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Abstract

We provide some criteria on the stability of regime-switching diffusion processes. Both the

state-independent and state-dependent regime-switching diffusion processes with switching

in a finite state space and an infinite countable state space are studied in this work. We

provide two methods to deal with switching processes in an infinite countable state space.

One is a finite partition method based on the nonsingular M-matrix theory. Another is

an application of principal eigenvalue of a bilinear form. Our methods can deal with both

linear and nonlinear regime-switching diffusion processes. Moreover, the method of principal

eigenvalue is also used to study the recurrence of regime-switching diffusion processes.
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1 Introduction

In this work, we shall study the stability of regime-switching diffusion processes (for short,

RSDP) which arise in financial engineering, wireless communication and many other application

fields. The stability of such systems is of great interest and there has been a great deal of
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study in this topic; see for example, [1, 2, 5, 7, 9, 10, 11, 12, 13, 20, 21] and references therein.

Especially, stability of linear or semi-linear type of such systems has been investigated by [2, 7, 13]

among others. These works generalized the Lyapunov’s second method to deal with the regime-

switching diffusion processes. In particular, for linear systems, some easily verifiable conditions

were provided to ensure the stability or instability of regime-switching processes. It is well known

that the construction of Lyapunov function is a rather difficult task, so it is of great value to

find some easily verifiable conditions to ensure the existence of desired Lyapunov functions. The

main aims of this work are twofold: one is to find some easily verifiable conditions to justify the

stability or the instability of nonlinear regime-switching processes; another is to generalize these

conditions to study the stability of state-dependent regime-switching processes in an infinite

countable state space. Up to our knowledge, there is few result on the stability of regime-

switching processes in an infinite countable state space. Besides, there are some discussion on

the stability of a linearized system with the stability of the initial nonlinear system in [8, Chapter

7]. There R. Khasminskii gave some positive answer. On the other hand, we should note that

there are essential difference between the stability of nonlinear system with that of linear system.

On the stability of nonlinear control system, both the well-known conjectures of Aizerman and

Kalman were proven wrong by counter-example.

The regime-switching process considered in this work consists two components, (Xt,Λt).

The first component (Xt) satisfies a stochastic differential equation with coefficients depending

on the process (Λt); the second component (Λt) is a continuous time Markov chain on a finite or a

countable space. One can view the process (Xt) as a diffusion process in a random environment

characterized by the process (Λt). The stability of (Xt) in a random environment is more

complicated than that of a diffusion process in a fixed environment. There are many examples

(see [12] , [21] concrete examples) to show that when (Xt) is stable in some fixed environments

and unstable in other fixed environments, one can make (Xt) to be stable or unstable by choosing

suitable switching rate, i.e. the Q-matrix of (Λt). In this work, we shall provide some on-off

type criteria to show how the switching rate (Q-matrix) and the stability of (Xt) in each fixed

environment work together to determine the stability of the process (Xt,Λt). In this work, the

stability only means the asymptotic stability in probability of the system (Xt,Λt). Other kinds

of stability (for instance, p-stability) are left for further work.

To see the usefulness and sharpness of our criteria, let us consider the following one-
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dimensional nonlinear system.

dXt = bΛt

(

X2
t ∧ |Xt|

)

dt+ σΛt

(

X2
t ∧ |Xt|

)

dBt,

where (Λt) is a continuous time Markov chain in a finite state space M, bi, σi are constants for

each i ∈ M. Here we use x2 ∧ |x| := min{x2, |x|} to guarantee the solution of previous SDE

to be nonexplosive, which does not impact the nonlinearity of the system near 0. Let µ be the

invariant measure of (Λt). Applying our criteria, we show that x = 0 is asymptotically stable in

probability if
∑

i∈M µibi < 0, and is unstable in probability if
∑

i∈M µibi > 0 (see Corollary 2.9

below).

In [15, 16], the recurrence of RSDP in Wasserstein distance and in total varitional norm has

been studied. In this work, we develop their ideas to study the stability of RSDP. We mention

some difference between the study of ergodicity and that of stability for RSDP compared with

[15, 16]. Both of these studies try to construct a Lyapunov function V (x, i) such that A V (x, i) ≤

0, where A denotes the infinitesimal generator of RSDP. When we study the ergodicity, the

key point is the behavior of V (x, i) in the neighborhood of ∞, but to study the stability, the

key point is the behavior of V (x, i) in the neighborhood of 0. Note the following obvious fact:

limx→∞
x2

x
= ∞ but limx→0

x2

x
= 0. Consequently, the dominant terms in A V (x, i) are different

in these different situations.

This work is organized as follows. In Section 2, we first provide two kinds of criteria

for stability of RSDP in a finite state space, which are based separatively on the Friedholm

alternative and nonsingular M-matrix theory. Then in subsection 2.2, we extend the criterion

in terms of M-matrix to deal with RSDP in a countable state space by putting forward a

finite partition method. This method can also be used to deal with state-dependent RSDP. In

Section 3, we provide some criteria for stability of RSDP in terms of the principal eigenvalue

of a bilinear form. The method can deal with RSDP in a finite or countable state space.

Compared with the method in terms of M-matrix theory, this criterion can deal with switching

process in a countable state space without assuming the boundedness of the jumping rates. In

Section 4, we apply the principal eigenvalue to study the recurrence of RSDP. Moreover, we

provide a lower estimate of the principal eigenvalue defined in our work, which generalizes the

corresponding result for the principal eigenvalue of Dirichlet forms in [4]. Two concrete examples

are constructed to show the usefulness of this method in dealing with RSDP with unbounded

jumping rates.

3



2 Criteria based on M-matrix theory and Friedholm alternative

The regime-switching diffusion process studied in this work can be viewed as a number of

diffusion processes modulated by a random switching device or as a diffusion process which lives

in a random environment. More precisely, RSDP is a two-component process (Xt,Λt), where

(Xt) describes the continuous dynamics, and (Λt) describes the random switching device. (Xt)

satisfies the stochastic differential equation (for short, SDE)

dXt = b(Xt,Λt)dt+ σ(Xt,Λt)dBt, X0 = x ∈ R
d, (2.1)

where (Bt) is a Brownian motion in R
d, d ≥ 1, σ is d×d-matrix, and b is a vector in R

d. While for

each fixed x ∈ R
d, (Λt) is a continuous time Markov chain on the state space M = {1, 2, . . . , N},

2 ≤ N ≤ ∞, satisfying

P(Λt+δ = l|Λt = k,Xt = x) =

{

qkl(x)δ + o(δ), if k 6= l,

1 + qkk(x)δ + o(δ), if k = l,
(2.2)

for δ > 0. The Q-matrix Qx = (qkl(x)) is irreducible and conservative for each x ∈ R
d. If the

Q-matrix (qkl(x)) does not depend on x, then (Xt,Λt) is called a state-independent RSDP;

otherwise, it is called a state-dependent one. When N is finite, namely, (Λt) is a Markov chain

on a finite state space, we call (Xt,Λt) a RSDP in a finite state space. When N is infinite, we

call (Xt,Λt) a RSDP in an infinite countable state space.

To proceed, we introduce some conditions on the coefficients so that the solution of SDE

(2.1) (2.2) exists and 0 is the unique equilibrium point of this random dynamic system. There-

fore, the stability studied in this work is mainly focused on whether the equilibrium 0 is stable

or not. Hence, it is natural to assume that the process is not explosive, which is ensured by the

linear growth condition. In what follows, we introduce some conditions used in this work.

(H2.1) (qij(x)) is conservative and irreducible for each x ∈ R
d. For each x ∈ R

d, i ∈ M,

mx,i := sup{j ∈ M; qij(x) > 0} < ∞. There exists a constant C such that
∑

j 6=i j
2qij(x) ≤

C(1+ |x|2) for every x ∈ R
d, i ∈ M. For each n ∈ N, there exists a constant Cn such that

|qij(x1)− qij(x2)| ≤ Cn|x1 − x2|, x1, x2 ∈ R
d, |x1| ≤ n, |x2| ≤ n, i 6= j ∈ M.
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(H2.2 ) b(0, i) = 0 and σ(0, i) = 0 for each i ∈ M. Moreover, for any sufficiently small 0 < ε < r0,

there exist l ∈ {1, . . . , d} and κ(ε) > 0 such that all(x, i) > κ(ε) for all (x, i) ∈ {x; ε <

|x| < r0} ×M, where a(x, i) = σ(x, i)σ(x, i)∗ .

(H2.3) For each n ∈ N, there exists constant K̄n so that |b(x, i)| + ‖σ(x, i)‖ ≤ K̄n(1 + |x|), for

x ∈ R
d, |x| ≤ n, i ∈ M.

(H2.4) For each n ∈ N, there exists constant K̃n > 0 so that

|b(x, i) − b(y, i)| + ‖σ(x, i) − σ(y, i)‖ ≤ K̃n|x− y|, ∀x, y ∈ R
d, |x| ≤ n, |y| ≤ n, i ∈ M.

Here and in the sequel, σ∗ stands for the transpose of matrix σ, and ‖σ‖ denotes the operator

norm. When M is a finite set, according to [21], conditions (H2.1), (H2.3) and (H2.4) ensure

the existence of a nonexplosive solution (Xt,Λt) of (2.1) and (2.2). When M is an infinite

countable set, according to the theory of SDE driven by Lévy process, conditions (H2.1), (H2.3)

and (H2.4) also ensure the existence of a nonexplosive solution of (2.1) and (2.2). Indeed, by

[6], the jump process (Λt) can be represented by a stochastic integral w.r.t. a Poisson random

process. Precisely, for each x ∈ R
d, i, j ∈ M with i 6= j, let ∆ij(x) be a consecutive (w.r.t. the

lexicographic ordering on M×M), left-closed, right open intervals on the real line, each having

length qij(x). Namely,

∆12(x) =
[

0, q12(x)
)

, ∆13(x) =
[

q12(x), q12(x) + q13(x)
)

,

...

∆1mx,1(x) =
[

mx,1−1
∑

j=2

q1j(x),

mx,1
∑

j=2

q1j(x)
)

,

∆21(x) =
[

mx,1
∑

j=2

q1j(x),

mx,1
∑

j=2

q1j(x) + q21(x)
)

,

and so on. Let h : Rd ×M× R → R be defined by

h(x, i, z) =

mx,i
∑

j=1

(j − i)1∆ij (x)(z).

Then (2.2) is equivalent to

dΛt =

∫

R

h(Xt,Λt−, z)N(dt,dz), (2.3)
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where N(dt,dz) is a Poisson random measure with intensity dt × dz. Hence, by [18, Section

II-2.1, pp.104], conditions (H2.1), (H2.3) and (H2.4) ensure the existence of the solution of (2.1)

and (2.2). Moreover, these conditions also ensure that there exists a constant C̃ such that

|b(x, y)|2 + ‖σ(x, y)‖2 + ‖h(x, y, ·)‖L2(dx) ≤ C̃(1 + |x|2 + y2), x ∈ R
d, y ∈ M.

According to [17, Lemma 114], the solution of (2.1) and (2.2) is nonexplosive.

We adopt the definition of stability given in R. Khasminskii [8]. See also [21, Chapter 7] or

[9]. Precisely, the equilibrium point x = 0 is said to be stable in probability, if for any ε > 0 and

any i ∈ M,

lim
x→0

P
(

sup
t≥0

|Xx,i(t)| > ε
)

= 0,

and x = 0 is said to be unstable in probability if it is not stable in probability. Here (Xx,i(t))

denotes the first component of the solution of (2.1), (2.2) with initial condition (X0,Λ0) = (x, i).

The equilibrium point x = 0 is said to be asymptotically stable in probability, if it is stable in

probability and satisfies

lim
x→0

P
(

lim
t→∞

Xx,i(t) = 0
)

= 1, for any i ∈ M.

For the convenience of reader, we collect some results from [21] on Foster-Lyapunov criteria

for RSDP. Let A be the infinitesimal generator of (Xt,Λt) which is expressed by

A f(x, i) = L(i)f(·, i)(x) +Qf(x, ·)(i),

where

L(i) =
1

2

d
∑

k,l=1

akl(x, i)
∂2

∂xk∂xl
+

d
∑

k=1

bk(x, i)
∂

∂xk
, and Qg(i) =

∑

j 6=i

qij(gj − gi).

Since the situation that M is an infinite countable set is considered, we need to extend the

criteria established in [21, Chapter 7] for RSDP in a countable state space. The main idea

is similar, but some new techniques are needed. For the ease of the reader, we give out these

results.

Lemma 2.1 Suppose that the conditions (H2.1) (H2.2) hold. Then

P(Xx,i(t) 6= 0, t ≥ 0) = 1 for any x 6= 0, i ∈ M,
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and for any p ∈ R, t > 0,

E
[

|Xx,i(t)|p
]

≤ |x|peKt, x 6= 0, i ∈ M,

where K is a constant depending only on p and Lipschitz constant K̄.

Proof. When M is a countable set, this lemma can be proved in the same way as that of

[21, Lemma 7.1]. But we should note that the constant K could be taken independent of the

cardinality of M in their proof.

Lemma 2.2 Assume that (H2.1) (H2.2) hold. Let D ⊂ R
d be a neighborhood of 0. Suppose

that there exists a nonnegative function V (·, i) : D → R such that

(i) V (·, i) is continuous in D for each i ∈ M and inf i∈M V (x, i) vanishes only at x = 0;

(ii) V (·, i) is twice continuously differentiable in D\{0}, and satisfies A V (x, i) ≤ 0 for all

x ∈ D\{0}, i ∈ M.

Then the equilibrium point x = 0 is asymptotically stable in probability.

Proof. This lemma can be proved in the same way as that of [21, Lemma 7.5]. There they used

the condition that V (x, i) vanishes only at 0 for each i ∈ M. So when N < ∞ the condition (i)

here is equivalent to the condition in [21, Lemma 7.5]. But when N = ∞, we use condition (i)

which ensures that the proof of [21, Lemma 7.5] is still valid. So the equilibrium point x = 0 is

stable in probability. By Remark 7.8 in [21], we can prove that the equilibrium point x = 0 is

asymptotically stable in probability in the same way as that of [21, Lemma 7.6].

Lemma 2.3 Let D ⊂ R
d be a neighborhood of 0. Suppose that (H2.1) and (H2.2) hold, and

for each i ∈ M, there exists a nonnegative function V (·, i) : D → R such that V (·, i) is twice

continuously differentiable in D\{0}. Suppose that

A V (x, i) ≤ 0 for all x ∈ D\{0}, i ∈ M, (2.4)

lim
x→0

V (x, i) = ∞ for each i ∈ M. (2.5)

Then the equilibrium point x = 0 is unstable in probability.
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Proof. Let ζ > 0 such that the closed ball B̄ζ = {x; |x| ≤ ζ} is contained in D, and (x, i) ∈

Bζ ×M. Letting 0 < ε < |x| and m ∈ N, m ≥ 2, define

τε = inf{t ≥ 0; |Xx,i(t)| ≤ ε}, τζ = inf{t ≥ 0; |Xx,i(t) ≥ ζ},

τε,m = inf
{

t ≥ 0; |Xx,i(t)| ≤ ε, Λt ∈ {1, . . . ,m}
}

.

Then it is obviously that τε,m ≥ τε. By Itô’s formula,

E
[

V (X(t ∧ τζ ∧ τε,m),Λ(t ∧ τζ ∧ τε,m))
]

= V (x, i) + E

[

∫ t∧τζ∧τε,m

0
A V (Xs,Λs)ds

]

≤ V (x, i).

Letting t → ∞, we get by Fatou’s lemma

E
[

V (X(τζ ∧ τε,m),Λ(τζ ∧ τε,m))
]

≤ V (x, i).

As V is nonnegative, we obtain

V (x, i) ≥ E
[

V (X(τε,m),Λ(τε,m))1{τε,m<τζ}

]

≥ inf
|y|≤ε,j≤m

V (y, j)P(τζ > τε,m)

= inf
|y|≤ε,j≤m

V (y, j)P
(

sup
0≤t≤τε,m

∣

∣X(t)
∣

∣ < ζ
)

.

(2.6)

Here we should note that at the time τε,m, it is possible that |X(τε,m)| < ε. By Lemma 2.1, we

have τε → ∞ almost surely as ε → 0. Indeed, set A = {ω : τ0(ω) := limε→0 τε(ω) < ∞}. For

ω ∈ A, as |Xτε(ω)| = ε, we get |Xτ0(ω)| = 0. If P(A) > 0, then P(Xt = 0 for some t ≥ 0) ≥

P(A) > 0, which contradicts the result of Lemma 2.1. Hence τε,m → ∞ almost surely as ε → 0.

By (2.5), it holds limε→0 inf |y|≤ε,j≤m V (y, j) = ∞. Consequently, (2.6) yields

P
(

sup
t≥0

|Xt| ≤ ζ
)

= 0,

which shows that the equilibrium point x = 0 is unstable in probability.

2.1 State-independent RSDP in a finite state space

In this subsection, we mainly want to deal with the difficulty generated by the nonlinearity of the

system, and leave the difficulty generated by the state-dependence and infiniteness of switching

8



to the next subsection. Therefore, in this subsection, Q-matrix (qij) is independent of x and M

is a finite set, i.e. N < ∞.

Now we introduce two conditions used later to characterize the stability of (Xt) in each fixed

environment. Let D be a neighborhood of 0. Let ρ, h : D → [0,∞) be nonnegative functions

such that ρ, h are twice continuously differentiable in D\{0}.

(A1) For each i ∈ M, there exists a number βi ∈ R such that

L(i)ρ(x) ≤ βih(x), ∀x ∈ D\{0},

and

lim
x→0

h(x)

ρ(x)
= 0, lim

x→0

L(i)h(x)

h(x)
= 0.

(A2) For each i ∈ M, there exists a number β̄i ∈ R such that

L(i)ρ(x) ≤ β̄iρ(x), ∀x ∈ D\{0}.

Note that here βi and β̄i are allowed to be positive or negative. When ρ(x) vanishes only at 0,

the negativeness of βi and β̄i ensures that the equilibrium point is stable in probability for the

diffusion process associated with (Xt) in the fixed environment i.

Next, let us introduce our first criterion for stability of RSDP based on the Friedholm

alternative, which can provide us some on-off type criteria for RSDP .

Theorem 2.4 Let (Xt,Λt) be a state-independent RSDP satisfying (2.1) (2.2) with N < ∞.

Assume (H2.1)-(H2.4) hold. Let ρ, h ∈ C2(D) be two nonnegative functions satisfying (A1).

Let µ be the invariant probability measure of (Λt). Suppose that

∑

i∈M

µiβi < 0. (2.7)

Then the equilibrium point x = 0 is asymptotically stable in probability if ρ(x) vanishes only at

0, and is unstable in probability if limx→0 ρ(x) = ∞.

Proof. Since
∑N

i=1 µiβi < 0, according to the Friedholm alternative (cf. [14]), there exists a

constant c > 0 and a vector ξ such that

Qξ(i) = −c− βi for every i ∈ M.

9



Set V (x, i) = ρ(x) + ξih(x) with the vector ξ = (ξ1, . . . , ξN )∗ determined above. We have

A V (x, i) = L(i)ρ(x) +Qξ(i)h(x) + ξiL
(i)h(x)

≤
(

βi +Qξi + ξi
L(i)h(x)

h(x)

)

h(x), x ∈ D\{0}.
(2.8)

By (2.8), we obtain

A V (x, i) ≤
(

− c+ ξi
L(i)h(x)

h(x)

)

h(x), x ∈ D\{0}. (2.9)

Since (ξi)
N
i=1 is bounded due to the finiteness of N , and lim

x→0

L(i)h(x)

h(x)
= 0, for some 0 < ε < c

2 ,

there exists δ1 > 0 such that for any x ∈ D ∩ {z; 0 < |z| < δ1}, one has
∣

∣ξi
L(i)h(x)
h(x)

∣

∣ < ε < c
2 , and

hence A V (x, i) ≤ − c
2h(x) < 0. Now we check the nonnegativity of V (x, i). By (A1), we have

limx→0 1 + ξi
h(x)
ρ(x) = 1, so there exists δ2 > 0 such that for any x ∈ {z; |z| ≤ δ2} ∩D,

1 +
h(x)

ρ(x)
≥

1

2
, and V (x, i) = ρ(x)

(

1 + ξi
h(x)

ρ(x)

)

≥
1

2
ρ(x) ≥ 0.

This also implies that if limx→0 ρ(x) = ∞, then limx→0 V (x, i) = ∞ for every i ∈ M. Moreover,

by the definition of V (x, i) and the condition limx→0
h(x)
ρ(x) = 0, it is easy to see that if ρ(x)

vanishes only at 0, then V (0, i) = limx→0 V (x, i) = 0 and V (x, i) vanishes only at 0. Set

D̄ = D ∩ {z; |z| < min{δ1, δ2}} being a neighborhood of 0, then

A V (x, i) ≤ 0, ∀ (x, i) ∈ D̄\{0} ×M.

Applying Lemma 2.2 and Lemma 2.3, we can conclude the proof.

Next, we give out a criterion based on the theory of M-matrix. In [12], the theory of M-

matrix has been used to study the stability of linear state-independent regime-switching diffusion

processes. In this work, we generalize this method to deal with more general regime-switching

diffusion processes. As an application of this method, an example of nonlinear regime-switching

diffusion process in a countable state space is given in subsection 2.2.

Let us first introduce some basic facts on the theory of M-matrix. Let B be a matrix or

vector. By B ≥ 0 we mean that all elements of B are nonnegative. By B > 0 we mean that

B ≥ 0 and at least one element of B is positive. By B ≫ 0, we mean that all elements of B are

positive. B ≪ 0 means that −B ≫ 0.

10



Definition 2.5 (M-matrix) A square matrix A = (aij)n×n is called an M-Matrix if A can be

expressed in the form A = sI−B with some B ≥ 0 and s ≥ Ria(B), where I is the n×n identity

matrix, and Ria(B) the spectral radius of B. When s > Ria(B), A is called a nonsingular M-

matrix.

Below, we cite some equivalent conditions that A is a nonsingular M-matrix and refer the reader

to [3] for more equivalent conditions.

Proposition 2.6 ([3],[12]) The following statements are equivalent.

1. A is a nonsingular n× n M-matrix.

2. All of the principal minors of A are positive; that is,

∣

∣

∣

∣

∣

∣

∣

∣

a11 . . . a1k
...

...

a1k . . . akk

∣

∣

∣

∣

∣

∣

∣

∣

> 0 for every k = 1, . . . , n.

3. Every real eigenvalue of A is positive.

4. A is semipositive; that is, there exists x ≫ 0 in R
n such that Ax ≫ 0.

Theorem 2.7 Let (Xt,Λt) be state-independent RSDP satisfying (2.1) (2.2) with N < ∞.

Assume (H2.1)-(H2.4) hold. Let ρ ∈ C2(D) be a nonnegative function such that (A2) holds.

Suppose that

−
(

Q+ diag(β̄1, . . . , β̄N )
)

is a nonsingular M-matrix, (2.10)

where diag(β̄1, . . . , β̄N ) denotes the diagonal matrix generated by the vector (β̄1, . . . , β̄N )∗ as

usual. Then the equilibrium point x = 0 is asymptotically stable in probability if ρ(x) vanishes

only at 0, and is unstable in probability if limx→0 ρ(x) = ∞.

Proof. As −(Q + diag(β̄1, . . . , β̄N )) is a nonsingular M-matrix, there exists a vector ξ =

(ξ1, . . . , ξN )∗ ≫ 0 such that

λ = (λ1, . . . , λN )∗ := −(Q+ diag(β̄1, . . . , β̄N ))ξ ≫ 0.

Set V (x, i) = ξiρ(x) for x ∈ D\{0} and i ∈ M, then

A V (x, i) = Qξ(i)ρ(x) + ξiL
(i)ρ(x)

≤ (Qξ(i) + β̄iξi)ρ(x) = −λiρ(x) ≤ 0.
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Applying Lemma 2.2 and Lemma 2.3, the desired conclusion follows immediately.

Now we apply our criterion to study the stability of a class of nonlinear RSDP. Let (Xt,Λt)

satisfy (2.1) and (2.2). We assume further that

b(x, i) = |x|γ b̂(x/|x|, i)(1 + o(1)), σ(x, i) = |x|ζ σ̂(x/|x|, i)(1 + o(1)) (2.11)

as x → 0, where b̂(·, ·) : Sd−1 ×M → R
d, σ̂(·, ·) : Sd−1 ×M → R

d×d, b̂ and σ̂ are continuous,

1 < γ ≤ 2ζ − 1 and Sd−1 denotes the unit sphere in R
d. We define some quantities used later.

Denote by θ = (θ1, . . . , θd)
∗ a point in Sd−1. Denote by δk(·) the Dirac measure at k. Put

â(θ, i) = σ̂(θ, i)σ̂(θ, i)∗. For each i ∈ M, set

βi =











sup
θ∈Sd−1

∑N
k=1 b̂k(θ, i)θk, if γ < 2ζ − 1,

sup
θ∈Sd−1

[

1
2

∑N
k,l=1 âkl(θ, i)

(

δk(l)− 2θkθl
)

+
∑N

k=1 b̂k(θ, i)θk

]

, if γ = 2ζ − 1,
(2.12)

and

β̃i =











inf
θ∈Sd−1

∑N
k=1 b̂k(θ, i)θk, if γ < 2ζ − 1,

inf
θ∈Sd−1

[

1
2

∑N
k,l=1 âkl(θ, i)

(

δk(l)− 2θkθl
)

+
∑N

k=1 b̂k(θ, i)θk

]

, if γ = 2ζ − 1.
(2.13)

Theorem 2.8 Assume (H2.1)-(H2.4) hold. Suppose that (Xt,Λt) satisfies (2.1) (2.2) with co-

efficients satisfying (2.11) and 1 < γ ≤ 2ζ − 1. Let (µi) be the invariant probability measure of

(Λt). The equilibrium point x = 0 is asymptotically stable in probability if
∑N

i=1 µiβi < 0, and

is unstable in probability if
∑N

i=1 µiβ̃i > 0.

Proof. Let

L̃(i) =
1

2
|x|2ζ

N
∑

k,l=1

âkl(x/|x|, i)
∂2

∂xk∂xl
+ |x|γ

N
∑

k=1

b̂k(x/|x|, i)
∂

∂xk
.

(1) To prove that x = 0 is stable in probability, we choose ρ(x) = |x|p (p > 0) and

h(x) = |x|γ+p−1. Then

L̃(i)ρ(x) =
p

2
|x|2ζ+p−2

N
∑

k,l=1

âkl(θ, i)
(

(p − 2)θkθl + δk(l)
)

+ p|x|γ+p−1
[

N
∑

k=1

b̂k(θ, i)θk

]

= p
[ |x|2ζ−1−γ

2

N
∑

k,l=1

âkl
(

θ, i
)(

(p− 2)θkθl + δk(l)
)

+

N
∑

k=1

b̂k(θ, i)θk

]

h(x),
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where θ = (θ1, . . . , θN )∗ = x/|x|. By direct calculation, one gets

lim
x→0

h(x)

ρ(x)
= 0 and lim

x→0

L(i)h(x)

h(x)
= 0.

If γ < 2ζ − 1, then for any ε > 0 we can choose a δ1 > 0 so that for any x ∈ {z; |z| < δ1},

p
[ |x|2ζ−1−γ

2

N
∑

k,l=1

âkl
(

θ, i
)(

(p− 2)θkθl + δk(l)
)

+
N
∑

k=1

b̂k(θ, i)θk

]

≤ p
(

N
∑

k=1

b̂k(θ, i)θk + ε
)

.

If γ = 2ζ − 1, then for any ε > 0, there exists p0 > 0 such that for any 0 < p < p0,

p
[ |x|2ζ−1−γ

2

N
∑

k,l=1

âkl
(

θ, i
)(

(p− 2)θkθl + δk(l)
)

+

N
∑

k=1

b̂k(θ, i)θk

]

≤ p(βi + ε).

Invoking the condition (2.11), by choosing a sufficiently small δ1 and p0, we have

L(i)ρ(x) ≤ p(βi + ε)h(x).

By the arbitrariness of ε > 0, by Theorem 2.4, we obtain that x = 0 is asymptotically stable in

probability if
∑N

i=1 µiβi < 0.

(2) We go to study the instability. Now let ρ(x) = |x|−p (p > 0) for x 6= 0 and h(x) =

|x|γ−p−1. Then it hold limx→0
h(x)
ρ(x) = 0 and limx→0

L(i)h(x)
h(x) = 0. Analogous to the discussion in

part (1), through choosing a small neighborhood of 0 for x or a small value p, we obtain for any

ε > 0

L̃(i)ρ(x) = p
[ |x|2ζ−1−γ

2

N
∑

k,l=1

âkl(θ, i)
(

(p+ 2)θkθl − δk(l)
)

−

N
∑

k=1

b̂k(θ, i)θk

]

h(x)

≤ −p(β̃i + ε)h(x).

Therefore, if
∑N

i=1 µiβ̃i > 0, then x = 0 is unstable in probability by Theorem 2.4.

Theorem 2.8 shows that our on-off criterion provided by Theorem 2.4 could be very sharp.

We can see it more clearly from the nonlinear systems in the 1-dimensional space. Let

dXt = bΛt

(

|Xt|
γ ∧ |Xt|

)

dt+ σΛt

(

|Xt|
ζ ∧ |Xt|

)

dBt, in R, (2.14)

and (Λt) is still a continuous time Markov chain on M with N < ∞. Applying Theorem 2.8 to

this situation, we can obtain immediately

Corollary 2.9 Suppose (Xt,Λt) satisfy (2.14). Assume 1 < γ ≤ 2ζ−1. Let βi = bi if γ < 2ζ−1

and βi = bi−
1
2σ

2
i if γ = 2ζ−1. Then the equilibrium x = 0 is asymptotically stable in probability

if
∑N

i=1 µiβi < 0 and is unstable in probability if
∑N

i=1 µiβi > 0.
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2.2 State-dependent RSDP in a countable state space

In this subsection, we consider the stability of state-dependent RSDP in a countable state

space. Based on our results for state-independent RSDP in a finite state space, we shall put

forward a finite partition method to transform the RSDP in a countable state space into a new

RSDP in a finite state space. So in this subsection (Xt,Λt) still satisfies (2.1) (2.2) but with

N = ∞ and Q-matrix (qij(x)) of (Λt) depending on x.

Let ρ ∈ C2(D) be a nonnegative function such that (A2) holds. As N = ∞, in this

subsection we need to assume M := supi∈M β̄i < ∞. We first divide the space M into finite

number of subsets according to the stability of (Xt) in each fixed environment. Precisely, let

Γ = {−∞ = k0 < k1 < . . . < km−1 < km = M}

be a finite partition of (−∞,M ]. Corresponding to Γ, there exists a finite partition F =

{F1, . . . , Fm} of M defined by

Fi = {j ∈ M; β̄j ∈ (ki−1, ki]}, i = 1, 2, . . . ,m. (2.15)

We assume that each Fi is nonempty, otherwise, we can delete some points in the partition Γ.

Set

βF
i = sup

j∈Fi

β̄j , qFii = −
∑

k 6=i

qFik, (2.16)

qFik =

{

supx∈Rd supr∈Fi

∑

j∈Fk
qrj(x), if k < i,

infx∈Rd infr∈Fi

∑

j∈Fk
qrj(x), if k > i,

(2.17)

for i, k ∈ M. In order to ensure qFi = −qFii < ∞ for i = 1, . . . m, we assume that there exists a

number M̄ such

sup
x∈Rd

sup
i∈M

qi(x) < M̄ < ∞. (2.18)

Then it is easy to see

β̄j ≤ βF
i , ∀ j ∈ Fi, and βF

i−1 < βF
i , i = 1, . . . ,m.
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Theorem 2.10 Let (Xt,Λt) be a state-dependent RSDP in an infinite state space satisfying

(2.1) (2.2). Assume that (H2.1)-(H2.4) and (2.18) hold. Let ρ ∈ C2(D) be a nonnegative

function such that (A2) holds and M = supi∈M β̄i < ∞. Suppose that the m×m matrix

−
(

diag(βF
1 , . . . , β

F
m) +QF

)

Hm is a nonsingular M-matrix, where

Hm =





















1 1 1 · · · 1

0 1 1 · · · 1

0 0 1 · · · 1
...

...
... · · ·

...

0 0 0 · · · 1





















m×m

. (2.19)

Then the equilibrium x = 0 is asymptotically stable in probability if ρ(x) vanishes only at 0, and

is unstable in probability if limx→0 ρ(x) = ∞.

Proof. Since −(QF +diag(βF
1 , . . . , β

F
m))Hm is a nonsingular M-matrix, by Proposition 2.6, there

exists a vector ηF = (ηF1 , . . . , η
F
m)∗ ≫ 0 such that

λF = (λF
1 , . . . , λ

F
m)∗ := −(QF + diag(βF

1 , . . . , β
F
m))HmηF ≫ 0.

Set ξF = HmηF . Then

ξFi = ηFm + · · ·+ ηFi , i = 1, . . . ,m,

which yields that ξFi+1 < ξFi for i = 1, . . . ,m− 1 and ξF ≫ 0. We extend ξF to a vector ξ on M

by setting ξj = ξFi if j ∈ Fi. Let φ : M → {1, . . . ,m} be a map defined by φ(j) = k if j ∈ Fk.

Let Qxg(i) =
∑

j 6=i qij(x)(gj − gi) for g ∈ B(M). Set V (x, i) = ξiρ(x). By the definitions of

QF , βF and the decreasing property of ξFi , we have, for r ∈ Fi,

Qxξ(r) =
∑

j 6=r

qrj(x)(ξj − ξi) =
∑

j 6∈Fi

qrj(x)(ξj − ξi)

=
∑

k<i

(

∑

j∈Fk

qrj(x)
)

(ξFk − ξFi ) +
∑

k>i

(

∑

j∈Fk

qrj(x)
)

(ξFk − ξFi )

≤
∑

k<i

qFik(ξ
F
k − ξFi ) +

∑

k>i

qFik(ξ
F
k − ξFi ) = QFξF (φ(r)).

Furthermore,

A V (x, r) = Qxξ(r)ρ(x) + ξrL
(r)ρ(x)

≤
(

QF ξF (φ(r)) + βF
φ(r)ξ

F
φ(r)

)

ρ(x)

= −λφ(r)ρ(x) ≤ 0.
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Note that infi∈M V (x, i) = mini≤m ξFi ρ(x) vanishes only at 0, then applying Lemmas 2.2 and

2.3, we can get the desired conclusion.

Remark 2.11 The function ρ(x) appeared in Theorem 2.10 is a test function, which we used

to characterize the behavior of the process (Xt) in each fixed environment. Taking ρ(x) to be

a polynomial function will work for many cases as being shown by our examples. After getting

the constants β̄i, i ∈ M, one needs to classify the state space M according to (β̄i). This part

needs some skill. Other conditions of this theorem can be checked directly.

Example 2.1 Let (Xt) be a process on R satisfying

dXt = bΛtXtdt+X2
t ∧ |Xt|dBt, X0 = x0 6= 0,

and (Λt) is a birth-death process on M = {1, 2, . . .} with qii+1(x) = ci + (i − 1) sin x for i ≥ 1,

qii−1(x) = ai+(i−2) sin x for i ≥ 2, qij(x) = 0 for any j /∈ {i−1, i, i+1}, where ai, ci are positive

constants. Let (X
(i)
t ) be the diffusion process associated with (Xt) in the fixed environment i,

that is,

dX
(i)
t = biX

(i)
t dt+ (X

(i)
t )2 ∧ |X

(i)
t |dBt.

It is easy to know that x = 0 is stable in probability for the process (X
(i)
t ) if bi < 0, and is

unstable in probability if bi > 0. By taking ρ(x) = |x|, it is easy to see L(i)ρ(x) = bi|x| for x 6= 0.

So we have β̄i = bi in condition (A2). Take the partition as F1 = {1} and F2 = {2, 3, . . .}. Then

qF12 = c1, q
F
21 = a2.

More precisely, we set b1 = −1 and bi = κ − i−1 for some positive constant κ. Then

βF
1 = b1 = −1 and βF

2 = κ. The matrix −(QF + diag(βF
1 , β

2
2))H2 is a nonsingular M-matrix if

and only if κ < a2
1+c1

. Therefore, when κ < a2
1+c1

, x = 0 is asymptotically stable in probability

for (Xt,Λt) according to Theorem 2.10.

3 Principal eigenvalue and stability of RSDP

In this section we continue to study the stability of the equilibrium point x = 0 for the system

given by (2.1) and (2.2). We shall provide some criteria in terms of the principal eigenvalue

of a bilinear form. Let (Xt,Λt) be defined by (2.1) and (2.2) with state-independent (qij) and
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N ≤ ∞. In this section, we need to assume that (Λt) is reversible. To emphasize on this

condition, we use (πi)i∈M to denote the probability measure such that πiqij = πjqji, i, j ∈ M.

Let D be a neighborhood of 0. Let ρ ∈ C2(D) be a nonnegative function and satisfy

(A3) for each i ∈ M, there exists a number γi ∈ R such that

L(i)ρ(x) ≤ γiρ(x), |x| ∈ D\{0},

and γ· 6≡ 0.

Let L2(π) =
{

f ∈ B(M);
∑N

i=1 πif
2
i < ∞

}

, and denote by ‖ · ‖ and 〈·, ·〉 respectively the norm

and inner product in L2(π). Set

E(f) =
1

2

N
∑

i,j=1

πiqij(fj − fi)
2 −

N
∑

i=1

πiγif
2
i , f ∈ L2(π), (3.1)

where (γi) is given by (A3). The domain of this bilinear form D(E) is defined by

D(E) = {f ∈ L2(π); D(f) < ∞}.

The principal eigenvalue of E(f) is defined by

λ0 = inf
{

E(f); f ∈ D(E), ‖f‖ = 1
}

. (3.2)

The notation E(f) is similar to the Dirichlet form for a Markov chain with killing, but in our case

γi could be positive which causes E(f) may take negative value for some f ∈ L2(π). Due to this

fact, ‖f‖2E := ‖f‖2 + E(f) is no longer a norm. Some new difficulties appears when we provide

a lower bound of λ0 compared with the estimate of lower bound of the principal eigenvalue of a

Dirichlet form.

Next, we apply the principal eigenvalue to study the stability of (Xt,Λt).

Theorem 3.1 Suppose that (H2.1) (H2.2) hold and N < ∞. Assume that (Λt) is reversible

w.r.t. the probability measure (πi). Let ρ ∈ C2(D) be a nonnegative function such that (A3)

holds. E(f) and λ0 are defined by (3.1) and (3.2) as above. Assume λ0 > 0. Then the equilibrium

point x = 0 is asymptotically stable in probability if ρ(x) vanishes only at 0 and is unstable in

probability if limx→0 ρ(x) = ∞.
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Proof. Let

Ωf(i) = Qf(i) + γifi =
∑

j 6=i

qij(fj − fi) + γifi for f ∈ D(D). (3.3)

Then E(f) = 〈f,−Ωf〉. When N < ∞, λ0 must be the minimal eigenvalue of the operator −Ω

by the variational representation of the eigenvalues of finite matrices. Let g be an eigenfunction

corresponding to λ0. Since E(g) ≥ E(|g|), it holds that g ≥ 0. It is easy to see g 6≡ 0. So there

exists a k ∈ M such that gk > 0. If qik > 0 for some i ∈ M, then

0 < qikgk ≤
∑

j 6=i

qijgj = (qi − γi − λ0)gi.

This yields that gi > 0 and qi − γi − λ0 > 0. As Q is irreducible, we can prove inductively that

gi > 0 for each i ∈ M. Moreover, M is a finite set now, so mini∈M gi > 0.

Let V (x, i) = giρ(x) for x ∈ D, i ∈ M. Due to (A3), we have

A V (x, i) ≤
(

Qg(i) + γigi
)

ρ(x) = −λ0giρ(x) ≤ 0, x ∈ D\{0}, i ∈ M.

If limx→0 ρ(x) = ∞, we have limx→0 V (x, i) = limx→0 giρ(x) = ∞ for each i ∈ M. Hence, by

Lemma 2.3, the equilibrium point x = 0 is unstable in probability.

If ρ(x) vanishes only at 0, due to the finiteness of N , we have

inf
i∈M

V (x, i) =
(

min
i∈M

gi
)

ρ(x)

also vanishes only at 0. Applying Lemma 2.2, we can get the desired result.

Theorem 3.2 Suppose that (H2.1) (H2.2) hold and N = ∞. Assume that (Λt) is reversible

w.r.t. the probability measure (πi). Let ρ ∈ C2(D) be a nonnegative function such that (A3)

holds. E(f) and λ0 are defined by (3.1) and (3.2) as above. Assume λ0 > 0 and λ0 is attainable,

i.e. there exists g ∈ L2(π), g 6≡ 0, such that E(g) = λ0‖g‖
2. Then

(i) the equilibrium point x = 0 is unstable in probability if limx→0 ρ(x) = ∞.

(ii) Assume further that lim inf i→∞ gi 6= 0, then the equilibrium point x = 0 is asymptotically

stable in probability if ρ(x) vanishes only at 0.
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Proof. We first show that g ≫ 0 and Qg(i) + γigi = −λ0gi, i ∈ M. To obtain this, we use

the variational method as in [4]. It is easy to check E(f) ≥ E(|f |), so it must hold g ≥ 0. For a

fixed k ∈ M, let g̃i = gi for i 6= k and g̃k = gk + ε. It holds Qg̃(i) = Qg(i) + εqik for i 6= k and

Qg̃(k) = Qg(k)− εqk. We have

E(g̃) = 〈g̃,−Qg̃〉 −

N
∑

i=1

πiγig̃
2
i

= 〈g,−Qg〉 −
N
∑

i=1

πiγig
2
i + 2επk(−Qg)(k) − 2επkγkgk + ε2πk(qk − γk),

where we have used the fact πiqik = πkqki. Because E(g̃) ≥ λ0‖g̃‖
2 and E(g) = λ0‖g‖

2, we get

− 2επk
(

λ0gk +Qg(k) + γkgk
)

+ ε2πk(qk − γk)− λ0ε
2πk ≥ 0. (3.4)

Dividing both sides of (3.4) by ε > 0 and then letting ε → 0+, we get Qg(k) + γkgk + λ0gk ≤ 0.

Dividing both sides of (3.4) by ε < 0 and then letting ε → 0−, we get Qg(k) + γkgk + λ0gk ≥ 0.

Therefore, Qg(k) + γkgk = −λ0gk. Since k is chosen arbitrarily in M, we have Qg(i) + γigi =

−λ0gi for each i ∈ M.

Since g 6≡ 0 and g ≥ 0, there exists k such that gk > 0. If qik > 0, then

0 < qikgk ≤
∑

j 6=i

qijgj = (qi − γi − λ0)gi,

so gi > 0 and qi − γi − λ0 > 0. As Q is irreducible, by an inductive procedure, we can prove

that gi > 0 for every i ∈ M.

Next, set V (x, i) = giρ(x) for x ∈ R
d, i ∈ M. We obtain for |x| ≥ r0, i ∈ M,

A V (x, i) = Qg(i)ρ(x) + giL
(i)ρ(x)

≤
(

Qg(i) + γigi
)

ρ(x) = −λ0giρ(x) ≤ 0.
(3.5)

If limx→0 ρ(x) = ∞, then for each i ∈ M, we have limx→0 V (x, i) = limx→0 giρ(x) = ∞. By

Lemma 2.3, we can prove the assertion (i). Under the condition lim inf i→∞ gi 6= 0, we get that

inf i∈M gi > 0. Therefore, when ρ(x) vanishes only at 0, we can obtain that infi∈M V (x, i) =
(

infi∈M gi
)

ρ(x) still vanishes only at 0. Then the assertion (ii) follows from Lemma 2.2, and we

complete the proof.
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Using the principal eigenvalue to study the stability of (Xt,Λt) when N = ∞, we don’t

need to assume the boundedness of Q-matrix and the vector (γi) given by (A3). We construct

an example of nonlinear RSDP to show its usefulness. We shall give a lower bound estimate of

λ0 in next section.

Example 3.1 Let (Xt) be a process on R satisfying

dXt = µΛtXtdt+X2
t ∧ |Xt|dBt, X0 = x0 6= 0, (3.6)

where a ∧ b = min{a, b}, and µ0 = −c, µi = γ for i ≥ 1, c, γ are positive constants. (Λt) is a

birth-death process on M = {0, 1, . . .} with qii+1 = bi = b(i+ 1), qii−1 = ai = a(i + 1). Taking

ρ(x) = |x|, then L(i)ρ(x) = µiρ(x) for x 6= 0. Set gi = i + 1. If a − b − γ > 0 and c − b > 0,

then there exists λ > 0 such that Ωg(i) ≤ −λgi, i ≥ 0. So λ0 ≥ λ > 0 by Theorem 4.4 below.

Noting infi∈M gi = 1 > 0, by Theorem 3.2, the equilibrium point x = 0 is asymptotic stable in

probability if a− b− γ > 0 and c− b > 0.

4 Principal eigenvalue and recurrence of RSDP

In this section, we shall provide some criteria for the recurrence of RSDP in terms of the

principal eigenvalue of a bilinear form. In [16], we have provided some explicit criteria for the

recurrence of RSDP. But there when dealing with switching in a countable state space, we need

to assume the boundedness of Q-matrix. In this part, we shall take advantage of the principal

eigenvalue to provide a criterion for recurrence of RSDP without the boundedness assumption

on the Q-matrix.

Let (Xt,Λt) satisfy (2.1) (2.2) with (qij) being state-independent. Assume (Λt) is reversible

w.r.t. the probability measure (πi)i∈M. We use the following condition on the coefficients of

(Xt,Λt) in this section.

(H4.1) There exists a constant K such that

|b(x, i)| + ‖σ(x, i)‖ ≤ K(1 + |x|), x ∈ R
d, i ∈ M,

|b(x, i) − b(y, i)| + ‖σ(x, i) − σ(y, i)‖ ≤ K|x− y|, x ∈ R
d, i ∈ M,
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Let ρ ∈ C2(Rd) be a positive function satisfying

(A4) for each i ∈ M, there exists a number γi ∈ R such that

L(i)ρ(x) ≤ γiρ(x), |x| ≥ r0

for some r0 > 0. Moreover, γ· 6≡ 0.

We can define the bilinear form E(f) and it principal eigenvalue λ0 by (3.1) and (3.2) similarly

by using (γi) given by (A4).

Theorem 4.1 Suppose that (H4.1) holds and N < ∞. Suppose that (Λt) is reversible w.r.t. a

probability measure (πi). Let ρ ∈ C2(Rd) satisfy ρ > 0 and (A4). Assume λ0 > 0. Then (Xt,Λt)

is positive recurrent if lim|x|→∞ ρ(x) = ∞ and is transient if lim|x|→∞ ρ(x) = 0.

Proof. When N < ∞, λ0 must be the minimal eigenvalue of the operator −Ω. Let g be an

eigenfunction corresponding to λ0. Then g must be positive, i.e. for each i ∈ M, gi > 0 and

hence mini∈M gi > 0 due to the finiteness of N . This fact follows from the irreducibility of (qij)

and the minimal property of λ0. Let V (x, i) = giρ(x) for x ∈ R
d and i ∈ M. By (A1), we have

A V (x, i) = Qg(i)ρ(x) + giL
(i)ρ(x)

≤
(

Qg(i) + γigi
)

ρ(x) = −λ0giρ(x).
(4.1)

Therefore, if lim|x|→∞ ρ(x) = ∞, there exist positive constants ε and r0 > 0 such that giρ(x) ≥

ε > 0 for every |x| ≥ r0, i ∈ M. Applying the method of Lyapunov function (see [14, Section 2]),

(Xt,Λt) is positive recurrent. If lim|x|→∞ ρ(x) = 0, then (Xt,Λt) is transient due to inequality

(4.1) and the method of Lyapunov function.

Theorem 4.2 Suppose that (H4.1) holds and N = ∞. Suppose (Λt) is reversible w.r.t. a

probability measure (πi). Let ρ ∈ C2(Rd) be a positive function such that (A4) holds. Assume

that λ0 > 0 and λ0 is attainable, i.e. there exists g ∈ L2(π), g 6≡ 0 such that E(g) = λ0‖g‖
2.

Then (Xt,Λt) is transient if lim|x|→∞ ρ(x) = 0. Assume further that lim inf i→∞ gi 6= 0, then

(Xt,Λt) is recurrent if lim|x|→∞ ρ(x) = ∞.

Proof. Similar to the argument of Theorem 3.2, it holds that for each i ∈ M, Ωg(i) = −λ0gi

and gi > 0. Let V (x, i) = giρ(x) for x ∈ R
d, i ∈ M. We have for |x| ≥ r0, i ∈ M,

A V (x, i) ≤
(

Qg(i) + γigi
)

ρ(x) = −λ0giρ(x) ≤ 0.
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Let

τ = inf
{

t > 0; (Xt,Λt) ∈ {x ∈ R
d; |x| ≤ r0} × {1, . . . ,m0}

}

,

where m0 is a fixed finite number. Applying Itô’s formula to (Xt,Λt) with X0 = x, Λ0 = l, and

|x| > r0, l > m0, we obtain

EV (Xt∧τ ,Λt∧τ ) = V (x, l) + E

∫ t∧τ

0
A V (Xs,Λs)ds ≤ V (x, l) = glρ(x). (4.2)

Case 1. When lim|x|→∞ ρ(x) = 0, if P(τ < ∞) = 1, then passing t to ∞ in (4.2), we obtain

inf
{y;|y|≤r0}

ρ(y) min
i≤m0

gi ≤ E
[

ρ(Xτ )g(Λτ )
]

≤ glρ(x). (4.3)

Since the set {y; |y| ≤ r0} × {1, . . . ,m0} is compact and the functions ρ and g are positive, the

left-hand side of (4.3) is strictly positive. Since x is arbitrary, letting |x| → ∞, the right-hand

side of (4.3) tends to 0, which is a contradiction. Therefore, P(τ < ∞) > 0 and (Xt,Λt) is

transient.

Case 2. When lim|x|→∞ ρ(x) = ∞, we consider another stopping time

τK = inf
{

t > 0; |Xt| ≥ K
}

.

As the process (Xt,Λt) is nonexplosive, τK increases to ∞ a.s. as K → ∞. Since lim inf i→∞ gi 6=

0 and we have proved that g > 0, we get infi∈M gi > 0. By Itô’s formula, we get

E
[

g(Λt∧τK∧τ )ρ(Xt∧τK∧τ )
]

≤ ρ(x)gl.

This yields

P(τ > τK) ≤
ρ(x)gl

inf{y;|y|≥K} ρ(y) inf i∈M gi
.

Since lim|x|→∞ ρ(x) = ∞, we obtain that inf{y;|y|≥K} ρ(y) → ∞ as K → ∞ and

P(τ = ∞) ≤ lim
K→∞

ρ(x)gl
inf{y;|y|≥K} ρ(y) inf i∈M gi

= 0.

Therefore, P(τ < ∞) = 1 and the process (Xt,Λt) is recurrent.

To apply our criteria, it is necessary to check the condition λ0 > 0. There are many works

and methods devoted to the estimate of the eigenvalues of Dirichlet forms. Next, we generalize

22



the lower estimate of the principal eigenvalue of a Dirichlet form given in [4]. The usefulness of

this lower estimate will be seen from the examples given in the end of this section. Following

the approach of [4], we first establish a variational formula for the bilinear form E(f) defined by

(3.1).

Proposition 4.3 Assume that (qi)i∈M and (|γi|)i∈M are bounded. Let f ∈ L2(π) be nonnega-

tive, then

E(f) = sup
g
〈f2/g,−Ωg〉,

where the supremum takes over all measurable functions g which are strictly positive (i.e. g ≥

cg > 0 for some constant cg). Furthermore, if there exists strictly positive g such that Ωg ≤ −λg

for some λ > 0, then λ0 ≥ λ.

Proof. 1) Let g̃ = g1f 6=0, then 〈f2/g,−Ωg〉 ≤ 〈f2/g̃,−Ωg〉, which can be seen from the formula

below.

〈f2/g,−Ωg〉 =
∑

i

πi
f2
i

gi

(

∑

j 6=i

qij(gi − gj)− γigi
)

=
∑

i

∑

j 6=i

πiqij
f2
i

gi
(gi − gj)−

∑

i

πiγif
2
i

=
∑

i

πiqif
2
i −

∑

i

∑

j 6=i

πiqij
f2
i

gi
gj −

∑

i

πiγif
2
i .

We should verify whether the minus of two infinite series is of meaning. Let hi = fi/g̃i then

hi > 0. The previous equation

=
∑

i

πigif
2
i −

∑

i

∑

j 6=i

πiqijfihi
fj
hj

−
∑

i

πiγif
2
i

=
∑

i

πiqif
2
i −

1

2

∑

i

∑

j 6=i

πiqijfifj

(hj
hi

+
hi
hj

)

−
∑

i

πiγif
2
i

≤
∑

i

πiqif
2
i −

∑

i

∑

j 6=i

πiqijfifj −
∑

i

πiγif
2
i

= E(f).

2) For the converse, if f > cf > 0, then it follows directly by taking g = f . If not, we let
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fn = n−1 + f , then

〈f2/fn,−Ωfn〉 =
1

2

∑

i,j

πiqij

(

f2
j + f2

i −
f2
j fn(j)

fn(i)
−

f2
j fn(i)

fn(j)

)

−
∑

i

πiγif
2
i

=
1

2

∑

i,j

πiqij

( f2
j

fn(j)
−

f2
i

fn(i)

)

(

fn(j) − fn(i)
)

−
∑

i

πiγif
2
i .

Since
( f2

j

fn(j)
−

f2
i

fn(i)

)

(

fn(j) − fn(i)
)

≥ 0,

by Fatou’s lemma, E(f) ≤ lim infn→∞〈f2/fn,−Ωfn〉 ≤ supg〈f
2/g,−Ωg〉.

The last statement follows directly from the variational formula for E(f).

To deal with the general (qij) and (γi), we need use the localization method to approximate

the general situation. As ‖f‖E is no longer a norm, the triangular inequality does not hold and

so we have to approximate E(f) directly.

Theorem 4.4 If there exists a measurable function g satisfying g > 0 and −Ωg/g ≥ λ > 0,

then λ0 ≥ λ.

Proof. For n, m ∈ N, let

Gnm = {i; gi ≥ 1/m, |γi| ∨ qi ≤ n},

λnm = inf{E(f); f
∣

∣

Gc
nm

= 0, f ∈ D(E)}.

Let

Enm(f) =
1

2

∑

i,j∈Gnm

πiqij(fj − fi)
2 +

∑

i∈Gnm

πi
(

qi − q(i,Gnm)
)

f2
i −

∑

i∈Gnm

πiγif
2
i ,

for f ∈ L2(Gnm, π). Then it holds that for f
∣

∣

Gc
nm

= 0, E(f) = Enm(f), and hence

λnm = inf{Enm(f); ‖f
∣

∣

Gc
nm

‖ = 1, f ∈ D(E)
}

.

By this formula and the definition of λ0, we get

λnm ≥ λ0 and hence lim
n,m→∞

λnm ≥ λ0.
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For the converse, we have for any ε > 0 there exists fε ∈ D(E) with ‖fε‖ = 1 such that

λ0 ≥ E(fε)− ε. Let fnm = fε1Gnm . We shall show E(fnm) → E(fε). Indeed,

E(fnm) =
1

2

∑

i,j

πiqij(fnm(j)− fnm(i))2 −
∑

i

πiγifnm(i)2

=
1

2

∑

i,j∈Gnm

πiqij(fj − fi)
2 +

∑

i

πiq(i,G
c
nm)f2

i −
∑

i∈Gnm

πiγif
2
i .

We have

∣

∣

∑

i

πiq(i,G
c
nm)f2

i +
∑

i∈Gc
nm

πiγif
2
i

∣

∣

≤
∑

i

πiqif
2
i

q(i,Gc
nm)

qi
+

∑

i∈Gc
nm

πi|γi|f
2
i → 0,

as n, m → ∞. So limn,m→∞ E(fnm) = E(f). This yields that λ0 ≥ limn,m→∞ λnm−ε, and hence

λ0 ≥ limn,m→∞ λnm by the arbitrariness of ε.

To complete the proof, we also need the following local operator. Let B be a measurable

set, define for i ∈ B

qBi = qi, qBij = qij1B(j),

ΩBf(i) =
∑

j∈B

qBijf(j)− qBi f(i) + γif(i).

If −Ωg ≥ λg then −ΩBg ≥ λg on B for every measurable set B. Indeed,

ΩBg(i) =
∑

j

qBijgj − qBi gi + γigi

≤
∑

j

qijgj − qigi + γigi = Ωg(i) ≤ −λgi, i ∈ B.

Applying this fact to the set Gnm, we get ΩGnmg ≤ −λg on Gnm. But on Gnm, qi and |γi| are

bounded and g is strictly positive, by Proposition 4.3, it holds λnm ≥ λ. As limn,m→∞ λnm = λ0,

we get λ0 ≥ λ and the proof is complete.

Remark 4.5 We go back to see the argument of Theorem 4.2. If we can find a measurable g

on M such that g > 0 and Ωg ≤ −λg for some λ > 0, then we can define V (x, i) = giρ(x) by

this g. The inequality (3.5) holds with λ0 replaced by λ. Following the proof of Theorem 4.2,
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we can get that (Xt,Λt) is transient if lim|x|→∞ ρ(x) = 0. Under further condition on g, we get

(Xt,Λt) is recurrent if lim|x|→∞ ρ(x) = ∞. The reason that we use λ0 in Theorem 4.2 is that λ0

is the largest desired one by Theorem 4.4.

At last, we give two examples of RSDP with switching in a countable state space to show

the usefulness of our criteria. The Q-matrices of these two examples are unbounded. Especially,

in the second example, the vector (γi) given by (A4) is also unbounded.

Example 4.1 Let (Xt) satisfy the following stochastic differential equation,

dXt = µΛtXtdt+ dBt, X0 = x0 ∈ R, (4.4)

where (Bt) is a Brownian motion on R and (Λt) is a birth-death process on M = {0, 1, . . .}.

(Λt) and (Bt) are mutually independent. Assume that µ0 = −c, µi = γ for i ≥ 1, where c, γ

are positive constants. Therefor, (X
(0)
t ) is recurrent and (X

(i)
t ) (i ≥ 1) is transient. Assume

qii+1 = bi = b(i + 1) for i ≥ 0, and qii−1 = ai = a(i + 1) for i ≥ 1. Here the constants a and

b satisfy a > b > 0, which ensures that (Λt) is reversible with respect to a probability measure

(πi) (cf. Van Doorn [19]). The Q-matrix of birth-death process (Λt) is obviously unbounded.

Then the process (Xt,Λt) is recurrent if c− b > 0 and a− b− γ > 0.

Indeed, it is easy to see that for each i ∈ M,

L(i) =
1

2

d2

dx2
+ µix

d

dx
.

Take ρ(x) = |x|, then it holds

L(i)ρ(x) = µiρ(x) for |x| ≥ 1, i ∈ M.

Then we can take γi = µi for i ≥ 0 in the condition (A1). Define the bilinear form E(f) and its

principal eigenvalue λ0 as (3.1) and (3.2). If c− b > 0 and a− b− γ > 0, there exists a number

λ > 0 such that

c− b ≥ λ > 0 and a− b− γ ≥ λ > 0.

Let gi = i+ 1 for i ≥ 0. We have

Ωg(i) = bi(gi+1 − gi) + ai(gi−1 − gi) + µigi

= b(i+ 1)− a(i+ 1) + γ(i+ 1)

≤ −λ(i+ 1) = −λgi, for i ≥ 1,

Ωg(0) = b0(g1 − g0) + µ0g0 = (b− c)g0 ≤ −λg0.
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Applying Theorem 4.4, we get λ0 ≥ λ > 0. Combining with the fact lim|x|→∞ ρ(x) = ∞, it

follows immediately from Theorem 4.2 and Remark 4.5 that (Xt,Λt) is recurrent.

Example 4.2 Let (Xt) satisfy (4.4) with µ0 < −1 and µi = i. (Λt) is a birth-death with birth

rate bi = 1 for all i ≥ 0 and death rate ai > 1+µi(i+1) = i2+ i+1 for i ≥ 1. Then the process

(Xt,Λt) is recurrent.

Indeed, it is easy to check that (Λt) is reversible with respect to a probability measure (πi).

Taking ρ(x) = |x|, we also have L(i)ρ(x) = µiρ(x) for |x| ≥ 1 and i ≥ 0. Hence, βi = i for i ≥ 1

and βi increases to ∞ as i → ∞. Setting gi = i+ 1 for i ≥ 0, it is easy to see that there exists

λ > 0 such that

b0(g1 − g0)− µ0g0 ≤ −λg0,

bi(gi+1 − gi) + ai(gi−1 − gi) + µigi ≤ −λgi, i ≥ 1.

By Theorem 4.4, we have λ0 ≥ λ > 0. Therefore, the process (Xt,Λt) is recurrent by Theorem

4.2 and Remark 4.5.

5 Summary

In this work, we mainly studied the asymptotic stability in probability of regime-switching

diffusion processes. Our switching process can be a Markov chain in a finite state space or in

an infinite countable state space, and its switching rate can be state-independent and state-

dependent. In particular, for switching in an infinite countable state space, we proposed two

methods: one is the finite dimensional projection method, another is the principal eigenvalue

method. Finite dimensional projection method can deal with state-dependent switching, but its

switching rates must be bounded; the principal eigenvalue method can deal with switching with

unbounded rates, but can not be used to deal with state-dependent switching at the present

stage. Some concrete examples were constructed to show the usefulness and sharpness of our

criteria.
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