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Abstract

Given a symmetrid x D matrix M over{0, 1, x}, a list M -partition of a grapl@ is a partition
of the vertices of7 into D parts which are associated with the rows\éf The part of each vertex
is chosen from a given list in such a way that no edgé& @ mapped to @ in M and no non-edge
of G is mapped to d in M. Many important graph-theoretic structures can be reptedeas list
M -partitions including graph colourings, split graphs awtiogeneous sets and pairs, which arise
in the proofs of the weak and strong perfect graph conjesturéus, there has been quite a bit of
work on determining for which matrice® computations involving lisf\/ -partitions are tractable.
This paper focuses on the problem of counting Aistpartitions, given a grapt’ and given a list
for each vertex ofy. We identify a certain set of “tractable” matricd¢. We give an algorithm
that counts listM -partitions in polynomial time for every (fixed) matriX/ in this set. The algo-
rithm relies on data structures such as sparse-denseéqrartind subcube decompositions to reduce
each problem instance to a sequence of problem instancekidah the lists have a certain useful
structure that restricts access to portions\ofin which the interactions dis andls is controlled.
We show how to solve the resulting restricted instances byexing them into particular counting
constraint satisfaction problem#(CSPs) which we show how to solve using a constraint satisfac-
tion technigque known as “arc-consistency”. For every matt for which our algorithm fails, we
show that the problem of counting li8f -partitions is#P-complete. Furthermore, we give an ex-
plicit characterisation of the dichotomy theorem — cougtist M -partitions is tractable (if'P) if
the matrixM/ has a structure called a derectangularising sequendé.Has no derectangularising
sequence, we show that counting ligt-partitions is#P-hard. We show that the meta-problem of
determining whether a given matrix has a derectangularséguence i3'P-complete. Finally, we
show that list) -partitions can be used to encode cardinality restriction® -partitions problems
and we use this to give a polynomial-time algorithm for canmthomogeneous pairs in graphs.

1 Introduction

A matrix partition of an undirected graph is a partition of itertices according to a matrix which
specifies adjacency and non-adjacency conditions on thieagrdepending on the parts to which they
are assigned. For finite sdtsandD’, the sef{0, 1, x}P*" is the set of matrices with rows indexed by
and columns indexed b’ where each\/; ; € {0, 1,*}. For any symmetric matrig/ € {0, 1,*}7*P,

an M -partition of an undirected graplt = (V, E) is a functiono: V' — D such that, for distinct
verticesu andv,
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(] Ma(u),a(v) Z£0if (U,U) € Fand

¢ Myw)ow) # 1if (u,v) € E.

Thus,M; ; = 0 means that no edges are allowed between vertices inipantsj, M; ; = 1 means that
there must be an edge between every pair of vertices in thgane and)/; ; = * means that any set
of edges is allowed between the parts. For enttigs on the diagonal of\/, the conditions only apply
to distinct vertices in part. Thus,M;; = 1 requires that the vertices in parform a clique inG' and
M, ; = 0 requires that they form an independent set.

For example, ifD = {i,c}, M;; =0, M..=1andM.; = M; . = *,i.e,M = (%), then anM-
partition of a graph is a partition of its vertices into anépeéndent set (whose vertices are mappedl to
and a cligue (whose vertices are mapped)toThe independent set and the clique may have arbitrary
edges between them. A graph that has such/apartition is known as a split graph [17].

As Feder, Hell, Klein and Motwani describle [15], many impoitt graph-theoretic structures can
be represented a¥ -partitions, including graph colourings, split grapls,b)-graphs([2], clique-cross
partitions [10], and their generalisation&! -partitions also arise as “type partitions” in extremalmra
theory [1]. In the special case wheté is a{0, « }-matrix (that is, it has no 1 entries)/-partitions ofG
correspond to homomorphisms fragto the (potentially looped) grapH whose adjacency matrix is
obtained fromM by turning every into a 1. Thus, propdiD|-colourings ofG are exactly)M -partitions
for the matrixM which has 0s on the diagonal arsl elsewhere.

To represent more complicated graph-theoretic structsresh as homogeneous sets and their gen-
eralisations, which arise in the proofs of the weak and gtiperfect graph conjectures! [5,20], it is
necessary to generaligd -partitions by introducing lists. Details of these appiicas are given by
Feder et al[[15], who define the notion of a lift-partition.

A list M-partition is an M -partition o that is also required to satisfy constraints on the values of
eacho(v). LetP(D) denote the powerset @b. We say that respectsa functionL: V(G) — P(D)
if o(v) € L(v) for all v € V(G). Thus, for each vertex, L(v) serves as a list of allowable parts
for v and alist M -partition of G is an M -partition that respects the given list function. We allawpy
lists for technical convenience, although there arédfgartitions that respect any list functidnwhere
L(v) = () for some vertex.

Feder et al.[[15] study the computational complexity of thkofving decision problem, which is
parameterised by a symmetric matfix € {0, 1, x}P>P,

Name. L1ST-M -PARTITIONS.
Instance. A pair (G, L) in which G is a graph and. is a functionV (G) — P(D).
Output. “Yes”, if G has anM -partition that respects; “no”, otherwise.

Note that)M is a parameter of the problem rather than an input of the probTrhus, its size is a constant
which does not vary with the input.

A series of papers [11, 13,114] described(in|[15] presentsngptete dichotomy for the special case
of homomorphism problems, which aresT- M/ -PARTITIONS problems in whichV/ is a{0, % }-matrix.

In particular, Feder, Hell and Huang [14] show that, for v, «}-matrix M (and symmetrically,
for every {1, «}-matrix M), the problem LST-M-PARTITIONS is either polynomial-time solvable or
NP-complete.

Itis important to note that both of these special cases®f1)/-PARTITIONS are constraint satisfac-
tion problems (CSPs) and a famous conjecture of Feder arti [I#] is that a P versubP-complete
dichotomy also exists for every CSP. Although generedTL)/-PARTITIONS problems can also be
coded as CSPs with restrictions on the irﬂ)irtjs not known how to code them without such restric-

1 For the reader who is familiar with CSPs, it might be usefidée how a LST- M -PARTITIONSproblem can be coded as
a CSP with restrictions on the input. Given a symmeldce {0, 1, x} P> P, let My be the relation oD x D containing all



tions. Since the Feder—Vardi conjecture applies only to<O8iEh unrestricted inputs, even if proved, it
would not necessarily apply toi&T- M -PARTITIONS.

Given the many applications ofI&T-M -PARTITIONS, it is important to know whether there is a
dichotomy for this problem. This is part of a major ongoingearch effort which has the goal of
understanding the boundaries of tractability by identifyiclasses of problems, as wide as possible,
where dichotomy theorems arise and where the precise boubdaveen tractability and intractability
can be specified.

Significant progress has been made on identifying dich@srfor LIST-M-PARTITIONS. Feder
et al. [15, Theorem 6.1] give a complete dichotomy for thecedease in whichl/ is at most3 x 3, by
showing that LLST-M -PARTITIONS is polynomial-time solvable aNP-complete for each such matrix.
Later, Feder and Hell studied thedT- M -PARTITIONS problem under the name CSR H ) and showed
[12, Corollary 3.4] that, for eveni{, LIST-M-PARTITIONS is eitherNP-complete, or is solvable in
quasi-polynomial time. In the latter case, they showedIthst- A/ -PARTITIONS is solvable inn @ (o)
time, given am-vertex graph. Feder and Hell refer to this result as a “gqdasiotomy”.

Although the Feder—Vardi conjecture remains open, a campliehotomy is now known for count-
ing CSPs. In patrticular, Bulatov][3] (see also [8]) has shdhat, for every constraint languade
the counting constraint satisfaction problefCSP(T") is either polynomial-time solvable, ofP-
complete. It is natural to ask whether a similar situatiaeesr for counting list\/-partition problems.
We study the following computational problem, which is paeterised by a finite symmetric matrix
M € {0,1,x}P*P,

Name. #LIST-M-PARTITIONS.
Instance. A pair (G, L) in which G is a graph and. is a functionV (G) — P(D).
Output. The number of\/ -partitions ofG that respecL.

Hell, Hermann and Nevisi [18] have considered the relatetdlpm #\/-PARTITIONS without lists,
which can be seen as #1- M -PARTITIONS restricted to the case thaf{v) = D for every vertexv.
This problem is defined as follows.

Name. #M -PARTITIONS.
Instance. A graphG.
Output. The number of\/-partitions ofG.

In the problems LST-M -PARTITIONS, #LIST-M -PARTITIONS and #V/-PARTITIONS, the matrix)\/
is fixed and its size does not vary with the input.

Hell et al. gave a dichotomy for small matricas (of size at mos8 x 3). In particular, [18, Theorem
10] together with the graph-homomorphism dichotomy of Demed Greenhill[[7] shows that, for every
suchM, #M -PARTITIONS is either polynomial-time solvable g¢P-complete. An interesting feature of
counting M -partitions, identified by Hell et al. is that, unlike theusition for homomorphism-counting
problems, there are tractabld -partition problems with non-trivial counting algorithmdndeed the
main contribution of the present paper, as described bédaw,identify a set of “tractable” matrices/
and to give a non-trivial algorithm which solves #l- M -PARTITIONS for every suchl/. We combine
this with a proof that #LST- M -PARTITIONS is #P-complete for every othel/.

pairs(i,j) € D x D for which M; ; # 1. Let M, be the relation orD x D containing all pairgi, j) € D x D for which

M; ; # 0. Then a LST-M-PARTITIONSproblem with inputZ, L can be encoded as a CSP whose constraint language includes
the binary relationg/, and M, and also the unary relations corresponding to the sets iimthge of L. Each vertex of G is

a variable in the CSP instance with the unary constrainat). If (u,v) is an edge of7 then it is constrained by/;. Ifitis a
non-edge of7, it is constrained by\f,. Note that the CSP instance satisfies the restriction tleayeair of distinct variables

has exactly one constraint, which is eitidp or M. In a general CSP instance, a pair of variables could be i@net by

Moy and M or one of them, or neither. It is not clear how to code such &ggrCSP instance as a list partitions problem.



1.1 Dichotomy theorems for counting listM -partitions

Our main theorem is a general dichotomy for the countinglMispartition problem, for matrices/ of
all sizes. As noted above, since there is no known codingsbMi-partition problems as CSPs without
input restrictions, our theorem is not known to be impliedHuy dichotomy for#CSP.

Recall thaf'P is the class of functions computed by polynomial-time dateistic Turing machines.
#P is the class of functiong for which there is a nondeterministic polynomial-time Tgimachine
that has exactlyf (X) accepting paths for every inpuf; this class can be thought of as the natural
analogue ofNP for counting problems. Our main theorem is the following.

Theorem 1. For any symmetric matrid/ € {0, 1, «}P*P, #LisT-M-PARTITIONS is either inFP or
#P-complete.

To prove Theorerhl1, we investigate the complexity of the ngeneeral counting problema# M -
PARTITIONS, which has two parameters — a matix € {0, 1, +}?*" and a (not necessarily proper)
subsetC of P(D). In this problem, we only allow sets ifi to be used as lists.

Name. #£-M-PARTITIONS.
Instance. A pair (G, L) whereG is a graph and. is a functionV (G) — L.
Output. The number of\f-partitions ofG that respect.

Note thatM and £ are fixed parameters ofG# M -PARTITIONS — they are not part of the input
instance. The problem #&T-M-PARTITIONS is just the special case off#M -PARTITIONS where
L ="P(D).

We say that a sef C P(D) is subset-closedf A € £ implies that every subset of is in £. This
closure property is referred to as the “inclusive” case Rj[1

Definition 2. Given a sei’ C P(D), we writeS(L) for its subset-closure, which is the set
8(L) ={X |forsomeY € £, X CY}.
We prove the following theorem, which immediately impligsebreni 1.

Theorem 3. Let M be a symmetric matrix i0, 1, x}”*P and let£ C P(D) be subset-closed. The
problem#L-M-PARTITIONS is either inFP or #P-complete.

Note that this does not imply a dichotomy for the countihfpartitions problem without lists.
The problem with no lists corresponds to the case where axgtgx of the input grapld’ is assigned
the list D, allowing the vertex to be potentially placed in any part.ughthe problem without lists is
equivalent to the problemgt M -PARTITIONS with £ = {D}, but Theoreni I3 applies only to the case
where/ is subset-closed.

1.2 Polynomial-time algorithms and an explicit dichotomy

We now introduce the concepts needed to give an explicérasit for the dichotomy in Theorem 3 and
to provide polynomial-time algorithms for all tractablesea. We use standard definitions of relations
and their arities, compositions and inverses.

Definition 4. For any symmetric\/ € {0,1,*}”*? and any sets\,Y € P(D), define the binary
relation
HYy ={(i,§) € X x Y | My; = «}.



The intractability condition for the problem# M -PARTITIONS begins with the following notion of
rectangularity, which was introduced by Bulatov and Dalrf#u

Definition 5. A relation R C D x D’ isrectangularif, for all 7,5 € D, and?, ;' € D/,
(i,7), (i, 5"), (4,7) € R = (j.j') € R.

Note that the intersection of two rectangular relationgssli rectangular. However, the compo-
sition of two rectangular relations is not necessarily aegular: for example{(1,1), (1,2),(3,3)} o

{(17 1)7 (27 3)7 (37 1)} = {(17 1)7 (17 3)7 (37 1)}
Our dichotomy criterion will be based on what we c@}M -derectangularising sequences. In order
to define these, we introduce the notions of pure matrices\arglrifying sets.

Definition 6. Given index setss andY’, a matrixM/ € {0,1,*}**Y is pureif it has no0s or has nds.

Pure matrices correspond to ordinary graph homomorphisshlgms. As we noted abové/-
partitions of G correspond to homomorphisms @fwhendG is a {0, x}-matrix. The same is true (by
complementation) whe' is a{1, x }-matrix.

Definition 7. For anyM € {0,1,*}P*P, asetL C P(D) is M-purifying if, for all X,Y € L, the
X-by-Y submatrixM | x xy is pure.

For example, consider the matrix

M:

O ¥ =
* = X%
_= % O

with rows and columns indexed by0, 1,2} in the obvious way. The matrid/ is not pure but for
L = {{0,1},{2}}, the set’ is M-purifying and so is the closu& L).

Definition 8. An L-M-derectangularising sequena length . is a sequencé), ..., Dy with each
D; € L such that:

e {Dy,...,Dy} is M-purifying and

e the relationH} |, o H}Y ,, o---o Hpl s notrectangular.

If there is ani € {1,..., k} such thatD; is the empty set then the relatidh = H} |, o H[]‘)QDB o
-0 Hgfk_l’Dk is the empty relation, which is trivially rectangular. Ifette is ani such thatD;| = 1
then H is a Cartesian product, and is therefore rectangular. levisl that|D;| > 2 for eachi in a
derectangularising sequence.
We can now state our explicit dichotomy theorem, which iepTheorerhl3 and, hence, Theotdm 1.

Theorem 9. Let M be a symmetric matrix if0, 1, *}”>*? and let£ C P(D) be subset-closed. If
there is anL-M-derectangularising sequence then the probléfi M -PARTITIONS is #P-complete.
Otherwise, it is inf'P.

Section$ B, ¥ arid 5 develop a polynomial-time algorithm Wismves the problem& M -PARTITIONS
whenever there is ng- M -derectangularising sequence. The algorithm involvesrsggteps.

First, consider the case in whiahis subset-closed antli/-purifying. In this case, Propositidn 115
presents a polynomial-time transformation from an instapicthe problem £-M-PARTITIONS to an
instance of a related counting CSP. Algorithin 3 exploitscederoperties of the constructed CSP in-
stance so that it can be solved in polynomial time using a @8knique called arc-consistency. (This
is proved in Lemm@a18.) This provides a solution to the oagihC- M/ -PARTITIONS problem for the
M-purifying case.



The case in whiclC is not M-purifying is tackled in Sectioh]5. Section b.1 gives algons for
constructing the relevant data structures, which inclusigegtial case of sparse-dense partitions and also
subcube decompositions. AlgoritHth 9 uses these data stesc{via Algorithmg 14 19,16,17 arid 8) to
reduce the £-M-PARTITIONS problem to a sequence of problems;#\/-PARTITIONS where ; is
M -purifying. Finally, the polynomial-time algorithm is mented in Algorithm§10 arild11. For every
L and M where there is na-M-derectangularising sequence, either Algorithoh 10 or Atgm [11
defines a polynomial-time functionZ#M -PARTITIONS for solving the #£-M-PARTITIONS problem,
given an input(G, L). The function #-M-PARTITIONS is not recursive. However, itdefinitionis
recursive in the sense that the functiod-#/-PARTITIONS defined in AlgorithmIll calls a function
#L;-M-PARTITIONS WhereL; is a subset of°(D) whose cardinality is smaller thaf. The function
#L,;-M-PARTITIONS is, in turn, defined either in Algorithin 10 orfin111.

The proof of Theorerh]9 shows that, when Algoritim$ 10[add dtdasolve the problem £-M -
PARTITIONS, the problem is#P-complete.

1.3 Complexity of the dichotomy criterion

Theorem D gives a precise criterion under which the problgm\# PARTITIONS is in FP or #P-
complete, wheré& and M are considered to be fixed parameters. In Setlion 6, we adfiesomputa-
tional problem of determining which is the case, now treafirand M as inputs to this “meta-problem”.
Dyer and Richerbyi [8] studied the corresponding probleniferCSP dichotomy, showing that deter-
mining whether a constraint languageatisfies the criterion for thej CSP(I") dichotomy is reducible
to the graph automorphism problem, which isNi?. We are interested in the following computational
problem, which we show to b§P-complete.

Name. EXISTSDERECTSEQ.

Instance. An index setD, a symmetric matrix\/ in {0, 1, «}”>P (represented as an array) and a set
L C P(D) (represented as a list of lists).

Output. “Yes”, if there is anS(L£)-M -derectangularising sequence; “no”, otherwise.

Theorem 10. EXISTSDERECTSEQ is NP-complete under polynomial-time many-one reductions.

Note that, in the definition of the problenxESTSDERECTSEQ, the inputL is not necessarily subset-
closed. Subset-closedness allows a concise representdtisome inputs: for example?(D) has
exponential size but it can be represented @ }), so the corresponding input is just= {D}. In
fact, our proof of Theore 10 uses a set of liStsvhere| X | < 3 for all X € L. Since there are at
most|D|? + 1 such sets, ouNP-completeness proof would still hold if we insisted that imgut £ to
ExISTSDERECTSEQ must be subset-closed.

Let us return to the original problem #41- M -PARTITIONS, which is the special case of the problem
#L-M-PARTITIONS whereL = P(D). This leads us to be interested in the following computaition
problem.

Name. MATRIXHASDERECTSEQ.
Instance. An index setD and a symmetric matrig/ in {0, 1, x+}P*? (represented as an array).
Output. “Yes”, if there is aP(D)-M-derectangularising sequence; “no”, otherwise.

Theorenm_ID does not quantify the complexity oAtkiIx HASDERECTSEQ because its proof relies
on a specific choice of which, as we have noted, is nB{ D). Nevertheless, the proof of Theorém 10
has the following corollary.

Corollary 11. MATRIXHASDERECTSEQ is in NP.



1.4 Cardinality constraints

Many combinatorial structures can be representetl/gsartitions with the addition of cardinality con-
straints on the parts. For example, it might be requiredabdsin parts be non-empty or, more generally,
that they contain at leaatvertices for some fixed.

Feder et al.[[15] showed that the problem of determining tdresuch a structure exists in a given
graph can be reduced to ad1-M -PARTITIONS problem in which the cardinality constraints are ex-
pressed using lists. In Sectiéh 7, we extend this to countM@ show that any # -PARTITIONS
problem with additional cardinality constraints of therfgr‘part d must contain at leagt; vertices” is
polynomial-time Turing reducible to #5T-M -PARTITIONS. As a corollary, we show that the “homo-
geneous pairs” introduced by Chvatal and Shihi [6] can hentaxd in polynomial time. Homogeneous
pairs can be expressed as/npartitions problem for a certaihx 6 matrix, with cardinality constraints
on the parts.

2 Preliminaries

For a positive integek, we write k] to denote the sefl, ..., k}. If Sis a set of sets then we ufeS
to denote the intersection of all sets§n The vertex set of a grapfi is denotedV (G) and its edge set
is E(G). We write {0, 1, x}? for the set of all functions: D — {0,1, x} and{0, 1, *}?*P’ for the set
of all matricesM = (M; j)icp jep» Where eachV; ; € {0, 1, }.

We always use the term)M -partition” when talking about a partition of the verticeagraph
according to &0, 1, x}-matrix M. When we use the term “partition” without referring to a nratr
we mean it in the conventional sense of partitioning aXeinto disjoint subsetsXy, ..., X with
XiU---UX,=X.

We view computational counting problems as functions magptrings over input alphabets to
natural numbers. Our model of computation is the standariti-tape Turing machine. We say that a
counting problemP is polynomial-time Turing-reducible to another countinglgem Q if there is a
polynomial-time deterministic oracle Turing machih&such that, on every instaneeof P, M outputs
P(x) by making queries to oraclt@. We say thaf is polynomial-time Turing-equivalent 1Q if each is
polynomial-time Turing-reducible to the other. For demisproblems (languages), we use the standard
many-one reducibility: languagé is many-one reducible to languadgkif there exists a functiorf that
is computable in polynomial time such that A if and only if f(x) € B.

3 Counting list M-partition problems and counting CSPs

Toward the development of our algorithms and the proof ofdicinotomy, we study a special case of
the problem #£-M-PARTITIONS, in which £ is M-purifying and subset-closed. For su¢hand M,
we show that the problems# M -PARTITIONS is polynomial-time Turing-equivalent to a counting con-
straint satisfaction problem#/CSP). To give the equivalence, we introduce the notation needed
specify #CSPs.

A constraint languagés a finite sefl” of named relations over some 9@t For such a language, we
define the counting problegtCSP(T") as follows.

Name. #CSP(T").

Instance. A setV of variables and a sét of constraints of the forn(v, . .., vk ), R), where(vy, ..., v;) €
V¥ andR is an arity% relation inT".

Output. The number of assignmemnis V' — D such that

(O’(Ul),. .. ,O’(?}k)) € R forall <(?}1,. .. ,?)k),R> eC. (1)



The tuple of variables, .. . , v in a constraint is referred to as the constraistepe The assignments
o: V. — D for which (1) holds are called thsatisfying assignmentsf the instanceV,C). Note
that a unary constrainfy, R) has the same effect as a list: it directly restricts the jpessialues of
the variablev. As before, we allow the possibility thét € I'; any instance that includes a constraint
{(v1,...,v),0) has no satisfying assignments.

Definition 12. Let M be a symmetric matrix if0, 1, +}°*P and let£ be a subset-closet -purifying
set. Define the constraint language

Trn = {Hé\(/IY | X,Y € L}
and letl'z s =T} ,, UP(D), whereP (D) represents the set of all unary relationsion

The unary constraints ifi; y; will be useful in our study of the complexity of the dichotorogte-
rion, in Sectiori B. First, we define a convenient restrictarinstances ofCSP(I'z /).

Definition 13. An instance of#CSP (I /) is simpleif:
¢ there is exactly one unary constraiat X,) for each variable € V,
e there are no binary constrain&, v), R), and

e each pairu, v of distinct variables appears in at most one constraint effthm ((u, v), R) or
((v,u), R).

Lemma 14. For every instancgV, C') of #CSP(I'z as), there is a simple instana@d’, C’) such that an
assignment: V — D satisfies(V, C) if and only if it satisfiegV, C"). Further, such an instance can
be computed in polynomial time.

Proof. Observe that the set of binary relationsin,, is closed under intersectionﬂ)]‘({y NHY.,, =

HY x'ynyr and this rel_ation is iz ar Igecausec is_ subset-closed. The binary partlof 57 is also
closed under relational inverse becaugds symmetric, so

—1
(HY) " ={(b.a) | (a,0) € H¥yY = HYy e Ty

SinceP(D) C I'z w1, the set of unary relations is also closed under intersestio

We constructC’ as follows, starting witiC'. Any binary constrain{(v,v), R) can be replaced by
the unary constrainf, {d | (d,d) € R}). All the binary constraints between distinct variableandv
can be replaced by the single constraint

<(u,v), (MR | ((u,0),R) € Cor((v,u),R") € C}> :

Let the set of constraints produced so far@é For each variable in turn, if there are no unary
constraints applied to in C”, add the constraintv, D); otherwise, replace all the unary constraints
involving v in C” with the single constraint

<v, (R | (v,R) e c"}> :

('’ is the resulting constraint set. The closure propertiesbtished above guarantee th&t C’) is a
#CSP(I'z \r) instance. It is clear that it has the same satisfying assigitsrag V, C') and that it can
be produced in polynomial time. O

Our main result connecting the counting ligt-partitions problem with counting CSPs is the fol-
lowing.



Proposition 15. For any symmetrid/ < {0, 1, *}”*? and any subset-closed/-purifying setl, the
problem#L-M-PARTITIONS is polynomial-time Turing-equivalent #CSP(I'z a/).

Because of its length, we split the proof of the propositioio two lemmas.

Lemma 16. For any symmetrid/ € {0, 1, «}7*P and any subset-closed/-purifying set’, #CSP (T2 )
is polynomial-time Turing-reducible - M -PARTITIONS.

Proof. Consider an inputV, C) to #CSP(I'z a), which we may assume to be simple. Each variable
appears in exactly one unary constraifit, X,,) € C. Any variablev that is not used in a binary
constraint can take any value K, so just introduces a multiplicative factor pf,,| to the output of the
counting CSP. Thus, we will assume without loss of gengriiiat every variable is used in at least one
constraint with a relation frorfi;, ,, and, by simplicity, there are no constraints of the fd(m v), R).

We now define a corresponding instari¢e L) of the problem #£-M-PARTITIONS. The vertices
of GG are the variable$” of the #CSP instance. For each variablec V, set

L(v) = X, N ﬂ {X | for someu andY’, ((v,u), Hyy) € C or ((u,v), Hy'y) € C} .

The edgedZ(G) of our instance are the unordered pditsv} that satisfy one of the following condi-
tions:

e there is a constraint betweerandv in C' and M |,y 1.,y has @) entry, or
e there is no constraint betweerandv in C and M |1« 1.(») has al entry.

Since every vertex is used in at least one constraint with a relatfﬁﬁﬁ(’y where, by definition X
andY areinL, every setl.(v) is a subset of some sBt € L. L is subset-closed sb(v) € L for all
v € V, as required.

We claim that a functionr: V' — D is a satisfying assignment ¢¥, C) if and only if it is an
M -partition of G that respectd.. Note that, sinc& is M-purifying, no submatriXd/ | x xy (X,Y € L)
contains both Os and 1s.

First, suppose that is a satisfying assignment ¢¥, C). For each variable, o satisfies all the
constraints(v, X,,), ((v,u), Hy'y) and((u, v), Hy'y) containingv. Thereforeg(v) € X, ando(v) €
X for each binary constraif{v, u), H)]‘({Y> or ((u,v), H%X>, soo satisfies all the list requirements.

To show thats is an M-partition of G, consider any pair of distinct verticesv € V. If there is
a constraint(u, v), H)]‘({Y> € C, theno satisfies this constraint st (,),»(,) = * andu andv cannot
stop o being anM-partition. Conversely, suppose there is no constrainvéenv andv in C. If
M| )% L(v) CONtains a 0, there is no edge, v) € E(G) by construction; otherwise, #1| () 1,(v)
contains a 1, there is an edge, v) € E(G) by construction; otherwisel/, , = = for all x € L(u),
y € L(v). In all three cases, the assignmenutandv is consistent witly being an)M -partition.

Conversely, suppose thatis not a satisfying assignment @f, C). If o does not satisfy some unary
constraint(v, X') theno(v) ¢ L(v) soo does not resped. If o does not satisfy some binary constraint
((u,v), Hj‘f,y> whereu andv are distinct then, by definition of the relatidﬂ)]‘({y, Moy, o) 7 *- If
My(u),0w) = 0, there is an edgéu, v) € E(G) by construction, which is forbidden b/ -partitions; if
My )0y = 1, there is no edgéu, v) € E(G) but this edge is required if/-partitions. Henceg is

not anM -partition. O

Lemma 17. For any symmetricd// € {0,1,+}°*P and any subset-closed-purifying setZ, the
problem#L-M-PARTITIONS is polynomial-time Turing-reducible t¢CSP (I'z /).



Algorithm 1 The algorithm for computing arc-consistent domains for rapsée #CSP(I'z ar) in-
stance(V, C') where, for eachv € V, (v, X,,) € C'is the unary constraint involving.
for v € V do
D, + X,
repeat
for v € V do
D! + D,
for ((u,v),R) € C do
D, + {d € D, | forsomed’ € D,, (d,d') € R}
D, < {d € D, | forsomed’ € D,, (d',d) € R}
until Vo € V, D, = D.,
return (Dy)yev

Proof. We now essentially reverse the construction of the previemsma to give a reduction from
#L-M-PARTITIONS to #CSP(I'z ar). For any instance(, L) of #£-M-PARTITIONS, we construct
a corresponding instange’, C') of #CSP(I'z ) as follows. The set of variableg is V(G). The

set of constraintg” consists of a constrainfv, L(v)) for each vertexo € V(G) and a constraint

{(u,v), Hﬁ{u) L) for every pair of distinct vertices, v such that:

e (u,v) € BE(G)and M|« () has a0 entry, or
e (u,v) & E(G)andM |« has alentry.

We show that a functioa: V' — D is a satisfying assignment ¢¥, C) if and only if it is an M-
partition of G that respectd.. It is clear thatr satisfies the unary constraints if and only if it respdcts

If o satisfieqV, C') then consider any pair of distinct verticesv € V. If there is a binary constraint
involving u andv, thenM, ) »(v) = Mo(v),0(u) = * SO the existence or non-existence of the edge)
of G does not affect whether is an M -partition. If there is no binary constraint involvingandv, then
either there is an edde:, v) € E(G) and M, ) »(») 7 0 or there is no edgéu, v) and My o(v) 7 1-
In all three cases;y mapsu andwv consistently with it being an/-partition.

Conversely, ifo does not satisfyV, C), either it fails to satisfy a unary constraint, in which cése
does not respedt, or it satisfies all unary constraints (so it respet}sbut it fails to satisfy a binary
constraint((u, v), H %L) L(v)>. In the latter case, by constructial, ) ,(,) # * SO eitherM, () »(,) =
0 but there is an edge, v) € E(G), or My, -y = 1 and there is no edger, v) € E(G). In either
caseo is not anM -partition ofG. O

4  An arc-consistency based algorithm forCSP(I'z a/)

In the previous section, we showed that a classbf¥ -PARTITIONS problems is equivalent to a certain
class of counting CSPs, where the constraint languagestsrdibinary relations and all unary relations
over the domairD. We now investigate the complexity of su¢ghCSPs.

Arc-consistency is a standard solution technique for cairdt satisfaction problems [19]. It is,
essentially, a local search method which initially assuthes each variable may take any value in
the domain and iteratively reduces the range of values tinabe assigned to each variable, based on
the constraints applied to it and the values that can be takesther variables in the scopes of those
constraints.

For any simple#CSP(I'z »s) instance(V, C'), define the vector adrc-consistent domaind,, ),cv
by the procedure in Algorithal 1. At no point in the executidntiee algorithm can any domaif,
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Algorithm 2 The algorithm for factoring a simplgCSP(I'z ar) instanceg(V, C') with respect to a vector
(Dy)vev Of arc-consistent domaing! is the set of factored constraints.
F+C
for ((u,v),R) € C do
if RN (D, x D,) is a Cartesian produd?;, x D! then
Let (u, X,,) and(v, X,) be the unary constraints involvingandv in F.
F 4 (F U {{u, XN D), (0, X, 0 DY\ {{(1,0), R), (u, X, (v, X))}
return F

increase in size so, for fixel, the running time of the algorithm is at most a polynomialiin + |C/.

Itis clear that, if( D, ),cyv is the vector of arc-consistent domains for a sinpleéSP (I'z 5/) instance
(V,C), then every satisfying assignmentfor that instance must have(v) € D, for each variable.

In particular, if someD,, = (), then the instance is unsatisfiable. (Note, though, thattineerse does
not hold. IfD = {0,1} andR = {(0,1), (1,0)}, the instance with constraints, D), (y, D), (z, D),
((z,y), R), ((y,2), R) and ((z, z), R) is unsatisfiable but arc-consistency assighs= D, = D, =
{0,1}.)

The arc-consistent domains computed for a simple instavic€') can yield further simplification
of the constraint structure, which we refer tofastoring The factoring applies when the arc-consistent
domains restrict a binary relation to a Cartesian produncthik case, the binary relation can be replaced
with corresponding unary relations. Algorithoh 2 factorsimme instance with respect to a vector
(D,)vev Of arc-consistent domains, producing aBedf factored constraints. Recall that there is at most
one constraint i’ between distinct variables and there are no binary cons$rdiv, v), R) because the
instance is simple. Note also that|#,| < 1or|D,| < 1, thenRN(D, x D,) is necessarily a Cartesian
product. It is easy to see that the result of factoring a gnmEtance is simple, that Algorithoh 2 runs in
polynomial time and that the instan€®, F') has the same satisfying assignment§las”).

The constraint graphof a CSP instance(V, C) (in any constraint language) is the undirected graph
with vertex setl” that contains an edge between every pair of distinct vagtathlat appear together in
the scope of some constraint.

Algorithm [3 uses arc-consistency to count the satisfyirgigasnents of simplgtCSP (I /) in-
stances. Itis straightforward to see that the algorithmitestes, since each recursive call is either on an
instance with strictly fewer variables or on one in whicheatdt one variable has had its unary constraint
reduced to a singleton and no variable’s unary constramirfmeased. For general inputs, the algorithm
may take exponential time to run but, in Lemma 18 we show til@tuinning time is polynomial for the
inputs we are interested in.

We first argue that the algorithm is correct. By Lemiméa 14, wg assume that the given instance
(V,C) is simple. Every satisfying assignmemt V' — D satisfieso(v) € D, for all v € V so
restricting our attention to arc-consistent domains dagsatier the output. Factoring the constraints
also does not change the number of satisfying assignmemtserely replaces some binary constraints
with equivalent unary ones. The constraints are factor@dny variablev with |D,| = 1 must, in fact,
be an isolated vertex in the constraint graph because, adg abbve, any binary constraint involving
it has been replaced by unary constraints. Therefore, ifrapomentH; contains a variable with
|D,| = 1, that component is the single vertex which is constrained to take a single value, so the
number of satisfying assignments for this component, whieldenoteZ;, is equal tol. (So we have
now shown that the if branch in the for loop is correct.) Fomponents that contain more than one
variable, it is clear that we can choose one of those vasahlg and group the set af/-partitionso
according to the value of (w;). (So we have now shown that the else branch is correct.) Becau
there are no constraints between variables in differentpoorants of the constraint graph, the number
of satisfying assignments factorises[d$_; Z;.
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Algorithm 3 The arc-consistency based algorithm for counting satighassignments to simple in-
stances o#CSP(I'z ys). The input is a simple instand&’, C') of #CSP(I'z as).
function AC(variable set V, constraint set C)
Use Algorithm[ to compute the vector of arc-consistent dos@),, ) ,cv
Use Algorithm2 to construct the sétof factored constraints
if D, = () for somev € V then
return O
Compute the constraint grag of (V, F')
Let Hy,..., H, be the components df with V; = V(H;)
Let F; be the set of constraints ifi involving variables inV;
for i € [k] do
if | Dy,| =1 for somew € V; then
Zz’ —1
else
Choosew; € V;
Let 6; be the unary constraint involving; in F;
for d € D,,, do

Fj g = (Fi U {{wi, {dh}) \ {6}
Zi <= Y aep,, AC(Vi, F 4)
return J[7, Z;

For a binary relatior?, we write

m1(R) ={a | (a,b) € R for someb}
mo(R) = {b] (a,b) € R for somea} .

{

{
For the following proof, we will also need the observatiorDyfer and Richerbyl [8, Lemma 1] that

any rectangular relatioR C 71 (R) x mo(R) can be written asA; x B1)U---U (A x By), where the

A; and B; partition 7 (R) andms(R), respectively. The subrelationt x B; are referred to alslocks
A rectangular relatio? # 71 (R) x m2(R) must have at least two blocks.

Lemma 18. Suppose that is subset-closed andi/-purifying. If there is nal-M-derectangularising
sequence, then Algorithimh 3 runs in polynomial time.

Proof. We will argue that the number of recursive calls made by thetion AC in Algorithm[3 is
bounded above by a polynomial|i¥i|. This suffices, since every other step of the procedure i®ably
polynomial.

Consider a run of the algorithm on instan@é C') which, by Lemmd_14, we may assume to be
simple. Suppose the run makes a recursive call with ifputF; ;). For eachv € V;, let D, denote
the arc-consistent domain ferthat is computed during the recursive call. We will show betbat
D! c D, for every variablev € V;. This implies that the recursion depth is at m{g3f. As a crude
bound, it follows that the number of recursive calls is at ti¢&| - | D|)!”!, since each recursive call
that is made is nested below a sequence of at i@sprevious calls, each of which chose a vertex
v € V and “pinned” it to a domain elemerte D (i.e., introduced the constraifit, {d})).

Towards showing that the domains of all variables decreaeach recursive call, suppose that we
are computingAC(V, C') and the arc-consistent domains &,),cy. As observed above, for any
componentH; of the constraint graph on which a recursive call is made, wstrhave|D,| > 1 for
everyv € V;. Fix such a component and, for eacke V;, let D), be the arc-consistent domain calculated
for v in the recursive call oi;. Itis clear thatD] C D,; we will show thatD! C D,.
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Consider a path; ... v, in H;, wherev; = w; andv, = v. For eachy € [¢ — 1], there is exactly one
binary constraint inf; involving v; andwv;1. This is either((v;,v;+1), R;) or ((vjt1,v;), Rj‘1> and,
without loss of generality, we may assume that it is the farrRerj € [¢ — 1], let R;. = R; N (D, x
Dy,.,) = H lf‘)ﬂv Dy The relationR’; is pure becaus®,, and D, , are in the subset-closed sét

and, sinceC is M-purifying, so is{D,;, D,,_, }. These two domains do not form a derectangularising
sequence by the hypothesis of the Iemmah@éj, Doy is rectangular. If somé; = () thenD,, =
]7 ’Uj o

D,;., = 0 by arc-consistency, contradicting the fact that,| > 1 for all v € V;. If some R’ has just
one block,?; N (D, x D,,,,) is a Cartesian product, contradicting the fact thds a factored set of
constraints. Thus, ever@; has at least two blocks.

Forj € [( —1],let®; = R} o---o R.. As above, note thgtD,,, ..., Dy,,, } is M-purifying and
the sequenc®,,, ..., D,, ., is not derectangularising, 9; is rectangular. We will show by induction
onj thatm (®;) = D,,, m2(®;) = D,,,, and®; has at least two blocks. Therefore, since the recursive
call constrainsr(w;) to bed andd € A for some blockA x B C ®,, we haveD,, C B C D,, which is
what we set out to prove.

For the base case of the induction, tgke- 1 so®; = R}. We showed above thd?] has at least
two blocks and thaR) = H}:‘){H,D%. By arc-consistencyr (R)) = D,, andma(R}) = D,,.

For the inductive step, takg € [¢ — 2]. Suppose thaty(®;) = D,,, m2(®;) = D,,,, and
®; = [J2_, (4, x A.) has at least two blocks. We hade | = &, o Ry andR), = U, (B x B})
for somey > 2.

For everyd € D,,, thereisal’ € D
ad" € D,,,, such that(d’,d") € D
argument shows that(®;..1) = Dy, _,.

Suppose, towards a contradiction, tlgt ; = D,, x D,,.,. For this to be the case, we must have
A, N By # 0 for everys € {1,2} andt € [u]. Now, letD} = Dy, \ (435 N B;) and consider the
relation

v+, SUch that(d,d’) € ®; by the inductive hypothesis, and
by arc-consistency. Therefore;(®,1) = D,,; a similar

Vj+2?

Vj+1?
vy SOAI X By C R
and A; x B, C R. Similarly, By C D;jjﬂ, soA, N By C D;jj+1 so A; x B} € R. However,
(A2 x BS) N R = (), soR is not rectangular. We will now derive a contradiction byshw thatR is
rectangular. Note that

R ={(d1,ds3) | for someds € Dj ., (di1,dz) € ®;and(ds, d3) € R}, }.
Since4; C D; | the non-empty setd| N B; and A} N B, are both subsets db;

R_HDvl,DU2O oHp, p OHDUjaD:;j+

j—17Y5

M
o HD* D
1 Vi1 V2

but this relation is rectangular because the hypothesiseofeimma guarantees that the sequence

Dyyy..., Dy, Di D

Vj41? T V42

is not an£-M-derectangularising sequence and all of the elements sfsijuence are id, and
{Dyy;s .-y Dy, Dy Dy, } is M-purifying. O

Vj+1?

5 Polynomial-time algorithms and the dichotomy theorem

Bulatov [3] showed that every problem of the fofdCSP(I") is either inFP or #P-complete. Together
with Propositior_1b, his result immediately shows that ailsindichotomy exists for the special case
of the problem #£-M-PARTITIONS in which £ is M-purifying and is closed under subsets. Our algo-
rithmic work in Sectiori 4 can be combined with Dyer and Ribtly&r explicit dichotomy for#CSP

to obtain an explicit dichotomy for this special case @f-#/-PARTITIONS. In particular, Lemma_18
gives a polynomial-time algorithm for the case in which ehisr no£- M -derectangularising sequence.
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When there is such a sequentg,, is not “strongly rectangular” in the sense [of [8]. It followsme-
diately that#CSP(I'z ar) is #P-complete([8, Lemma 24] soBt M -PARTITIONS is also#P-complete
by Propositiori_Ib. In fact, the dichotomy for this speciaedoes not require the full generality of Dyer
and Richerby’s dichotomy. If there is ai M -derectangularising sequence then it follows immediately
from work of Bulatov and Dalmati[4, Theorem 2 and Corollaryt@it#CSP (I'z a/) is #P-complete.

In this section we will move beyond the case in whi€ks M -purifying to provide a full dichotomy
for the problem #£-M-PARTITIONS. We will use two data structuresparse-dense partitionsnd a
representation of the set gplits of a bipartite graph. Similar data structures were used by éte
al. [18] in their dichotomy for the #/-PARTITIONS problem for matrices of size at masty-3.

5.1 Data Structures

We use two types of graph partition. The first is a special chsesparse-dense partitidn [15] which is
also called arfa, b)-graph witha = b = 2.

Definition 19. A bipartite—cobipartite partition of a gragh is a partition(B, C') of V(G) such thatB
induces a bipartite graph argdinduces the complement of a bipartite graph.

Lemma 20. [15, Theorem 3.1; see also the remarks @nb)-graphs.] There is a polynomial-time
algorithm for finding all bipartite—cobipartite partitiosof a graphG.

The second decomposition is based on certain sub-hyper@ahed subcubes. For any finite set
U, asubcubeof {0,1}V is a subset 0f0, 1}V that is a Cartesian product of the forf, .., S, where
Su € {{0},{1},{0,1}} for eachu € U. We can also associate a subcyljg.,; S, with the set of
assignments: U — {0, 1} such thav(u) € S, for all u € U. Subcubes can be represented efficiently
by listing the projections5,,.

Definition 21. Let G = (U,U’, E)) be a bipartite graph, whei€ and U’ are disjoint vertex sets, and
E C U x U'. A subcube decompositiaof G is a list Uy, ..., U, of subcubes of0,1}V and a list
Ui, ..., U, of subcubes of0, 1}V such that the following hold.

e The union(U; x Uj) U ---U (Ui, x Uy}) is the set of assignments U U U’ — {0, 1} such that:
no edge(u,u’) € E haso(u) = o(u’) = 0 and @)
no pair(u,u') € (U x U’) \ E haso(u) = o(u') = 1. (3)

e Fordistincti, j € [k], U; x U] andU; x U’ are disjoint.

e For each € [k], either|U;| = 1 or |U/| = 1 (or both).

Note that, although we requitg; x U; andU; x U; to be disjoint for distinct, j € [k], we allow
UiNU; # 0 aslong adJ; andU; are disjoint, and vice-versa. It is even possible tiat= U;, and
indeed this will happen in our constructions below.

Lemma 22. A subcube decomposition of a bipartite gragh= (U, U’, E) can be computed in polyno-
mial time, with the subcubes represented by their projestio

Proof. For a vertexz in a bipartite graph, lef'(z) be its set of neighbours and [Etz) be its set of
non-neighbours on the other side of the graph. Thusgfer U, T'(z) = U’ \ I'(z) and, forz € U/,
I['(z) =U\T().

Observe that we can writf0, 1} \ {0}" as the disjoint union of, subcubes{0}*~1 x {1}! x
{0,1}™ % with 1 < k < n, and similarly for any other cube minus a single point.
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We first deal with two base casesdfhas no edges, then the set of assignment§ UU’ — {0, 1}
satisfying [[2) and(3) is the disjoint union of

{037 {03, ({0, 37\ {0}7) x {0}, and {0} x ({0,1}""\ {0}"").

The second and third terms can be decomposed into subcubesaibed above to produce the output.
Similarly, if G is is a complete bipartite graph, then the set of assignneaisfying (2) and[(3) is the
disjoint union of

{17 1Y, (o, "\ (1Y) < {1}, and {137 x ({0, 137"\ {1}"").

If neither of these cases occurs then there is a vertsuch that neithef (z) nor I'(z) is empty.

If possible, choose: € U; otherwise, choose € U’. To simplify the description of the algorithm,
we assume that € U, the other case is symmetric. We consider separately thgnassnts where
o(xz) = 0 and those where(z) = 1. Note that, for any assignment,dfy) = 0 for some vertey, then
o(z) = 1forall z € I'(y) and, ifo(y) = 1, thens(z) = 0 for all z € T'(y). Applying this iteratively,
settingo(z) = ¢ for ¢ € {0, 1} also determines the value efon some sef,_. C U U U’ of vertices.

Thus, we can compute a subcube decompositiori-foecursively. First, computs,_o andS,—_.
Then, recursively compute subcube decompositions ef S,,— (the graph formed frond: by deleting
the vertices inS,—p) andG — S,—;. Translate these subcube decompositions into a subculoendec
position of G by extending each subculj€¢; x U/) of G — S,_. to a subcub&V; x V) of G whose
restriction toG — S, is (U; x U}) and whose restriction t§,—. is an assignment with o(z) = ¢ (in
fact, all assignments that seto ¢ agree on the se&f,_., by construction).

It remains to show that the algorithm runs in polynomial tifibe base cases are clearly computable
in polynomial time, as are the individual steps in the reiwersases, so we only need to show that the
number of recursive calls is polynomially bounded. At theursive step, we only choosec U’ when
E(G) = U" x U’ for some proper subs@tC U” C U and, in this case, the two recursive calls are to
base cases. Since each recursive call whenU splits U’ into disjoint subsets, there can be at most
|U’| — 1 such recursive calls, so the total number of recursive &allsear in|V (G)|. O

5.2 Reduction to a problem with M -purifying lists

Our algorithm for counting lisf\/-partitions uses the data structures from Sedtioh 5.1 tocegrob-
lems wherel is not M-purifying to problems where it is (which we already know htmsolve from
Section$ B andl4). The algorithm is defined recursively orsét€ of allowed lists. The algorithm for
parametersC and M calls the algorithm foi’; and M where£; is a subset of.. The base case arises
when.; is M-purifying.

We will use the following computational problem to reducé-#/-PARTITIONS to a collection of
problems #£’- M -PARTITIONS that are, in a sense, disjoint.

Name. #L-M -PURIFY.

Instance. A graphG and a functionL: V(G) — L.
Output. FunctionsLy, ..., L;: V(G) — L such that

e for eachi € [t], the se{ L;(v) | v € V(G)} is M-purifying,
e for eachi € [t] andv € V(G), L;(v) C L(v), and

e each)M-partition of G that respectd, respects exactly one dfy, . .., L;.

We will give an algorithm for solving the problemZ#M -PURIFY in polynomial time when there is
no £-M-derectangularising sequence of length exactly 2. Thevatlg computational problem will be
central to the inductive step.
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Algorithm 4 A polynomial-time algorithm for the problemg# M -PURIFY-STEPWhenL C P(D) is
subset-closed( is not M-purifying and there is no length-2-M-derectangularising sequence. The
input is a pair(G, L) with V(G) = {v1,...,v,}.
function #£-M-PURIFY-STERG,L)
if there is a; € V(G) with L(v;) = () then return the empty sequence
else if there areX,Y € £, a,b € X, andd € Y such thatM/,, 4 = 0 andM; 4 = 1 then
Run Algorithm% /* Case 1*/
else ifthere is anX € L such thatM | x x x is not purethen
Run Algorithm® /* Case 2 */
else
Run Algorithm[7 /* Case 3*/

Name. #L-M-PURIFY-STEP.
Instance. A graphG and a functionZ: V(G) — L.
Output. FunctionsLy, ..., Li: V(G) — L such that

e for eachi € [k] andv € V(G), Li(v) C L(v),

e every M -partition of G that respectd. respects exactly one dfy, ..., L, and
e for eachi € [k], there is dV € £ which is inclusion-maximal irC but does not occur in the
image ofLL;.
Note that we can trivially produce a solution to the problefr # -PURIFY-STEPby letting L, .. ., Lg

be an enumeration of all possible functions such that &l lig(v) have sizel and satisfyL;(v) C L(v).
Such a functionZ; corresponds to an assignment of vertices to parts so theithes exactly ond.;-
respectingM -partition or none, which means that evdryrespectingl/ -partition is L;-respecting for
exactly onei. However, this solution is exponentially large|iA(G)| and we are interested in solutions
that can be produced in polynomial time. Also/ifv) = () for some vertex, the algorithm is entitled
to output an empty list, since nf -partition respectd..

The following definition extends rectangularity £0, 1, «}-matrices and is used in our proof.

Definition 23. A matrix M € {0, 1, x}X*Y is x-rectangularif the reIationH%Y is rectangular.

Thus, M is «-rectangular if and only itV/,, , = M, = M, ,» = * implies thatM,,,, = x for all
z, 7’ € X"and ally,y’ € Y.

We will show in Lemma2l4 that the functionC#M -PURIFY-STEPfrom Algorithm[4 is a polynomial-
time algorithm for the problem & M -PURIFY-STEP wheneverL is not M -purifying and there is no
length-2.£- M -derectangularising sequence. Note that a lengfhA? -derectangularising sequence is a
pair X, Y € £ such thatM |xxy, M|xxx and M|y .y are pure and//|x xy is notx-rectangular. If
L # P(D), itis possible that a matrix that is netrectangular has no length£2 M -derectangularising
sequence. For example, IBt= {1,2,3} and£ = P({1,2}) and letM3 3 = 0 andM; ; = * for every
other pair(i, j) € D% M is not*-rectangular but this fact is not witnessed by any submaltfix: v
for X, Y € L.

Lemma 24. Let M be a symmetric matrix if0, 1, x}?>*? and letZ C P(D) be subset-closed. &
is not M -purifying and there is no length-Z-M -derectangularising sequence, then Algorithm 4 is a
polynomial-time algorithm for the probleth- M -PURIFY-STEP.

Proof. We consider an instang¢ér, L) of the problem #- A -PURIFY-STEPWIth V(G) = {v1,..., v, }.
If there is av; € V(G) with L(v;) = 0 then noM-partition of G respectsl, so the output is correct.
Otherwise, we consider the three cases that can occur ixéoaition of the algorithm.
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Algorithm 5 Case 1 in Algorithni 4.
ChooseX,Y € L,a,b€ X,andd € Y
such thatM,, 4 = 0, M, 4 = 1 andX andY” are inclusion-maximal il
for i € [n] do
L;(v;) «+ L(v;) N {d}
for j <ido
if (vi,v;) € E(G) then
Li(vj) — {d, S L(Uj) | d 75 dande7d/ 75 0}
else
Li(vj) — {d, S L(Uj) | d 75 dande7d/ 75 1}
for j > ido
if (vi,v;) € E(G) then
Li(vj) < {d" € L(v;) | Mg # 0}
else
Li(vj) < {d" € L(v;) | Mg # 1}
Lpy1(vi) < L(v;) \ {d} _ , _
return Ly, ..., L, (of course, if we havd.;(v) = () for any: andv then L; can be omitted from
the output)

Case 1. In this case columnl of M|xy contains both a zero and a one. Equivalently, ibwf
My « x does. Algorithni b groups the set df-partitions ofG that respecf, based on the first vertex
that is placed in pard. Fori € [n], L; requires thab; is placed in partl andvy,...,v;—1 are not in
partd; L, requires that pard is empty. Thus, nd/-partition can respect more than one of the
Now consider an_-respectingM -partition o: V(G) — D and suppose thatis minimal such that
o(v;) = d. We claim thato respects.;. We haves(v;) = d, as required. Foj # i, we must have
o(vj) € L(vj) sinceo respectd. and we must have!y ,(,,) # 1if (vi,v;) ¢ E(G) andMg () # 0 if
(vi,v5) € E(G), sinceo is anM-partition. In addition, by constructiom;(v;) # d if j < i. Therefore,
o respectsl;. A similar argument shows that respects.,, . if o(v) # d for all v € V(G). Hence,
any M -partition that respects respects exactly one of thg.

Finally, we show that, for eache [n + 1], there is a selV which is inclusion-maximal irC and is
not in the image of;. Fori € [n], we cannot have bothandb in L;(v;) for anyv;, so X is not in the
image ofL;. Y containsd, soY is not in the image of,, ;1.

Case 2. Inthis case, every row o/ |x,x x contains a 0, while every row dff | x, « x fails to contain
a zero. Sincé/ | x « x is not pure, but no row o/ | x . x contains both a zero and a one (since we are
not in Case 1)X, andX; are non-empty. Note that/| x, « x, and M| x, « x, are both pure, while every
entry of M| x,x x, IS ax.

If Vx = 0 thenX is an inclusion-maximal member d@fthat is not in the image of, so the output
of Algorithm|[@ is correct. OtherwisdB1,C1),. .., (B, Ck) is the list containing all partitionsB, C)
of Vx such thatB induces a bipartite graph i@ and C induces the complement of a bipartite graph.
The algorithm returnd.y, ..., L;. X is not in the image of any; so, to show tha{L,,...,L;} isa
correct output for the problem# M -PURIFY-STEPR, we just need to show that evely-partition of G
that respectd. respects exactly one df,, ..., L. Fori # i, (B;,C;) # (B, Cy) so there is at least
one vertexv; such that’;(v;) = Xo andLy (v;) = X; or vice-versa. Sinc&, and.X; are disjoint, no
M -partition can simultaneously respdctand L. It remains to show that every/-partition respects
atleast one of.4, ..., Li. To do this, we deduce two structural properties\fx x x .

First, we show thad/| x « x has nox on its diagonal. Suppose towards a contradiction Atigy =
for somed € X. If d € Xj, then, for eachl’ € X, Mg s = Mg q = x because, as noted above, every
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Algorithm 6 Case 2 in Algorithni 4.
ChooseX € £ such thatM | x . x is not pure andX is inclusion-maximal inC
Let Xy C X be the set of rows al/ | x « x that contain &
X1+ X \ XQ
Vx < {v; e V(G) | L(vj) = X}
if Vx = 0 thenreturn L
else
Use the algorithm promised in Leminal 20 to compute the Iist C4), . . ., (B, Cy) of all
bipartite—cobipartite partitions @¥[Vx]
for i € [k],j € [n] do
if v; ¢ Vx then
Li(v;) < L(v;)
else ifv; € B; then
Li(vj) < Xo
else /*v; € Cy*l
LZ'(UJ‘) — X1
return Lq,..., Ly

entry of M |x,x x, is ax. Therefore, th@ x 2 matrix M’ = M|(q 4}« {a,a} CONtaINs at least threes so
itis pure.{d,d'} C X € L so, by the hypothesis of the lemma, the length-2 sequéicé}, {d,d'}
is not £-M-derectangularising, sb/’ must bex-rectangular, sd/y o = = for all &’ € X;. Similarly,
if Myqa = = for somed € X, thenM,;, = = for all d € X,. Therefore, ifM|xx has ax on its
diagonal, every entry on the diagonakisBut M/ contains a 0, say/; ; = 0 with 7,5 € X,. For any

ke Xl,
0 =*
M (i jyx by = <* *>

so the length-2 sequende, j}, {j, k} is £L-M-derectangularising, contradicting the hypothesis of the
lemma (note thafi, j},{j,k} C X € L).
Second, we show that there is no sequefice. ., d, € X, of odd length such that

Md1,d2 = Mdmds == Mdthdz = Mdz,dl = *.

Suppose for a contradiction that such a sequence existse tNatM|x,« x, iS *-rectangular since
Xo, X is not anL-M-derectangularising sequence aidy, x x, is pure since Case 1 does not apply.
We will show by induction that for every non-negative intege< (¢ — 3)/2, Mg, 4, ,. , = *. This
gives a contradiction by taking = (¢ — 3)/2 since My, 4, = * and we have already shown that
M| x,xx, has no« on its diagonal. For every, the argument follows by considering the mathik, =
Mtd, dy s 1¥x{de_sn_2.de_ox}- The definition of the sequeneg, . . ., d; together with the symmetry
of M guarantees that both entries in raw ,,._; of M, are equal ta. Itis also true thaby, 4, ,.
If ¥ = 0 then this follows from the definition of the sequence; othisewt follows by induction. The
fact thatMy, 4, ,. , = * then follows byx-rectangularity.

This second structural property implies that, for adyx » x-partition of G[Vx], the graph induced
by vertices assigned t&, has no odd cycles, and is therefore bipartite. Similarky,whrtices assigned
to X7 induce the complement of a bipartite graph. Therefore,/dnpartition of G that respectd, must
respect at least one of thig, . . ., Ly, So it respects exactly one of them, as required.

= x.

Case 3. Since Cases 1 and 2 do not apply ahis not M -purifying, there are distinck, Y € £ such
that X andY” are inclusion-maximal it andM | x «y is not pure. As in the previous case, the sgEts
X1, Yy andY; are all non-empty.
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Algorithm 7 Case 3 in Algorithni 4.
Choose inclusion-maximaX andY in £ so thatM | x «y is not pure
Let Xy C X be the set of rows al/ | x «y that contain &
X1+ X \ XQ
LetYy C Y be the set of columns df/ | x «y that contain &
Vi« Y\Y,
Vx < {v; € V(G) | L(vj) = X}
Vy «{v; € V(G) | L(v;) =Y}
if Vx =0orVy = (thenreturn L
else
Let F be the set of edges ¢ betweenVy andVy
Use the algorithm promised in Lemm&]22 to produce a subcubeonggosition
(Ul, U{), ey (Uk, U]/C) of (Vx, Vv, E)
for i € [k],j € [n] do
if v; € Vx and the projection of/; onv; is {0} then
Li(v;) < Xo
else ifv; € Vx and the projection of/; onwv; is {1} then
LZ'(UJ‘) — X1
else ifv; € V3 and the projection o/ onwv; is {0} then
LZ'(UJ‘) < Yb
else ifv; € V3 and the projection of/; onwv; is {1} then
Li(vj) «~Y"
else
Li(vj) < L(vj)
return Lq,..., Lx

If either Vx or V- is empty then eitheX or Y is an inclusion-maximal set ig that is not in the
image of L so the output of Algorithnfil]7 is correct. Otherwisé/,, U7), ..., (U, U}) is a subcube
decomposition of the bipartite subgraf¥iy, Vy-, E). TheU;s are subcubes df), 1}Vx and thel/s are
subcubes of0, 1}"¥. The algorithm returng.,, . .., L;.

Note that if{U/| = 1 thenY is not in the image of;. Similarly, if |U/| > 1 but|U;| = 1 then
X is not in the image of;. The definition of subcube decompositions guarantees ftiragveryi, at
least one of these is the case. To show this definitioh0f . . , L, is a correct output for the problem
#L-M-PURIFY-STEPR, we must show that any/-partition of G that respectd. also respects exactly one
L;. Since the sets ifU; x U/ | i € [k]} are disjoint subsets d, 1}'xY¥ | any M-partition of G that
respectsl respects at most onk; so it remains to show that evef -partition of G respects at least
oneL;. To do this, we deduce two structural properties\bfy »y .

First, we show that every entry dff | x,«v; is 0. The definition ofX, guarantees that every row
of M|x,xy, contains &. Since Case 1 does not apply, ahtlis symmetric, every entry a¥/|x, xv;
is either0 or . Suppose for a contradiction thaf; ; = « for some(i,j) € X x ¥j. Pické' € X;.
For any;’ € Y, \ {j} we haveM, ; = M;; = My j; = *, S0 byx-rectangularity ofA/|x .y, we have
M; jo = *. Thus, every entry oM | ;1 .y, is *, so there is & in everyYy-indexed column of\/. By the
same argument, swapping the roles\ondY’, every entry inM | x, <y, iS *, contradicting the fact that
M| xxy contains & sinceM|x «y is not pure.

Second, a similar argument shows that every ent/of, «y; is 1.

Thus for all M-partitionso of G respectingL, for all z € Vx andy € Vy, if (z,y) € E then
(o(x),0(y)) ¢ Xo x Yy while if (z,y) ¢ E then(o(x),0(y)) ¢ X1 x Y1. Using the definition of
subcube decompositions, this shows that &fwpartition of G respectingl. respects some;. O
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Algorithm 8 A trivial algorithm for the problem £-M -PURIFY for the case in whiclL is M -purifying.
function #£-M-PURIFY(G,L) return L

Algorithm 9 A polynomial-time algorithm for the problem&t M -pPurIFY whenL C P (D) is subset-
closed and is nof\/-purifying and there is no length-£-M-derectangularising sequence. This al-
gorithm calls the function #-M-PURIFY-STEP from Algorithm[4. It also calls the function-M -
PURIFY for various listsZ; which are shorter thad. These functions are defined inductively in Algo-
rithm[8 and here.
function #£-M-PURIFY(G,L)
I* O € L sinceL is subset-closed. Sinagis not M-purifying, £ # {0}, hencelL| > 1 */
Let B be the empty sequence of list functions
Ly,..., Ly < #L-M-PURIFY-STERG, L)
for i € [k] do
Li « Upev (e P(Li(v))
Ly, .. L < #L£;-M-PURIFY(G, L;)
Add Lj,...,L;to B
return B

We can now give an algorithm for the problemi #/-pPURIFY. The algorithm consists of the func-
tion #£-M-PURIFY, which is defined in Algorithral8 for the trivial case in whighis M -purifying and
in Algorithm[9 for the case in which it is not. Note that for afiyed £ and M the algorithm is defined
either in Algorithm[(8 or in Algorithn P and the functionf#M -PURIFY is not recursive. However,
the definitionis recursive, so the function M -PURIFY defined in Algorithni® does make a call to a
function #;-M -PURIFY for someL; which is smaller tharC. The function #£,-AM -PURIFY is in turn
defined in Algorithni8 or Algorithni]9. The correctness of tihgoaithm follows from the definition of
the problem. The following lemma bounds the running time.

Lemma 25. Let M € {0,1,*}P*P be a symmetric matrix and lef C P(D) be subset-closed. If
there is no lengti? £-M-derectangularising sequence, then the functdh M -PURIFY as defined in
Algorithmd8 and® is a polynomial-time algorithm for the lplem#.L- M -PURIFY.

Proof. Note that( is a fixed parameter of the problen£#\/-PURIFY — it is not part of the input. The
proof is by induction or{£|. If |£| = 1 thenL = {0} so it is M-purifying. In this case, function £
M-PURIFY is defined in AlgorithniB. It is clear that it is a polynomiakhe algorithm for the problem
#L-M-PURIFY.

For the inductive step suppose thét > 1. If £ is M-purifying then function #-M-PURIFY is
defined in AlgorithniB and again the result is trivial. Oth&msy function #£-M-PURIFY is defined in
Algorithm[d. Note thatC C P(D) is subset-closed and there is no lengtid- M/ -derectangularising
sequence. From this, we can conclude that, for any subsstatlsubsef’ of £, there is no length-L’-
M-derectangularising sequence. So we can assume by theiuedugpothesis that for all subset-closed
L' C L, the function #£'-M-PURIFY runs in polynomial time.

The result now follows from the fact that the functiof#/-PURIFY-STEPruns in polynomial time
(as guaranteed by Lemral24) and from the fact that €adk a strict subset of, which follows from
the definition of problem £-M-PURIFY-STER. EachM -partition that respectg respects exactly one
of L1,..., L, and, hence, it respects exactly one of the list functionsishaturned. O

5.3 Algorithm for #£-M-PARTITIONS and proof of the dichotomy

We can now present our algorithm for the problef#/-PARTITIONS. The algorithm consists of the
function #£- M -PARTITIONS which is defined in Algorithni_10 for the case in whi¢his M -purifying
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Algorithm 10 A polynomial-time algorithm for the problemZ#M-PARTITIONS when L is subset-
closed andV/-purifying and there is n&- M -derectangularising sequence.
function #£-M-PARTITIONS(G,L)
(V,C) <+ the instance oftCSP(I'z )s) obtained by applying the polynomial-time Turing reduc-
tion from Proposition_1I5 to the inpyt7, L)
return AC(V,C') where AC is the function from Algorithiinl 3

Algorithm 11 A polynomial-time algorithm for the problemZ#M-PARTITIONS when L is subset-
closed and nof/-purifying and there is n&- M -derectangularising sequence. The algorithm calls the
function #C-M-PURIFY(G, L) from Algorithm[9.
function #£-M-PARTITIONS(G,L)
Ly,...,L; < #L-M-PURIFY(G, L)
Z <+ 0
for i € [t] do
Li < Uyev(a) P(Li(v))
(V,C;) <« the instance of:CSP(I'z, ) obtained by applying the polynomial-time Turing
reduction from Proposition 15 to the inp{(, ;)
Z; + AC(V, C;) where AC is the function from Algorithiin 3

44— 7Z+7Z;
return 7

and in Algorithm11 when it is not.

Lemma 26. Let M ¢ {0,1,*}P*P be a symmetric matrix and le C P(D) be subset-closed. If
there is noL-M-derectangularising sequence, then the functidh M -PARTITIONS as defined in Al-
gorithmdg 10 and 11 is a polynomial-time algorithm for thelemn#L£- M -PARTITIONS.

Proof. If £ is M-purifying then the function £-M-PARTITIONS is defined in AlgorithniI0. Proposi-
tion[13 shows that the reduction in Algoritiml 10 to a CSP imstais correct and takes polynomial time.
The CSP instance can be solved by the function AC in Algoriiwhose running time is shown to be
polynomial in Lemm&_18.

If £is notM-purifying then the function £- M -PARTITIONS is defined in Algorithni IlL. Lemnia 25
guarantees that the functionC#\/-PURIFY is a polynomial-time algorithm for the problemC#M -
PURIFY. Ifthe list L1, ..., L; is empty then there is nd/-partition of G that respectd. so it is correct
that the function £- M -PARTITIONS returns0. Otherwise, we know from the definition of the problem
#L-M-PURIFY that

e functionsLy,..., L, are fromV(G) to L,

o for eachi € [t], the se{L;(v) | v € V(G)} is M-purifying,

e for each: € [t] andv € V(G), L;(v) C L(v), and

e eachM -partition of G that respectd. respects exactly one dfy, ..., L;.

The desired result is now the sum, overdadt [¢], of the number of\/-partitions ofG that respect;.
Since the listZ4, . . ., L; is generated in polynomial timejs bounded by some polynomial jir (G)|.
Now, for eachi € [t], £; is a subset-closed subset®f Since there is n&€-M-derectangularising
sequence, there is also mh-M-derectangularising sequence. Als®, is M-purifying. Thus, the
argument that we gave for the purifying case shows fhas the desired quantity. O

We can now combine our results to establish our dichotomyhiiproblem #£- M -PARTITIONS.
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Theorem[3. Let M be a symmetric matrix if{0, 1, *}”*P and letZ C P(D) be subset-closed. If
there is anC-M-derectangularising sequence then the problein\#-PARTITIONS is #P-complete.
Otherwise, it is inf'P.

Proof. Suppose that there is air M -derectangularising sequenés, ..., D,. Recall (from Defini-
tion[2) the definition of the subset-closuseL”) of a setl” C P(D). Let

L' =8({D1,...,Dy}).

Since{Dy,..., Dy} is M-purifying, so is£’, which is also subset-closed. It follows th,,, is
well defined (see Definitidn12) and contains the reIatth#hDQ, . 7H1A>4;€71,Dk (and possibly others).
SinceHp p, oHJ, p.o---oHp 1 isnotrectangulastCSP (I ) is #P-completel[4, Theorem 2
and Corollary 3] (see alsb][8, Lemma 24]). By ProposifiohthB,problem #£’- M/ -PARTITIONS is #P-
complete so the more general problel-#/-PARTITIONS is also#P-complete. On the other hand, if
there is naC-M-derectangularising sequence, then the result follows fremmd 26. O

6 Complexity of the dichotomy criterion

The dichotomy established in Theoréin 9 is that, if there i€aW -derectangularising sequence, then
the problem #£-M-PARTITIONS is #P-complete; otherwise, it is ifrP. This section addresses the
computational problem of determining which is the casegigiy and M.

The following lemma will allow us to show that the problenxIETSDERECTSEQ (the problem
of determining whether there is &t.L)-M-derectangularising sequence, givérand M) and the re-
lated problem MTRIXHASDERECTSEQ (the problem of determining whether there isPaD)-M-
derectangularising sequence, givkef) are both inNP. Note that, for this “meta-problem’s and M
are the inputs whereas, previously, we have regarded thémxedsparameters.

Lemma 27. Let M € {0, 1,*}P*P be symmetric, and lef C P(D) be subset-closed. If there is an
L-M-derectangularising sequence, then there is one of lengtost512(| D3 + 1).

Proof. Pick an£-M-derectangularising sequents, . .., Dy with & minimal; we will show thatt <
512(|DJ3 + 1). Define

M M oM
R= HD17D2 ° HD27D3 © © HDkflka'

Note thatk C D, x D,. By the definition of derectangularising sequence, theearad’ € D, and
b, € Dy such that(a,b), (a/,b) and(a, ') are all inR but (a/,b’) ¢ R. So there exist

(ﬂUlv--ka‘)?(yh---7yk)7(2'17---72'k)GDl X"'XDk

with (z1,21) = (a,b), (y1,yx) = (a’b) and (z1,2;) = (a,b’) such thathl,, ,, ., = My, ..., =
M., ..., = = foreveryi € [k — 1] but, for any(wy, ..., wi) € Dy X -+ X Dy With (w1, wy,) = (a/,b'),
there is an € [k — 1] such thatM,,, ., , # *.

Setting D} = {z;,y;, 2} for eachi gives anL-M-derectangularising sequené¥ , ..., D; with
|D}| < 3 foreachl <i < k. (Note that any submatrix of a pure matrix is pure.) Forlalf s < ¢ < k
define

M M M
R, =H oH o---oH .
st D-,S7Dls+1 ls+17D.,s+2 é—l’Dé

SinceD}, ..., D, is L-M-derectangularisingk, j is not rectangular but, by the minimality &f every
otherR; ; is rectangular. Note also that ity ; = () since, if that were the case, we would ha¥e, = 0,
which is rectangular.

Suppose for a contradiction that> 512(| D] + 1). There are at mosD|? + 1 subsets oD with
size at most three, so there are indites ig < i1 < iy < -+ < i519 < k such tha'ng0 =...=D/

15127
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There are at most”o!” — 1 < 29 — 1 = 511 non-empty binary relations ob; , SO Rii,, = Rig,
for somel < m < n < 512. SinceR, j, is not rectangular,

Ry = Ruiy © Rigi,, © Ri kb = Rujig © Rig iy, © Bi ko = Ry, © Riy i

is not rectangular. Thereford);, Dy,...,D; ,Dj,.; ,D5 ; ,...,Dj is anL-M-derectangularising

sequence of length less thancontradicting the minimality of. O
Now that we have membership NP, we can prove completeness.
Theorem[10. EXISTSDERECTSEQ is NP-complete under polynomial-time many-one reductions.

Proof. We first show that BISTSDERECTSEQ is in NP. GivenD, M € {0,1,*}”>*P andL C P(D),
a non-deterministic polynomial time algorithm forxESTSDERECTSEQ first “guesses” ar§(L)-M -
derectangularising sequenés, ..., Dy with k& < 512(|D|? + 1). Lemmal2¥ guarantees that such a
sequence exists if the output should be “yes”. The algorithem verifies that each; is a subset of a
setinZ, that{D;, ..., D;} is M-purifying, and that the relatiod ) ;, o H}\ , o---o H{‘{Q_l’Dk is
not rectangular. All of these can be checked in polynomimétwithout explicitly constructing(£).

To show that KISTSDERECTSEQ is NP-hard, we give a polynomial-time reduction from the well-
known NP-hard problem of determining whether a grag@thas an independent set of size

Let G andk be an input to the independent set problem. Vét) = [n] and assume without loss
of generality thak € [n]. SettingD = [n] x [k] x [3], we construct & x D matrix M and a sef_ of
lists such that there is &1 £)-M -derectangularising sequence if and onlgzihas an independent set
of sizek.

M will be a block matrix, constructed using the followiAg« 3 symmetric matrices. Note that each
is pure, apart fronid.

x *x 0 * 0 0 * 0 0
Mgtare = | * * 0 Meng= 10 =x *) Mbij— 0 * 0
0 0 = 0 x = 0 0 =«
0 0 0 1 00
0=(0 0 O Id(() 1 0.
0 00 0 0 1

=

Forv € [n]andj € [k], letD[v, j] = {(v, j,¢) | c € [3]}. Below, when we say thal/ | p(, jix D[,
N for some3 x 3 matrix N, we mean more specifically thaf(, ; .y (i) = Ne forall c,c’ € [3].
M is constructed as follows.

e Forallv e [n]1 M|D[U,1]><D[U,1] = Mgtart andM|D[v,k}XD[v,k} = Mena-

e Forallv € [nJand allj € {2,...,k — 1}, M|pjy jixDlv,j] = Mbij-

v,4]
o If v#, (v,0') ¢ E(G) andj < k, then
= MlppyjjxDpwr,j+1) = Mlpps j411x D j) = Moij @nd
- M’D[v,j}XD[v’,j’] = M’D[v’,j’}XD[v,j] = 0 for all j/ >+ 1.
e Forallv,v’ € [n] andyj, j" € [k] not covered aboveVl|p(, jix [ j1 = 1d.

To complete the construction, |&t = {DJv,j] | v € [n],j € [k]}. We will show thatG has an
independent set of sizeif and only if there is ar§(L£)-M -derectangularising sequence.
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For the forward direction of the proof, suppose thahas an independent sket= {vy,..., v} of
sizek. We will show that

D[’Ul, 1]5 D[Ula 1]5 D[UQa 2]5 D[U3a 3]5 v ’D[vk—ly k— 1]’D[vka k]?D[vka k]
(where the first and last elements are repeated and the atheersot) isS(L)-M-derectangularising.
Since there is no edge;, vy) € E(G) for i,i' € [k], the matrix M|pjy, ijx Dlv, i IS @lways one of

Mitart, Mena, Myi; andO, so it is always pure. Therefor@D(vq, 1], ..., D[vg, k|} is M-purifying. It
remains to show that the relation

M M M M
R = Hpu, 1],0l01,1) © HDlor,11,0(02,2) © @ HDlug_y 1], Dlwg.b] © H Doy K], Dlw 4]
is not rectangular.
Consideri € [k — 1]. Since(v;,vit1) ¢ E(G), M|pjv, i x Divi1,i+1] = Mbsij soHl]‘f[
is the bijection that associatés;, i, ¢) with (v, 41,7 + 1, ¢) for eache € [3]. Therefore,

Ui,i},D[U¢+1,i+1}

M M
Hp 1,0[01,21 ©* © HDjwy 1 k—1],D[wp. k]

is the bijection that associatés;, 1, c) with (v, k, c) for eache € [3]. We haveM|pyy, 1)x Djvy,1] =
MStart andM’D[vk7k}XD[vk7k} = Mend S0

Hl]\)d[vl,l},D[vl,l] = {((Ula 170)7 (1)1, 170/)) | = de [2]} U {((Uh L, 3)’ (Ula 173))}
Hl]\f[vk,k},D[vk,k] = {((Ulmk? 1)7 (Ukvka 1))} U {((Ukvkvc)v (Uk‘vkvcl)) ‘ G d e {273}}7
and, therefore,

R= {((Ulv 170)7 (Ukvkac,)) ’ G d e [3]} \ {((Ulv 173)7 (Ukaka 1))}7

which is not rectangular, as required.

For the reverse direction of the proof, suppose that theaa 8§ £)- M -derectangularising sequence
Dy, ..., D,,. The fact that the sequence is derectangularising imgles D;| > 2 for eachi € [m] —
see the remarks following Definitign 8. Each set in the seqeiéna subset of som@|v, j] in £ so for
everyi € [m] let v; denote the vertex ifm] and letj; denote the index ifk] such thatD; C Dlv;, j;].
Clearly, it is possible to have;, j;) = (v;, ji) for distincti andi’ in [m)].

We will finish the proof by showing tha¥ has a sizé: independent set. Let

_ M M
R = HD17D2 OO Hp, 1 Dp>

which is not rectangular because the sequen&¢dg- M -derectangularising. SincgDs, ..., D,,} is
M-purifying, and any submatrix dil with at least two rows and at least two columns is impure,\ever
pair (i,i') € [m)]? satisfiesM [ pyu, jx Dlv,j,] # 1d. This means that we cannot haug, v;/) € E(G)
for any pair(i,i’) € [m]? so the sel = {v1,...,v,,} is independent irGG. It remains to show that
|I| > k.

Observe that, it; = v;/, we must haveg; = j;» since, otherwise, the construction ensures that

M‘D[vuji]XD[Ui/ Jil = M’D[vi,ji}XD[viJi/} = 1d,

which we already ruled out. Therefoié| > [{ji,..., m}|-

We must havej; — ji41| < 1 for eachi € [m — 1] as, otherwiseM |piy, jx Dlvis1,jiri] = O
which implies thatkR = (), which is rectangular. There must be at least ore [m — 1] such that
v; = vip1 andy; = ji =1, soM\D[%ji]XD[UHM»M] = Mgars. If NOt, R is a composition of relations
corresponding ta\/y,;; and M,,q and any such relation is either a bijection, or of the form\af, 4,
so it is rectangular. Similarly, there must be at least osach thatv; = v; 11 andj; = ji+1 = k,
giving M |p(y, jx Dlvis1,jisa] = Mena- Therefore, the sequenge, . . ., j,, contains 1 and:. Since
|7: — jit1] < 1foralli € [m — 1], it follows that[k] C {ji,...,Jm}, SO|I| > k, as required. In fact,
{ji,--.,Jjm} = [k] since eachy; € [k] by construction. O
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We defined the problem>»>STSDERECTSEQ using a concise input representatidi{:L) does not
need to be written out in full. Instead, the instance is a suBiscontaining the maximal elements
of 8(£). For example, when the instanceds= {D}, we haveS(£) = P(D). Itis important to note
that theNP-completeness of HSTSDERECTSEQ is not an artifact of this concise input coding. The
elements of the lisC constructed in the NP-hardness proof have length at mase tiso the lis§(L)
could also be constructed explicitly in polynomial time.

Lemma 27 has the following immediate corollary for the coexjtly of the dichotomy criterion of
the general #LsT-M-PARTITIONS problem. Recall that, in this version of the meta-probleme, input
is just the matrix)M.

Corollary LI MATRIXHASDERECTSEQ is in NP.
Proof. TakeL = {D} in Lemm&2Y. O

7 Cardinality constraints

Finally, we show how lists can be used to implement cardipabnstraints of the kind that often appear
in counting problems in combinatorics.

Feder, Hell, Klein and Motwani [15] point out that lists cam bised to determine whether there are
M -partitions that obey simple cardinality constraints. &mmple, it is natural to require some or all of
the parts to be non-empty or, more generally, to containest lsome constant number of vertices. Given
aD x D matrix M, we represent such cardinality constraints as a funetiod — Z-,. We say that an
M -partitiono of a graphG satisfieghe constraint if, for eaci € D, |[{v € V(G) | o(v) = d}| > C(d).
Given a cardinality constraint', we write|C| = 3., C(d).

We can determine whether there is &frpartition of G = (V| E) that satisfies the cardinality
constraintC' by making at moskVHC' gueries to an oracle for the li8f -partitions problem, as follows.
Let L be the set of list functiong : V' — P(D) such that:

e forallv € V, eitherL(v) = D or |L(v)| = 1, and
e forall d € D, there are exactlg'(d) verticesv with L(v) = {d}.

There are at mosy/ ||C‘ such list functions and it is clear th&thas an)M -partition satisfyingC' if, and
only if, it has a listM -patrtition that respects at least ohe= L. The number of queries is polynomial
in |[V| as long as the cardinality constraifitis independent ofs.

For counting, the situation is a little more complicated,was must avoid double-counting. The
solution is to count allM -partitions of the input graph and subtract off those thilttéasatisfy the
cardinality constraint. We formally define the problerfyY+/-PARTITIONS as follows, parameterized
by aD x D matrix M and a cardinality constraint functiail: D — Zx.

Name. #C- M -PARTITIONS.
Instance. A graphG.
Output. The number of\/-partitions ofG that satisfyC'.

Proposition 28. #C'- M -PARTITIONS is polynomial-time Turing reducible t#LIST-M -PARTITIONS.

Proof. Given the cardinality constraint functiafi, let R = {d € D | C(d) > 0}: that is, R is the set
of parts that have a non-trivial cardinality constraintr Boy setP C R, say that an\/-partitiono of a
graphG = (V. E) failsonP if |[{v € V | o(v) = d}| < C(d) for all d € P. That s, ifo violates the
cardinality constraints on all parts iA (and possibly others, too). L&t be the set of all\/ -partitions
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of our given input grapt:. Fori € R, letA; = {oc € ¥ | o failson{i}} and letA = J;c Ai. By
inclusion-exclusion,

A== 7

N4

#CPCR ieP
= - Z (—1)|P‘|{a€2]afailsonPH.
0CcPCR

We wish to compute
|{o € ¥ | o satisfiesC}| = |5| — |4]

=2+ > (-)PI{o e x| ofaisonP}.
#CPCR

Therefore, it suffices to show that we can use lists to counf\fhpartitions that fail on each non-
empty P C R. For such a seP, let Lp be the set of list functiong such that

e forallv € V, eitherL(v) = D\ P or L(v) = {p} for somep € P, and
o forallpe P, [{veV|L(k)={p}}| <Clp).

Thus, the set of\/-partitions that respect sonme € Lp is precisely the set ol -partitions that fail
on P. Also, for distinctL and L’ in Lp, the set ofM-partitions that respedt is disjoint from the set
of M-partitions that respedt’. So we can computb{o— € ¥ | o fails onP}| by making|Lp| calls to
#LIST-M-PARTITIONS, noting thatl Lp| < |V|I°l. O

As an example of a combinatorial structure that can be repted as ai/-partition problem with
cardinality constraints, consider themogeneous paitistroduced by Chvatal and Shbihil[6]. A homo-
geneous pair in a graphl = (V, E) is a partition ofV into setsU/, W; andW, such that:

o [U|>2;

o |Wi| > 2or|Ws,| > 2 (or both);

e for every vertexv € U, v is either adjacent to every vertexifi; or to none of them; and
e for every vertexv € U, v is either adjacent to every vertexifi; or to none of them.

Feder et al.[[15] observe that the problem of determiningtidrea graph has a homogeneous pair
can be represented as the problem of determining whethasithM,,,-partition satisfying certain
constraints, wher® = {1,...,6} and

* x 1 0 1 0
*x x 1 1 0 O
1 1 % % % %
Mhp_ 0 1 * * * *
1 0 % % % %
0 0 * *x x =%

Wy corresponds to the set of vertices mapped to péaw 1 of My,,), W» corresponds to the set of
vertices mapped to pakt(row 2 of M,,;,), andU corresponds to the set of vertices mapped to [(3ais

In fact, there is a one-to-one correspondence between thedeneous pairs aff in which 1
andW, are non-empty and th&f,,,-partitionso of G that satisfy the following additional constraints.
Ford € D, let N,(d) = [{v € V(G) | o(v) = d}| be the number of vertices thatmaps to partl. We
require that
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L4 N0(3) + No(4) + No(5) + NU(G) > 2,
e N,(1) > 0andN,(2) > 0, and
e atleastonéV,(1) andN,(2) is at least.

To see this, consider a homogeneous péirlV;, Ws) in which 1W; and W, are non-empty. Note that
there is exactly oné/y,,-partition of G in which vertices ini/; are mapped to pattand vertices i/,
are mapped to pat and vertices irl/ are mapped to parts6. There is exactly one part available to
eachv € U sincev has an edge or non-edgelig; (but not both!) ruling out exactly two parts and
has an edge or non-edgeli, ruling out an additional part. Going the other way,dp,,-partition that
satisfies the constraints includes a homogeneous pair.

Now let

01
Mys = * %
*x ok

_ O %

There is a one-to-one correspondence between the homagepeis ofG in which W5 is empty and
the Mys-partitions ofG that satisfy the following additional constraints.

e At least two vertices are mapped to patts (vertices in these parts are ).
e At least two vertices are mapped to pafivertices in this part are ifi/;).

Symmetrically, there is also a one-to-one correspondeateden the homogeneous pairgbin which
W1y is empty and thé/¢-partitions ofG that satisfy the above constraints. (Partitions accortbnyg,
correspond to so-called “homogeneous sets” but we do nottheedetails of these.)

It is known from [9] that, in deterministic polynomial timé,is possible to determine whether a
graph contains a homogeneous pair and, if so, to find one. \dlg 8tat the homogeneous pairs in a
graph can also be counted in polynomial time. We start byideriag the relevant list-partition counting
problems.

Theorem 29. There are polynomial-time algorithms f@fLIST-M;,,-PARTITIONS and #LIST-Mj,s-
PARTITIONS.

Proof. We first show that there is a polynomial-time algorithm fon#t-M;,,-PARTITIONS. The most
natural way to do this would be to show that there isTh@)-M,,,-derectangularising sequence and
then apply Theorem 9. In theory, we could show that there I8 (10)-1,,,-derectangularising sequence
by brute force sincéD| = 6, but the number of possibilities is too large to make thisitea. Instead,
we argue non-constructively.

First, if there is ndP(D)-My,,-derectangularising sequence, the result follows fromofém[9.

Conversely, suppose thaty, ..., Dy is a’P(D)-My,-derectangularising sequence. Lidtbe the
matrix such thal\/; ; = 0 if (Myp);; = 1 andM; ; = (Mhyp )i, j, Otherwise.Dy, ..., Dy is also aP(D)-
M-derectangularising sequence, siriff,%y = H)]?};’ foranyX,Y C D and any sequenc®y, ..., Dy
is M-purifying becausel/ is already pure. Therefore, by Theoréin 9, counting li&tpartitions is
#P-complete.

However, counting the list/-partitions of a grapliz corresponds to counting list homomorphisms
from G to the 6-vertex graphH whose two components are an edge antddique, and which has
loops on all six vertices. There is a very straightforwardypomial-time algorithm for this problem
(a simple modification of the version without lists in [7])hds,#P = FP so, in particular, there is a
polynomial-time algorithm for counting list/;,,-partitions.

The proof that there is a polynomial-time algorithm forigi- M},s-PARTITIONS is similar. O
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Corollary 30. There is a polynomial-time algorithm for counting the homgous pairs in a graph.

Proof. We are given a grapty = (V, E) and we wish to compute the number of homogeneous pairs
that it contains. By the one-to-one correspondence giveiegat suffices to show how to court/;,,-
partitions andMs-partitions of G satisfying additional constraints. We start with the firstiese.
Recall the constraints on thi,,-partitionso that we wish to count:

o Na(3) + Na(4) + Na(5) + NO’(G) > 2,
e N,(1) >0andN,(2) > 0, and
e atleastoneV,(1) andN,(2) is at leas®.

Define three subsels,, 3 andX; » of the set ofM,,-partitions ofG that satisfy the constraints. In
the definition of each oE, X5 and}; o, we will require that part$ and2 are non-empty and pars6
contain a total of at least two vertices. i, partl must contain at least two vertices;Jh, part2 must
contain at least two vertices; M, 5, both partsl and2 must contain at least two vertices. The number
of suitableMy,-partitions ofG is |21 | + |Ea| — [X12].

Each of |X;], |X2| and|X; 2| can be computed by counting the,,-partitions of G that satisfy
appropriate cardinality constraints. Partand?2 are trivially dealt with. The requirement that padts
must contain at least two vertices between them is equivédesaying that at least one of them must
contain at least two vertices or at least two must contaieastlone vertex. This can be expressed with a
sequence of cardinality constraint functions and usinlygien—exclusion to eliminate double-counting.

Counting constrained/ys-partitions ofG is similar (but simpler). O

References

[1] B. Bollobas and A. Thomason. The structure of heredifmoperties and colourings of random
graphs.Combinatorica 20:173-202, 2000.

[2] A. Brandstadt. Partitions of graphs into one or two ipeledent stable sets and cliqudliscrete
Math,, 152:47-54, 1996.

[3] A. Bulatov. The complexity of the counting constraintistaction problem. IrProc. 35th Inter-
national Colloquium on Automata, Languages and Prograngnfi@ALP 2008) volume 5125 of
LNCS pages 646—661. Springer, 2008.

[4] A. Bulatov and V. Dalmau. Towards a dichotomy theoremtfe counting constraint satisfaction
problem.Inform. Comput.205(5):651-678, 2007.

[5] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomase Strong perfect graph theorem.
Ann. Math. (2) 164(1):51-229, 2006.

[6] V. Chvatal and N. Shihi. Bull-free Berge graphs are petf Graph. Combinatoy. 3:127-139,
1987.

[7] M. Dyer and C. Greenhill. The complexity of counting grapomomorphismsRandom Struct.
Algorithms 17(3—-4):260-289, 2000.

[8] M. Dyer and D. Richerby. An effective dichotomy for thewsting constraint satisfaction problem.
SIAM J. Compuyt42(3):1245-1274, 2013.

[9] H. Everett, S. Klein, and B. Reed. An algorithm for findihgmogeneous pairdiscrete Appl.
Math, 72(3):209-218, 1997.

28



[10] H. Everett, S. Klein, and B. Reed. An optimal algorithon finding clique-cross partitions. Froc.
29th Southeastern International Conference on CombingpiGraph Theory and Computing
volume 135, pages 171-177, 1998.

[11] T. Feder and P. Hell. List homomorphisms to reflexiveptnia J. Combin. Theory Ser.,B
72(2):236—-250, 1998.

[12] T.Feder and P. Hell. Full constraint satisfaction peafss. SIAM J. Comput.36(1):230—-246, 2006.

[13] T. Feder, P. Hell, and J. Huang. List homomorphisms drmliar arc graphs.Combinatorica
19(4):487-505, 1999.

[14] T. Feder, P. Hell, and J. Huang. Bi-arc graphs and thepbexity of list homomorphismsl. Graph
Theory 42(1):61-80, 2003.

[15] T.Feder, P. Hell, S. Klein, and R. Motwani. List paditis. SIAM J. Discrete Math16(3):449-478,
20083.

[16] T. Feder and M. Vardi. The computational structure ofn@ne monadic SNP and constraint
satisfaction: a study through Datalog and group theBhaAM J. Compuf.28(1):57—104, 1999.

[17] M. Golumbic. Algorithmic Graph Theory and Perfect GraphElsevier Science, second edition,
2004.

[18] P. Hell, M. Hermann, and M. Nevisi. Counting partitioosgraphs. InProc. 23rd International
Symposium on Algorithms and Computation (ISAAC 2042)me 7676 of NCS pages 227-236.
Springer, 2012.

[19] C. Lecoutre.Constraint Networks: Techniques and Algorithriéiley—IEEE Press, 2009.

[20] L. Lovasz. Normal hypergraphs and the perfect graptjemure. Discrete Math, 2(3):253-267,
1972.

29



	1 Introduction
	1.1 Dichotomy theorems for counting list M-partitions
	1.2 Polynomial-time algorithms and an explicit dichotomy
	1.3 Complexity of the dichotomy criterion
	1.4 Cardinality constraints

	2 Preliminaries
	3 Counting list M-partition problems and counting CSPs
	4 An arc-consistency based algorithm for #CSP(L, M)
	5 Polynomial-time algorithms and the dichotomy theorem
	5.1 Data Structures
	5.2 Reduction to a problem with M-purifying lists
	5.3 Algorithm for #L-M-partitions and proof of the dichotomy

	6 Complexity of the dichotomy criterion
	7 Cardinality constraints

