vj〉 = min
1≤i≤m

min
1≤j≤n

〈x,AT
i vj〉. (6.5)

Now let vk be such that

〈x, vk〉 = min
1≤j≤n

〈x, vj〉 = a∗(x) = 1. (6.6)

By (6.3), there esist r, s such that vk = AT
r vs. Therefore, (6.5) yields

min
1≤i≤m

a∗(Aix) ≤ 〈x, vk〉,

which, together with (6.4) and (6.6), concludes the proof.
Example 6.1. Let F = {A1, A2}, where

A1 =

(
7 2
0 3

)
, A2 =

(
2 0
4 8

)
,

and consider the adjoint family F∗.
In [GP] it is proved that the product P = AT

1 AT
2 (AT

1 AT
1 AT

2 )
2 is spectrum min-

imizing and that ρ̌(F∗) = ρ(P )1/8. Running Algorithm 2 yields a positive infinite
polytope co+(V ) with V = {vi}9i=1. By setting BT

1,2 = AT
1,2/ρ̌(F∗) and denoting the

leading eigenvector of P by v1 one gets:

v2 = BT
2 v1, v3 = BT

1 v2, v4 = BT
1 v3, v5 = BT

2 v4,

v6 = BT
1 v5, v7 = BT

1 v6, v8 = BT
2 v7, v9 = BT

2 v6.

The corresponding infinite polytope P , which determines the extremal antinorm for
F∗, is shown in Figure 6.1 (left) along with the corresponding dual infinite polytope
P∗, which determines the Barabanov antinorm for F (right). ⋄
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Fig. 6.1. The polytope extremal antinorm (left) for F∗ and the Barabanov antinorm for F

(right) for Example 6.1.

.0 1.5.0

1.5

Fig. 6.2. A random initial vector x (in red) on the boundary ∂P∗ of the antiball of the Bara-
banov antinorm and the vector B2x (in blue) which also lies on the boundary ∂P∗ (see Example 6.1).

Conclusions. In this article we have proposed a novel methodology which allows
us to construct - under suitable assumptions - a polytope Barabanov norm for a finite
family of matrices. Such a norm is associated to the joint spectral radius of the
considered family. The assumptions appear quite general which means that we expect
the procedure is successful in most cases. Under the assumption that the family of
matrices has an invariant cone, we are able to extend the methodology to construct
a Barabanov monotone norm. Analogously we are able to construct a Barabanov
antinorm, which is associated to the computation of the lower spectral radius of the
family. Unless a family possesses an invariant cone, the construction of monotone
norms and antinorms, both extremal and Barabanov, is not possible. Analyzing
possible extensions of the obtained results to families with more sophisticated invariant
sets is an interesting topic which is not yet explored.
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