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Abstract

We provide some criteria on the stability of regime-switching diffusion processes. Both the
state-independent and state-dependent regime-switching diffusion processes with switching
in a finite state space and an infinite countable state space are studied in this work. We
provide two methods to deal with switching processes in an infinite countable state space.
One is a finite partition method based on the nonsingular M-matrix theory. Another is
an application of principal eigenvalue of a bilinear form. Our methods can deal with both
linear and nonlinear regime-switching diffusion processes. Moreover, the method of principal

eigenvalue is also used to study the recurrence of regime-switching diffusion processes.
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1 Introduction

In this work, we shall study the stability of regime-switching diffusion processes (for short,
RSDP) which arise in financial engineering, wireless communication and many other application

fields. The stability of such systems is of great interest and there has been a great deal of
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study in this topic; see for example, [1} 2 Bl [7, O 10, 11) [12], 13, 20 21] and references therein.
Especially, stability of linear or semi-linear type of such systems has been investigated by [2, 7, [13]
among others. These works generalized the Lyapunov’s second method to deal with the regime-
switching diffusion processes. In particular, for linear systems, some easily verifiable conditions
were provided to ensure the stability or instability of regime-switching processes. It is well known
that the construction of Lyapunov function is a rather difficult task, so it is of great value to
find some easily verifiable conditions to ensure the existence of desired Lyapunov functions. The
main aims of this work are twofold: one is to find some easily verifiable conditions to justify the
stability or the instability of nonlinear regime-switching processes; another is to generalize these
conditions to study the stability of state-dependent regime-switching processes in an infinite
countable state space. Up to our knowledge, there is few result on the stability of regime-
switching processes in an infinite countable state space. Besides, there are some discussion on
the stability of a linearized system with the stability of the initial nonlinear system in [8, Chapter
7]. There R. Khasminskii gave some positive answer. On the other hand, we should note that
there are essential difference between the stability of nonlinear system with that of linear system.
On the stability of nonlinear control system, both the well-known conjectures of Aizerman and

Kalman were proven wrong by counter-example.

The regime-switching process considered in this work consists two components, (X, As).
The first component (X;) satisfies a stochastic differential equation with coefficients depending
on the process (A;); the second component (A;) is a continuous time Markov chain on a finite or a
countable space. One can view the process (X;) as a diffusion process in a random environment
characterized by the process (A;). The stability of (X;) in a random environment is more
complicated than that of a diffusion process in a fixed environment. There are many examples
(see [12] , [21] concrete examples) to show that when (X}) is stable in some fixed environments
and unstable in other fixed environments, one can make (X¢) to be stable or unstable by choosing
suitable switching rate, i.e. the @-matrix of (A;). In this work, we shall provide some on-off
type criteria to show how the switching rate (@-matrix) and the stability of (X;) in each fixed
environment work together to determine the stability of the process (Xy, A¢). In this work, the
stability only means the asymptotic stability in probability of the system (Xy, A¢). Other kinds
of stability (for instance, p-stability) are left for further work.

To see the usefulness and sharpness of our criteria, let us consider the following one-



dimensional nonlinear system.
dX; = ba, (X7 A [Xe])dt + on, (X7 A |X])dDBy,

where (A¢) is a continuous time Markov chain in a finite state space M, b;, o; are constants for
each i € M. Here we use 2% A |z| := min{2?,|z|} to guarantee the solution of previous SDE
to be nonexplosive, which does not impact the nonlinearity of the system near 0. Let u be the
invariant measure of (A;). Applying our criteria, we show that x = 0 is asymptotically stable in
probability if >, 4 #ib; < 0, and is unstable in probability if >, 14 pib; > 0 (see Corollary 2.9]
below).

In [15]16], the recurrence of RSDP in Wasserstein distance and in total varitional norm has
been studied. In this work, we develop their ideas to study the stability of RSDP. We mention
some difference between the study of ergodicity and that of stability for RSDP compared with
[15, 16]. Both of these studies try to construct a Lyapunov function V' (z, ) such that o7 V(x,7) <
0, where &/ denotes the infinitesimal generator of RSDP. When we study the ergodicity, the
key point is the behavior of V(z,i) in the neighborhood of oo, but to study the stability, the
key point is the behavior of V(z,4) in the neighborhood of 0. Note the following obvious fact:
limg 0 % = oo but lim,_,q % = 0. Consequently, the dominant terms in ./ V (z, ) are different

in these different situations.

This work is organized as follows. In Section 2, we first provide two kinds of criteria
for stability of RSDP in a finite state space, which are based separatively on the Friedholm
alternative and nonsingular M-matrix theory. Then in subsection 2.2, we extend the criterion
in terms of M-matrix to deal with RSDP in a countable state space by putting forward a
finite partition method. This method can also be used to deal with state-dependent RSDP. In
Section 3, we provide some criteria for stability of RSDP in terms of the principal eigenvalue
of a bilinear form. The method can deal with RSDP in a finite or countable state space.
Compared with the method in terms of M-matrix theory, this criterion can deal with switching
process in a countable state space without assuming the boundedness of the jumping rates. In
Section 4, we apply the principal eigenvalue to study the recurrence of RSDP. Moreover, we
provide a lower estimate of the principal eigenvalue defined in our work, which generalizes the
corresponding result for the principal eigenvalue of Dirichlet forms in [4]. T'wo concrete examples
are constructed to show the usefulness of this method in dealing with RSDP with unbounded

jumping rates.



2 Criteria based on M-matrix theory and Friedholm alternative

The regime-switching diffusion process studied in this work can be viewed as a number of
diffusion processes modulated by a random switching device or as a diffusion process which lives
in a random environment. More precisely, RSDP is a two-component process (X, A;), where
(X:) describes the continuous dynamics, and (A;) describes the random switching device. (X3)

satisfies the stochastic differential equation (for short, SDE)
dX; = b(Xy, Ay)dt + o(Xy, Ay)dB;, Xo =z € RY, (2.1)

where (B;) is a Brownian motion in R?, d > 1, o is d x d-matrix, and b is a vector in R, While for
each fixed z € R?, (A;) is a continuous time Markov chain on the state space M = {1,2,..., N},
2 < N < 00, satisfying

qr1(x)d + 0(9), ifk#1,

(2.2)
1+ que(z)6 + 0(8), if k=1,

PApys =1l|A =k, Xy =) = {
for § > 0. The Q-matrix Q, = (gri(x)) is irreducible and conservative for each x € R%. If the
Q-matrix (qr(z)) does not depend on z, then (X, A;) is called a state-independent RSDP;
otherwise, it is called a state-dependent one. When N is finite, namely, (A;) is a Markov chain
on a finite state space, we call (X¢,A;) a RSDP in a finite state space. When N is infinite, we
call (X;,A;) a RSDP in an infinite countable state space.

To proceed, we introduce some conditions on the coefficients so that the solution of SDE
1) [22) exists and 0 is the unique equilibrium point of this random dynamic system. There-
fore, the stability studied in this work is mainly focused on whether the equilibrium 0 is stable
or not. Hence, it is natural to assume that the process is not explosive, which is ensured by the

linear growth condition. In what follows, we introduce some conditions used in this work.

(H2.1) (gij(z)) is conservative and irreducible for each € R For each z € R% i € M,
My ; = sup{j € M; ¢;j(x) > 0} < oo. There exists a constant C' such that z#ifqij(:n) <
C(1 4+ |z|?) for every x € R?, i € M. For each n € N, there exists a constant C), such that

g5 (1) — qij(x2)] < Culzy — xal, 1, 9 €RY, |z1| <, |2o| <y i # 5 € M.



(H2.2) b(0,7) =0 and 0(0,7) = 0 for each i € M. Moreover, for any sufficiently small 0 < € < ro,
there exist [ € {1,...,d} and k(e) > 0 such that ay(z,7) > k(e) for all (x,i) € {x;e <

|x| < ro} x M, where a(x,i) = o(x,i)o(x,i)*.

(H2.3) For each n € N, there exists constant K,, so that |b(x,q)| + ||o(z,4)]] < K,(1 + |z]), for
r R |z| <n, i€ M.

(H2.4) For each n € N, there exists constant K,, > 0 so that

b, 3) = by, )| + llo(@.i) — oy, )| < Kalw —yl, Va,y e RY [z <, fy| < n, i € M.

Here and in the sequel, o* stands for the transpose of matrix o, and ||o|| denotes the operator
norm. When M is a finite set, according to [21], conditions (H2.1), (H2.3) and (H2.4) ensure
the existence of a nonexplosive solution (X, A;) of (ZJ) and (22). When M is an infinite
countable set, according to the theory of SDE driven by Lévy process, conditions (H2.1), (H2.3)
and (H2.4) also ensure the existence of a nonexplosive solution of (Z1) and (2.2]). Indeed, by
[6], the jump process (A;) can be represented by a stochastic integral w.r.t. a Poisson random
process. Precisely, for each z € R%, i, j € M with i # 7, let Ajj(x) be a consecutive (w.r.t. the
lexicographic ordering on M x M), left-closed, right open intervals on the real line, each having

length ¢;;(x). Namely,

Apa(z) = [0,q12(®)), Az(z) = [qr2(2), qr2(z) + q13(2)),

mx,l_l My, 1
Aip, () = | (@), Y @),
=2 j=2
Mg, 1 Mz, 1

Agi(z) = Z q1j(z Z q15() + g21()),
=2

and so on. Let h: R? x M x R — R be defined by

My i

h(x7i7 Z) = Z(] - Z)lA”(:L‘)(Z)
j=1
Then (2.2)) is equivalent to
dA; = / h(Xy, A, 2)N(dt, dz), (2.3)
R
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where N(dt,dz) is a Poisson random measure with intensity d¢ x dz. Hence, by [18, Section
11-2.1, pp.104], conditions (H2.1), (H2.3) and (H2.4) ensure the existence of the solution of (2.I])

and (Z2). Moreover, these conditions also ensure that there exists a constant C' such that
(e, 9)* + oz, y)I* + 17,y 2@ < CA+ |2 +4%), 2 € RY, y e M.
According to [17, Lemma 114], the solution of (2.I]) and (2:2)) is nonexplosive.

We adopt the definition of stability given in R. Khasminskii [8]. See also [2I, Chapter 7] or
[9]. Precisely, the equilibrium point = 0 is said to be stable in probability, if for any ¢ > 0 and
any i € M,
lim P(sup [ X**(t)| > ¢) =0,

z—0 t>0
and x = 0 is said to be unstable in probability if it is not stable in probability. Here (X% (t))
denotes the first component of the solution of (21I), (Z2]) with initial condition (Xo, Ag) = (z,1).
The equilibrium point z = 0 is said to be asymptotically stable in probability, if it is stable in
probability and satisfies

lim P( lim X"i(t)=0) =1, foranyie M.

z—0 t—o0

For the convenience of reader, we collect some results from [21] on Foster-Lyapunov criteria

for RSDP. Let o/ be the infinitesimal generator of (X, A;) which is expressed by

o f(x,i) = LY f(-0)(x) + Qf (w,)(d),

where

d
1 9?2 L0
=3 E ap(x &mﬁxl + E bk(w,l)—axk, and Qg(7) E 2 (95 — 9i)-

k,l=1 k=1 jF#i

Since the situation that M is an infinite countable set is considered, we need to extend the
criteria established in [2I, Chapter 7] for RSDP in a countable state space. The main idea
is similar, but some new techniques are needed. For the ease of the reader, we give out these

results.

Lemma 2.1 Suppose that the conditions (H2.1) (H2.2) hold. Then

P(X%(t) #0, t>0)=1 foranyxz#0,i€e M,



and for anyp € R, t > 0,
E[|X“ ()] < |z[Pe™t, x#£0, i€ M,

where K is a constant depending only on p and Lipschitz constant K .

Proof. When M is a countable set, this lemma can be proved in the same way as that of
[2Il Lemma 7.1]. But we should note that the constant K could be taken independent of the
cardinality of M in their proof. ]

Lemma 2.2 Assume that (H2.1) (H2.2) hold. Let D C R? be a neighborhood of 0. Suppose

that there exists a nonnegative function V (-,i) : D — R such that

(i) V(-,1) is continuous in D for each i € M and inf;cpq V (z,1) vanishes only at x = 0;

(i) V(-,7) is twice continuously differentiable in D\{0}, and satisfies </ V(z,i) < 0 for all
z € D\{0}, i € M.

Then the equilibrium point x = 0 is asymptotically stable in probability.

Proof. This lemma can be proved in the same way as that of [2I, Lemma 7.5]. There they used
the condition that V'(z,4) vanishes only at 0 for each i € M. So when N < oo the condition (i)
here is equivalent to the condition in [2I, Lemma 7.5]. But when N = oo, we use condition (i)
which ensures that the proof of [2I, Lemma 7.5] is still valid. So the equilibrium point = 0 is
stable in probability. By Remark 7.8 in [21], we can prove that the equilibrium point z = 0 is
asymptotically stable in probability in the same way as that of [21, Lemma 7.6]. (]

Lemma 2.3 Let D C R? be a neighborhood of 0. Suppose that (H2.1) and (H2.2) hold, and
for each i € M, there exists a nonnegative function V(-,i) : D — R such that V(-,i) is twice

continuously differentiable in D\{0}. Suppose that

A V(x,i) <0 forall x € D\{0}, i € M, (2.4)
lir% V(z,i) =00 for each i € M. (2.5)
z—

Then the equilibrium point x = 0 is unstable in probability.



Proof. Let ( > 0 such that the closed ball By = {; |z| < (} is contained in D, and (z,i) €
B¢ x M. Letting 0 < e < |z| and m € N, m > 2, define

7. =inf{t > 0; | X% (t)] <e}, 7 =inf{t >0; |X™(t) >},
Te,m = inf {t > 0; | XUt)| <e, Aye{l,... ,m}}.

Then it is obviously that 7. ,, > 7.. By Itd’s formula,

< V(x,i).
Letting t — oo, we get by Fatou’s lemma
E[V(X(TC A Tem)s A1e A Te,m))] < V(x,i).
As V is nonnegative, we obtain

V(z,i) > E[V(X(Tem)a A(TE,m))l{Ts,m<Tg}]
> inf  V(y,j)P(r¢e > 7em)

T yl<ej<m (26)
- inf %4 s )P su X)) < )
ly|<ej<m (v.7) (OStgrps,m‘ )] <¢)

Here we should note that at the time 7. ,,, it is possible that | X (7. )| < e. By Lemma 2] we
have 7. — oo almost surely as ¢ — 0. Indeed, set A = {w : 7p(w) := lim._,o 7(w) < co}. For
we A, as | X, (w)] = ¢, we get | X (w)] = 0. If P(A) > 0, then P(X; = 0 for some t > 0) >
[P(A) > 0, which contradicts the result of Lemma 2.1 Hence 7. ,, — oo almost surely as ¢ — 0.
By (2.3)), it holds lim._,q inf|,|<. j<m V(y,j) = co. Consequently, (2Z.6) yields

P(sup|Xt| < C) =0,
>0

which shows that the equilibrium point x = 0 is unstable in probability. (]

2.1 State-independent RSDP in a finite state space

In this subsection, we mainly want to deal with the difficulty generated by the nonlinearity of the

system, and leave the difficulty generated by the state-dependence and infiniteness of switching



to the next subsection. Therefore, in this subsection, Q-matrix (g;;) is independent of  and M

is a finite set, i.e. N < o0.

Now we introduce two conditions used later to characterize the stability of (X;) in each fixed
environment. Let D be a neighborhood of 0. Let p, h : D — [0,00) be nonnegative functions

such that p, h are twice continuously differentiable in D\{0}.

(A1) For each i € M, there exists a number §; € R such that
LWp() < Bih(z), Vo€ D\{0},

e () ) ()
x . LWh(x
250 plx) 0 250 h(z) 0

(A2) For each i € M, there exists a number 3; € R such that

LYp(z) < Bip(z), V€ D\{0}.

Note that here 3; and j3; are allowed to be positive or negative. When p(x) vanishes only at 0,
the negativeness of 8; and ; ensures that the equilibrium point is stable in probability for the

diffusion process associated with (X;) in the fixed environment i.

Next, let us introduce our first criterion for stability of RSDP based on the Friedholm

alternative, which can provide us some on-off type criteria for RSDP .

Theorem 2.4 Let (X, At) be a state-independent RSDP satisfying (211) (2.3) with N < oc.
Assume (H2.1)-(H2.4) hold. Let p, h € C%(D) be two nonnegative functions satisfying (Al).
Let u be the invariant probability measure of (Ay). Suppose that

> i <0. (2.7)
1eEM
Then the equilibrium point x = 0 is asymptotically stable in probability if p(x) vanishes only at

0, and is unstable in probability if lim,_ p(x) = co.

Proof. Since Efil wif3; < 0, according to the Friedholm alternative (cf. [I4]), there exists a

constant ¢ > 0 and a vector £ such that

Q&(i) = —c— B; for every i € M.



Set V(z,i) = p(x) + &h(z) with the vector & = (&1,...,&n)" determined above. We have
o V(x,i) = LW p(x) + Q&(i ) (z) + &L ()

O h(z)
Ho) >h(a;), z € D\{0}.

< <5z' + Q& + &
By (2.8), we obtain

LOh(z)

AV (x,i) < ( c+E— 0

>h(a;), z € D\{0}. (2.9)

LOh(z)
Since (&), is bounded due to the finiteness of N, and lim
z—0 h($)

there exists 61 > 0 such that for any € DN {z;0 < |z| < &1}, one has &= | <e<g,and
hence &7 V (z, z) < —5h(z) < 0. Now we check the nonnegativity of V(z,1). By (A1), we have
limg 01+ £Z = 1, so there exists 69 > 0 such that for any = € {z;]z| < d2} N D,
h(z) _ 1 , h(z)
—_ > = dV = 1 i—
toy 2y md V) =p@)(1+ 6
This also implies that if lim,_,g p(z) = oo, then lim,_,o V (z,i) = oo for every ¢« € M. Moreover,

by the definition of V(z,7) and the condition lim, .o hg )) = 0, it is easy to see that if p(x)

=0, for some 0 < e < g,

LG >h

p(:v

>>;p( ) >0.

vanishes only at 0, then V(0,7) = limy_0V(2z,i) = 0 and V(z,4) vanishes only at 0. Set
D = DN {z|z| <min{d,d2}} being a neighborhood of 0, then

AV (x,i) <0, V(x,i)€ D\{0} x M.

Applying Lemma, and Lemma 23] we can conclude the proof. "

Next, we give out a criterion based on the theory of M-matrix. In [I2], the theory of M-
matrix has been used to study the stability of linear state-independent regime-switching diffusion
processes. In this work, we generalize this method to deal with more general regime-switching
diffusion processes. As an application of this method, an example of nonlinear regime-switching

diffusion process in a countable state space is given in subsection 2.2.

Let us first introduce some basic facts on the theory of M-matrix. Let B be a matrix or
vector. By B > 0 we mean that all elements of B are nonnegative. By B > 0 we mean that
B > 0 and at least one element of B is positive. By B > 0, we mean that all elements of B are

positive. B < 0 means that —B > 0.
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Definition 2.5 (M-matrix) A square matriz A = (a;j)nxn s called an M-Matriz if A can be
expressed in the form A = sI — B with some B > 0 and s > Ria(B), where I is the n X n identity
matriz, and Ria(B) the spectral radius of B. When s > Ria(B), A is called a nonsingular M-

matric.

Below, we cite some equivalent conditions that A is a nonsingular M-matrix and refer the reader

to [3] for more equivalent conditions.
Proposition 2.6 ([3],[12]) The following statements are equivalent.

1. A is a nonsingular n x n M-matriz.

ail] ... Qig
2. All of the principal minors of A are positive; that is, | - | >0 foreveryk=1,...,n.

alp ... Qg

3. Every real eigenvalue of A is positive.

4. A is semipositive; that is, there exists x > 0 in R™ such that Az > 0.

Theorem 2.7 Let (X¢, Ay) be state-independent RSDP satisfying (2.1) (23) with N < oc.

Assume (H2.1)-(H2.4) hold. Let p € C%(D) be a nonnegative function such that (A2) holds.
Suppose that

- (Q + diag(By, . . . ,BN)) s a nonsingular M-matriz, (2.10)

where diag(By,...,Bn) denotes the diagonal matriz generated by the vector (Bi,...,HBn)* as
usual. Then the equilibrium point x = 0 is asymptotically stable in probability if p(x) vanishes

only at 0, and is unstable in probability if lim,_,o p(x) = oco.

Proof. As —(Q + diag(B1,...,8n)) is a nonsingular M-matrix, there exists a vector & =
(617 cee 75]\/')* > 0 such that

A= ()\1, ceey )\N)* = —(Q + diag(Bl, ... 7/3N))€ > 0.
Set V(z,i) = &p(z) for € D\{0} and ¢ € M, then
o V(w,i) = QEi)p(x) + &L p(w)

<(QE(0) + Biki)p(x) = —Xip(x) < 0.

11



Applying Lemma 2.2] and Lemma 2.3 the desired conclusion follows immediately. "

Now we apply our criterion to study the stability of a class of nonlinear RSDP. Let (X3, A¢)
satisfy (2.1) and (2.2]). We assume further that

b(x,i) = ]az\'yi)(m/\m],z)(l +0(1)), o(z,i)=|z°6(z/|z],i)(1 + o(1)) (2.11)

as ¢ — 0, where 13(, NSl x M = RY (1) 0 ST M — RIXE b and & are continuous,
1 < <2¢—1and S denotes the unit sphere in RY. We define some quantities used later.
Denote by 6 = (6y,...,04)* a point in S 1. Denote by d;(-) the Dirac measure at k. Put
a(0,i) = o(6,i)5(0,1)*. For each i € M, set

sup Sy bi(6,4)6, if v < 2¢ —1,
Bi=<q 5 o . _ (2.12)
sup_ {% Zglzl ar(0,7) (05 (1) — 2016;) + S, i (6, z)@k}, if y=2¢—1,
feSe—
and
5 inf ST by (0,4)00, if v <2¢—1,
Bi=g e N . (2.13)
ot [5 SN (9,0 (5(1) — 20407) + SN b6, z)ek}, if v =2¢ — 1.

Theorem 2.8 Assume (H2.1)-(H2.4) hold. Suppose that (X, A¢) satisfies (2.1) (2.2) with co-
efficients satisfying (Z11) and 1 <y < 2¢ — 1. Let (u;) be the invariant probability measure of
(At). The equilibrium point © = 0 is asymptotically stable in probability if Zfil wifi <0, and
is unstable in probability if Zf\il ,u,ﬂ} > 0.

Proof. Let
LV = - a ) v b ) ——.
5101 3 dula/lel, g+ o D bafleh Vg,

(1) To prove that x = 0 is stable in probability, we choose p(x) = |z|P (p > 0) and
h(z) = |z|>TP~1. Then

N N
LOp(@) = Bla* 772 3 ana(6,0) (0 — 2061 + 8e(D)) + plal 7 [ 3 bu(6, )64
k=1

=2

’x‘2§—1—'y N R ) » .
= p[T Z Qg (9, Z) ((p —2)016; + 5k(l)) + Z br.(0, Z)ek] h(z),
k=1 k=1
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where 0 = (61,...,0n)* = x/|z|. By direct calculation, one gets

limM =0 and lim LOh(z) =0
z—0 p(x) a—0  h(x)
If v < 2¢ — 1, then for any € > 0 we can choose a d; > 0 so that for any = € {z;|2| < d1},
[wia(e (p — 2)61,6; + 5 Né(e')e < Na(e')e )
D 5 = kl ,Z)( k0 + O ( )+; k(0,1 k} _p<kZ:1 k(0,2)0, +¢€).

If v = 2¢ — 1, then for any € > 0, there exists py > 0 such that for any 0 < p < po,

o217 & N
p[T > aw(0,7) ((p = 2)0k00 + 61(1)) + Zbk(e,z’)ek] < p(Bi + 2).

k=1 k=1
Invoking the condition (2.I1J), by choosing a sufficiently small §; and pg, we have
L9 p(x) < p(B; + £)h(x).

By the arbitrariness of ¢ > 0, by Theorem [2.4] we obtain that x = 0 is asymptotically stable in
probability if Zf\il wifi < 0.

(2) We go to study the instability. Now let p(z) = || (p > 0) for z # 0 and h(x) =
|x|Y~P~ L. Then it hold lim,_, hg )) = 0 and lim,_,q % = 0. Analogous to the discussion in
part (1), through choosing a small neighborhood of 0 for z or a small value p, we obtain for any

e>0

i) ,xpc 1—y N N
L v p(a:) |: Z kl p + 2)9k91 Z 9 Z Hk] )
k=1 k=1
< —p(B; + &)h(x).
Therefore, if Zfil wiB; > 0, then z = 0 is unstable in probability by Theorem 271 "

Theorem 2.8 shows that our on-off criterion provided by Theorem 2.4] could be very sharp.

We can see it more clearly from the nonlinear systems in the 1-dimensional space. Let
dXy = ba, (|Xe A [Xe])dE + op, (1XC A|Xe])dBy,  in R, (2.14)

and (A) is still a continuous time Markov chain on M with N < co. Applying Theorem 2.8 to

this situation, we can obtain immediately

Corollary 2.9 Suppose (X, Ay) satisfy (2-14). Assume 1 <~y <2(—1. Let B; = b; if v < 2¢—1
and B; = b;— %0'2-2 if vy =2(—1. Then the equilibrium x = 0 is asymptotically stable in probability
if Zf\il wifBi < 0 and is unstable in probability if Zfil wifBi > 0.
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2.2 State-dependent RSDP in a countable state space

In this subsection, we consider the stability of state-dependent RSDP in a countable state
space. Based on our results for state-independent RSDP in a finite state space, we shall put
forward a finite partition method to transform the RSDP in a countable state space into a new
RSDP in a finite state space. So in this subsection (X, A;) still satisfies (ZI)) (Z2]) but with
N = oo and Q-matrix (g;;(z)) of (A;) depending on x.

Let p € C%(D) be a nonnegative function such that (A2) holds. As N = oo, in this
subsection we need to assume M := sup;c ;i < oo. We first divide the space M into finite

number of subsets according to the stability of (X;) in each fixed environment. Precisely, let
F={-oc0o=ky<ki<...<kp_1<kyn=M}

be a finite partition of (—oo,M]. Corresponding to I', there exists a finite partition F =
{F1,...,Fy} of M defined by

Fi={jeM; Bje (ki—1,ki]}, i=12,...,m. (2.15)

We assume that each Fj is nonempty, otherwise, we can delete some points in the partition I'.

Set

B =sup B, qj; = —qu};, (2.16)
jek kot

F SUPgecrd SUPrcF; ZjeFk %‘j(l‘), if k<1,
ik =4 . . ) ‘ (2.17)

lnfxERd lnfTEFi ZjGFk qT_](x), if k> 1,
for i, k € M. In order to ensure ¢/’ = —¢f < oo for i = 1,...m, we assume that there exists a

number M such

sup sup ¢;(x) < M < oo. (2.18)

ZBERd iEM

Then it is easy to see

Bi<BF,VjeF, and BE, < BF, i=1,....,m.
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Theorem 2.10 Let (X¢,Ay) be a state-dependent RSDP in an infinite state space satisfying
(213) (22). Assume that (H2.1)-(H2.4) and (Z18) hold. Let p € C?(D) be a nonnegative
function such that (A2) holds and M = sup;c B; < oo. Suppose that the m xm matric

—(diag(ﬂf, oL BEY 4 QF)Hm is a nonsingular M-matriz, where

111 1
01 1 1

H,=|0 0 1 1 . (2.19)
000 - 1

mXxXm

Then the equilibrium x = 0 is asymptotically stable in probability if p(x) vanishes only at 0, and

is unstable in probability if lim,_,o p(x) = oco.

Proof. Since —(QF +diag(BY, ..., 8L))H,, is a nonsingular M-matrix, by Proposition 2.6, there
exists a vector nf = (nf’,... , nk)* > 0 such that

M=) = —(QF + diag(B], ..., BL) Hyun > 0.
Set ¢F' = H,,n". Then
which yields that 5{11 < EZ-F fori=1,...,m—1and £ > 0. We extend ¢ to a vector £ on M
by setting &; = ¢ if j € F;. Let ¢ : M — {1,...,m} be a map defined by ¢(j) = k if j € Fy.
Let Qz9(i) = >_,.4ij()(gj — gi) for g € B(M). Set V(z,i) = &p(x). By the definitions of

QF, p¥ and the decreasing property of §Z-F , we have, for r € F;,

Qz6(r) = arj(@) (G — &) = D arj(2)(& — &)

J#r JEF;

=3 (D a@) & =N+ D (D an@) &l =&
k<i jEF k>i  jEF

<Y ah &l =N+ ahel =) = QN (o(r)).
k<i k>1

Furthermore,
o V(w,1) = Qué(r)p(x) + &L p(x)
< (QEM((r) + Bl i) P(2)
= —Ay(rp(z) < 0.
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Note that inf;epq V(,1) = mini<,, £ p(z) vanishes only at 0, then applying Lemmas and

2.3l we can get the desired conclusion. ]

Remark 2.11 The function p(z) appeared in Theorem 210 is a test function, which we used
to characterize the behavior of the process (X;) in each fixed environment. Taking p(z) to be
a polynomial function will work for many cases as being shown by our examples. After getting
the constants 3;, i € M, one needs to classify the state space M according to (5;). This part

needs some skill. Other conditions of this theorem can be checked directly.

Example 2.1 Let (X;) be a process on R satisfying
dX; = by, X,dt + X2 A |Xi|dB;, X =z #0,

and (Ay) is a birth-death process on M = {1,2,...} with g;;11(z) = ¢; + (i — 1)sinz for i > 1,
gii—1(x) = a;+(i—2)sinz for i > 2, ¢;;(x) = 0 for any j ¢ {i—1,i,i+1}, where a;, ¢; are positive
constants. Let (Xt(i)) be the diffusion process associated with (X;) in the fixed environment 4,
that is,
dx = b xPdt + (X2 A1 x| dB,.

It is easy to know that x = 0 is stable in probability for the process (Xt(i)) if b; < 0, and is
unstable in probability if b; > 0. By taking p(x) = |z|, it is easy to see L) p(z) = b;|z| for = # 0.
So we have 3; = b; in condition (A2). Take the partition as F} = {1} and Fy = {2,3,...}. Then
aiy = c1, 451 = az.

More precisely, we set by = —1 and b; = k — i~ for some positive constant x. Then
BEF =b; = —1 and B = k. The matrix —(Q + diag(BY', 82))Hs is a nonsingular M-matrix if
and only if Kk <

. Therefore, when x < “261, x = 0 is asymptotically stable in probability

ag
14c1 1+

for (X¢, A¢) according to Theorem 2.0l

3 Principal eigenvalue and stability of RSDP

In this section we continue to study the stability of the equilibrium point x = 0 for the system
given by (21 and ([2:2]). We shall provide some criteria in terms of the principal eigenvalue
of a bilinear form. Let (X, A¢) be defined by ([21) and ([2.2) with state-independent (g;;) and
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N < oo. In this section, we need to assume that (A;) is reversible. To emphasize on this

condition, we use (m;)ieam to denote the probability measure such that m;q;; = 7;q;i, 4, j € M.

Let D be a neighborhood of 0. Let p € C?(D) be a nonnegative function and satisfy

(A3) for each i € M, there exists a number ~; € R such that

and v. Z 0.

Let L*(m) = {f € B(M); SN mif? < 0o}, and denote by || - || and (-, -) respectively the norm

)

and inner product in L?(r). Set
LN N
— i F 2 s 2 2
E(f) = B .Zlmqu(f] — fi)" — 277@72]0@', f e L (n), (3.1)
INES =

where (7;) is given by (A3). The domain of this bilinear form Z(&) is defined by
9(€) ={f € L*(n); D(f) < o0}.
The principal eigenvalue of £(f) is defined by

Mo = inf {£(0): f € 2(€), If] =1}. (3:2)

The notation £(f) is similar to the Dirichlet form for a Markov chain with killing, but in our case
7; could be positive which causes £(f) may take negative value for some f € L?(7). Due to this
fact, || |12 := || f||* + £(f) is no longer a norm. Some new difficulties appears when we provide
a lower bound of g compared with the estimate of lower bound of the principal eigenvalue of a

Dirichlet form.

Next, we apply the principal eigenvalue to study the stability of (X, A¢).

Theorem 3.1 Suppose that (H2.1) (H2.2) hold and N < oo. Assume that (A:) is reversible
w.r.t. the probability measure (m;). Let p € C?(D) be a nonnegative function such that (A3)
holds. E(f) and Ny are defined by (31]) and (3.2) as above. Assume Ao > 0. Then the equilibrium
point x = 0 is asymptotically stable in probability if p(x) vanishes only at 0 and is unstable in

probability if lim,_,o p(x) = oco.
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Proof. Let

Qf(i) = Qf(i) +7ifi = > aij(fi — fi) +wifi for f € 2(D). (3.3)
J#i

Then E(f) = (f, —Qf). When N < 0o, A\g must be the minimal eigenvalue of the operator —(
by the variational representation of the eigenvalues of finite matrices. Let g be an eigenfunction
corresponding to Ag. Since £(g) > £(|g]), it holds that g > 0. It is easy to see g Z 0. So there
exists a k € M such that g > 0. If ¢; > 0 for some i € M, then

0 < qirgr < Z%’jgj = (@ — % — Ao)gi
J#
This yields that g; > 0 and ¢; —v; — Ao > 0. As @ is irreducible, we can prove inductively that
g; > 0 for each i € M. Moreover, M is a finite set now, so min;c ¢ g; > 0.

Let V(z,1) = gip(x) for x € D, i € M. Due to (A3), we have

JZ{V(JJ,Z) > (Qg( ) +’7zgz)p( ) = _AOQip(x) <0, ze€ D\{O}v i€ M.

If lim, 0 p(x) = oo, we have lim, oV (z,7) = lim,_,0g;p(z) = oo for each i € M. Hence, by

Lemma 23] the equilibrium point z = 0 is unstable in probability.

If p(x) vanishes only at 0, due to the finiteness of N, we have

Jnf V(w,i) = (mingi)p(z)

also vanishes only at 0. Applying Lemma [2.2] we can get the desired result. (]

Theorem 3.2 Suppose that (H2.1) (H2.2) hold and N = oco. Assume that (A:) is reversible
w.r.t. the probability measure (m;). Let p € C?(D) be a nonnegative function such that (A3)
holds. E(f) and Ao are defined by (31) and (3.2) as above. Assume Ao > 0 and X\ is attainable,
i.e. there exists g € L*(m), g Z 0, such that £(g) = Xo||g||?. Then

(i) the equilibrium point x = 0 is unstable in probability if lim,_o p(z) = co.

(ii) Assume further that liminf, . g; # 0, then the equilibrium point x = 0 is asymptotically
stable in probability if p(x) vanishes only at 0.
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Proof. We first show that g > 0 and Qg(i) + vigi = —Xogi, ¢ € M. To obtain this, we use
the variational method as in [4]. It is easy to check E(f) > £(|f]), so it must hold g > 0. For a
fixed k € M, let g; = g; for i # k and gx = g + . It holds Qg(i) = Qg (i) + eq;x for i # k and
Qq(k) = Qg(k) — eq.. We have

N
£@) = (3, -Qa) — >_midi
i=1

N
=(9,-Qg) = > _miig; + 2emp(—Qg)(k) — 2empygr + €T (qk — ),
=1

where we have used the fact m;q;, = mqr;. Because £(§) > A\o||g]|? and E(g) = Nollg|?, we get

— 2emg ()\()gk + Qg(k) + ngk) + 627Tk(qk — V) — )\0627Tk > 0. (3.4)

Dividing both sides of ([3.4]) by € > 0 and then letting ¢ — 07, we get Qg(k) + Yrgr + Xogr < 0.
Dividing both sides of ([3.4)) by € < 0 and then letting ¢ — 07, we get Qg(k) + Ykgr + Aogr > 0.
Therefore, Qg(k) + Ykgr = —Aogk- Since k is chosen arbitrarily in M, we have Qg(i) + v;9; =
—MXog; for each i € M.

Since g # 0 and g > 0, there exists k such that g > 0. If g;; > 0, then
0 < qirgr < Z%’jgj = (¢ — % — A0)%i>
J#i
so g; > 0 and ¢; — v — Ao > 0. As @ is irreducible, by an inductive procedure, we can prove

that g; > 0 for every i € M.

Next, set V(z,1) = gip(x) for x € R, i € M. We obtain for |z| > ro, i € M,

o V(z,i) = Qg(i)p(z) + g:.L" p(x)

(3.5)
< (Qg(d) +7igi) p(x) = =Xogip(x) < 0.

If lim, 0 p(x) = oo, then for each i € M, we have lim,_,o V(x,i) = lim,_,0g;p(z) = co. By
Lemma 2.3 we can prove the assertion (i). Under the condition liminf; ,~, g; # 0, we get that
inf;ea gi > 0. Therefore, when p(z) vanishes only at 0, we can obtain that inf;cp V(z,4) =
(infie M gi) p(x) still vanishes only at 0. Then the assertion (ii) follows from Lemma 2.2l and we

complete the proof. ]
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Using the principal eigenvalue to study the stability of (X;, A;) when N = oo, we don’t
need to assume the boundedness of @-matrix and the vector (;) given by (A3). We construct
an example of nonlinear RSDP to show its usefulness. We shall give a lower bound estimate of

Ao in next section.

Example 3.1 Let (X;) be a process on R satisfying
dX; = pa, Xydt + X2 A | X,|dB;, X =z0 #0, (3.6)

where a A b = min{a, b}, and pg = —¢, u; = v for i > 1, ¢,y are positive constants. (A;) is a
birth-death process on M = {0,1,...} with ¢;4+1 = b; = b(i + 1), ¢i—1 = a; = a(i + 1). Taking
p(z) = |z|, then LW p(x) = pip(x) for x #0. Set g; =i+ 1. fa—b—>0and c—b > 0,
then there exists A > 0 such that Qg(i) < —Ag;, @ > 0. So Ay > A > 0 by Theorem [£.4] below.
Noting inf;caq g; = 1 > 0, by Theorem B.2] the equilibrium point z = 0 is asymptotic stable in
probability if a —b—~ >0 and ¢ — b > 0.

4 Principal eigenvalue and recurrence of RSDP

In this section, we shall provide some criteria for the recurrence of RSDP in terms of the
principal eigenvalue of a bilinear form. In [16], we have provided some explicit criteria for the
recurrence of RSDP. But there when dealing with switching in a countable state space, we need
to assume the boundedness of ()-matrix. In this part, we shall take advantage of the principal
eigenvalue to provide a criterion for recurrence of RSDP without the boundedness assumption

on the Q-matrix.

Let (X3, Ay) satisfy 2.10) ([2.2]) with (g;;) being state-independent. Assume (A;) is reversible
w.r.t. the probability measure (7;);ers. We use the following condition on the coefficients of

(X, Ay) in this section.

(H4.1) There exists a constant K such that

b, i) + (e, )| < K1 +]al), © € BY, i€ M,

|b(3372) - b(yvl)| + ||O'(33‘,Z) - 0(y,z)|| < [(|3j - y|7 WS Rd7 (RS M7
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Let p € C%(R?) be a positive function satisfying

(A4) for each i € M, there exists a number ~; € R such that
L9p(x) < vip(x), |z] =10

for some rg > 0. Moreover, . Z 0.

We can define the bilinear form £(f) and it principal eigenvalue Ao by B and (3:2)) similarly
by using (v;) given by (A4).

Theorem 4.1 Suppose that (Hj.1) holds and N < co. Suppose that (Ay) is reversible w.r.t. a
probability measure (1;). Let p € C*(R?) satisfy p > 0 and (A4). Assume \g > 0. Then (Xz, Ay)

is positive recurrent if limj, . p(x) = o0 and is transient if limj, o p(z) = 0.

Proof. When N < oo, A\g must be the minimal eigenvalue of the operator —€). Let g be an
eigenfunction corresponding to Ag. Then g must be positive, i.e. for each i € M, g; > 0 and
hence min;cpq g; > 0 due to the finiteness of N. This fact follows from the irreducibility of (g;;)
and the minimal property of \g. Let V(z,4) = g;p(z) for € R? and i € M. By (Al), we have

o V(z,i) = Qg(i)p(z) + gL' p(x)

< (Qg(i) + vigi) p(x) = —Xogip().

Therefore, if lim ;o p(z) = 0o, there exist positive constants e and 79 > 0 such that g;p(z) >

(4.1)

e > 0 for every |z| > rg, i € M. Applying the method of Lyapunov function (see [14] Section 2]),
(X¢, Ay) is positive recurrent. If limyy o, p(z) = 0, then (X;, A;) is transient due to inequality

(1) and the method of Lyapunov function. "

Theorem 4.2 Suppose that (Hj.1) holds and N = oo. Suppose (M) is reversible w.r.t. a
probability measure (m;). Let p € C2(R?) be a positive function such that (A4) holds. Assume
that \o > 0 and X\o is attainable, i.e. there exists g € L*(), g #Z 0 such that E(g) = Xol|g|?*.
Then (Xt,Ar) is transient if limy o p(z) = 0. Assume further that liminf; .o g; # 0, then

(X¢, Ay) is recurrent if lim|g o p(x) = 00.

Proof. Similar to the argument of Theorem [B.2] it holds that for each i € M, Qg(i) = —\og;
and g; > 0. Let V(x,i) = g;p(x) for x € R, i € M. We have for |z| > rq, i € M,

AV (x,7) < (Qg(i) + vigi) p(x) = —Xogip(z) < 0.
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Let
T=inf {t > 0; (X¢,A) € {w € R |z] < 7o} x {1,... ,mo}},
where my is a fixed finite number. Applying 1t6’s formula to (X, Ay) with Xo =z, Ag = [, and
|z| > ro, I > mg, we obtain
tAT
EV(Xinr, Ainr) = V(z,l) + E g V(Xs,Ag)ds < V(x,l) = gip(x). (4.2)
0

Case 1. When lim,_,o p(z) = 0, if P(17 < 00) = 1, then passing ¢ to oo in ([@.2]), we obtain

inf p(y) min g; <E[p(X:)g(Ar)] < gip(). (4.3)
{yslyl<ro} i<mg
Since the set {y;|y| < ro} x {1,...,mp} is compact and the functions p and g are positive, the

left-hand side of (4.3]) is strictly positive. Since x is arbitrary, letting |x| — oo, the right-hand
side of (@3] tends to 0, which is a contradiction. Therefore, P(7 < oo0) > 0 and (X, As) is

transient.
Case 2. When lim|;|_,, p(z) = oo, we consider another stopping time
Tk =inf {t > 0; |X;| > K}.

As the process (X, A;) is nonexplosive, Tx increases to oo a.s. as K — oo. Since liminf; ,~ g; #

0 and we have proved that g > 0, we get inf;caq g; > 0. By [t6’s formula, we get

E[g(Ataricnr) p(Xinrenr)] < p(a)gr-
This yields

p(z)g
inf{y;ly\ZK} p(y) infie pm i

P(r > 1K) <

Since lim|g|_,, p(7) = 00, We obtain that infy,., >k p(y) — oo as K — oo and

p(z)gu

P(r =o00) < lim - - =0.
( ) K—oo infyyy1> k) p(y) infiea gi
Therefore, P(7 < 0o) = 1 and the process (X3, A¢) is recurrent. "

To apply our criteria, it is necessary to check the condition Ag > 0. There are many works

and methods devoted to the estimate of the eigenvalues of Dirichlet forms. Next, we generalize

22



the lower estimate of the principal eigenvalue of a Dirichlet form given in [4]. The usefulness of
this lower estimate will be seen from the examples given in the end of this section. Following

the approach of [4], we first establish a variational formula for the bilinear form £(f) defined by

@B1).

Proposition 4.3 Assume that (¢;)iesm and (|i|)iem are bounded. Let f € L?(r) be nonnega-

tive, then

E(f) = Sl;p(f2/g,—ﬂg>,

where the supremum takes over all measurable functions g which are strictly positive (i.e. g >
cg > 0 for some constant cy). Furthermore, if there exists strictly positive g such that Qg < —Ag
for some X\ > 0, then Ay > A.

Proof. 1) Let § = g1y, then (f?/g,—Qg) < (f?/g, —Sg), which can be seen from the formula

below.

(f*/9,—9) = Zm o O 4 — 7igi)

75

= Zzﬂ'z%] gi gj) - Zﬂ-z/%f?
i jF#L i

= Z WiQifz? - Z Z 77@%] Z 7Tz%fz :
i i jF#L

We should verify whether the minus of two infinite series is of meaning. Let h; = f;/g; then

h; > 0. The previous equation

St S S e Yoo

)
= Zﬂ'z% Zzﬂ'zq”fzf]( ;) - Zﬂ'i’}’ifiz
i jFi i
< Zﬂ'iqui - Zzﬂ'z%]fzf] Zﬂ'z’}’z
) i jF#L
=&(f).

2) For the converse, if f > c¢f > 0, then it follows directly by taking ¢ = f. If not, we let
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fo=n"1+f, then

2 fn 2
<f2/fm —Qfn) = Zﬂz%j(f] ‘|‘fl - f]f (J) f f ) Zﬂ'z’yzf?

i, fn(2)
L I
— §%mqm<fn—(j) 7.0 )> (fn () Zﬂﬂzfz-
Since p f2
<fnfy> Fali >> (fa(4) = £n(d)) = 0,

by Fatou’s lemma, £(f) < lminf, oo (f2/fn, —Qfn) < supg(fQ/g, —Qg).
The last statement follows directly from the variational formula for £(f). '

To deal with the general (¢;;) and (v;), we need use the localization method to approximate
the general situation. As ||f||¢ is no longer a norm, the triangular inequality does not hold and

so we have to approximate £(f) directly.

Theorem 4.4 If there exists a measurable function g satisfying g > 0 and —Qg/g > X > 0,
then Ao > .

Proof. For n, m € N, let

Gnm = {27 9i = 1/m7 h/z‘ Vg < n},
Anm = lnf{g(f)v f Ge,, 0, f € 9(8)}

Let
1

5nm(f) = 9 Z 77#]2](]0 fz) Z 77@'(%' _q(Z7Gnm))f7,2 - Z 7Ti’7ifi27

1,7€EGnm 1€Gnm 1€Gnm

for f € L*(Gum, ). e =0, &E(f) = Eum(f), and hence

Gc”nH = 17 f € 9(5)}
By this formula and the definition of Ay, we get

Anm = Ao and hence lim A, > Ag.
n,Mm—00
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For the converse, we have for any ¢ > 0 there exists f. € Z(€) with | fe]] = 1 such that
Ao > E(f:) —e. Let fom = fela,,,. We shall show E(fnm) — E(f:). Indeed,

fnm = Zﬂ'zq:] fnm fnm Zﬂ'z’}’zfnm

:% Z Tiqij (fj — i) +qu (0, Gon) fE = Y mvif?.

1,5€EGnm 1€Gnm

We have

‘ZﬂiQ(i,G%m)ff-i- > mif?]

ZEG’!L’!?L

<Z7qulf2qZGnm + Z Wz”Yz‘fz_)O

i 1€GS,,

as n, m — 00. S0 limy, 00 E(frm) = E(f). This yields that Ao > limy, 1100 Apm —€, and hence

Ao > limy, ;00 Apm by the arbitrariness of e.

To complete the proof, we also need the following local operator. Let B be a measurable

set, define for ¢ € B

@ = q, qu = Qij]-B( 7
OFf(i) =" al () — aP £ () + i f (i)

jEB

If —Qg > \g then —QPg > \g on B for every measurable set B. Indeed,

OPg(i) = " aflg; — aPgi + vigi
J
< 4ijg5 — 4igi +7igi = Q(i) < —Agi, i € B.
J
Applying this fact to the set Gy, we get QFmg < —\g on Gypy,. But on Gy, ¢; and || are
bounded and g is strictly positive, by Proposition &3] it holds App, > Ao As limy, y—s00 Apm = Ao,
we get A\g > A and the proof is complete. (]

Remark 4.5 We go back to see the argument of Theorem If we can find a measurable g
on M such that g > 0 and Qg < —\g for some A > 0, then we can define V(z,i) = g;p(z) by
this g. The inequality ([B.3) holds with A\g replaced by A. Following the proof of Theorem [4.2]
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we can get that (X, Ay) is transient if lim|,|_,o, p(x) = 0. Under further condition on g, we get
(X, Ay) is recurrent if lim), o p(7) = 0o. The reason that we use \g in Theorem [.2]is that Ao
is the largest desired one by Theorem [£.41

At last, we give two examples of RSDP with switching in a countable state space to show
the usefulness of our criteria. The Q-matrices of these two examples are unbounded. Especially,

in the second example, the vector (7;) given by (A4) is also unbounded.

Example 4.1 Let (X;) satisfy the following stochastic differential equation,

dX; = pp, Xedt +dBy, Xo =20 € R, (4.4)
where (By) is a Brownian motion on R and (A;) is a birth-death process on M = {0,1,...}.
(A¢) and (B;) are mutually independent. Assume that pg = —c¢, p; = « for ¢ > 1, where ¢, v
are positive constants. Therefor, (Xt(o)) is recurrent and (Xt(i)) (1 > 1) is transient. Assume
Giiv1 = b = b(i + 1) for ¢ > 0, and ¢;—1 = a; = a(i + 1) for i > 1. Here the constants a and
b satisfy a > b > 0, which ensures that (A;) is reversible with respect to a probability measure

(m;) (cf. Van Doorn [19]). The @-matrix of birth-death process (A;) is obviously unbounded.
Then the process (X3, A¢) is recurrent if c —b > 0 and a —b— v > 0.

Indeed, it is easy to see that for each ¢ € M,

L1 d? d
(@) — -2 o
L 2d$2+,u,a:d$.

Take p(z) = |z|, then it holds
L9 p(x) = pip(z) for x| > 1, i € M.

Then we can take ; = u; for ¢ > 0 in the condition (A1). Define the bilinear form £(f) and its
principal eigenvalue A\g as (BI)) and (3.2). If c—b > 0 and a — b — > 0, there exists a number
A > 0 such that

c—b>A>0and a—b—vy>A>0.

Let g =%+ 1 for ¢ > 0. We have
Qg(i) = bi(gi+1 — gi) + ai(gi—1 — 9s) + pigi
=b(i+1)—a(i+1)+~(+1)
< =Ai+1) =—=)\g;, fori>1,

Qg(0) = bo(g91 — 90) + 1ogo = (b — c)go < —Ago-
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Applying Theorem A4, we get \g > A > 0. Combining with the fact lim, . p(z) = oo, it
follows immediately from Theorem and Remark that (X, Ay) is recurrent.

Example 4.2 Let (X;) satisfy (£4) with po < —1 and p; = i. (A¢) is a birth-death with birth
rate b; = 1 for all i > 0 and death rate a; > 1+ u;(i+1) = i> +4i+1 for i > 1. Then the process

(X, Ay) is recurrent.

Indeed, it is easy to check that (A;) is reversible with respect to a probability measure (m;).
Taking p(z) = |z|, we also have L") p(z) = puip(x) for |z| > 1 and i > 0. Hence, 8; =i for i > 1
and B; increases to 0o as i — oo. Setting g; = ¢ + 1 for 4 > 0, it is easy to see that there exists

A > 0 such that

bo(g1 — 9o0) — Hogo < —Ago,
bi(git1 — gi) + ai(gi—1 — i) + pigi < —Agi, > 1.

By Theorem 4, we have A\g > A > 0. Therefore, the process (X, A;) is recurrent by Theorem
and Remark

5 Summary

In this work, we mainly studied the asymptotic stability in probability of regime-switching
diffusion processes. Our switching process can be a Markov chain in a finite state space or in
an infinite countable state space, and its switching rate can be state-independent and state-
dependent. In particular, for switching in an infinite countable state space, we proposed two
methods: one is the finite dimensional projection method, another is the principal eigenvalue
method. Finite dimensional projection method can deal with state-dependent switching, but its
switching rates must be bounded; the principal eigenvalue method can deal with switching with
unbounded rates, but can not be used to deal with state-dependent switching at the present
stage. Some concrete examples were constructed to show the usefulness and sharpness of our

criteria.
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