
ar
X

iv
:1

30
6.

51
76

v3
 [

cs
.C

C
]

17
 A

pr
 2

01
5

Counting list matrix partitions of graphs∗

Andreas Göbel† Leslie Ann Goldberg† Colin McQuillan‡ David Richerby†

Tomoyuki Yamakami§

Abstract

Given a symmetricD×D matrixM over{0, 1, ∗}, a listM -partition of a graphG is a partition
of the vertices ofG into D parts which are associated with the rows ofM . The part of each vertex
is chosen from a given list in such a way that no edge ofG is mapped to a0 in M and no non-edge
of G is mapped to a1 in M . Many important graph-theoretic structures can be represented as list
M -partitions including graph colourings, split graphs and homogeneous sets and pairs, which arise
in the proofs of the weak and strong perfect graph conjectures. Thus, there has been quite a bit of
work on determining for which matricesM computations involving listM -partitions are tractable.
This paper focuses on the problem of counting listM -partitions, given a graphG and given a list
for each vertex ofG. We identify a certain set of “tractable” matricesM . We give an algorithm
that counts listM -partitions in polynomial time for every (fixed) matrixM in this set. The algo-
rithm relies on data structures such as sparse-dense partitions and subcube decompositions to reduce
each problem instance to a sequence of problem instances in which the lists have a certain useful
structure that restricts access to portions ofM in which the interactions of0s and1s is controlled.
We show how to solve the resulting restricted instances by converting them into particular counting
constraint satisfaction problems (#CSPs) which we show how to solve using a constraint satisfac-
tion technique known as “arc-consistency”. For every matrix M for which our algorithm fails, we
show that the problem of counting listM -partitions is#P-complete. Furthermore, we give an ex-
plicit characterisation of the dichotomy theorem — counting list M -partitions is tractable (inFP) if
the matrixM has a structure called a derectangularising sequence. IfM has no derectangularising
sequence, we show that counting listM -partitions is#P-hard. We show that the meta-problem of
determining whether a given matrix has a derectangularising sequence isNP-complete. Finally, we
show that listM -partitions can be used to encode cardinality restrictionsin M -partitions problems
and we use this to give a polynomial-time algorithm for counting homogeneous pairs in graphs.

1 Introduction

A matrix partition of an undirected graph is a partition of its vertices according to a matrix which
specifies adjacency and non-adjacency conditions on the vertices, depending on the parts to which they
are assigned. For finite setsD andD′, the set{0, 1, ∗}D×D′

is the set of matrices with rows indexed byD
and columns indexed byD′ where eachMi,j ∈ {0, 1, ∗}. For any symmetric matrixM ∈ {0, 1, ∗}D×D ,
anM -partition of an undirected graphG = (V,E) is a functionσ : V → D such that, for distinct
verticesu andv,

∗A preliminary version of this paper appeared in the proceedings of CCC 2014. The research leading to these results has
received funding from the MEXT Grants-in-Aid for ScientificResearch and the EPSRC and the European Research Council
under the European Union’s Seventh Framework Programme (FP7/2007–2013) ERC grant agreement no. 334828. The paper
reflects only the authors’ views and not the views of the ERC orthe European Commission. The European Union is not liable
for any use that may be made of the information contained therein.

†Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, United King-
dom.

‡Department of Computer Science, Ashton Building, University of Liverpool, Liverpool, L69 3BX, United Kingdom.
§Department of Information Science, University of Fukui, 3-9-1 Bunkyo, Fukui City, Fukui 910-8507, Japan.

1

http://arxiv.org/abs/1306.5176v3

• Mσ(u),σ(v) 6= 0 if (u, v) ∈ E and

• Mσ(u),σ(v) 6= 1 if (u, v) 6∈ E.

Thus,Mi,j = 0 means that no edges are allowed between vertices in partsi andj, Mi,j = 1 means that
there must be an edge between every pair of vertices in the twoparts andMi,j = ∗ means that any set
of edges is allowed between the parts. For entriesMi,i on the diagonal ofM , the conditions only apply
to distinct vertices in parti. Thus,Mi,i = 1 requires that the vertices in parti form a clique inG and
Mi,i = 0 requires that they form an independent set.

For example, ifD = {i, c}, Mi,i = 0, Mc,c = 1 andMc,i = Mi,c = ∗, i.e.,M = (0 ∗
∗ 1), then anM -

partition of a graph is a partition of its vertices into an independent set (whose vertices are mapped toi)
and a clique (whose vertices are mapped toc). The independent set and the clique may have arbitrary
edges between them. A graph that has such anM -partition is known as a split graph [17].

As Feder, Hell, Klein and Motwani describe [15], many important graph-theoretic structures can
be represented asM -partitions, including graph colourings, split graphs,(a, b)-graphs [2], clique-cross
partitions [10], and their generalisations.M -partitions also arise as “type partitions” in extremal graph
theory [1]. In the special case whereM is a{0, ∗}-matrix (that is, it has no 1 entries),M -partitions ofG
correspond to homomorphisms fromG to the (potentially looped) graphH whose adjacency matrix is
obtained fromM by turning every∗ into a 1. Thus, proper|D|-colourings ofG are exactlyM -partitions
for the matrixM which has 0s on the diagonal and∗s elsewhere.

To represent more complicated graph-theoretic structures, such as homogeneous sets and their gen-
eralisations, which arise in the proofs of the weak and strong perfect graph conjectures [5, 20], it is
necessary to generaliseM -partitions by introducing lists. Details of these applications are given by
Feder et al. [15], who define the notion of a listM -partition.

A list M -partition is anM -partition σ that is also required to satisfy constraints on the values of
eachσ(v). LetP(D) denote the powerset ofD. We say thatσ respectsa functionL : V (G) → P(D)
if σ(v) ∈ L(v) for all v ∈ V (G). Thus, for each vertexv, L(v) serves as a list of allowable parts
for v and alist M -partition of G is anM -partition that respects the given list function. We allow empty
lists for technical convenience, although there are noM -partitions that respect any list functionL where
L(v) = ∅ for some vertexv.

Feder et al. [15] study the computational complexity of the following decision problem, which is
parameterised by a symmetric matrixM ∈ {0, 1, ∗}D×D.

Name. L IST-M -PARTITIONS.

Instance.A pair (G,L) in whichG is a graph andL is a functionV (G)→ P(D).

Output. “Yes”, if G has anM -partition that respectsL; “no”, otherwise.

Note thatM is a parameter of the problem rather than an input of the problem. Thus, its size is a constant
which does not vary with the input.

A series of papers [11, 13, 14] described in [15] presents a complete dichotomy for the special case
of homomorphism problems, which are LIST-M -PARTITIONS problems in whichM is a{0, ∗}-matrix.
In particular, Feder, Hell and Huang [14] show that, for every {0, ∗}-matrix M (and symmetrically,
for every{1, ∗}-matrix M), the problem LIST-M -PARTITIONS is either polynomial-time solvable or
NP-complete.

It is important to note that both of these special cases of LIST-M -PARTITIONS are constraint satisfac-
tion problems (CSPs) and a famous conjecture of Feder and Vardi [16] is that a P versusNP-complete
dichotomy also exists for every CSP. Although general LIST-M -PARTITIONS problems can also be
coded as CSPs with restrictions on the input,1 it is not known how to code them without such restric-

1 For the reader who is familiar with CSPs, it might be useful tosee how a LIST-M -PARTITIONSproblem can be coded as
a CSP with restrictions on the input. Given a symmetricM ∈ {0, 1, ∗}D×D, letM0 be the relation onD ×D containing all

2

tions. Since the Feder–Vardi conjecture applies only to CSPs with unrestricted inputs, even if proved, it
would not necessarily apply to LIST-M -PARTITIONS.

Given the many applications of LIST-M -PARTITIONS, it is important to know whether there is a
dichotomy for this problem. This is part of a major ongoing research effort which has the goal of
understanding the boundaries of tractability by identifying classes of problems, as wide as possible,
where dichotomy theorems arise and where the precise boundary between tractability and intractability
can be specified.

Significant progress has been made on identifying dichotomies for LIST-M -PARTITIONS. Feder
et al. [15, Theorem 6.1] give a complete dichotomy for the special case in whichM is at most3× 3, by
showing that LIST-M -PARTITIONS is polynomial-time solvable orNP-complete for each such matrix.
Later, Feder and Hell studied the LIST-M -PARTITIONS problem under the name CSP∗

1,2(H) and showed
[12, Corollary 3.4] that, for everyM , L IST-M -PARTITIONS is eitherNP-complete, or is solvable in
quasi-polynomial time. In the latter case, they showed thatL IST-M -PARTITIONS is solvable innO(logn)

time, given ann-vertex graph. Feder and Hell refer to this result as a “quasi-dichotomy”.
Although the Feder–Vardi conjecture remains open, a complete dichotomy is now known for count-

ing CSPs. In particular, Bulatov [3] (see also [8]) has shownthat, for every constraint languageΓ,
the counting constraint satisfaction problem#CSP(Γ) is either polynomial-time solvable, or#P-
complete. It is natural to ask whether a similar situation arises for counting listM -partition problems.
We study the following computational problem, which is parameterised by a finite symmetric matrix
M ∈ {0, 1, ∗}D×D.

Name. #LIST-M -PARTITIONS.

Instance.A pair (G,L) in whichG is a graph andL is a functionV (G)→ P(D).

Output. The number ofM -partitions ofG that respectL.

Hell, Hermann and Nevisi [18] have considered the related problem #M -PARTITIONS without lists,
which can be seen as #LIST-M -PARTITIONS restricted to the case thatL(v) = D for every vertexv.
This problem is defined as follows.

Name. #M -PARTITIONS.

Instance.A graphG.

Output. The number ofM -partitions ofG.

In the problems LIST-M -PARTITIONS, #LIST-M -PARTITIONS and #M -PARTITIONS, the matrixM
is fixed and its size does not vary with the input.

Hell et al. gave a dichotomy for small matricesM (of size at most3×3). In particular, [18, Theorem
10] together with the graph-homomorphism dichotomy of Dyerand Greenhill [7] shows that, for every
suchM , #M -PARTITIONS is either polynomial-time solvable or#P-complete. An interesting feature of
countingM -partitions, identified by Hell et al. is that, unlike the situation for homomorphism-counting
problems, there are tractableM -partition problems with non-trivial counting algorithms. Indeed the
main contribution of the present paper, as described below,is to identify a set of “tractable” matricesM
and to give a non-trivial algorithm which solves #LIST-M -PARTITIONS for every suchM . We combine
this with a proof that #LIST-M -PARTITIONS is#P-complete for every otherM .

pairs(i, j) ∈ D × D for whichMi,j 6= 1. LetM1 be the relation onD × D containing all pairs(i, j) ∈ D ×D for which
Mi,j 6= 0. Then a LIST-M -PARTITIONSproblem with inputG,L can be encoded as a CSP whose constraint language includes
the binary relationsM0 andM1 and also the unary relations corresponding to the sets in theimage ofL. Each vertexv of G is
a variable in the CSP instance with the unary constraintL(v). If (u, v) is an edge ofG then it is constrained byM1. If it is a
non-edge ofG, it is constrained byM0. Note that the CSP instance satisfies the restriction that every pair of distinct variables
has exactly one constraint, which is eitherM0 or M1. In a general CSP instance, a pair of variables could be constrained by
M0 andM1 or one of them, or neither. It is not clear how to code such a general CSP instance as a list partitions problem.

3

1.1 Dichotomy theorems for counting listM-partitions

Our main theorem is a general dichotomy for the counting listM -partition problem, for matricesM of
all sizes. As noted above, since there is no known coding of listM -partition problems as CSPs without
input restrictions, our theorem is not known to be implied bythe dichotomy for#CSP.

Recall thatFP is the class of functions computed by polynomial-time deterministic Turing machines.
#P is the class of functionsf for which there is a nondeterministic polynomial-time Turing machine
that has exactlyf(X) accepting paths for every inputX; this class can be thought of as the natural
analogue ofNP for counting problems. Our main theorem is the following.

Theorem 1. For any symmetric matrixM ∈ {0, 1, ∗}D×D, #LIST-M -PARTITIONS is either inFP or
#P-complete.

To prove Theorem 1, we investigate the complexity of the moregeneral counting problem #L-M -
PARTITIONS, which has two parameters — a matrixM ∈ {0, 1, ∗}D×D and a (not necessarily proper)
subsetL of P(D). In this problem, we only allow sets inL to be used as lists.

Name. #L-M -PARTITIONS.

Instance.A pair (G,L) whereG is a graph andL is a functionV (G)→ L.

Output. The number ofM -partitions ofG that respectL.

Note thatM andL are fixed parameters of #L-M -PARTITIONS — they are not part of the input
instance. The problem #LIST-M -PARTITIONS is just the special case of #L-M -PARTITIONS where
L = P(D).

We say that a setL ⊆ P(D) is subset-closedif A ∈ L implies that every subset ofA is in L. This
closure property is referred to as the “inclusive” case in [12].

Definition 2. Given a setL ⊆ P(D), we writeS(L) for its subset-closure, which is the set

S(L) = {X | for someY ∈ L, X ⊆ Y }.

We prove the following theorem, which immediately implies Theorem 1.

Theorem 3. LetM be a symmetric matrix in{0, 1, ∗}D×D and letL ⊆ P(D) be subset-closed. The
problem#L-M -PARTITIONS is either inFP or #P-complete.

Note that this does not imply a dichotomy for the countingM -partitions problem without lists.
The problem with no lists corresponds to the case where everyvertex of the input graphG is assigned
the listD, allowing the vertex to be potentially placed in any part. Thus, the problem without lists is
equivalent to the problem #L-M -PARTITIONS with L = {D}, but Theorem 3 applies only to the case
whereL is subset-closed.

1.2 Polynomial-time algorithms and an explicit dichotomy

We now introduce the concepts needed to give an explicit criterion for the dichotomy in Theorem 3 and
to provide polynomial-time algorithms for all tractable cases. We use standard definitions of relations
and their arities, compositions and inverses.

Definition 4. For any symmetricM ∈ {0, 1, ∗}D×D and any setsX,Y ∈ P(D), define the binary
relation

HM
X,Y = {(i, j) ∈ X × Y |Mi,j = ∗}.

4

The intractability condition for the problem #L-M -PARTITIONS begins with the following notion of
rectangularity, which was introduced by Bulatov and Dalmau[4].

Definition 5. A relationR ⊆ D ×D′ is rectangularif, for all i, j ∈ D, andi′, j′ ∈ D′,

(i, i′), (i, j′), (j, i′) ∈ R =⇒ (j, j′) ∈ R .

Note that the intersection of two rectangular relations is itself rectangular. However, the compo-
sition of two rectangular relations is not necessarily rectangular: for example,{(1, 1), (1, 2), (3, 3)} ◦
{(1, 1), (2, 3), (3, 1)} = {(1, 1), (1, 3), (3, 1)}.

Our dichotomy criterion will be based on what we callL-M -derectangularising sequences. In order
to define these, we introduce the notions of pure matrices andM -purifying sets.

Definition 6. Given index setsX andY , a matrixM ∈ {0, 1, ∗}X×Y is pure if it has no0s or has no1s.

Pure matrices correspond to ordinary graph homomorphism problems. As we noted above,M -
partitions ofG correspond to homomorphisms ofG whenG is a{0, ∗}-matrix. The same is true (by
complementation) whenG is a{1, ∗}-matrix.

Definition 7. For anyM ∈ {0, 1, ∗}D×D , a setL ⊆ P(D) is M -purifying if, for all X,Y ∈ L, the
X-by-Y submatrixM |X×Y is pure.

For example, consider the matrix

M =





1 ∗ 0
∗ 1 ∗
0 ∗ 1





with rows and columns indexed by{0, 1, 2} in the obvious way. The matrixM is not pure but for
L = {{0, 1}, {2}}, the setL is M -purifying and so is the closureS(L).

Definition 8. An L-M -derectangularising sequenceof lengthk is a sequenceD1, . . . ,Dk with each
Di ∈ L such that:

• {D1, . . . ,Dk} isM -purifying and

• the relationHM
D1,D2

◦HM
D2,D3

◦ · · · ◦HM
Dk−1,Dk

is not rectangular.

If there is ani ∈ {1, . . . , k} such thatDi is the empty set then the relationH = HM
D1,D2

◦HM
D2,D3

◦

· · · ◦ HM
Dk−1,Dk

is the empty relation, which is trivially rectangular. If there is ani such that|Di| = 1

thenH is a Cartesian product, and is therefore rectangular. It follows that|Di| ≥ 2 for eachi in a
derectangularising sequence.

We can now state our explicit dichotomy theorem, which implies Theorem 3 and, hence, Theorem 1.

Theorem 9. Let M be a symmetric matrix in{0, 1, ∗}D×D and letL ⊆ P(D) be subset-closed. If
there is anL-M -derectangularising sequence then the problem#L-M -PARTITIONS is #P-complete.
Otherwise, it is inFP.

Sections 3, 4 and 5 develop a polynomial-time algorithm which solves the problem #L-M -PARTITIONS

whenever there is noL-M -derectangularising sequence. The algorithm involves several steps.
First, consider the case in whichL is subset-closed andM -purifying. In this case, Proposition 15

presents a polynomial-time transformation from an instance of the problem #L-M -PARTITIONS to an
instance of a related counting CSP. Algorithm 3 exploits special properties of the constructed CSP in-
stance so that it can be solved in polynomial time using a CSP technique called arc-consistency. (This
is proved in Lemma 18.) This provides a solution to the original #L-M -PARTITIONS problem for the
M -purifying case.

5

The case in whichL is notM -purifying is tackled in Section 5. Section 5.1 gives algorithms for
constructing the relevant data structures, which include aspecial case of sparse-dense partitions and also
subcube decompositions. Algorithm 9 uses these data structures (via Algorithms 4, 5, 6, 7 and 8) to
reduce the #L-M -PARTITIONS problem to a sequence of problems #Li-M -PARTITIONS whereLi is
M -purifying. Finally, the polynomial-time algorithm is presented in Algorithms 10 and 11. For every
L andM where there is noL-M -derectangularising sequence, either Algorithm 10 or Algorithm 11
defines a polynomial-time function #L-M -PARTITIONS for solving the #L-M -PARTITIONS problem,
given an input(G,L). The function #L-M -PARTITIONS is not recursive. However, itsdefinition is
recursive in the sense that the function #L-M -PARTITIONS defined in Algorithm 11 calls a function
#Li-M -PARTITIONS whereLi is a subset ofP(D) whose cardinality is smaller thanL. The function
#Li-M -PARTITIONS is, in turn, defined either in Algorithm 10 or in 11.

The proof of Theorem 9 shows that, when Algorithms 10 and 11 fail to solve the problem #L-M -
PARTITIONS, the problem is#P-complete.

1.3 Complexity of the dichotomy criterion

Theorem 9 gives a precise criterion under which the problem #L-M -PARTITIONS is in FP or #P-
complete, whereL andM are considered to be fixed parameters. In Section 6, we address the computa-
tional problem of determining which is the case, now treatingL andM as inputs to this “meta-problem”.
Dyer and Richerby [8] studied the corresponding problem forthe#CSP dichotomy, showing that deter-
mining whether a constraint languageΓ satisfies the criterion for their#CSP(Γ) dichotomy is reducible
to the graph automorphism problem, which is inNP. We are interested in the following computational
problem, which we show to beNP-complete.

Name. EXISTSDERECTSEQ.

Instance.An index setD, a symmetric matrixM in {0, 1, ∗}D×D (represented as an array) and a set
L ⊆ P(D) (represented as a list of lists).

Output. “Yes”, if there is anS(L)-M -derectangularising sequence; “no”, otherwise.

Theorem 10. EXISTSDERECTSEQ isNP-complete under polynomial-time many-one reductions.

Note that, in the definition of the problem EXISTSDERECTSEQ, the inputL is not necessarily subset-
closed. Subset-closedness allows a concise representation of some inputs: for example,P(D) has
exponential size but it can be represented asS({D}), so the corresponding input is justL = {D}. In
fact, our proof of Theorem 10 uses a set of listsL where|X| ≤ 3 for all X ∈ L. Since there are at
most|D|3 + 1 such sets, ourNP-completeness proof would still hold if we insisted that theinputL to
EXISTSDERECTSEQ must be subset-closed.

Let us return to the original problem #LIST-M -PARTITIONS, which is the special case of the problem
#L-M -PARTITIONS whereL = P(D). This leads us to be interested in the following computational
problem.

Name. MATRIX HASDERECTSEQ.

Instance.An index setD and a symmetric matrixM in {0, 1, ∗}D×D (represented as an array).

Output. “Yes”, if there is aP(D)-M -derectangularising sequence; “no”, otherwise.

Theorem 10 does not quantify the complexity of MATRIX HASDERECTSEQ because its proof relies
on a specific choice ofL which, as we have noted, is notP(D). Nevertheless, the proof of Theorem 10
has the following corollary.

Corollary 11. MATRIX HASDERECTSEQ is inNP.

6

1.4 Cardinality constraints

Many combinatorial structures can be represented asM -partitions with the addition of cardinality con-
straints on the parts. For example, it might be required thatcertain parts be non-empty or, more generally,
that they contain at leastk vertices for some fixedk.

Feder et al. [15] showed that the problem of determining whether such a structure exists in a given
graph can be reduced to a LIST-M -PARTITIONS problem in which the cardinality constraints are ex-
pressed using lists. In Section 7, we extend this to counting. We show that any #M -PARTITIONS

problem with additional cardinality constraints of the form, “partd must contain at leastkd vertices” is
polynomial-time Turing reducible to #LIST-M -PARTITIONS. As a corollary, we show that the “homo-
geneous pairs” introduced by Chvátal and Sbihi [6] can be counted in polynomial time. Homogeneous
pairs can be expressed as anM -partitions problem for a certain6×6 matrix, with cardinality constraints
on the parts.

2 Preliminaries

For a positive integerk, we write [k] to denote the set{1, . . . , k}. If S is a set of sets then we use
⋂

S
to denote the intersection of all sets inS. The vertex set of a graphG is denotedV (G) and its edge set
isE(G). We write{0, 1, ∗}D for the set of all functionsσ : D → {0, 1, ∗} and{0, 1, ∗}D×D′

for the set
of all matricesM = (Mi,j)i∈D,j∈D′, where eachMi,j ∈ {0, 1, ∗}.

We always use the term “M -partition” when talking about a partition of the vertices of a graph
according to a{0, 1, ∗}-matrix M . When we use the term “partition” without referring to a matrix,
we mean it in the conventional sense of partitioning a setX into disjoint subsetsX1, . . . ,Xk with
X1 ∪ · · · ∪Xk = X.

We view computational counting problems as functions mapping strings over input alphabets to
natural numbers. Our model of computation is the standard multi-tape Turing machine. We say that a
counting problemP is polynomial-time Turing-reducible to another counting problemQ if there is a
polynomial-time deterministic oracle Turing machineM such that, on every instancex of P , M outputs
P (x) by making queries to oracleQ. We say thatP is polynomial-time Turing-equivalent toQ if each is
polynomial-time Turing-reducible to the other. For decision problems (languages), we use the standard
many-one reducibility: languageA is many-one reducible to languageB if there exists a functionf that
is computable in polynomial time such thatx ∈ A if and only if f(x) ∈ B.

3 Counting list M-partition problems and counting CSPs

Toward the development of our algorithms and the proof of ourdichotomy, we study a special case of
the problem #L-M -PARTITIONS, in whichL is M -purifying and subset-closed. For suchL andM ,
we show that the problem #L-M -PARTITIONS is polynomial-time Turing-equivalent to a counting con-
straint satisfaction problem (#CSP). To give the equivalence, we introduce the notation neededto
specify #CSPs.

A constraint languageis a finite setΓ of named relations over some setD. For such a language, we
define the counting problem#CSP(Γ) as follows.

Name.#CSP(Γ).

Instance.A setV of variables and a setC of constraints of the form〈(v1, . . . , vk), R〉, where(v1, . . . , vk) ∈
V k andR is an arity-k relation inΓ.

Output. The number of assignmentsσ : V → D such that

(σ(v1), . . . , σ(vk)) ∈ R for all 〈(v1, . . . , vk), R〉 ∈ C . (1)

7

The tuple of variablesv1, . . . , vk in a constraint is referred to as the constraint’sscope. The assignments
σ : V → D for which (1) holds are called thesatisfying assignmentsof the instance(V,C). Note
that a unary constraint〈v,R〉 has the same effect as a list: it directly restricts the possible values of
the variablev. As before, we allow the possibility that∅ ∈ Γ; any instance that includes a constraint
〈(v1, . . . , vk), ∅〉 has no satisfying assignments.

Definition 12. LetM be a symmetric matrix in{0, 1, ∗}D×D and letL be a subset-closedM -purifying
set. Define the constraint language

Γ′
L,M = {HM

X,Y | X,Y ∈ L}

and letΓL,M = Γ′
L,M ∪ P(D), whereP(D) represents the set of all unary relations onD.

The unary constraints inΓL,M will be useful in our study of the complexity of the dichotomycrite-
rion, in Section 6. First, we define a convenient restrictionon instances of#CSP(ΓL,M).

Definition 13. An instance of#CSP(ΓL,M) is simpleif:

• there is exactly one unary constraint〈v,Xv〉 for each variablev ∈ V,

• there are no binary constraints〈(v, v), R〉, and

• each pairu, v of distinct variables appears in at most one constraint of the form 〈(u, v), R〉 or
〈(v, u), R〉.

Lemma 14. For every instance(V,C) of #CSP(ΓL,M), there is a simple instance(V,C ′) such that an
assignmentσ : V → D satisfies(V,C) if and only if it satisfies(V,C ′). Further, such an instance can
be computed in polynomial time.

Proof. Observe that the set of binary relations inΓL,M is closed under intersections:HM
X,Y ∩HM

X′,Y ′ =

HM
X∩X′,Y ∩Y ′ and this relation is inΓL,M becauseL is subset-closed. The binary part ofΓL,M is also

closed under relational inverse becauseM is symmetric, so

(

HM
X,Y

)−1
= {(b, a) | (a, b) ∈ HM

X,Y } = HM
Y,X ∈ ΓL,M .

SinceP(D) ⊆ ΓL,M , the set of unary relations is also closed under intersections.
We constructC ′ as follows, starting withC. Any binary constraint〈(v, v), R〉 can be replaced by

the unary constraint〈v, {d | (d, d) ∈ R}〉. All the binary constraints between distinct variablesu andv
can be replaced by the single constraint

〈

(u, v),
⋂

{R | 〈(u, v), R〉 ∈ C or 〈(v, u), R−1〉 ∈ C}
〉

.

Let the set of constraints produced so far beC ′′. For each variablev in turn, if there are no unary
constraints applied tov in C ′′, add the constraint〈v,D〉; otherwise, replace all the unary constraints
involving v in C ′′ with the single constraint

〈

v,
⋂

{R | 〈v,R〉 ∈ C ′′}
〉

.

C ′ is the resulting constraint set. The closure properties established above guarantee that(V,C ′) is a
#CSP(ΓL,M) instance. It is clear that it has the same satisfying assignments as(V,C) and that it can
be produced in polynomial time.

Our main result connecting the counting listM -partitions problem with counting CSPs is the fol-
lowing.

8

Proposition 15. For any symmetricM ∈ {0, 1, ∗}D×D and any subset-closed,M -purifying setL, the
problem#L-M -PARTITIONS is polynomial-time Turing-equivalent to#CSP(ΓL,M).

Because of its length, we split the proof of the proposition into two lemmas.

Lemma 16. For any symmetricM ∈ {0, 1, ∗}D×D and any subset-closed,M -purifying setL,#CSP(ΓL,M)
is polynomial-time Turing-reducible to#L-M -PARTITIONS.

Proof. Consider an input(V,C) to #CSP(ΓL,M), which we may assume to be simple. Each variable
appears in exactly one unary constraint,〈v,Xv〉 ∈ C. Any variablev that is not used in a binary
constraint can take any value inXv so just introduces a multiplicative factor of|Xv| to the output of the
counting CSP. Thus, we will assume without loss of generality that every variable is used in at least one
constraint with a relation fromΓ′

L,M and, by simplicity, there are no constraints of the form〈(v, v), R〉.
We now define a corresponding instance(G,L) of the problem #L-M -PARTITIONS. The vertices

of G are the variablesV of the#CSP instance. For each variablev ∈ V, set

L(v) = Xv ∩
⋂

{

X | for someu andY , 〈(v, u),HM
X,Y 〉 ∈ C or 〈(u, v),HM

Y,X 〉 ∈ C
}

.

The edgesE(G) of our instance are the unordered pairs{u, v} that satisfy one of the following condi-
tions:

• there is a constraint betweenu andv in C andM |L(u)×L(v) has a0 entry, or

• there is no constraint betweenu andv in C andM |L(u)×L(v) has a1 entry.

Since every vertexv is used in at least one constraint with a relationHM
X,Y where, by definition,X

andY are inL, every setL(v) is a subset of some setW ∈ L. L is subset-closed soL(v) ∈ L for all
v ∈ V , as required.

We claim that a functionσ : V → D is a satisfying assignment of(V,C) if and only if it is an
M -partition ofG that respectsL. Note that, sinceL isM -purifying, no submatrixM |X×Y (X,Y ∈ L)
contains both 0s and 1s.

First, suppose thatσ is a satisfying assignment of(V,C). For each variablev, σ satisfies all the
constraints〈v,Xv〉, 〈(v, u),HM

X,Y 〉 and〈(u, v),HM
Y,X 〉 containingv. Therefore,σ(v) ∈ Xv andσ(v) ∈

X for each binary constraint〈(v, u),HM
X,Y 〉 or 〈(u, v),HM

Y,X 〉, soσ satisfies all the list requirements.
To show thatσ is anM -partition ofG, consider any pair of distinct verticesu, v ∈ V . If there is

a constraint〈(u, v),HM
X,Y 〉 ∈ C, thenσ satisfies this constraint soMσ(u),σ(v) = ∗ andu andv cannot

stopσ being anM -partition. Conversely, suppose there is no constraint betweenu and v in C. If
M |L(u)×L(v) contains a 0, there is no edge(u, v) ∈ E(G) by construction; otherwise, ifM |L(u)×L(v)

contains a 1, there is an edge(u, v) ∈ E(G) by construction; otherwise,Mx,y = ∗ for all x ∈ L(u),
y ∈ L(v). In all three cases, the assignment tou andv is consistent withσ being anM -partition.

Conversely, suppose thatσ is not a satisfying assignment of(V,C). If σ does not satisfy some unary
constraint〈v,X〉 thenσ(v) /∈ L(v) soσ does not respectL. If σ does not satisfy some binary constraint
〈(u, v),HM

X,Y 〉 whereu andv are distinct then, by definition of the relationHM
X,Y , Mσ(u),σ(v) 6= ∗. If

Mσ(u),σ(v) = 0, there is an edge(u, v) ∈ E(G) by construction, which is forbidden inM -partitions; if
Mσ(u),σ(v) = 1, there is no edge(u, v) ∈ E(G) but this edge is required inM -partitions. Hence,σ is
not anM -partition.

Lemma 17. For any symmetricM ∈ {0, 1, ∗}D×D and any subset-closed,M -purifying setL, the
problem#L-M -PARTITIONS is polynomial-time Turing-reducible to#CSP(ΓL,M).

9

Algorithm 1 The algorithm for computing arc-consistent domains for a simple #CSP(ΓL,M) in-
stance(V,C) where, for eachv ∈ V , 〈v,Xv〉 ∈ C is the unary constraint involvingv.

for v ∈ V do
Dv ← Xv

repeat
for v ∈ V do

D′
v ← Dv

for 〈(u, v), R〉 ∈ C do
Du ← {d ∈ Du | for somed′ ∈ Dv, (d, d′) ∈ R}
Dv ← {d ∈ Dv | for somed′ ∈ Du, (d′, d) ∈ R}

until ∀v ∈ V , Dv = D′
v

return (Dv)v∈V

Proof. We now essentially reverse the construction of the previouslemma to give a reduction from
#L-M -PARTITIONS to #CSP(ΓL,M). For any instance (G,L) of #L-M -PARTITIONS, we construct
a corresponding instance(V,C) of #CSP(ΓL,M) as follows. The set of variablesV is V (G). The
set of constraintsC consists of a constraint〈v, L(v)〉 for each vertexv ∈ V (G) and a constraint
〈(u, v),HM

L(u),L(v)〉 for every pair of distinct verticesu, v such that:

• (u, v) ∈ E(G) andM |L(u)×L(v) has a 0 entry, or

• (u, v) 6∈ E(G) andM |L(u)×L(v) has a 1 entry.

We show that a functionσ : V → D is a satisfying assignment of(V,C) if and only if it is anM -
partition ofG that respectsL. It is clear thatσ satisfies the unary constraints if and only if it respectsL.

If σ satisfies(V,C) then consider any pair of distinct verticesu, v ∈ V . If there is a binary constraint
involving u andv, thenMσ(u),σ(v) = Mσ(v),σ(u) = ∗ so the existence or non-existence of the edge(u, v)
of G does not affect whetherσ is anM -partition. If there is no binary constraint involvingu andv, then
either there is an edge(u, v) ∈ E(G) andMσ(u),σ(v) 6= 0 or there is no edge(u, v) andMσ(u),σ(v) 6= 1.
In all three cases,σ mapsu andv consistently with it being anM -partition.

Conversely, ifσ does not satisfy(V,C), either it fails to satisfy a unary constraint, in which caseit
does not respectL, or it satisfies all unary constraints (so it respectsL), but it fails to satisfy a binary
constraint〈(u, v),HM

L(u),L(v)〉. In the latter case, by construction,Mσ(u),σ(v) 6= ∗ so eitherMσ(u),σ(v) =

0 but there is an edge(u, v) ∈ E(G), or Mσ(u),σ(v) = 1 and there is no edge(u, v) ∈ E(G). In either
case,σ is not anM -partition ofG.

4 An arc-consistency based algorithm for#CSP(ΓL,M)

In the previous section, we showed that a class of #L-M -PARTITIONS problems is equivalent to a certain
class of counting CSPs, where the constraint language consists of binary relations and all unary relations
over the domainD. We now investigate the complexity of such#CSPs.

Arc-consistency is a standard solution technique for constraint satisfaction problems [19]. It is,
essentially, a local search method which initially assumesthat each variable may take any value in
the domain and iteratively reduces the range of values that can be assigned to each variable, based on
the constraints applied to it and the values that can be takenby other variables in the scopes of those
constraints.

For any simple#CSP(ΓL,M) instance(V,C), define the vector ofarc-consistent domains(Dv)v∈V
by the procedure in Algorithm 1. At no point in the execution of the algorithm can any domainDv

10

Algorithm 2 The algorithm for factoring a simple#CSP(ΓL,M) instance(V,C) with respect to a vector
(Dv)v∈V of arc-consistent domains.F is the set of factored constraints.

F ← C
for 〈(u, v), R〉 ∈ C do

if R ∩ (Du ×Dv) is a Cartesian productD′
u ×D′

v then
Let 〈u,Xu〉 and〈v,Xv〉 be the unary constraints involvingu andv in F .
F ← (F ∪ {〈u,Xu ∩D′

u〉, 〈v,Xu ∩D′
v〉}) \ {〈(u, v), R〉, 〈u,Xu〉, 〈v,Xv〉}

return F

increase in size so, for fixedD, the running time of the algorithm is at most a polynomial in|V |+ |C|.
It is clear that, if(Dv)v∈V is the vector of arc-consistent domains for a simple#CSP(ΓL,M) instance

(V,C), then every satisfying assignmentσ for that instance must haveσ(v) ∈ Dv for each variablev.
In particular, if someDv = ∅, then the instance is unsatisfiable. (Note, though, that theconverse does
not hold. IfD = {0, 1} andR = {(0, 1), (1, 0)}, the instance with constraints〈x,D〉, 〈y,D〉, 〈z,D〉,
〈(x, y), R〉, 〈(y, z), R〉 and〈(z, x), R〉 is unsatisfiable but arc-consistency assignsDx = Dy = Dz =
{0, 1}.)

The arc-consistent domains computed for a simple instance(V,C) can yield further simplification
of the constraint structure, which we refer to asfactoring. The factoring applies when the arc-consistent
domains restrict a binary relation to a Cartesian product. In this case, the binary relation can be replaced
with corresponding unary relations. Algorithm 2 factors a simple instance with respect to a vector
(Dv)v∈V of arc-consistent domains, producing a setF of factored constraints. Recall that there is at most
one constraint inC between distinct variables and there are no binary constraints〈(v, v), R〉 because the
instance is simple. Note also that, if|Du| ≤ 1 or |Dv | ≤ 1, thenR∩(Du×Dv) is necessarily a Cartesian
product. It is easy to see that the result of factoring a simple instance is simple, that Algorithm 2 runs in
polynomial time and that the instance(V, F) has the same satisfying assignments as(V,C).

Theconstraint graphof aCSP instance(V,C) (in any constraint language) is the undirected graph
with vertex setV that contains an edge between every pair of distinct variables that appear together in
the scope of some constraint.

Algorithm 3 uses arc-consistency to count the satisfying assignments of simple#CSP(ΓL,M) in-
stances. It is straightforward to see that the algorithm terminates, since each recursive call is either on an
instance with strictly fewer variables or on one in which at least one variable has had its unary constraint
reduced to a singleton and no variable’s unary constraint has increased. For general inputs, the algorithm
may take exponential time to run but, in Lemma 18 we show that the running time is polynomial for the
inputs we are interested in.

We first argue that the algorithm is correct. By Lemma 14, we may assume that the given instance
(V,C) is simple. Every satisfying assignmentσ : V → D satisfiesσ(v) ∈ Dv for all v ∈ V so
restricting our attention to arc-consistent domains does not alter the output. Factoring the constraints
also does not change the number of satisfying assignments: it merely replaces some binary constraints
with equivalent unary ones. The constraints are factored, so any variablev with |Dv| = 1 must, in fact,
be an isolated vertex in the constraint graph because, as noted above, any binary constraint involving
it has been replaced by unary constraints. Therefore, if a componentHi contains a variablev with
|Dv| = 1, that component is the single vertexv, which is constrained to take a single value, so the
number of satisfying assignments for this component, whichwe denoteZi, is equal to1. (So we have
now shown that the if branch in the for loop is correct.) For components that contain more than one
variable, it is clear that we can choose one of those variables, wi, and group the set ofM -partitionsσ
according to the value ofσ(wi). (So we have now shown that the else branch is correct.) Because
there are no constraints between variables in different components of the constraint graph, the number
of satisfying assignments factorises as

∏κ
i=1 Zi.

11

Algorithm 3 The arc-consistency based algorithm for counting satisfying assignments to simple in-
stances of#CSP(ΓL,M). The input is a simple instance(V,C) of #CSP(ΓL,M).

function AC(variable set V, constraint set C)
Use Algorithm 1 to compute the vector of arc-consistent domains (Dv)v∈V
Use Algorithm 2 to construct the setF of factored constraints
if Dv = ∅ for somev ∈ V then

return 0
Compute the constraint graphH of (V, F)
LetH1, . . . ,Hκ be the components ofH with Vi = V (Hi)
LetFi be the set of constraints inF involving variables inVi

for i ∈ [κ] do
if |Dw| = 1 for somew ∈ Vi then

Zi ← 1
else

Choosewi ∈ Vi

Let θi be the unary constraint involvingwi in Fi

for d ∈ Dwi
do

F ′
i,d ← (Fi ∪ {〈wi, {d}〉}) \ {θi}

Zi ←
∑

d∈Dwi
AC(Vi, F

′
i,d)

return
∏κ

i=1 Zi

For a binary relationR, we write

π1(R) = {a | (a, b) ∈ R for someb}

π2(R) = {b | (a, b) ∈ R for somea} .

For the following proof, we will also need the observation ofDyer and Richerby [8, Lemma 1] that
any rectangular relationR ⊆ π1(R)×π2(R) can be written as(A1×B1)∪ · · · ∪ (Aλ×Bλ), where the
Ai andBi partitionπ1(R) andπ2(R), respectively. The subrelationsAi × Bi are referred to asblocks.
A rectangular relationR 6= π1(R)× π2(R) must have at least two blocks.

Lemma 18. Suppose thatL is subset-closed andM -purifying. If there is noL-M -derectangularising
sequence, then Algorithm 3 runs in polynomial time.

Proof. We will argue that the number of recursive calls made by the function AC in Algorithm 3 is
bounded above by a polynomial in|V |. This suffices, since every other step of the procedure is obviously
polynomial.

Consider a run of the algorithm on instance(V,C) which, by Lemma 14, we may assume to be
simple. Suppose the run makes a recursive call with input(Vi, F

′
i,d). For eachv ∈ Vi, let D′

v denote
the arc-consistent domain forv that is computed during the recursive call. We will show below that
D′

v ⊂ Dv for every variablev ∈ Vi. This implies that the recursion depth is at most|D|. As a crude
bound, it follows that the number of recursive calls is at most (|V | · |D|)|D|, since each recursive call
that is made is nested below a sequence of at most|D| previous calls, each of which chose a vertex
v ∈ V and “pinned” it to a domain elementd ∈ D (i.e., introduced the constraint〈v, {d}〉).

Towards showing that the domains of all variables decrease at each recursive call, suppose that we
are computingAC(V,C) and the arc-consistent domains are(Dv)v∈V . As observed above, for any
componentHi of the constraint graph on which a recursive call is made, we must have|Dv| > 1 for
everyv ∈ Vi. Fix such a component and, for eachv ∈ Vi, letD′

v be the arc-consistent domain calculated
for v in the recursive call onHi. It is clear thatD′

v ⊆ Dv; we will show thatD′
v ⊂ Dv.

12

Consider a pathv1 . . . vℓ in Hi, wherev1 = wi andvℓ = v. For eachj ∈ [ℓ− 1], there is exactly one
binary constraint inFi involving vj andvj+1. This is either〈(vj , vj+1), Rj〉 or 〈(vj+1, vj), R

−1
j 〉 and,

without loss of generality, we may assume that it is the former. Forj ∈ [ℓ− 1], letR′
j = Rj ∩ (Dvj ×

Dvj+1
) = HM

Dvj
,Dvj+1

. The relationR′
j is pure becauseDvj andDvj+1

are in the subset-closed setL

and, sinceL is M -purifying, so is{Dvj ,Dvj+1
}. These two domains do not form a derectangularising

sequence by the hypothesis of the lemma, soHM
Dvj

,Dvj+1
is rectangular. If someRj = ∅ thenDvj =

Dvj+1
= ∅ by arc-consistency, contradicting the fact that|Dv| > 1 for all v ∈ Vi. If someR′

j has just
one block,Rj ∩ (Dvj ×Dvj+1

) is a Cartesian product, contradicting the fact thatF is a factored set of
constraints. Thus, everyR′

j has at least two blocks.
For j ∈ [ℓ− 1], letΦj = R′

1 ◦ · · · ◦ R
′
j. As above, note that{Dv1 , . . . ,Dvj+1

} is M -purifying and
the sequenceDv1 , . . . ,Dvj+1

is not derectangularising, soΦj is rectangular. We will show by induction
on j thatπ1(Φj) = Dv1 , π2(Φj) = Dvj+1

andΦj has at least two blocks. Therefore, since the recursive
call constrainsσ(wi) to bed andd ∈ A for some blockA×B ⊂ Φℓ, we haveD′

v ⊆ B ⊂ Dv, which is
what we set out to prove.

For the base case of the induction, takej = 1 soΦ1 = R′
1. We showed above thatR′

1 has at least
two blocks and thatR′

1 = HM
Dv1

,Dv2
. By arc-consistency,π1(R′

1) = Dv1 andπ2(R′
1) = Dv2 .

For the inductive step, takej ∈ [ℓ − 2]. Suppose thatπ1(Φj) = Dv1 , π2(Φj) = Dvj+1
and

Φj =
⋃λ

s=1(As×A′
s) has at least two blocks. We haveΦj+1 = Φj ◦R

′
j+1 andR′

j+1 =
⋃µ

t=1(Bt×B′
t)

for someµ ≥ 2.
For everyd ∈ Dv1 , there is ad′ ∈ Dvj+1

such that(d, d′) ∈ Φj by the inductive hypothesis, and
a d′′ ∈ Dvj+1

such that(d′, d′′) ∈ Dvj+2
, by arc-consistency. Therefore,π1(Φj+1) = Dv1 ; a similar

argument shows thatπ2(Φj+1) = Dvj+2
.

Suppose, towards a contradiction, thatΦj+1 = Dv1 ×Dvj+2
. For this to be the case, we must have

A′
s ∩ Bt 6= ∅ for everys ∈ {1, 2} andt ∈ [µ]. Now, letD∗

vj+1
= Dvj+1

\ (A′
2 ∩ B2) and consider the

relation
R = {(d1, d3) | for somed2 ∈ D∗

vj+1
, (d1, d2) ∈ Φj and(d2, d3) ∈ R′

j+1 }.

SinceA′
1 ⊆ D∗

vj+1
the non-empty setsA′

1 ∩B1 andA′
1 ∩B2 are both subsets ofD∗

vj+1
soA1×B′

1 ⊆ R
andA1 × B′

2 ⊆ R. Similarly, B1 ⊆ D∗
vj+1

, soA′
2 ∩ B1 ⊆ D∗

vj+1
so A2 × B′

1 ⊆ R. However,
(A2 × B′

2) ∩ R = ∅, soR is not rectangular. We will now derive a contradiction by showing thatR is
rectangular. Note that

R = HM
Dv1

,Dv2
◦ · · · ◦HM

Dvj−1
,Dvj
◦HM

Dvj
,D∗

vj+1
◦HM

D∗
vj+1

,Dvj+2

but this relation is rectangular because the hypothesis of the lemma guarantees that the sequence

Dv1 , . . . ,Dvj ,D
∗
vj+1

,Dvj+2

is not anL-M -derectangularising sequence and all of the elements of this sequence are inL, and
{Dv1 , . . . ,Dvj ,D

∗
vj+1

,Dvj+2
} isM -purifying.

5 Polynomial-time algorithms and the dichotomy theorem

Bulatov [3] showed that every problem of the form#CSP(Γ) is either inFP or#P-complete. Together
with Proposition 15, his result immediately shows that a similar dichotomy exists for the special case
of the problem #L-M -PARTITIONS in whichL is M -purifying and is closed under subsets. Our algo-
rithmic work in Section 4 can be combined with Dyer and Richerby’s explicit dichotomy for#CSP
to obtain an explicit dichotomy for this special case of #L-M -PARTITIONS. In particular, Lemma 18
gives a polynomial-time algorithm for the case in which there is noL-M -derectangularising sequence.

13

When there is such a sequence,ΓL,M is not “strongly rectangular” in the sense of [8]. It followsimme-
diately that#CSP(ΓL,M) is#P-complete [8, Lemma 24] so #L-M -PARTITIONS is also#P-complete
by Proposition 15. In fact, the dichotomy for this special case does not require the full generality of Dyer
and Richerby’s dichotomy. If there is anL-M -derectangularising sequence then it follows immediately
from work of Bulatov and Dalmau [4, Theorem 2 and Corollary 3]that#CSP(ΓL,M) is#P-complete.

In this section we will move beyond the case in whichL isM -purifying to provide a full dichotomy
for the problem #L-M -PARTITIONS. We will use two data structures:sparse-dense partitionsand a
representation of the set ofsplits of a bipartite graph. Similar data structures were used by Hell et
al. [18] in their dichotomy for the #M -PARTITIONS problem for matrices of size at most3-by-3.

5.1 Data Structures

We use two types of graph partition. The first is a special caseof a sparse-dense partition [15] which is
also called an(a, b)-graph witha = b = 2.

Definition 19. A bipartite–cobipartite partition of a graphG is a partition(B,C) of V (G) such thatB
induces a bipartite graph andC induces the complement of a bipartite graph.

Lemma 20. [15, Theorem 3.1; see also the remarks on(a, b)-graphs.] There is a polynomial-time
algorithm for finding all bipartite–cobipartite partitions of a graphG.

The second decomposition is based on certain sub-hypercubes called subcubes. For any finite set
U, a subcubeof {0, 1}U is a subset of{0, 1}U that is a Cartesian product of the form

∏

u∈U Su where
Su ∈ {{0}, {1}, {0, 1}} for eachu ∈ U. We can also associate a subcube

∏

u∈U Su with the set of
assignmentsσ : U → {0, 1} such thatσ(u) ∈ Su for all u ∈ U. Subcubes can be represented efficiently
by listing the projectionsSu.

Definition 21. Let G = (U,U ′, E) be a bipartite graph, whereU andU ′ are disjoint vertex sets, and
E ⊆ U × U ′. A subcube decompositionof G is a listU1, . . . , Uk of subcubes of{0, 1}U and a list
U ′
1, . . . , U

′
k of subcubes of{0, 1}U

′
such that the following hold.

• The union(U1 × U ′
1) ∪ · · · ∪ (Uk × U ′

k) is the set of assignmentsσ : U ∪ U ′ → {0, 1} such that:

no edge(u, u′) ∈ E hasσ(u) = σ(u′) = 0 and (2)

no pair(u, u′) ∈ (U × U ′) \ E hasσ(u) = σ(u′) = 1. (3)

• For distincti, j ∈ [k], Ui × U ′
i andUj × U ′

j are disjoint.

• For eachi ∈ [k], either|Ui| = 1 or |U ′
i | = 1 (or both).

Note that, although we requireUi × U ′
i andUj × U ′

j to be disjoint for distincti, j ∈ [k], we allow
Ui ∩ Uj 6= ∅ as long asU ′

i andU ′
j are disjoint, and vice-versa. It is even possible thatUi = Uj , and

indeed this will happen in our constructions below.

Lemma 22. A subcube decomposition of a bipartite graphG = (U,U ′, E) can be computed in polyno-
mial time, with the subcubes represented by their projections.

Proof. For a vertexx in a bipartite graph, letΓ(x) be its set of neighbours and letΓ(x) be its set of
non-neighbours on the other side of the graph. Thus, forx ∈ U, Γ(x) = U ′ \ Γ(x) and, forx ∈ U ′,
Γ(x) = U \ Γ(x).

Observe that we can write{0, 1}n \ {0}n as the disjoint union ofn subcubes{0}k−1 × {1}1 ×
{0, 1}n−k with 1 ≤ k ≤ n, and similarly for any other cube minus a single point.

14

We first deal with two base cases. IfG has no edges, then the set of assignmentsσ : U∪U ′ → {0, 1}
satisfying (2) and (3) is the disjoint union of

{0}U × {0}U
′

, ({0, 1}U \ {0}U)× {0}U
′

, and {0}U × ({0, 1}U
′

\ {0}U
′

).

The second and third terms can be decomposed into subcubes asdescribed above to produce the output.
Similarly, if G is is a complete bipartite graph, then the set of assignmentssatisfying (2) and (3) is the
disjoint union of

{1}U × {1}U
′

, ({0, 1}U \ {1}U)× {1}U
′

, and {1}U × ({0, 1}U
′

\ {1}U
′

).

If neither of these cases occurs then there is a vertexx such that neitherΓ(x) nor Γ(x) is empty.
If possible, choosex ∈ U ; otherwise, choosex ∈ U ′. To simplify the description of the algorithm,
we assume thatx ∈ U ; the other case is symmetric. We consider separately the assignments where
σ(x) = 0 and those whereσ(x) = 1. Note that, for any assignment, ifσ(y) = 0 for some vertexy, then
σ(z) = 1 for all z ∈ Γ(y) and, ifσ(y) = 1, thenσ(z) = 0 for all z ∈ Γ(y). Applying this iteratively,
settingσ(x) = c for c ∈ {0, 1} also determines the value ofσ on some setSx=c ⊆ U ∪ U ′ of vertices.

Thus, we can compute a subcube decomposition forG recursively. First, computeSx=0 andSx=1.
Then, recursively compute subcube decompositions ofG− Sx=0 (the graph formed fromG by deleting
the vertices inSx=0) andG − Sx=1. Translate these subcube decompositions into a subcube decom-
position ofG by extending each subcube(Ui × U ′

i) of G − Sx=c to a subcube(Vi × V ′
i) of G whose

restriction toG−Sx=c is (Ui×U ′
i) and whose restriction toSx=c is an assignmentσ with σ(x) = c (in

fact, all assignments that setx to c agree on the setSx=c, by construction).
It remains to show that the algorithm runs in polynomial time. The base cases are clearly computable

in polynomial time, as are the individual steps in the recursive cases, so we only need to show that the
number of recursive calls is polynomially bounded. At the recursive step, we only choosex ∈ U ′ when
E(G) = U ′′ × U ′ for some proper subset∅ ⊂ U ′′ ⊂ U and, in this case, the two recursive calls are to
base cases. Since each recursive call whenx ∈ U splitsU ′ into disjoint subsets, there can be at most
|U ′| − 1 such recursive calls, so the total number of recursive callsis linear in|V (G)|.

5.2 Reduction to a problem withM-purifying lists

Our algorithm for counting listM -partitions uses the data structures from Section 5.1 to reduce prob-
lems whereL is notM -purifying to problems where it is (which we already know howto solve from
Sections 3 and 4). The algorithm is defined recursively on thesetL of allowed lists. The algorithm for
parametersL andM calls the algorithm forLi andM whereLi is a subset ofL. The base case arises
whenLi is M -purifying.

We will use the following computational problem to reduce #L-M -PARTITIONS to a collection of
problems #L′-M -PARTITIONS that are, in a sense, disjoint.

Name. #L-M -PURIFY.

Instance.A graphG and a functionL : V (G)→ L.

Output. FunctionsL1, . . . , Lt : V (G)→ L such that

• for eachi ∈ [t], the set{Li(v) | v ∈ V (G)} is M -purifying,

• for eachi ∈ [t] andv ∈ V (G), Li(v) ⊆ L(v), and

• eachM -partition ofG that respectsL respects exactly one ofL1, . . . , Lt.

We will give an algorithm for solving the problem #L-M -PURIFY in polynomial time when there is
noL-M -derectangularising sequence of length exactly 2. The following computational problem will be
central to the inductive step.

15

Algorithm 4 A polynomial-time algorithm for the problem #L-M -PURIFY-STEP whenL ⊆ P(D) is
subset-closed,L is notM -purifying and there is no length-2L-M -derectangularising sequence. The
input is a pair(G,L) with V (G) = {v1, . . . , vn}.

function #L-M -PURIFY-STEP(G,L)
if there is avi ∈ V (G) with L(vi) = ∅ then return the empty sequence
else if there areX,Y ∈ L, a, b ∈ X, andd ∈ Y such thatMa,d = 0 andMb,d = 1 then

Run Algorithm 5 /* Case 1 */
else if there is anX ∈ L such thatM |X×X is not purethen

Run Algorithm 6 /* Case 2 */
else

Run Algorithm 7 /* Case 3 */

Name. #L-M -PURIFY-STEP.

Instance.A graphG and a functionL : V (G)→ L.

Output. FunctionsL1, . . . , Lk : V (G)→ L such that

• for eachi ∈ [k] andv ∈ V (G), Li(v) ⊆ L(v),

• everyM -partition ofG that respectsL respects exactly one ofL1, . . . , Lk, and

• for eachi ∈ [k], there is aW ∈ L which is inclusion-maximal inL but does not occur in the
image ofLi.

Note that we can trivially produce a solution to the problem #L-M -PURIFY-STEPby lettingL1, . . . , Lk

be an enumeration of all possible functions such that all listsLi(v) have size1 and satisfyLi(v) ⊆ L(v).
Such a functionLi corresponds to an assignment of vertices to parts so there iseither exactly oneLi-
respectingM -partition or none, which means that everyL-respectingM -partition isLi-respecting for
exactly onei. However, this solution is exponentially large in|V (G)| and we are interested in solutions
that can be produced in polynomial time. Also, ifL(v) = ∅ for some vertexv, the algorithm is entitled
to output an empty list, since noM -partition respectsL.

The following definition extends rectangularity to{0, 1, ∗}-matrices and is used in our proof.

Definition 23. A matrix M ∈ {0, 1, ∗}X×Y is ∗-rectangularif the relationHM
X,Y is rectangular.

Thus,M is ∗-rectangular if and only ifMx,y = Mx′,y = Mx,y′ = ∗ implies thatMx′,y′ = ∗ for all
x, x′ ∈ X ′ and ally, y′ ∈ Y ′′.

We will show in Lemma 24 that the function #L-M -PURIFY-STEPfrom Algorithm 4 is a polynomial-
time algorithm for the problem #L-M -PURIFY-STEP wheneverL is notM -purifying and there is no
length-2L-M -derectangularising sequence. Note that a length-2L-M -derectangularising sequence is a
pair X,Y ∈ L such thatM |X×Y , M |X×X andM |Y×Y are pure andM |X×Y is not∗-rectangular. If
L 6= P(D), it is possible that a matrix that is not∗-rectangular has no length-2L-M -derectangularising
sequence. For example, letD = {1, 2, 3} andL = P({1, 2}) and letM3,3 = 0 andMi,j = ∗ for every
other pair(i, j) ∈ D2. M is not∗-rectangular but this fact is not witnessed by any submatrixM |X×Y

for X,Y ∈ L.

Lemma 24. LetM be a symmetric matrix in{0, 1, ∗}D×D and letL ⊆ P(D) be subset-closed. IfL
is notM -purifying and there is no length-2L-M -derectangularising sequence, then Algorithm 4 is a
polynomial-time algorithm for the problem#L-M -PURIFY-STEP.

Proof. We consider an instance(G,L) of the problem #L-M -PURIFY-STEPwith V (G) = {v1, . . . , vn}.
If there is avi ∈ V (G) with L(vi) = ∅ then noM -partition ofG respectsL, so the output is correct.
Otherwise, we consider the three cases that can occur in the execution of the algorithm.

16

Algorithm 5 Case 1 in Algorithm 4.
ChooseX,Y ∈ L, a, b ∈ X, andd ∈ Y
such thatMa,d = 0, Mb,d = 1 andX andY are inclusion-maximal inL
for i ∈ [n] do

Li(vi)← L(vi) ∩ {d}
for j < i do

if (vi, vj) ∈ E(G) then
Li(vj)← {d

′ ∈ L(vj) | d
′ 6= d andMd,d′ 6= 0}

else
Li(vj)← {d

′ ∈ L(vj) | d
′ 6= d andMd,d′ 6= 1}

for j > i do
if (vi, vj) ∈ E(G) then

Li(vj)← {d
′ ∈ L(vj) |Md,d′ 6= 0}

else
Li(vj)← {d

′ ∈ L(vj) |Md,d′ 6= 1}

Ln+1(vi)← L(vi) \ {d}
return L1, . . . , Ln+1 (of course, if we haveLi(v) = ∅ for any i andv thenLi can be omitted from
the output)

Case 1. In this case columnd of M |X×Y contains both a zero and a one. Equivalently, rowd of
M |Y×X does. Algorithm 5 groups the set ofM -partitions ofG that respectL, based on the first vertex
that is placed in partd. For i ∈ [n], Li requires thatvi is placed in partd andv1, . . . , vi−1 are not in
partd; Ln+1 requires that partd is empty. Thus, noM -partition can respect more than one of theLi.
Now consider anL-respectingM -partition σ : V (G) → D and suppose thati is minimal such that
σ(vi) = d. We claim thatσ respectsLi. We haveσ(vi) = d, as required. Forj 6= i, we must have
σ(vj) ∈ L(vj) sinceσ respectsL and we must haveMd,σ(vj) 6= 1 if (vi, vj) /∈ E(G) andMd,σ(vj) 6= 0 if
(vi, vj) ∈ E(G), sinceσ is anM -partition. In addition, by construction,σ(vj) 6= d if j < i. Therefore,
σ respectsLi. A similar argument shows thatσ respectsLn+1 if σ(v) 6= d for all v ∈ V (G). Hence,
anyM -partition that respectsL respects exactly one of theLi.

Finally, we show that, for eachi ∈ [n+ 1], there is a setW which is inclusion-maximal inL and is
not in the image ofLi. For i ∈ [n], we cannot have botha andb in Li(vj) for anyvj , soX is not in the
image ofLi. Y containsd, soY is not in the image ofLn+1.

Case 2. In this case, every row ofM |X0×X contains a 0, while every row ofM |X1×X fails to contain
a zero. SinceM |X×X is not pure, but no row ofM |X×X contains both a zero and a one (since we are
not in Case 1),X0 andX1 are non-empty. Note thatM |X0×X0

andM |X1×X1
are both pure, while every

entry ofM |X0×X1
is a∗.

If VX = ∅ thenX is an inclusion-maximal member ofL that is not in the image ofL, so the output
of Algorithm 6 is correct. Otherwise,(B1, C1), . . . , (Bk, Ck) is the list containing all partitions(B,C)
of VX such thatB induces a bipartite graph inG andC induces the complement of a bipartite graph.
The algorithm returnsL1, . . . , Lk. X is not in the image of anyLi so, to show that{L1, . . . , Lk} is a
correct output for the problem #L-M -PURIFY-STEP, we just need to show that everyM -partition ofG
that respectsL respects exactly one ofL1, . . . , Lk. For i 6= i′, (Bi, Ci) 6= (Bi′ , Ci′) so there is at least
one vertexvj such thatLi(vj) = X0 andLi′(vj) = X1 or vice-versa. SinceX0 andX1 are disjoint, no
M -partition can simultaneously respectLi andLi′ . It remains to show that everyM -partition respects
at least one ofL1, . . . , Lk. To do this, we deduce two structural properties ofM |X×X .

First, we show thatM |X×X has no∗ on its diagonal. Suppose towards a contradiction thatMd,d = ∗
for somed ∈ X. If d ∈ X0, then, for eachd′ ∈ X1, Md,d′ = Md′,d = ∗ because, as noted above, every

17

Algorithm 6 Case 2 in Algorithm 4.
ChooseX ∈ L such thatM |X×X is not pure andX is inclusion-maximal inL
LetX0 ⊆ X be the set of rows ofM |X×X that contain a0
X1 ← X \X0

VX ← {vj ∈ V (G) | L(vj) = X}
if VX = ∅ then return L
else

Use the algorithm promised in Lemma 20 to compute the list(B1, C1), . . . , (Bk, Ck) of all
bipartite–cobipartite partitions ofG[VX]

for i ∈ [k], j ∈ [n] do
if vj /∈ VX then

Li(vj)← L(vj)
else ifvj ∈ Bi then

Li(vj)← X0

else /* vj ∈ Ci*/
Li(vj)← X1

return L1, . . . , Lk

entry ofM |X0×X1
is a∗. Therefore, the2× 2 matrixM ′ = M |{d,d′}×{d,d′} contains at least three∗s so

it is pure. {d, d′} ⊆ X ∈ L so, by the hypothesis of the lemma, the length-2 sequence{d, d′}, {d, d′}
is notL-M -derectangularising, soM ′ must be∗-rectangular, soMd′,d′ = ∗ for all d′ ∈ X1. Similarly,
if Md′,d′ = ∗ for somed′ ∈ X1, thenMd,d = ∗ for all d ∈ X0. Therefore, ifM |X×X has a∗ on its
diagonal, every entry on the diagonal is∗. But M contains a 0, sayMi,j = 0 with i, j ∈ X0. For any
k ∈ X1,

M |{i,j}×{j,k} =

(

0 ∗
∗ ∗

)

,

so the length-2 sequence{i, j}, {j, k} is L-M -derectangularising, contradicting the hypothesis of the
lemma (note that{i, j}, {j, k} ⊆ X ∈ L).

Second, we show that there is no sequenced1, . . . , dℓ ∈ X0 of odd length such that

Md1,d2 = Md2,d3 = · · · = Mdℓ−1,dℓ = Mdℓ,d1 = ∗ .

Suppose for a contradiction that such a sequence exists. Note thatM |X0×X0
is ∗-rectangular since

X0,X0 is not anL-M -derectangularising sequence andM |X0×X0
is pure since Case 1 does not apply.

We will show by induction that for every non-negative integer κ ≤ (ℓ − 3)/2, Md1,dℓ−2κ−2
= ∗. This

gives a contradiction by takingκ = (ℓ − 3)/2 sinceMd1,d1 = ∗ and we have already shown that
M |X0×X0

has no∗ on its diagonal. For everyκ, the argument follows by considering the matrixMκ =
M |{d1,dℓ−2κ−1}×{dℓ−2κ−2,dℓ−2κ}. The definition of the sequenced1, . . . , dℓ together with the symmetry
of M guarantees that both entries in rowdℓ−2κ−1 of Mκ are equal to∗. It is also true thatMd1,dℓ−2κ

= ∗:
If κ = 0 then this follows from the definition of the sequence; otherwise it follows by induction. The
fact thatMd1,dℓ−2κ−2

= ∗ then follows by∗-rectangularity.
This second structural property implies that, for anyM |X×X -partition ofG[VX], the graph induced

by vertices assigned toX0 has no odd cycles, and is therefore bipartite. Similarly, the vertices assigned
toX1 induce the complement of a bipartite graph. Therefore, anyM -partition ofG that respectsL must
respect at least one of theL1, . . . , Lk, so it respects exactly one of them, as required.

Case 3. Since Cases 1 and 2 do not apply andL is notM -purifying, there are distinctX,Y ∈ L such
thatX andY are inclusion-maximal inL andM |X×Y is not pure. As in the previous case, the setsX0,
X1, Y0 andY1 are all non-empty.

18

Algorithm 7 Case 3 in Algorithm 4.
Choose inclusion-maximalX andY in L so thatM |X×Y is not pure
LetX0 ⊆ X be the set of rows ofM |X×Y that contain a0
X1 ← X \X0

Let Y0 ⊆ Y be the set of columns ofM |X×Y that contain a0
Y1 ← Y \ Y0

VX ← {vj ∈ V (G) | L(vj) = X}
VY ← {vj ∈ V (G) | L(vj) = Y }
if VX = ∅ or VY = ∅ then return L
else

LetE be the set of edges ofG betweenVX andVY

Use the algorithm promised in Lemma 22 to produce a subcube decomposition
(U1, U

′
1), . . . , (Uk, U

′
k) of (VX , VY , E)

for i ∈ [k], j ∈ [n] do
if vj ∈ VX and the projection ofUi on vj is {0} then

Li(vj)← X0

else ifvj ∈ VX and the projection ofUi on vj is {1} then
Li(vj)← X1

else ifvj ∈ VY and the projection ofU ′
i onvj is {0} then

Li(vj)← Y0

else ifvj ∈ VY and the projection ofU ′
i onvj is {1} then

Li(vj)← Y1

else
Li(vj)← L(vj)

return L1, . . . , Lk

If either VX or VY is empty then eitherX or Y is an inclusion-maximal set inL that is not in the
image ofL so the output of Algorithm 7 is correct. Otherwise,(U1, U

′
1), . . . , (Uk, U

′
k) is a subcube

decomposition of the bipartite subgraph(VX , VY , E). TheUis are subcubes of{0, 1}VX and theU ′
is are

subcubes of{0, 1}VY . The algorithm returnsL1, . . . , Lk.
Note that if |U ′

i | = 1 thenY is not in the image ofLi. Similarly, if |U ′
i | > 1 but |Ui| = 1 then

X is not in the image ofLi. The definition of subcube decompositions guarantees that,for everyi, at
least one of these is the case. To show this definition ofL1, . . . , Lk is a correct output for the problem
#L-M -PURIFY-STEP, we must show that anyM -partition ofG that respectsL also respects exactly one
Li. Since the sets in{Ui × U ′

i | i ∈ [k]} are disjoint subsets of{0, 1}VX∪VY , anyM -partition ofG that
respectsL respects at most oneLi so it remains to show that everyM -partition ofG respects at least
oneLi. To do this, we deduce two structural properties ofM |X×Y .

First, we show that every entry ofM |X0×Y0
is 0. The definition ofX0 guarantees that every row

of M |X0×Y0
contains a0. Since Case 1 does not apply, andM is symmetric, every entry ofM |X0×Y0

is either0 or ∗. Suppose for a contradiction thatMi,j = ∗ for some(i, j) ∈ X0 × Y0. Pick i′ ∈ X1.
For anyj′ ∈ Y0 \ {j} we haveMi,j = Mi′,j = Mi′,j′ = ∗, so by∗-rectangularity ofM |X×Y0

we have
Mi,j′ = ∗. Thus, every entry ofM |{i}×Y0

is ∗, so there is a∗ in everyY0-indexed column ofM . By the
same argument, swapping the roles ofX andY , every entry inM |X0×Y0

is ∗, contradicting the fact that
M |X×Y contains a0 sinceM |X×Y is not pure.

Second, a similar argument shows that every entry ofM |X1×Y1
is 1.

Thus for allM -partitionsσ of G respectingL, for all x ∈ VX andy ∈ VY , if (x, y) ∈ E then
(σ(x), σ(y)) /∈ X0 × Y0 while if (x, y) /∈ E then(σ(x), σ(y)) /∈ X1 × Y1. Using the definition of
subcube decompositions, this shows that anyM -partition ofG respectingL respects someLi.

19

Algorithm 8 A trivial algorithm for the problem #L-M -PURIFY for the case in whichL isM -purifying.
function #L-M -PURIFY(G,L) return L

Algorithm 9 A polynomial-time algorithm for the problem #L-M -PURIFY whenL ⊆ P(D) is subset-
closed and is notM -purifying and there is no length-2 L-M -derectangularising sequence. This al-
gorithm calls the function #L-M -PURIFY-STEP from Algorithm 4. It also calls the function #Li-M -
PURIFY for various listsLi which are shorter thanL. These functions are defined inductively in Algo-
rithm 8 and here.

function #L-M -PURIFY(G,L)
/* ∅ ∈ L sinceL is subset-closed. SinceL is notM -purifying,L 6= {∅}, hence|L| > 1 */
LetB be the empty sequence of list functions
L1, . . . , Lk ← #L-M -PURIFY-STEP(G,L)
for i ∈ [k] do
Li ←

⋃

v∈V (G) P(Li(v))

L′
1, . . . , L

′
j ← #Li-M -PURIFY(G,Li)

AddL′
1, . . . , L

′
j to B

return B

We can now give an algorithm for the problem #L-M -PURIFY. The algorithm consists of the func-
tion #L-M -PURIFY, which is defined in Algorithm 8 for the trivial case in whichL isM -purifying and
in Algorithm 9 for the case in which it is not. Note that for anyfixedL andM the algorithm is defined
either in Algorithm 8 or in Algorithm 9 and the function #L-M -PURIFY is not recursive. However,
thedefinition is recursive, so the function #L-M -PURIFY defined in Algorithm 9 does make a call to a
function #Li-M -PURIFY for someLi which is smaller thanL. The function #Li-M -PURIFY is in turn
defined in Algorithm 8 or Algorithm 9. The correctness of the algorithm follows from the definition of
the problem. The following lemma bounds the running time.

Lemma 25. Let M ∈ {0, 1, ∗}D×D be a symmetric matrix and letL ⊆ P(D) be subset-closed. If
there is no length-2 L-M -derectangularising sequence, then the function#L-M -PURIFY as defined in
Algorithms 8 and 9 is a polynomial-time algorithm for the problem#L-M -PURIFY.

Proof. Note thatL is a fixed parameter of the problem #L-M -PURIFY — it is not part of the input. The
proof is by induction on|L|. If |L| = 1 thenL = {∅} so it isM -purifying. In this case, function #L-
M -PURIFY is defined in Algorithm 8. It is clear that it is a polynomial-time algorithm for the problem
#L-M -PURIFY.

For the inductive step suppose that|L| > 1. If L is M -purifying then function #L-M -PURIFY is
defined in Algorithm 8 and again the result is trivial. Otherwise, function #L-M -PURIFY is defined in
Algorithm 9. Note thatL ⊆ P(D) is subset-closed and there is no length-2 L-M -derectangularising
sequence. From this, we can conclude that, for any subset-closed subsetL′ of L, there is no length-2 L′-
M -derectangularising sequence. So we can assume by the inductive hypothesis that for all subset-closed
L′ ⊂ L, the function #L′-M -PURIFY runs in polynomial time.

The result now follows from the fact that the function #L-M -PURIFY-STEPruns in polynomial time
(as guaranteed by Lemma 24) and from the fact that eachLi is a strict subset ofL, which follows from
the definition of problem #L-M -PURIFY-STEP. EachM -partition that respectsL respects exactly one
of L1, . . . , Lk and, hence, it respects exactly one of the list functions that is returned.

5.3 Algorithm for #L-M -PARTITIONS and proof of the dichotomy

We can now present our algorithm for the problem #L-M -PARTITIONS. The algorithm consists of the
function #L-M -PARTITIONS which is defined in Algorithm 10 for the case in whichL is M -purifying

20

Algorithm 10 A polynomial-time algorithm for the problem #L-M -PARTITIONS whenL is subset-
closed andM -purifying and there is noL-M -derectangularising sequence.

function #L-M -PARTITIONS(G,L)
(V,C) ← the instance of#CSP(ΓL,M) obtained by applying the polynomial-time Turing reduc-

tion from Proposition 15 to the input(G,L)
return AC(V,C) where AC is the function from Algorithm 3

Algorithm 11 A polynomial-time algorithm for the problem #L-M -PARTITIONS whenL is subset-
closed and notM -purifying and there is noL-M -derectangularising sequence. The algorithm calls the
function #L-M -PURIFY(G,L) from Algorithm 9.

function #L-M -PARTITIONS(G,L)
L1, . . . , Lt ← #L-M -PURIFY(G,L)
Z ← 0
for i ∈ [t] do
Li ←

⋃

v∈V (G) P(Li(v))
(V,Ci) ← the instance of#CSP(ΓLi,M) obtained by applying the polynomial-time Turing

reduction from Proposition 15 to the input(G,Li)
Zi ← AC(V,Ci) where AC is the function from Algorithm 3
Z ← Z + Zi

return Z

and in Algorithm 11 when it is not.

Lemma 26. Let M ∈ {0, 1, ∗}D×D be a symmetric matrix and letL ⊆ P(D) be subset-closed. If
there is noL-M -derectangularising sequence, then the function#L-M -PARTITIONS as defined in Al-
gorithms 10 and 11 is a polynomial-time algorithm for the problem#L-M -PARTITIONS.

Proof. If L is M -purifying then the function #L-M -PARTITIONS is defined in Algorithm 10. Proposi-
tion 15 shows that the reduction in Algorithm 10 to a CSP instance is correct and takes polynomial time.
The CSP instance can be solved by the function AC in Algorithm3, whose running time is shown to be
polynomial in Lemma 18.

If L is notM -purifying then the function #L-M -PARTITIONS is defined in Algorithm 11. Lemma 25
guarantees that the function #L-M -PURIFY is a polynomial-time algorithm for the problem #L-M -
PURIFY. If the listL1, . . . , Lt is empty then there is noM -partition ofG that respectsL so it is correct
that the function #L-M -PARTITIONS returns0. Otherwise, we know from the definition of the problem
#L-M -PURIFY that

• functionsL1, . . . , Lt are fromV (G) toL,

• for eachi ∈ [t], the set{Li(v) | v ∈ V (G)} is M -purifying,

• for eachi ∈ [t] andv ∈ V (G), Li(v) ⊆ L(v), and

• eachM -partition ofG that respectsL respects exactly one ofL1, . . . , Lt.

The desired result is now the sum, over alli ∈ [t], of the number ofM -partitions ofG that respectLi.
Since the listL1, . . . , Lt is generated in polynomial time,t is bounded by some polynomial in|V (G)|.

Now, for eachi ∈ [t], Li is a subset-closed subset ofL. Since there is noL-M -derectangularising
sequence, there is also noLi-M -derectangularising sequence. Also,Li is M -purifying. Thus, the
argument that we gave for the purifying case shows thatZi is the desired quantity.

We can now combine our results to establish our dichotomy forthe problem #L-M -PARTITIONS.

21

Theorem 9. Let M be a symmetric matrix in{0, 1, ∗}D×D and letL ⊆ P(D) be subset-closed. If
there is anL-M -derectangularising sequence then the problem #L-M -PARTITIONS is #P-complete.
Otherwise, it is inFP.

Proof. Suppose that there is anL-M -derectangularising sequenceD1, . . . ,Dk. Recall (from Defini-
tion 2) the definition of the subset-closureS(L′′) of a setL′′ ⊆ P(D). Let

L′ = S({D1, . . . ,Dk}).

Since{D1, . . . ,Dk} is M -purifying, so isL′, which is also subset-closed. It follows thatΓL′,M is
well defined (see Definition 12) and contains the relationsHM

D1,D2
, . . . ,HM

Dk−1,Dk
(and possibly others).

SinceHM
D1,D2

◦HM
D2,D3

◦· · ·◦HM
Dk−1,Dk

is not rectangular,#CSP(ΓL′,M) is#P-complete [4, Theorem 2
and Corollary 3] (see also [8, Lemma 24]). By Proposition 15,the problem #L′-M -PARTITIONS is#P-
complete so the more general problem #L-M -PARTITIONS is also#P-complete. On the other hand, if
there is noL-M -derectangularising sequence, then the result follows from Lemma 26.

6 Complexity of the dichotomy criterion

The dichotomy established in Theorem 9 is that, if there is anL-M -derectangularising sequence, then
the problem #L-M -PARTITIONS is #P-complete; otherwise, it is inFP. This section addresses the
computational problem of determining which is the case, givenL andM .

The following lemma will allow us to show that the problem EXISTSDERECTSEQ (the problem
of determining whether there is anS(L)-M -derectangularising sequence, givenL andM) and the re-
lated problem MATRIX HASDERECTSEQ (the problem of determining whether there is aP(D)-M -
derectangularising sequence, givenM) are both inNP. Note that, for this “meta-problem”,L andM
are the inputs whereas, previously, we have regarded them asfixed parameters.

Lemma 27. LetM ∈ {0, 1, ∗}D×D be symmetric, and letL ⊆ P(D) be subset-closed. If there is an
L-M -derectangularising sequence, then there is one of length at most512(|D|3 + 1).

Proof. Pick anL-M -derectangularising sequenceD1, . . . ,Dk with k minimal; we will show thatk ≤
512(|D|3 + 1). Define

R = HM
D1,D2

◦HM
D2,D3

◦ · · · ◦HM
Dk−1,Dk

.

Note thatR ⊆ D1 × Dk. By the definition of derectangularising sequence, there are a, a′ ∈ D1 and
b, b′ ∈ Dk such that(a, b), (a′, b) and(a, b′) are all inR but (a′, b′) 6∈ R. So there exist

(x1, . . . , xk), (y1, . . . , yk), (z1, . . . , zk) ∈ D1 × · · · ×Dk

with (x1, xk) = (a, b), (y1, yk) = (a′, b) and (z1, zk) = (a, b′) such thatMxi,xi+1
= Myi,yi+1

=
Mzi,zi+1

= ∗ for everyi ∈ [k − 1] but, for any(w1, . . . , wk) ∈ D1 × · · · ×Dk with (w1, wk) = (a′, b′),
there is ani ∈ [k − 1] such thatMwi,wi+1

6= ∗.
SettingD′

i = {xi, yi, zi} for eachi gives anL-M -derectangularising sequenceD′
1, . . . ,D

′
k with

|D′
i| ≤ 3 for each1 ≤ i ≤ k. (Note that any submatrix of a pure matrix is pure.) For all1 ≤ s < t ≤ k

define
Rs,t = HM

D′
s,D

′
s+1
◦HM

D′
s+1,D

′
s+2
◦ · · · ◦HM

D′
t−1,D

′
t
.

SinceD′
1, . . . ,D

′
k isL-M -derectangularising,R1,k is not rectangular but, by the minimality ofk, every

otherRs,t is rectangular. Note also that noRs,t = ∅ since, if that were the case, we would haveR1,k = ∅,
which is rectangular.

Suppose for a contradiction thatk > 512(|D|3 + 1). There are at most|D|3 + 1 subsets ofD with
size at most three, so there are indices1 ≤ i0 < i1 < i2 < · · · < i512 ≤ k such thatD′

i0
= · · · = D′

i512
.

22

There are at most2|D
′
i0
|2 − 1 ≤ 29 − 1 = 511 non-empty binary relations onD′

i0
, soRi0,im = Ri0,in

for some1 ≤ m < n ≤ 512. SinceR1,k is not rectangular,

R1,k = R1,i0 ◦Ri0,in ◦Rin,k = R1,i0 ◦Ri0,im ◦Rin,k = R1,im ◦Rin,k

is not rectangular. Therefore,D′
1,D

′
2, . . . ,D

′
im
,D′

1+in
,D′

2+in
, . . . ,D′

k is anL-M -derectangularising
sequence of length less thank, contradicting the minimality ofk.

Now that we have membership inNP, we can prove completeness.

Theorem 10. EXISTSDERECTSEQ isNP-complete under polynomial-time many-one reductions.

Proof. We first show that EXISTSDERECTSEQ is inNP. GivenD, M ∈ {0, 1, ∗}D×D andL ⊆ P(D),
a non-deterministic polynomial time algorithm for EXISTSDERECTSEQ first “guesses” anS(L)-M -
derectangularising sequenceD1, . . . ,Dk with k ≤ 512(|D|3 + 1). Lemma 27 guarantees that such a
sequence exists if the output should be “yes”. The algorithmthen verifies that eachDi is a subset of a
set inL, that{D1, . . . ,Dk} isM -purifying, and that the relationHM

D1,D2
◦HM

D2,D3
◦ · · · ◦HM

Dk−1,Dk
is

not rectangular. All of these can be checked in polynomial time without explicitly constructingS(L).
To show that EXISTSDERECTSEQ is NP-hard, we give a polynomial-time reduction from the well-

knownNP-hard problem of determining whether a graphG has an independent set of sizek.
Let G andk be an input to the independent set problem. LetV (G) = [n] and assume without loss

of generality thatk ∈ [n]. SettingD = [n]× [k]× [3], we construct aD ×D matrixM and a setL of
lists such that there is anS(L)-M -derectangularising sequence if and only ifG has an independent set
of sizek.

M will be a block matrix, constructed using the following3× 3 symmetric matrices. Note that each
is pure, apart fromId.

Mstart =





∗ ∗ 0
∗ ∗ 0
0 0 ∗



 Mend =





∗ 0 0
0 ∗ ∗
0 ∗ ∗



 Mbij =





∗ 0 0
0 ∗ 0
0 0 ∗





0 =





0 0 0
0 0 0
0 0 0



 Id =





1 0 0
0 1 0
0 0 1



 .

Forv ∈ [n] andj ∈ [k], letD[v, j] = {(v, j, c) | c ∈ [3]}. Below, when we say thatM |D[v,j]×D[v′,j′] =
N for some3 × 3 matrixN , we mean more specifically thatM(v,j,c),(v′,j′,c′) = Nc,c′ for all c, c′ ∈ [3].
M is constructed as follows.

• For all v ∈ [n], M |D[v,1]×D[v,1] = Mstart andM |D[v,k]×D[v,k] = Mend.

• For all v ∈ [n] and allj ∈ {2, . . . , k − 1}, M |D[v,j]×D[v,j] = Mbij.

• If v 6= v′, (v, v′) /∈ E(G) andj < k, then

– M |D[v,j]×D[v′,j+1] = M |D[v′,j+1]×D[v,j] = Mbij and

– M |D[v,j]×D[v′,j′] = M |D[v′,j′]×D[v,j] = 0 for all j′ > j + 1.

• For all v, v′ ∈ [n] andj, j′ ∈ [k] not covered above,M |D[v,j]×D[v′,j′] = Id.

To complete the construction, letL = {D[v, j] | v ∈ [n], j ∈ [k]}. We will show thatG has an
independent set of sizek if and only if there is anS(L)-M -derectangularising sequence.

23

For the forward direction of the proof, suppose thatG has an independent setI = {v1, . . . , vk} of
sizek. We will show that

D[v1, 1],D[v1, 1],D[v2, 2],D[v3, 3], . . . ,D[vk−1, k − 1],D[vk, k],D[vk, k]

(where the first and last elements are repeated and the othersare not) isS(L)-M -derectangularising.
Since there is no edge(vi, vi′) ∈ E(G) for i, i′ ∈ [k], the matrixM |D[vi,i]×D[vi′ ,i

′] is always one of
Mstart, Mend, Mbij and0, so it is always pure. Therefore,{D[v1, 1], . . . ,D[vk, k]} is M -purifying. It
remains to show that the relation

R = HM
D[v1,1],D[v1,1]

◦HM
D[v1,1],D[v2,2]

◦ · · · ◦HM
D[vk−1,k−1],D[vk,k]

◦HM
D[vk,k],D[vk,k]

is not rectangular.
Consideri ∈ [k − 1]. Since(vi, vi+1) /∈ E(G), M |D[vi,i]×D[vi+1,i+1] = Mbij soHM

D[vi,i],D[vi+1,i+1]

is the bijection that associates(vi, i, c) with (vi+1, i+ 1, c) for eachc ∈ [3]. Therefore,

HM
D[v1,1],D[v1,2]

◦ · · · ◦HM
D[vk−1,k−1],D[vk,k]

is the bijection that associates(v1, 1, c) with (vk, k, c) for eachc ∈ [3]. We haveM |D[v1,1]×D[v1,1] =
Mstart andM |D[vk,k]×D[vk,k] = Mend so

HM
D[v1,1],D[v1,1]

= {((v1, 1, c), (v1, 1, c
′)) | c, c′ ∈ [2]} ∪ {((v1, 1, 3), (v1 , 1, 3))}

HM
D[vk,k],D[vk,k]

= {((vk, k, 1), (vk , k, 1))} ∪ {((vk, k, c), (vk , k, c
′)) | c, c′ ∈ {2, 3}} ,

and, therefore,

R = {((v1, 1, c), (vk , k, c
′)) | c, c′ ∈ [3]} \ {((v1, 1, 3), (vk , k, 1))} ,

which is not rectangular, as required.
For the reverse direction of the proof, suppose that there isanS(L)-M -derectangularising sequence

D1, . . . ,Dm. The fact that the sequence is derectangularising implies that |Di| ≥ 2 for eachi ∈ [m] —
see the remarks following Definition 8. Each set in the sequence is a subset of someD[v, j] in L so for
everyi ∈ [m] let vi denote the vertex in[n] and letji denote the index in[k] such thatDi ⊆ D[vi, ji].
Clearly, it is possible to have(vi, ji) = (vi′ , ji′) for distinct i andi′ in [m].

We will finish the proof by showing thatG has a size-k independent set. Let

R = HM
D1,D2

◦ · · · ◦HM
Dm−1,Dm

,

which is not rectangular because the sequence isS(L)-M -derectangularising. Since{D1, . . . ,Dm} is
M -purifying, and any submatrix ofId with at least two rows and at least two columns is impure, every
pair (i, i′) ∈ [m]2 satisfiesM |D[vi,ji]×D[vi′ ,ji′]

6= Id. This means that we cannot have(vi, vi′) ∈ E(G)

for any pair(i, i′) ∈ [m]2 so the setI = {v1, . . . , vm} is independent inG. It remains to show that
|I| ≥ k.

Observe that, ifvi = vi′ , we must haveji = ji′ since, otherwise, the construction ensures that

M |D[vi,ji]×D[vi′ ,ji′]
= M |D[vi,ji]×D[vi,ji′]

= Id,

which we already ruled out. Therefore,|I| ≥ |{j1, . . . , jm}|.
We must have|ji − ji+1| ≤ 1 for eachi ∈ [m − 1] as, otherwise,M |D[vi,ji]×D[vi+1,ji+1] = 0,

which implies thatR = ∅, which is rectangular. There must be at least onei ∈ [m − 1] such that
vi = vi+1 andji = ji+1 = 1, soM |D[vi,ji]×D[vi+1,ji+1] = Mstart. If not, R is a composition of relations
corresponding toMbij andMend and any such relation is either a bijection, or of the form ofMend,
so it is rectangular. Similarly, there must be at least onei such thatvi = vi+1 andji = ji+1 = k,
giving M |D[vi,ji]×D[vi+1,ji+1] = Mend. Therefore, the sequencej1, . . . , jm contains 1 andk. Since
|ji − ji+1| ≤ 1 for all i ∈ [m − 1], it follows that [k] ⊆ {j1, . . . , jm}, so |I| ≥ k, as required. In fact,
{j1, . . . , jm} = [k] since eachji ∈ [k] by construction.

24

We defined the problem EXISTSDERECTSEQ using a concise input representation:S(L) does not
need to be written out in full. Instead, the instance is a subset L containing the maximal elements
of S(L). For example, when the instance isL = {D}, we haveS(L) = P(D). It is important to note
that theNP-completeness of EXISTSDERECTSEQ is not an artifact of this concise input coding. The
elements of the listL constructed in the NP-hardness proof have length at most three, so the listS(L)
could also be constructed explicitly in polynomial time.

Lemma 27 has the following immediate corollary for the complexity of the dichotomy criterion of
the general #LIST-M -PARTITIONS problem. Recall that, in this version of the meta-problem, the input
is just the matrixM .

Corollary 11. MATRIX HASDERECTSEQ is inNP.

Proof. TakeL = {D} in Lemma 27.

7 Cardinality constraints

Finally, we show how lists can be used to implement cardinality constraints of the kind that often appear
in counting problems in combinatorics.

Feder, Hell, Klein and Motwani [15] point out that lists can be used to determine whether there are
M -partitions that obey simple cardinality constraints. Forexample, it is natural to require some or all of
the parts to be non-empty or, more generally, to contain at least some constant number of vertices. Given
aD×D matrixM , we represent such cardinality constraints as a functionC : D → Z≥0. We say that an
M -partitionσ of a graphG satisfiesthe constraint if, for eachd ∈ D, |{v ∈ V (G) | σ(v) = d}| ≥ C(d).
Given a cardinality constraintC, we write|C| =

∑

d∈D C(d).
We can determine whether there is anM -partition of G = (V,E) that satisfies the cardinality

constraintC by making at most|V ||C| queries to an oracle for the listM -partitions problem, as follows.
LetLC be the set of list functionsL : V → P(D) such that:

• for all v ∈ V, eitherL(v) = D or |L(v)| = 1, and

• for all d ∈ D, there are exactlyC(d) verticesv with L(v) = {d}.

There are at most|V ||C| such list functions and it is clear thatG has anM -partition satisfyingC if, and
only if, it has a listM -partition that respects at least oneL ∈ LC . The number of queries is polynomial
in |V | as long as the cardinality constraintC is independent ofG.

For counting, the situation is a little more complicated, aswe must avoid double-counting. The
solution is to count allM -partitions of the input graph and subtract off those that fail to satisfy the
cardinality constraint. We formally define the problem #C -M -PARTITIONS as follows, parameterized
by aD ×D matrixM and a cardinality constraint functionC : D → Z≥0.

Name. #C -M -PARTITIONS.

Instance.A graphG.

Output. The number ofM -partitions ofG that satisfyC.

Proposition 28. #C -M -PARTITIONS is polynomial-time Turing reducible to#LIST-M -PARTITIONS.

Proof. Given the cardinality constraint functionC, let R = {d ∈ D | C(d) > 0}: that is,R is the set
of parts that have a non-trivial cardinality constraint. For any setP ⊆ R, say that anM -partitionσ of a
graphG = (V,E) fails onP if |{v ∈ V | σ(v) = d}| < C(d) for all d ∈ P . That is, ifσ violates the
cardinality constraints on all parts inP (and possibly others, too). LetΣ be the set of allM -partitions

25

of our given input graphG. For i ∈ R, let Ai = {σ ∈ Σ | σ fails on{i}} and letA =
⋃

i∈R Ai. By
inclusion-exclusion,

|A| = −
∑

∅⊂P⊆R

(−1)|P |

∣

∣

∣

∣

∣

⋂

i∈P

Ai

∣

∣

∣

∣

∣

= −
∑

∅⊂P⊆R

(−1)|P |
∣

∣{σ ∈ Σ | σ fails onP}
∣

∣ .

We wish to compute
∣

∣{σ ∈ Σ | σ satisfiesC}
∣

∣ =
∣

∣Σ
∣

∣− |A|

=
∣

∣Σ
∣

∣+
∑

∅⊂P⊆R

(−1)|P |
∣

∣{σ ∈ Σ | σ fails onP}
∣

∣ .

Therefore, it suffices to show that we can use lists to count theM -partitions that fail on each non-
emptyP ⊆ R. For such a setP , letLP be the set of list functionsL such that

• for all v ∈ V , eitherL(v) = D \ P orL(v) = {p} for somep ∈ P , and

• for all p ∈ P ,
∣

∣

{

v ∈ V | L(v) = {p}
}∣

∣ < C(p).

Thus, the set ofM -partitions that respect someL ∈ LP is precisely the set ofM -partitions that fail
onP . Also, for distinctL andL′ in LP , the set ofM -partitions that respectL is disjoint from the set
of M -partitions that respectL′. So we can compute

∣

∣{σ ∈ Σ | σ fails onP}
∣

∣ by making|LP | calls to
#LIST-M -PARTITIONS, noting that|LP | ≤ |V |

|C|.

As an example of a combinatorial structure that can be represented as anM -partition problem with
cardinality constraints, consider thehomogeneous pairsintroduced by Chvátal and Sbihi [6]. A homo-
geneous pair in a graphG = (V,E) is a partition ofV into setsU , W1 andW2 such that:

• |U | ≥ 2;

• |W1| ≥ 2 or |W2| ≥ 2 (or both);

• for every vertexv ∈ U , v is either adjacent to every vertex inW1 or to none of them; and

• for every vertexv ∈ U , v is either adjacent to every vertex inW2 or to none of them.

Feder et al. [15] observe that the problem of determining whether a graph has a homogeneous pair
can be represented as the problem of determining whether it has anMhp-partition satisfying certain
constraints, whereD = {1, . . . , 6} and

Mhp =

















∗ ∗ 1 0 1 0
∗ ∗ 1 1 0 0
1 1 ∗ ∗ ∗ ∗
0 1 ∗ ∗ ∗ ∗
1 0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗

















.

W1 corresponds to the set of vertices mapped to part1 (row 1 ofMhp), W2 corresponds to the set of
vertices mapped to part2 (row 2 ofMhp), andU corresponds to the set of vertices mapped to parts3–6.

In fact, there is a one-to-one correspondence between the homogeneous pairs ofG in which W1

andW2 are non-empty and theMhp-partitionsσ of G that satisfy the following additional constraints.
Ford ∈ D, letNσ(d) = |{v ∈ V (G) | σ(v) = d}| be the number of vertices thatσ maps to partd. We
require that

26

• Nσ(3) +Nσ(4) +Nσ(5) +Nσ(6) ≥ 2,

• Nσ(1) > 0 andNσ(2) > 0, and

• at least oneNσ(1) andNσ(2) is at least2.

To see this, consider a homogeneous pair(U,W1,W2) in whichW1 andW2 are non-empty. Note that
there is exactly oneMhp-partition ofG in which vertices inW1 are mapped to part1 and vertices inW2

are mapped to part2 and vertices inU are mapped to parts3–6. There is exactly one part available to
eachv ∈ U sincev has an edge or non-edge toW1 (but not both!) ruling out exactly two parts andv
has an edge or non-edge toW2 ruling out an additional part. Going the other way, anMhp-partition that
satisfies the constraints includes a homogeneous pair.

Now let

Mhs =





∗ 0 1
0 ∗ ∗
1 ∗ ∗



 .

There is a one-to-one correspondence between the homogeneous pairs ofG in whichW2 is empty and
theMhs-partitions ofG that satisfy the following additional constraints.

• At least two vertices are mapped to parts2–3 (vertices in these parts are inU).

• At least two vertices are mapped to part1 (vertices in this part are inW1).

Symmetrically, there is also a one-to-one correspondence between the homogeneous pairs ofG in which
W1 is empty and theMhs-partitions ofG that satisfy the above constraints. (Partitions accordingtoMhs

correspond to so-called “homogeneous sets” but we do not need the details of these.)
It is known from [9] that, in deterministic polynomial time,it is possible to determine whether a

graph contains a homogeneous pair and, if so, to find one. We show that the homogeneous pairs in a
graph can also be counted in polynomial time. We start by considering the relevant list-partition counting
problems.

Theorem 29. There are polynomial-time algorithms for#LIST-Mhp -PARTITIONS and #LIST-Mhs -
PARTITIONS.

Proof. We first show that there is a polynomial-time algorithm for #LIST-Mhp -PARTITIONS. The most
natural way to do this would be to show that there is noP(D)-Mhp-derectangularising sequence and
then apply Theorem 9. In theory, we could show that there is noP(D)-Mhp-derectangularising sequence
by brute force since|D| = 6, but the number of possibilities is too large to make this feasible. Instead,
we argue non-constructively.

First, if there is noP(D)-Mhp-derectangularising sequence, the result follows from Theorem 9.
Conversely, suppose thatD1, . . . ,Dk is aP(D)-Mhp-derectangularising sequence. LetM be the

matrix such thatMi,j = 0 if (Mhp)i,j = 1 andMi,j = (Mhp)i,j, otherwise.D1, . . . ,Dk is also aP(D)-

M -derectangularising sequence, sinceHM
X,Y = H

Mhp

X,Y for anyX,Y ⊆ D and any sequenceD1, . . . ,Dk

is M -purifying becauseM is already pure. Therefore, by Theorem 9, counting listM -partitions is
#P-complete.

However, counting the listM -partitions of a graphG corresponds to counting list homomorphisms
from G to the6-vertex graphH whose two components are an edge and a4-clique, and which has
loops on all six vertices. There is a very straightforward polynomial-time algorithm for this problem
(a simple modification of the version without lists in [7]). Thus,#P = FP so, in particular, there is a
polynomial-time algorithm for counting listMhp-partitions.

The proof that there is a polynomial-time algorithm for #LIST-Mhs -PARTITIONS is similar.

27

Corollary 30. There is a polynomial-time algorithm for counting the homogeneous pairs in a graph.

Proof. We are given a graphG = (V,E) and we wish to compute the number of homogeneous pairs
that it contains. By the one-to-one correspondence given earlier, it suffices to show how to countMhp-
partitions andMhs-partitions ofG satisfying additional constraints. We start with the first of these.
Recall the constraints on theMhp-partitionsσ that we wish to count:

• Nσ(3) +Nσ(4) +Nσ(5) +Nσ(6) ≥ 2,

• Nσ(1) > 0 andNσ(2) > 0, and

• at least oneNσ(1) andNσ(2) is at least2.

Define three subsetsΣ1, Σ2 andΣ1,2 of the set ofMhp-partitions ofG that satisfy the constraints. In
the definition of each ofΣ1, Σ2 andΣ1,2, we will require that parts1 and2 are non-empty and parts3–6
contain a total of at least two vertices. InΣ1, part1 must contain at least two vertices; inΣ2, part2 must
contain at least two vertices; inΣ1,2, both parts1 and2 must contain at least two vertices. The number
of suitableMhp-partitions ofG is |Σ1|+ |Σ2| − |Σ1,2|.

Each of |Σ1|, |Σ2| and |Σ1,2| can be computed by counting theMhp-partitions ofG that satisfy
appropriate cardinality constraints. Parts1 and2 are trivially dealt with. The requirement that parts3–6
must contain at least two vertices between them is equivalent to saying that at least one of them must
contain at least two vertices or at least two must contain at least one vertex. This can be expressed with a
sequence of cardinality constraint functions and using inclusion–exclusion to eliminate double-counting.

Counting constrainedMhs-partitions ofG is similar (but simpler).

References

[1] B. Bollobás and A. Thomason. The structure of hereditary properties and colourings of random
graphs.Combinatorica, 20:173–202, 2000.

[2] A. Brandstädt. Partitions of graphs into one or two independent stable sets and cliques.Discrete
Math., 152:47–54, 1996.

[3] A. Bulatov. The complexity of the counting constraint satisfaction problem. InProc. 35th Inter-
national Colloquium on Automata, Languages and Programming (ICALP 2008), volume 5125 of
LNCS, pages 646–661. Springer, 2008.

[4] A. Bulatov and V. Dalmau. Towards a dichotomy theorem forthe counting constraint satisfaction
problem.Inform. Comput., 205(5):651–678, 2007.

[5] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas. The strong perfect graph theorem.
Ann. Math. (2), 164(1):51–229, 2006.

[6] V. Chvátal and N. Sbihi. Bull-free Berge graphs are perfect. Graph. Combinator., 3:127–139,
1987.

[7] M. Dyer and C. Greenhill. The complexity of counting graph homomorphisms.Random Struct.
Algorithms, 17(3–4):260–289, 2000.

[8] M. Dyer and D. Richerby. An effective dichotomy for the counting constraint satisfaction problem.
SIAM J. Comput, 42(3):1245–1274, 2013.

[9] H. Everett, S. Klein, and B. Reed. An algorithm for findinghomogeneous pairs.Discrete Appl.
Math., 72(3):209–218, 1997.

28

[10] H. Everett, S. Klein, and B. Reed. An optimal algorithm for finding clique-cross partitions. InProc.
29th Southeastern International Conference on Combinatorics, Graph Theory and Computing,
volume 135, pages 171–177, 1998.

[11] T. Feder and P. Hell. List homomorphisms to reflexive graphs. J. Combin. Theory Ser. B,
72(2):236–250, 1998.

[12] T. Feder and P. Hell. Full constraint satisfaction problems.SIAM J. Comput., 36(1):230–246, 2006.

[13] T. Feder, P. Hell, and J. Huang. List homomorphisms and circular arc graphs.Combinatorica,
19(4):487–505, 1999.

[14] T. Feder, P. Hell, and J. Huang. Bi-arc graphs and the complexity of list homomorphisms.J. Graph
Theory, 42(1):61–80, 2003.

[15] T. Feder, P. Hell, S. Klein, and R. Motwani. List partitions.SIAM J. Discrete Math., 16(3):449–478,
2003.

[16] T. Feder and M. Vardi. The computational structure of monotone monadic SNP and constraint
satisfaction: a study through Datalog and group theory.SIAM J. Comput., 28(1):57–104, 1999.

[17] M. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Elsevier Science, second edition,
2004.

[18] P. Hell, M. Hermann, and M. Nevisi. Counting partitionsof graphs. InProc. 23rd International
Symposium on Algorithms and Computation (ISAAC 2012), volume 7676 ofLNCS, pages 227–236.
Springer, 2012.

[19] C. Lecoutre.Constraint Networks: Techniques and Algorithms. Wiley–IEEE Press, 2009.

[20] L. Lovász. Normal hypergraphs and the perfect graph conjecture.Discrete Math., 2(3):253–267,
1972.

29

	1 Introduction
	1.1 Dichotomy theorems for counting list M-partitions
	1.2 Polynomial-time algorithms and an explicit dichotomy
	1.3 Complexity of the dichotomy criterion
	1.4 Cardinality constraints

	2 Preliminaries
	3 Counting list M-partition problems and counting CSPs
	4 An arc-consistency based algorithm for #CSP(L, M)
	5 Polynomial-time algorithms and the dichotomy theorem
	5.1 Data Structures
	5.2 Reduction to a problem with M-purifying lists
	5.3 Algorithm for #L-M-partitions and proof of the dichotomy

	6 Complexity of the dichotomy criterion
	7 Cardinality constraints

