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Abstract

New explicit solutions to the incompressible Navier-Stokes equations in R2 \ {0} are determined,
which generalize the scale-invariant solutions found by Hamel. These new solutions are invariant
under a particular combination of the scaling and rotational symmetries. They are the only solutions
invariant under this new symmetry in the same way as the Hamel solutions are the only scale-
invariant solutions. While the Hamel solutions are parameterized by a discrete parameter n, the flux
Φ and an angle θ0, the new solutions generalize the Hamel solutions by introducing an additional
parameter a which produces a rotation. The new solutions decay like |x|−1 as the Hamel solutions,
and exhibit spiral behavior. The new variety of asymptotes induced by the existence of these
solutions further emphasizes the difficulties faced when trying to establish the asymptotic behavior
of the Navier-Stokes equations in a two-dimensional exterior domain or in the whole plane.
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1 Introduction

We study a new special class of solutions to the stationary incompressible Navier-Stokes equations in
Ω = R2 \ {0},

∆u−∇p = u · ∇u , ∇ · u = 0 , lim
|x|→∞

u = 0 . (1)

An important parameter which labels the solutions of this system is the flux,

Φ =
ˆ
γ

u · n , (2)

which is independent of the choice of any simple closed curve γ encircling the origin. The equations (1)
are invariant under two types of symmetries: the rotations around the origin u(x) 7→ R−1u(Rx), with
R ∈ SO(2) and the scaling u(x) 7→ λu(λx), with λ ∈ R. The solutions that are invariant under these
symmetries play a particular role (Wang, 1991, pp. 168-173) in the asymptotic behavior of the Navier-
Stokes equations, as explained later. Šverák (2011) studied in details the scale-invariant solutions of
the Navier-Stokes equations in dimension d ≥ 2. In three dimensions, the only scale-invariant solutions
are the Landau (1944) solutions, which decay like |x|−1 and are labeled by a vector in R3 whose
norm determines the force acting on the fluid. In two-dimensions, Šverák (2011, §5) showed that
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the only scale-invariant solutions of (1) are the Hamel (1917, §6) solutions. The Hamel solutions are
characterized by the flux Φ and a discrete parameter n ∈ N, with an additional parameter µ for n = 0.
In polar coordinates (r, θ) they are given for n = 0 by

uΦ,0 = Φ
2πrer + µ

r
eθ , (3)

where µ ∈ R is an a additional parameter, and by

uΦ,n = −1
r
ϕ(θ0 + θ)er , (4)

for n ∈ N∗ and 4 + Φ
π ≤ n2, where ϕ is a 2π

n -periodic function determined by n and Φ, and θ0 is an
angle that can be chosen arbitrarily. In view of their special form these solutions are scale-invariant,
i.e. u(x) = λu(λx). Moreover, it is interesting to note that in the case n = 0, and Φ 6= −4π, Hamel
(1917, §11) found one more free parameter A ∈ R since

uΦ,0,A = Φ
2πrer +

(
µ

r
+Ar1+ Φ

2π

)
eθ (5)

is an exact solution of (1) provided Φ < −2π. This solution in not scale-invariant and is bounded by
r−1 at infinity only for Φ ≤ −4π.
In what follows we look for solutions invariant under combinations of the scaling and rotational
symmetries. We say that a solution u of the Navier-Stokes equations (1) is scale-invariant up to a
rotation if there exists a rotation matrix Rλ ∈ SO(2) of continuously differentiable angle R(λ) such
that

λu(λx) = R−1
λ u(Rλx) , (6)

for all λ > 0. The scale-invariant solutions corresponds to the special case R(λ) ≡ 0. The aim of
this paper is to determine all solutions of (1) that are scale-invariant up to a rotation, with R(λ) a
continuously differentiable function and discuss their implications.
Our main result is the following:

Theorem 1. For all n ∈ N∗, Φ ∈ R and a ∈ R satisfying

4 + Φ
π

1 + a2 ≤ n
2 ,

there exists a 2π
n -periodic function ϕ depending on n, Φ, and a, such that for any θ0 ∈ R,

un,Φ,a = 1
r

[−ϕ(θ0 + θ + a log r)er + a (ϕ(θ0 + θ + a log r)− 4) eθ] , (7)

and the associated pressure (12) satisfy the Navier-Stokes equations (1). These solutions are invariant
under the symmetry (6) with R(λ) = −a log λ and have flux Φ. Moreover any solution of the Navier-
Stokes equations (1) which is invariant under the symmetry (6) for some continuously differentiable
rotation R(λ) is equal either to one of the exact solution un,Φ,a for an angle θ0, or to a Hamel solution
uΦ,0 defined by (3) with n = 0 for some µ ∈ R.

Remark 2. The ansatz for spiral solutions made by Hamel (1917, §9) does not allow solutions in the
plane with streamlines that are logarithmic spirals. The solutions with logarithmic spirals that he
found are only possible between two walls of logarithmic shape. The solutions presented here essentially
correspond to the intuition of Hamel to look for non-harmonic function in the plane having streamlines
that are spirals.
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Remark 3. The expression (7) is a solution of the Navier-Stokes equations in R2 \ {0}, but due to the
behavior near the origin like r−1, the non-linear term u · ∇u, even when written as ∇ · (u⊗ u), has
no immediate distributional meaning in R2. This is in contrast to the three-dimensional case where the
non-linear term of a scale-invariant solution is a distribution even if u diverges likes r−1 at the origin.
One can nevertheless always construct a solution to the Navier-Stokes equations in R2 by truncating
one of the exact solutions near the origin, and defining the source term by the truncation error. The
force and the torque of a solution u are given for any curve γ encircling the origin, by

F =
ˆ
γ

Tn , M =
ˆ
γ

x∧Tn ,

where T is the stress tensor including the convective part, T = u⊗ u + p−∇u− (∇u)T . By taking
for γ a circle whose radius goes to infinity, the force is zero, F = 0. By taking for simplicity the circle
of radius one, the torque is

M = a

(
16π + 6Φ +

ˆ +π

−π
ϕ2(θ) dθ

)
.

The study of scale-invariant solutions has proven to be of great importance, in particular for the
determination of the asymptotic behavior of the stationary Navier-Stokes equations in two or three
dimensions. The stationary and incompressible Navier-Stokes equations in the exterior domain
Ω = R2 \B of a compact, connected set B are

∆u−∇p = u · ∇u , ∇ · u = 0 ,
u|∂B = u∗ , lim

|x|→∞
u = 0 , (8a)

where u∗ is any smooth boundary condition with no net flux,
ˆ
∂B

u∗ · n = 0 . (8b)

Problem (8) is closely related to the one of the incompressible Navier-Stokes equations in R2,

∆u−∇p− u · ∇u = f , ∇ · u = 0 , lim
|x|→∞

u = 0 , (9)

where f is a smooth function of compact support. We remark, that the problems (8) and (9) are very
similar on a formal level: any solution of (8) defines a solution of (9) on the exterior of the support of
f , and conversely any solution of (8) can be truncated in order to obtain a solution of (9). In three
dimensions, Nazarov & Pileckas (1999, 2000) proved that the asymptotic behavior of solutions of (8)
is a scale-invariant solution. Then Korolev & Šverák (2011) simplified the proof by showing directly
that, in this case, the Landau solution is the correct asymptotic behavior of any solution bounded by
(1 + |x|)−1. In two dimensions, existence of solutions to (8) or (9) are not known in general (Galdi,
2004; Guillod & Wittwer, 2013), even for small data. The difference between two and three dimensions
is essentially that in three dimensions the compatibility condition of the Stokes approximation to decay
faster than r−1 at infinity corresponds to the force and can be lifted by the Landau solutions which are
exact solution of (9) with f(x) = bδ(x) where b ∈ R3 is the net force and δ is the Dirac distribution.
In two dimensions and in the case where f has non-zero mean, Guillod & Wittwer (2013) showed by
physical arguments and detailed numerical verification that the velocity has to decay like r−1/3 at
infinity. In the case where f has zero mean, one would guess by analogy with the three-dimensional
case that the asymptotic behavior should be a scale-invariant solution. However, Šverák (2011, §5)
shows that one can not prove this by using perturbation techniques based on the Stokes approximation,
and even together with the newly discovered solutions, we do not appear to be able to parameterize
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the general asymptotic behavior in the case where f has zero mean. The intuitive reason for this is
the fact that the Stokes approximation has two compatibility conditions if we require the solution to
decay faster than r−1 at infinity: one of them might be lifted by adjusting the parameter a of the new
solutions, but we do not have sufficient parameters to lift also the other compatibility condition. We
believe that the newly discovered solutions are a special case of a more general family of solutions, yet
to be discovered, with one more parameter, corresponding to the general asymptotic behavior in the
case where f has zero mean.

The paper in organized as follow. We first prove that the solutions which are scale-invariant up to
a rotation are given explicitly in term of a 2π-periodic function ϕ satisfying an ordinary differential
equation, and then we solve this differential equation by using elliptic functions. Finally we represent
the solutions graphically, analyze the solutions having small amplitude, and discuss the implications
for the solutions of Navier-Stokes equations.

2 Reduction to an ordinary differential equation

We consider a solution u which is scale-invariant up to a rotation as defined in (6). In polar coordinates
(r, θ) this symmetry is more easily expressed,

λur(λr, θ) = ur(r, θ −R(λ)) , λuθ(λr, θ) = uθ(r, θ −R(λ)) .

Therefore, by setting λ = r−1, ur and uθ are characterized by their values on S1,

ur(r, θ) = 1
r
ϕr(θ +R(r−1)) , uθ(r, θ) = 1

r
ϕθ(θ +R(r−1)) ,

where ϕi(θ) = ui(1, θ) for i ∈ {r, θ}. The divergence of the vector field u = urer + uθeθ is

∇ · u = 1
r2

[
ϕ′θ(z)− r−1R′(r−1)ϕ′r(z)

]
,

where z = θ +R(r−1). The requirement of u to be divergence free therefore implies that

R(λ) = θ0 − a log λ , ϕθ(z) = µ− aϕr(z) ,

where a, θ0 and µ are real constants. Consequently, a divergence free vector field satisfies the symmetry
(6), if and only if R(λ) = θ0 − a log λ, and if it has the form

u = 1
r

[−ϕ(z)er + (µ+ aϕ(z)) eθ] , z = θ0 + θ + a log r , (10)

where ϕ is a 2π-periodic function. The corresponding stream function ψ, defined such that u =∇∧ψ,
is

ψ(r, θ) = µ log r + Γ(z) ,

where Γ is an antiderivative of ϕ.

We now determine the ordinary differential equation which ϕ has to satisfy in order for u to be an
exact solution of (1). The vorticity is

ω = 1 + a2

r2 ϕ′(z) ,

and the vorticity equation
∆ω = u · ∇ω
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becomes, after an explicit integration, the following ordinary differential equation(
1 + a2

)
ϕ′′(z)− (µ+ 4a)ϕ′(z) + 4ϕ(z) = ϕ(z)2 − C , (11)

where C ∈ R is a constant related to certain averages of ϕ. By integrating the Navier-Stokes equations
we can construct the pressure,

p = 1
r2

[
a
(
1 + a2

)
ϕ′(z)−

(
2
(
1 + a2

)
+ aµ

)
ϕ(z)

]
− 1

2r2

[
µ2 + C

(
1 + a2

)]
. (12)

This shows that the only solutions of (1) which are scale-invariant up to a rotation are given by (10)
and (12) where ϕ is a 2π-periodic function satisfying (11). The differential equation (11) is analog to
the one describing the motion of a particle in a potential undergoing friction, and in order to obtain
periodic solutions, the damping term has to vanish, i.e. µ + 4a = 0. So we finally end up with a
differential equation with two parameters: a and C. In the next section we find the periodic solutions
of this differential equation.

3 Resolution of the ordinary differential equation

The ordinary differential equation (11) is clearly invariant under the translation z 7→ z + θ0, so we do
not keep track of this trivial symmetry and fix the origin later on in a convenient way. The trivial
solutions where ϕ is constant are not included in this analysis, since they correspond to the Hamel
solutions (3). As explained above, in order to obtain periodic solutions we have to take µ+ 4a = 0, and
therefore the ordinary differential equation (11) can be written as the differential equation describing a
free particle in a potential,

ϕ′′ = −V ′(ϕ) , V (ϕ) = 1
1 + a2

[
Cϕ+ 2ϕ2 − ϕ3

3

]
.

Finding the solutions of such an equation is rather standard (Rosenhead, 1940; Šverák, 2011, Theorem
2). The energy is conserved so

E = 1
2
(
ϕ′
)2 + V (ϕ) , ϕ′ = ±

√
2E − 2V (ϕ) .

Since we look for non-trivial periodic solutions, the potential has to have a minimum, so C > −4, and
the energy has to be between the maximum and the minimum admissible values,

2
3
(√

C + 4− 2
) (√

C + 4− 2− C
)
<
(
1 + a2

)
E <

2
3
(√

C + 4 + 2
) (√

C + 4 + 2 + C
)
.

These two conditions imply that the polynomial 2E−2V (ϕ) has three distinct real roots, ϕ1 < ϕ2 < ϕ3,
and by Vieta’s formulas,

ϕ1 + ϕ2 + ϕ3 = 6 . (13)

Therefore,
2E − 2V (ϕ) = 2

3 (1 + a2) (ϕ− ϕ1) (ϕ− ϕ2) (ϕ− ϕ3) ,

and the solution is given in term of the incomplete elliptic function of the first kind F ,

z(ϕ) =
√

3
2
√

1 + a2
ˆ ϕ

ϕ1

dϕ√
(ϕ− ϕ1) (ϕ− ϕ2) (ϕ− ϕ3)

=
√

6
√

1 + a2
√
ϕ3 − ϕ1

F

(√
ϕ− ϕ1
ϕ2 − ϕ1

;α
)
,
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where

α =
√
ϕ2 − ϕ1
ϕ3 − ϕ1

.

We take the following convention for the elliptic integral F (Gradshteyn & Ryzhik, 2007, §8.1),

F (x;α) =
ˆ x

0

dt√
(1− t2) (1− α2t2)

=
ˆ arcsinx

0

dθ√
1− α2 sin2 θ

.

The function ϕ is 2π-periodic if there exists n ∈ N∗ such that

z(ϕ2) = π

n
,

i.e., explicitly,
2
√

1 + a2K(α)√
ϕ3 − ϕ1

=
√

2
3
π

n
, (14)

where K is the complete elliptic function of the first kind. The flux is given by

Φ =
ˆ
∂Ω

u · n =
ˆ
∂B(0,1)

u · er = −
ˆ +π

−π
ϕ(z) dz = −2n

ˆ π/n

0
ϕ(z) dz ,

and, explicitly, by using the complete elliptic function of the second kind E,

Φ = −n
√

6
ˆ ϕ2

ϕ1

√
1 + a2 ϕdϕ√

(ϕ− ϕ1) (ϕ− ϕ2) (ϕ− ϕ3)
= −2

√
6n
√

1 + a2
√
ϕ3 − ϕ1

[ϕ3K(α)− (ϕ3 − ϕ1)E(α)] . (15)

The conditions (13), (14) and (15) reduce to

H(α) = 1
n2 (1 + a2)

(
π2 + πΦ

4

)
, H(α) =

[(
α2 − 2

)
K(α) + 3E(α)

]
K(α) . (16)

Since the function H is monotonic for α > 0 and its image is
(
−∞, π2

4

]
, this equation has a unique

solution αn > 0 for each n ∈ N∗ satisfying

4 + Φ
π

1 + a2 ≤ n
2 . (17)

Since the equation determining α is continuous with respect to a and Φ, the solution ϕ depends
continuously on a and Φ inside the region defined by (17).

4 Discussion of solutions

For n ∈ N∗, the exact solution uΦ,n,a exists provided condition (17) is satisfied. The corresponding
region in the plane (a,Φ) is represented in figure 1. Moreover, for n = 0, the Hamel solution uΦ,0,A
defined by (5) with A 6= 0 exists for Φ < −2π and decays like r−1 at infinity if Φ ≤ −4π, and less
rapidly if −4π < Φ < −2π. The linearization of the Navier-Stokes equations around the harmonic
function (3) with µ = −4a, can be solved exactly by the use of a Fourier series (Hillairet & Wittwer,
2013). The Fourier modes which are not zero decay faster than r−1 provided a condition on Φ and µ
holds. This condition is represented in figure 1 by a red curve, so that for all values above the curve
the Fourier modes decay faster than r−1 at infinity. The zero-flux case, was treated by Hillairet &
Wittwer (2013), and they found that provided |a| >

√
3, the Navier-Stokes equations in the exterior of
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a unit disk with a Dirichlet boundary condition sufficiently close to −4aeθ admits a solution whose
asymptote in given by −4ãeθ/r where ã is close to a.

For a given n, the solution ϕ has n maxima and n minima (figure 3) and the parameter a has the
effect of rotating the branches corresponding to these maxima or minima, as shown in figure 4. Small
solutions of (1) are of particular interest because even in this case we don’t know the existence of a
solution in general. Certain large solutions of the Navier-Stokes equations are known to exhibit exotic
behavior at infinity, like for example the Hamel solutions which have arbitrary slow decay to infinity
and violate uniqueness (Galdi, 2011, XII.2). Small solutions of the ordinary differential equation are
given by α small, and to discuss these solutions we develop H(α) in a series,

H(α) = π2

4

(
1− 3

32α
4
)

+O(α6) .

In view of (16), small solutions with Φ = 0 are only possible for n ∈ {1, 2}. For n = 1 and Φ = 0, the
solutions are defined for |a| ≥

√
3, and we take for example a =

√
3 + ε, with ε > 0. We find by a series

expansion, that

α =
(256

3

)1/8
ε1/4 +O(ε1/2) ,

and

ϕ1 = −4 33/4ε1/2 +O(ε) , ϕ2 = 4 33/4ε1/2 +O(ε) , ϕ3 = 6 +O(ε) ,

and the solution satisfies
ϕ(z) = −4 33/4ε1/2 cos(z) +O(ε) .

Since in this case |a| has to be large, we note that this does not produce a solution having a small
velocity field, and the torque is also large, M = 16π

√
3 + O(ε). Moreover, since µ + 4a = 0, this

corresponds to |µ| ≥
√

48. This specific value is interesting since this is exactly the criterion found
by Hillairet & Wittwer (2013) to obtain a solution of the Navier-Stokes equations (8) having the
asymptote µeθ/r for the velocity. We note that this is not in contradiction with the existence of
the exact solutions found here, because the boundary condition given by the evaluation of the exact
solution for a =

√
3 + ε is too big for the theorem of Hillairet & Wittwer (2013) to apply.

For n = 2, we can take a = ε, so

α =
(32

3

)1/4
ε1/2 +O(ε) ,

and

ϕ1 = −4
√

6 ε+O(ε2) , ϕ2 = 4
√

6 ε+O(ε2) , ϕ3 = 6 +O(ε2) ,

and the solution satisfies
ϕ(z) = −4

√
6 ε cos(2z) +O(ε2) .

The torque of this solution is given by M = 16πε+O(ε2).

We now discuss the consequences of the existence of the newly found solutions for the solutions of the
Navier-Stokes equations (9) in R2. For the reasons explained in the introduction, if f has non-zero mean,
the solution can not decay like r−1. Therefore, the new solutions describe, at best, the asymptotes
of solutions for the case where f has zero mean. To discuss this question, we consider the Stokes
approximation,

∆u−∇p = f ,
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with f having zero mean. The asymptotic behavior of the solution to this equation is

u = −1
4πr

[(
cos(2θ)

ˆ
R2

(x1f1 − x2f2) + sin(2θ)
ˆ
R2

(x1f2 + x2f1)
)

er +
ˆ
R2

(x∧ f) eθ

]
+O(r−2) ,

By rotating the coordinates system, we can always make
´
R2 (x1f2 + x2f1) = 0, so that the Stokes

approximation has two compatibility conditions: the torque
´
R2 (x∧ f) and

´
R2 (x1f1 − x2f2) which

are represented in figure 2. Even if the small solution found for n = 2 has the appropriate form cos(2z)
which is similar to the cos(2θ) of the Stokes solution, the asymptotic behavior is likely not described
by this exact solution alone, because only one of the compatibility conditions can be lifted by this
exact solution. In addition, we note that there are two exact solutions decaying like r−1 and having
arbitrary small torque: the harmonic function µeθ/r and the new solution for n = 2. This emphasizes
the wide variety of asymptotic behavior of the solutions to (9) with small data, since by truncating one
of these solutions near the origin we obtain an exact solution in R2 with a certain small source term.
In fact, numerical studies make us believe that even if the source term has zero mean, the solution of
(9) is in general not bounded by r−1.

−3 −
√

3 −1 0 1 √
3 3

−4π

−2π

0

2π

4π
n ≥ 3 n ≥ 2

n ≥ 1

n ≥ 0

n ≥ 0 and bounded by r−1 at infinity

a

Φ

Regions in parameter space where the exact solutions exist

Figure 1: Regions in the (a,Φ)-plane where the exact solutions uΦ,n,a and uφ,0,A exist. For n ≥ 1, the
exact solutions uΦ,n,a exist in the region below the parabolas filled in blue. For n = 0, the solution
uφ,0,A exists for Φ < −2π and decays like r−1 if Φ ≤ −4π; these regions are colored in green. The red
curve represents the critical line above which the linearization of the Navier-Stokes equations around
the harmonic function (3) with µ = −4a decays to infinity faster than r−1.
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0 1

0

1
Stokes flow r−1eθ

0 1

0

1
Stokes flow r−1 cos(2θ)er

0

0.5

1

Figure 2: Representation of the velocity vector field produced by the two solutions of the Stokes
equations decaying like r−1 . The first one is generated by the torque

´
R2 (x∧ f) and the second one

by
´
R2 (x1f1 − x2f2).

−π -π/2 0 π/2 π

−10

0

10
Solutions for n = 1 and Φ = 0

−π -π/2 0 π/2 π
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Solutions for n = 2 and Φ = 0

−π -2π/3 -π/3 0 π/3 2π/3 π

−40
−20

0
20

Solutions for n = 3 and Φ = 0

−π -π/2 0 π/2 π

−50

0

50
Solutions for n = 4 and Φ = 0

a =
√

3 + 0.0 a =
√

3 + 0.4 a =
√

3 + 0.8 a = 0.0 a = 0.4 a = 0.8

Figure 3: Periodic solutions ϕ of the differential equation (11) for Φ = 0 and n ∈ {1, 2, 3, 4}. For n = 1,
the solution start to exists for |a| >

√
3, so that is why in this case the values of a start at

√
3. As

shown above the solutions are 2π
n -periodic.
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Figure 4: Representation of the velocity vector field (7) in case of zero flux, Φ = 0, for different values
of n and a. The black lines represent the streamlines and the color the strength of the field r |u|. By
increasing the value of |a|, the n branches where the velocity is high rotate more rapidly.
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