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Abstract

We obtain an algorithmic meta-theorem for the following optimization problem. Let ϕ
be a Counting Monadic Second Order Logic (CMSO) formula and t ≥ 0 be an integer. For
a given graph G = (V,E), the task is to maximize |X| subject to the following: there is a
set F ⊆ V such that X ⊆ F , the subgraph G[F ] induced by F is of treewidth at most t,
and structure (G[F ], X) models ϕ, i.e. (G[F ], X) |= ϕ. Special cases of this optimization
problem are the following generic examples. Each of these special cases contains various
problems as a special subcase:

• Maximum Induced Subgraph with ≤ ` copies of Fm-cycles, where for fixed
nonnegative integers m and `, the task is to find a maximum induced subgraph of a
given graph with at most ` vertex-disjoint cycles of length 0 (mod m). For example,
this encompasses the problems of finding a maximum induced forest or a maximum
subgraph without even cycles.

• Minimum F-Deletion, where for a fixed finite set of graphs F containing a planar
graph, the task is to find a maximum induced subgraph of a given graph containing
no graph from F as a minor. Examples of Minimum F-Deletion are the problems
of finding a minimum vertex cover or a minimum number of vertices required to
delete from the graph to obtain an outerplanar graph.

• Independent H-packing, where for a fixed finite set of connected graphs H, the
task is to find an induced subgraph F of a given graph with the maximum number
of connected components, such that each connected component of F is isomorphic
to some graph from H. For example, the problem of finding a maximum induced
matching or packing into nonadjacent triangles, are the special cases of this problem.

We give an algorithm solving the optimization problem on an n-vertex graph G in time
O(|ΠG| · nt+4 · f(t, ϕ)), where ΠG is the set of all potential maximal cliques in G and f
is a function of t and ϕ only. We also show how similar running time can be obtained
for the weighted version of the problem. Pipelined with known bounds on the number
of potential maximal cliques, we derive a plethora of algorithmic consequences extending
and subsuming many known results on algorithms for special graph classes and exact
exponential algorithms.

∗Partially supported by the ANR project AGAPE.
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1 Introduction

We provide a generic algorithmic result concerning induced subgraphs with properties ex-
pressible in some logic. The main applications of our result can be found in two areas of
graph algorithms: polynomial time algorithms on special graph classes and exponential time
algorithms.

Graph classes. The algorithmic study of graphs with particular structure can be traced to
the introduction of perfect graphs by Berge in the beginning of 1960s. Most of the research
in this area focuses on graph algorithms exploiting the structure of the input graph. Many
problems intractable on general graphs were shown to be solvable in polynomial time on
different classes of graphs like interval or chordal graphs. The book of Golumbic [44] provides
algorithmic studies of fundamental classes of perfect graphs while the book of Brandstädt et al.
[15] gives an extensive overview of different classes of graphs. By the seminal work of Grötschel
et al. [47], the weighted versions of Maximum Independent Set, Maximum Clique,
Coloring, and Minimum Clique Cover are solvable in polynomial time on perfect graphs.
There are two natural research directions in this area extending the limits of tractability.
One direction is to identify graph classes beyond perfect graphs, where a specific problem
like Maximum Independent Set, can still be solved efficiently. The second direction is to
identify more general problems which still can be solved in polynomial time on subclasses of
perfect graphs.

As an example, let us take Maximum Induced Forest1, which can be seen as a natural
extension of Maximum Independent Set, where instead of maximum edgeless graph one is
seeking for a maximal acyclic graph. It easy to notice that the problem is NP-complete being
restricted to bipartite, and thus to perfect, graphs. On the other hand, for other classes of
graphs the problem is solvable in polynomial time. Yannakakis and Gavril [73] have shown
how to find in polynomial time a maximum induced forest and tree on chordal graphs. In
fact, they show polynomial time solvability of more general problem of finding maximum
and connected maximum k-colorable subgraphs in chordal graphs, where k is a constant.
When k is a part of the input, they showed that on chordal graphs both problems are NP-
compete. Other graph classes where Maximum Induced Forest was known to be solvable
in polynomial time include circle n-gon graphs, circle trapezoid, circle graphs, and bipartite
chordal graphs [41, 42, 53]. The containment relations between these classes of graphs is given
in Fig 1. According to the database http://www.graphclasses.org on special graph classes
the complexity of (weighted) Maximum Induced Forest on weakly chordal is open.

Another example of a well-studied problem on special graph classes is Maximum Induced
Matching. Here the task is to find a maximum induced subgraph such that every connected
component of this graph is an edge. The complexity of this problem on different graph
classes was investigated in [17, 19, 20, 45]. Cameron and Hell in [18] introduced the following
generalization of Maximum Induced Matching. Let H be a finite set of connected graphs.
An H-packing of a given graph G is a pairwise vertex-disjoint set of subgraphs of G, each
isomorphic to a member of H. An independent H-packing of a given graph G is an H-packing,
i.e. a set of pairwise vertex-disjoint set of subgraphs of G, each isomorphic to a member of H,
such that no two subgraphs of the packing are joined by an edge of G. The task is to find the

1In the literature, the complementary minimization problem of deleting the minimum number of vertices
such that the remaining graphs has no cycles, is known as Minimum Feedback Vertex Set. Since from
exact algorithms perspective maximization and minimization versions are equivalent, we will be discussing
mostly maximization problems.
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Figure 1: Graph classes with a polynomial number of potential maximal cliques.

maximum number of graphs contained in an independent H-packing. For example, when H
consists of K1 this is Maximum Independent Set, and when H = {K2}, this is Maximum
Induced Matching. It has been shown in [18] that for many graph classes including weakly
chordal and polygon-circle graphs, H-packing is solvable in polynomial time.

Exact exponential algorithms. The second application of our results can be found in the
area of exact exponential algorithms. The area of exact exponential algorithms is about solv-
ing intractable problems faster than the trivial exhaustive search, though still in exponential
time [31]. While for any graph property π testable in polynomial time, the problem of finding
a maximum induced subgraph with property π is trivially solvable in time 2nnO(1), for several
fundamental problems much faster algorithms are known. A longstanding open question in
the area is if Maximum Induced Subgraph with Property π can be solved faster than
the trivial O∗(2n) for every hereditary property π testable in polynomial time.

For the simplest property π, being edge-less, the corresponding maximum induced sub-
graph problem is Maximum Independent Set. A significant amount of research was also
devoted to algorithms for this problem starting from the classical work of Moon and Moser
[59] (see also Miller and Muller [58]) from the 1960s [69, 50, 66, 30, 14, 54]. To the best of our
knowledge, the fastest known algorithm of running time O(1.2109n) is due to Robson [66].
For Maximum Induced Forest an algorithm of running time O(1.7548n) was known [28].
This result was improved and generalized by a subset of the authors, who have shown that
for any fixed t, the maximum induced subgraph of treewidth at most t can be computed in
time O(1.7347n) [35]. There is also a relevant work of Gupta et al. [48] who gave algorithms
for Maximum Induced Matching and Maximum 2-Regular Induced Subgraph, with
running times time O(1.695733n) and O(1.7069n), respectively.

Our main theorem is based on developments from two research areas: the theory of
minimal triangulations and logic.

Minimal triangulations. A triangulation of a graph G is a chordal (no induced cycle

2



of length at least four) supergraph of G. A triangulation H of G is minimal, if no proper
subgraph of H is a triangulation of G. Triangulations are closely related to fundamental
problems arising in sparse matrix computations which were studied intensively in the past
[60, 67]. The survey of Heggernes [49] gives an overview of techniques and applications of
minimal triangulations. It appeared in 1990s that minimal separators play important role
in obtaining minimal triangulations with certain properties. Techniques based on minimal
separators were used to obtain polynomial algorithm computing the treewidth and minimum
fill-in for different classes of graphs [10, 52, 51]. These results were extended by Bouchitté and
Todinca in [12, 13], who also introduced the notion of a potential maximal clique, which is a
set of vertices of a graph that is a clique in some minimal triangulation. Potential maximal
cliques appeared to be a handy tool for computing the treewidth of a graph [32, 37]. Recently
potential maximal clique based machinery was used to obtain a subexponential parameterized
algorithm finding a minimum fill-in of a graph [36]. The work which is most relevant to our
results is the work of a subset of the authors [35], where potential maximal cliques were used to
find maximum induced subgraphs of treewidth at most t. We build on the previous techniques
exploiting the structure of minimal triangulations, minimal separators and potential maximal
cliques but to use the framework of minimal triangulations in full generality, we have to
combine it with the powerful tools from logic.

Algorithmic applications of logic. Algorithmic meta-theorems are algorithmic results
which can be applied to large families of combinatorial problems, instead of just specific
problems. Such theorems provide a better understanding of the scope of general algorith-
mic techniques and the limits of tractability. Usually meta-theorems are based on the deep
relations between logic and combinatorial structures, which is a fundamental issue of compu-
tational complexity [46, 56]. A typical example of a meta-theorem is the celebrated Courcelle’s
theorem [23] which states that all graph properties definable in Monadic Second Order Logic
can be decided in linear time on graphs of bounded treewidth. More recent examples of such
meta-theorems state that all first-order definable properties on planar graphs can be decided
in linear time [38], that all first-order definable optimization problems on classes of graphs
with excluded minors can be approximated in polynomial time to any given approximation
ratio [26], and that all parameterized problems with finite integer index and additional “com-
pactness” or “bidimensional” combinatorial property, admit linear kernels on planar graphs
[9, 34]. As it often happens with meta-theorems, a combination of logic and graph theory
not only give a uniform explanation to tractability of many algorithmic problems but also
provide a variety of new results. There are several extensions of Courcelle’s theorem known in
the literature. In particular, for a counting variant of MSO, Counting Monadic Second Order
Logic (CMSO), where we are allowed to have sentences testing if a set is equal to q modulo r,
for some integers q and r, and analogue of Courcelle’s theorem was obtained by Borie et al.
[11] and Lagergren and Arnborg [57]. Our proof is using the framework of Borie et al. [11].

Our results. A property P(G,X) on graphs, where G is a graph and X is a vertex subset of
its vertices, associates to each graph G and each vertex subset X of G a boolean value. Borie
et al. [11] defined regular properties, which definition we postpone till the next section. For
all our applications, we need only the fact from Borie et al. [11] that every property P(G,X)
expressible by a CMSO-formula is regular. Then our result can be stated as follows. Let ϕ be
a CMSO-formula, G = (V,E) be a graph, and t ≥ 0 be an integer. We consider the following
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optimization problem

Max |X|
subject to There is a set F ⊆ V such that X ⊆ F ;

The treewidth of G[F ] is at most t;
(G[F ], X) |= ϕ.

(1)

For example, Maximum Independent Set can be encoded by (1) by taking t = 0, and
ϕ expressing that X = F and the absence of edges in G[F ]. For another example, consider
Independent Cycle Packing, where the task is to find an induced subgraph with maximum
number of connected components such that each component is a cycle. In this case, t = 2
and ϕ expresses the property that each connected component is a cycle and that X is a set
of vertices containing exactly one vertex from each cycle.

Let ΠG be the set of all potential maximal cliques in G. Our main result is that (1) is
solvable in time O(|ΠG| · |V |t+4 · f(t, ϕ)) for some function f . Moreover, within the same
running time one can find the corresponding sets X and F . Also it is easy to extend our
algorithm to solve within the same running time weighted and annotated versions of (1).

Many well studied graph classes have the following property: there is a polynomial func-
tion p, depending only on the graph class, such that for every graph G from the class, the
number of potential maximal cliques in G is at most p(n), see Fig 1 for examples of such
classes. Moreover, if the number of potential maximal cliques in a graph is bounded by some
polynomial of n, then all potential maximal cliques can be enumerated in polynomial time
[13]. Our algorithm implies directly that every problem expressible in the form of (1) is
solvable in polynomial time on such graph classes. We discuss in details the bounds on the
number of potential maximal cliques for different graph classes in Section 5. Interestingly
enough, while recognition of several of graph classes, like polygon-circle or d-trapezoid, can
be NP-complete, our algorithm is still able either to solve the problem, or to report that the
input graph does not belong to the specified graph class. Such algorithms were called robust
by Raghavan and Spinrad [62]. To the best of our knowledge, very few robust algorithms
were known in the literature prior to our work.

Another direct consequence of our algorithm is that because every n-vertex graph has
O(1.7347n) potential maximal cliques [35], many intractable problems concerning maximum
induced subgraphs with different properties expressible in the form of (1), can be solved
significantly faster than by the trivial O(2n)-time brute-force algorithm. We are not aware of
any algorithmic meta-result of this flavor in the area of exact algorithms.

We mention below the most interesting special cases of the optimization problem (1). Each
of these special cases contains various problems as a special subcase, we discuss subcases after
introducing each of the problems. For some of these cases, expressibility in the form of (1)
is trivial but for some it is non-obvious and requires deep results from Graph Theory. We
discuss these issues in more details in Section 4.

Let Fm be the set of cycles of length 0 (mod m). Let ` ≥ 0 be an integer. Our first
example is the following problem.

Maximum Induced Subgraph with ≤ ` copies of Fm-cycles
Input: A graph G.
Task: Find a set F ⊆ V (G) of maximum size such that G[F ] contains at most ` vertex-
disjoint cycles from Fm.
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Maximum Induced Subgraph with ≤ ` copies of Fm-cycles encompasses several
interesting problems. For example, when ` = 0, the problem is to find a maximum induced
subgraph without cycles divisible by m. For ` = 0 and m = 1 this is Maximum Induced
Forest.

For integers ` ≥ 0 and p ≥ 3, the problem related to Maximum Induced Subgraph
with ≤ ` copies of Fm-cycles is the following.

Maximum Induced Subgraph with ≤ ` copies of p-cycles
Input: A graph G.
Task: Find a set F ⊆ V (G) of maximum size such that G[F ] contains at most ` vertex-
disjoint cycles of length at least p.

Next example concerns properties described by forbidden minors. Graph H is a minor of
graph G if H can be obtained from a subgraph of G by a (possibly empty) sequence of edge
contractions. A model M of minor H in G is a minimal subgraph of G, where the edge set
E(M) is partitioned into c-edges (contraction edges) and m-edges (minor edges) such that
the graph resulting from contracting all c-edges is isomorphic to H. Thus, H is isomorphic
to a minor of G if and only if there exists a model of H in G. For an integer ` a finite set of
graphs F , we define he following generic problem.

Maximum Induced Subgraph with ≤ ` copies of Minor Models from F
Input: A graph G.
Task: Find a set F ⊆ V (G) of maximum size such that G[F ] contains at most ` vertex
disjoint minor models of graphs from F .

Even the special case with ` = 0, this problem and its complementary version called the
Minimum F-Deletion, encompass many different problems. In the literature, the case ` = 0
was studied from parameterized and approximation perspective [33].

When F = {K2}, a complete graph on two vertices, this is Maximum Independent Set,
the problem complementary to the Minimum Vertex Cover problem. When F = {C3}, a
cycle on three vertices, this is Maximum Induced Forest. Case F = {K4} of Maximum
Induced F-free Subgraph corresponds to maximum induced serial-parallel graph, F =
{K4,K2,3} to maximum induced outerplanar, and case when F consists of a diamond graph,
which is K4 minus one edge, is to find a maximum induced cactus subgraph. Maximum
induced pseudo-forest is the case of F containing the diamond and butterfly graphs, which is
obtained by identifying one vertex of two triangles. Maximum Apollonian graph corresponds
to the situation with F consisting of the complete graph K5, the complete bipartite graph
K3,3, the graph of the octahedron, and the graph of the pentagonal prism. A fundamental
problem, which is a special case of Minimum F-Deletion, is Minimum Treewidth η-
Deletion or η-Transversal which is to delete minimum vertices to obtain a graph of
treewidth at most η. Since by the result of Robertson and Seymour [63] every graph of
treewidth η excludes a (η + 1)× (η + 1) grid as a minor, we have that the set F of forbidden
minors of treewidth η graphs contains a planar graph. Similarly, for ` > 0, Maximum
Induced Subgraph with ≤ ` copies of Minor Models from F generalizes problems
like finding a maximum induced subgraph containing at most ` vertex-disjoint cycles, at most
` vertex-disjoint outerplanar graphs, at most ` vertex-disjoint subgraphs of treewidth t, etc.
For some graph classes, like circular-arc and weakly chordal, we show that even more general
cases of Minimum F-Deletion, when F is not requested to contain a planar graph, are still
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solvable in polynomial time.

Let t ≥ 0 be an integer and ϕ be a CMSO-formula. Let G(t, ϕ) be a class of connected
graphs of treewidth at most t and with property expressible by ϕ. Our next example is the
following problem.

Independent G(t, ϕ)-Packing
Input: A graph G.
Task: Find a set F ⊆ V (G) with maximum number of connected components such that
each connected component of G[F ] is in G(t, ϕ).

In other words, the task is to find a maximum vertex-disjoint packing in G of subgraphs
from G(t, ϕ) such that no two subgraphs of the packing are joined by an edge of G. This
problem trivially generalizes several well studied problems. For example, Maximum Induced
Matching is to find a maximum induced matching which was studied intensively for different
graph classes. Similarly, when class G(t, ϕ) consists of one graphK3, then Maximum Induced
G(t,P)-Packing is induced triangle packing. This problem, under the name Independent
Triangle Packing was studied by Cameron and Hell [18]. Recall that Cameron and Hell
defined more general problem, namely, Independent H-Packing, where for a finite set of
connected graphs H, the task is to find a maximum number of disjoint copies of graphs from
H such that there is no edges between the copies. Since every finite set of graphs is trivially
in G(t,P) for some t and P, Independent H-Packing is a special case of Independent
G(t, ϕ)-Packing. Another studied variant of the problem is Induced Packing of Odd
Cycles introduced by Golovach et al. in [43], where the task is to find the maximum number
of odd cycles such that there is no edge between any pair of cycles.

The next problem is an example of annotated version of optimization problem (1).

k-in-a-Graph From G(t, ϕ)
Input: A graph G, with k terminal vertices.
Task: Find an induced graph from G(t, ϕ) containing all k terminal vertices.

It is also easy to handle variants of this problem where terminal vertices have specific
properties, like being the endpoints of the path if G(t, ϕ) is the class of paths. Many variants of
k-in-a-Graph From G(t, ϕ) can be found in the literature, like k-in-a-Path, k-in-a-Tree,
k-in-a-Cycle. k-in-a-Path is clearly solvable in polynomial time for k = 2. For k = 3
the problem is NP-complete already on graph of maximum vertex degree at most three [27].
Bienstock [6] have shown that the following cases of k-in-a-Graph From G(t, ϕ) are NP-
hard: finding an induced odd cycle of length greater than three, passing through a prescribed
vertex and finding an induced odd path between two prescribed vertices. Polynomial time
algorithms for the odd path problem are known for several graph classes, including chordal
[1] and circular-arc graphs [2]. Chudnovsky and Seymour have shown that k-in-a-Tree for
k = 3 is solvable in polynomial time [21]. The complexity of the case k = 4 is open.

Let us remark that because of the power of CMSO, different modifications of the problems
mentioned above, with additional requirements on the induced subgraph like being connected,
constrains on vertex degree and parities of connected components, can be easily handled.
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2 Preliminaries

We denote by G = (V,E) a finite, undirected and simple graph with |V | = n vertices and
|E| = m edges. Sometimes the vertex set of a graph G is referred to as V (G) and its edge set
as E(G). A clique K in G is a set of pairwise adjacent vertices of V (G). The neighborhood
of a vertex v is N(v) = {u ∈ V : {u, v} ∈ E}. For a vertex set S ⊆ V we denote by N(S)
the set

⋃
v∈S N(v) \ S.

The notion of treewidth is due to Robertson and Seymour [63]. A tree decomposition of a
graph G = (V,E), denoted by TD(G), is a pair (X,T ), where T is a tree and X = {Xi | i ∈
V (T )} is a family of subsets of V , called bags, such that

(i)
⋃

i∈V (T )Xi = V ,

(ii) for each edge e = {u, v} ∈ E(G) there exists i ∈ V (T ) such that both u and v are in
Xi, and

(iii) for all v ∈ V , the set of nodes {i ∈ V (T ) | v ∈ Xi} induces a connected subtree of T .

The maximum of |Xi| − 1, i ∈ V (T ), is called the width of the tree decomposition. The
treewidth of a graph G, denoted by tw(G), is the minimum width taken over all tree decom-
positions of G.

Counting Monadic Second Order Logic. We use Counting Monadic Second Order Logic
(CMSO), an extension of MSO, as a basic tool to express properties of vertex/edge sets in
graphs.

The syntax of Monadic Second Order Logic (MSO) of graphs includes the logical con-
nectives ∨, ∧, ¬, ⇔, ⇒, variables for vertices, edges, sets of vertices, and sets of edges, the
quantifiers ∀, ∃ that can be applied to these variables, and the following five binary relations:

1. u ∈ U where u is a vertex variable and U is a vertex set variable;

2. d ∈ D where d is an edge variable and D is an edge set variable;

3. inc(d, u), where d is an edge variable, u is a vertex variable, and the interpretation is
that the edge d is incident with the vertex u;

4. adj(u, v), where u and v are vertex variables and the interpretation is that u and v are
adjacent;

5. equality of variables representing vertices, edges, sets of vertices, and sets of edges.

In addition to the usual features of monadic second-order logic, if we have atomic sentences
testing whether the cardinality of a set is equal to q modulo r, where q and r are integers
such that 0 ≤ q < r and r ≥ 2, then this extension of the MSO is called the counting monadic
second-order logic. So essentially CMSO is MSO with the following atomic sentence for a set
S:

cardq,r(S) = true if and only if |S| ≡ q (mod r).

We refer to [3, 22, 24] and the book of Courcelle and Engelfriet [25] for a detailed introduction
on CMSO. In [25], the CMSO is referred to as CMS2.
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2.1 Treewidth, t-terminal recursive graphs and regular properties

We use one of the (many) alternative definitions of treewidth, based on terminal graphs. A
t-terminal graph G = (V, T,E) is a graph with an ordered set T ⊆ V of at most t distinguished
vertices, called terminals. Denote by τ(G) the number of terminals of graph G.

A t-terminal graph (V, T,E) is a base graph if V = T . We define composition operations
over the set of t-terminal graphs. A composition operation f is of arity 1 or 2. When f is of
arity 2, it acts on two t-terminal graphsG1, G2 and produces a t-terminal graphG = f(G1, G2)
as follows. It first makes disjoint copies of the two graphs, then “glues” some terminals of
graphs G1 and G2. Operation f is represented by a matrix m(f). The matrix has 2 columns
and τ(G) ≤ t lines, its values are integers between 0 and t. At line i of the matrix, elements
mij(f) indicate which terminals of graphs Gj are identified to terminal number i of G. If
mij(f) = 0 it means that no terminal of Gj was identified to terminal number i of G. A
terminal of Gj can be identified to at most one terminal of G (a column j cannot contain two
equal, non-zero values). Note that if mi1(f) = 0 and mi2(f) = 0 it means that terminal i of
G is a new vertex.

When f is of arity 1, its matrix m(f) has only one column. The t-terminal graph G =
f(G1) is obtained from graph G1 and matrix m(f) as above, by identifying terminal mi1(f)
to terminal number i in G.

Observe that the number of possible composition operations over t-terminal graphs is
bounded by some function of t. We say that a t-terminal graph G is t-terminal recursive if it
can be obtained from t-terminal base graphs through a sequence of composition operations.
This sequence is called the t-expression of graph G.

Proposition 1 ([8]). For any (t+ 1)-terminal recursive graph H = (V, T,E), there is a tree
decomposition of (V,E) of width at most t, with a bag containing T . Conversely, for any tree
decomposition of width t of graph G = (V,E) and any bag W of the decomposition, (V,W,E)
is a (t+ 1)-terminal recursive graph.

Proof. Assume that (V, T,E) can be obtained recursively, through composition operations,
from (t+ 1)-terminal base graphs. The expression constructing this graph can be represented
as a tree, the leaves being the base graphs, each internal node corresponding to a composi-
tion operation. The tree decomposition of G is simply obtained by following this tree and
putting, in each node, a bag corresponding to the terminals of the graph represented by the
corresponding sub-expression. The bags are clearly of size at most t+1. One can easily check
that the set of bags satisfies the conditions of a tree decomposition.

The other direction is proved in [8], Theorem 40.

Consider a property P(G,X) on graphs depending on a vertex subset X. That is, property
P associates to each graph G and each vertex subset X of G a boolean value. By the
celebrated results of [22, 3, 11], it is well-known that if the property can be expressed by
a CMSO-formula, there exists a linear-time algorithm taking as input a (t + 1)-terminal
recursive graph G = (V, T,E) and computing a maximum (or minimum) size vertex set X
such that P(G,X). Many natural problems like Maximum Independent Set or Minimum
Dominating Set can be expressed in this setting.

Typical algorithms for such problems proceed by dynamic programming. When browsing
the (t + 1)-expression of G, the algorithm stores in each node a table of classes (sometimes
called characteristics) depending on the branch of the current sub-expression and the partial
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solutions (i.e., possible subsets of X) encountered so far. Let G1 be such a sub-expression
and let X1 be a subset of vertices that we aim to extend into the solution X. The intuition
is that if the class of (G1, X1) is the same as the class of some other pair (G2, X2), then we
can replace the branch of G1 by an expression of G2, and the new graph G′ is such that X1

extends into a solution X1 ∪ Y of G if and only if X2 extends into a solution X2 ∪ Y of G′.
In order to efficiently solve our problem, we need an efficient computation of classes for

base graphs, as well as an efficient computation of the classes for compositions of graphs and
partial solutions.

We give a formal definition of these “good” properties; the vocabulary is inspired by Borie
et al. [11].

Let now G = (V, T,E) be a (t+1)-terminal recursive graph. For any composition operation
f , let ◦f denote the composition operation over pairs (G,X), where f extends in a natural
way over the values of vertex sets. If G = f(G1) then ◦f ((G1, X)) = (G,X). If G = f(G1, G2)
then ◦f ((G1, X1), (G2, X2)) = (G,X), the operation being valid only if, for each terminal of
G, either we have mapped terminals from both G1 and G2, contained in both X1 and X2, or
we have not mapped any terminal belonging to X1 or X2. Then X is obtained from X1 and
X2 by merging those vertices corresponding to terminals that have been mapped on a same
terminal of G.

Definition 1 (Regular Property). Consider a property P(G,X) over graphs and correspond-
ing vertex subsets. Property P is called regular if, for every t, there exists a finite set C, a
homomorphism h associating to each (t+ 1)-terminal recursive graph G and every X ⊆ V (G)
a class h(G,X) ∈ C, and an update function �f : C × C → C for each composition operation
f of arity 2 (resp. �f : C → C for each composition operation f of arity 1), satisfying:

• (property P is preserved) If h(G1, X1) = h(G2, X2) then P(G1, X1) = P(G2, X2).

• (integrity of operations) For any composition operation f , we have that

h(◦f ((G1, X1), (G2, X2))) = �f (h(G1, X1), h(G2, X2))

if f is of arity 2, and
h(◦f (G1, X1)) = �f (h(G1, X1))

if f is of arity 1.

We point out that the homomorphism class h(G,X) depends on G and on the value of X.
Typically the class of h(G,X) encodes, among other informations, the intersection of X with
the set of terminals. For example, if the composition operation ◦f ((G1, X1), (G2, X2)) is not
valid, then �f (c1, c2), where c1 and c2 are the respective homomorphism classes of (G1, X1)
and of (G2, X2), is also undefined.

Note that for any fixed t and any regular property P, the number of classes is constant.
Nevertheless, this constant depends on t and on the property P. For algorithmic purposes,
given t and P, we need an explicit algorithm computing the homomorphism class of a given
base graph, and an algorithm computing the update functions �f . I.e., we need an algorithm
that takes as input a composition operation f and one or two classes c1, c2 ∈ C and computes
the class �f (c1, c2) if f is of arity 2 (resp. �f (c1) if f is of arity 1). Eventually, we must
know the set of accepting classes, that is the set of classes c such that h(G,X) = c implies
that P(G,X).
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As an example, consider the property 3COL(G,X) which is true only if G[X] is 3-
colourable. We show that it is regular. Let P3(t) be the set of partitions of subsets of
{1, 2 . . . , t + 1} into three parts. The set C of homomorphism classes is P3(t). Consider
a (t + 1)-terminal recursive graph G = (V, T,E) and let X ⊆ V . For each 3-partition
(X1, X2, X3) of the vertex subset X into three independent sets, let p(X1, X2, X3) ∈ P3(t) be
the 3-partition of T ∩X corresponding to (T ∩X1, T ∩X2, T ∩X3); here, for T ∩Xi, we only
keep the ranks of the terminals of T ∩ Xi in the ordered set T . The class h(G,X) will be
{p(X1, X2, X3) | (X1, X2, X3) is a partition of V into three independent sets}. In particular,
the unique non-accepting class is ∅. It is not hard to see that, for fixed t, the class of every
base graph can be computed in constant time, and that for any composition operation f
the update function �f exists and can also be computed in constant time. The number of
classes is constant even though the number of subsets X is arbitrarily large. When solving
the problem max |X| : 3COL(G,X) on a (t+1)-terminal recursive graph G, we must store, in
each node u of the (t+ 1)-expression, for each class c, the size of the maximum vertex subset
Xu of the current graph Gu such that h(Gu, Xu) = c. The overall solution is the maximum
one among the accepting classes of the root node.

We say that a CMSO-formula ϕ expresses a property P(G,X) if P(G,X) is true if and
only if (G,X) models ϕ (i.e., the formula is true exactly on graphs G and vertex subsets X
such that P(G,X) is true).

Proposition 2 (Borie et al. [11]). Any property P(G,X) expressible by a CMSO-formula is
regular.

Moreover, the result of Borie et al. [11] is constructive in the sense that, given a CMSO-
formula, it provides the homomorphism classes C, the subset of accepting classes and the
algorithms computing the classes of base graphs as well as the update functions for the
regular property P on (t + 1)-terminal recursive graphs. The regularity is actually proven
in [11] for all properties expressible by CMSO-formulae, which allows an arbitrary number
of free variables over vertices, edges, vertex sets and and edge sets. For our applications, it
is sufficient to consider properties over graphs and one vertex set, corresponding to formulae
with a unique free variable, which is a set of vertices.

To our knowledge, the question whether all regular properties are CMSO-expressible is
still open.

2.2 Treewidth, minimal triangulations and potential maximal cliques

Chordal graphs and clique trees A graph H is chordal (or triangulated) if every cycle
of length at least four has a chord, i.e., an edge between two nonconsecutive vertices of the
cycle. By a classical result due to Buneman and Gavril [16, 40], every chordal graph G has a
tree decomposition such that each bag of the decomposition is a maximal clique of G. Such
a tree decomposition is referred as a clique tree of the chordal graph G.

Minimal triangulations, potential maximal cliques and minimal separators A
triangulation of a graph G = (V,E) is a chordal graph H = (V,E′) such that E ⊆ E′. Graph
H is a minimal triangulation of G if for every edge set E′′ with E ⊆ E′′ ⊂ E′, the graph
F = (V,E′′) is not chordal. It is well known that for any graph G, tw(G) ≤ k if and only if
there is a triangulation H of G of clique size at most k + 1.
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Let u and v be two non adjacent vertices of a graph G. A set of vertices S ⊆ V is a
u, v-separator if u and v are in different connected components of the graph G[V (G) \ S]. A
connected component C of G[V (G) \ S] is a full component associated to S if N(C) = S.
Separator S is a minimal u, v-separator of G if no proper subset of S is a u, v-separator.
Notice that a minimal separator can be strictly included in another one, if they are minimal
separators for different pairs of vertices. If G is chordal, then for any minimal separator S
and any clique tree TG of G there is an edge e of TG such that S is the intersection of the
maximal cliques corresponding to endpoints of e [16, 40]. We say that S corresponds to e in
TG.

We will need the following result of Berry et al. [5].

Proposition 3 ([5]). There is an algorithm listing the set ∆G of all minimal separators of
an input graph G in time O(n3|∆G|).

A set of vertices Ω ⊆ V (G) of a graph G is called a potential maximal clique if there is a
minimal triangulation H of G such that Ω is a maximal clique of H.

Proposition 4 ([13]). Let ΠG denote the set of all potential maximal cliques of graph G. We
have |ΠG| ≤ n|∆G|2 + n|∆G|+ 1, and the set ΠG can be listed in time O(n2m|∆G|2).

We also have:

Proposition 5 ([35]). The set of potential maximal cliques can be listed in time O(1.7347n).

Let Ω be a potential maximal clique. By [12], a subset S ⊆ Ω is a minimal separator of
G if and only if S is the neighborhood of a connected component of G[V (G) \ Ω].

For a minimal separator S and a full connected component C of G[V (G) \S], we say that
(S,C) is a full block associated to S. We sometimes use the notation (S,C) to denote the
set of vertices S ∪ C of the block. It is easy to see that if X ⊆ V corresponds to the set of
vertices of a block, then this block (S,C) is unique: indeed, S = N(V \X) and C = X \ S.
For convenience, the couple (∅, V ) is also considered as a full block. For a minimal separator
S, a full block (S,C), and a potential maximal clique Ω, we call the triple (S,C,Ω) good if
S ⊆ Ω ⊆ C ∪ S. By [32], the number of good triples is at most n|ΠG|.

The following proposition was obtained by Fomin and Villanger [35].

Proposition 6 ([35]). Let G[F ] be an induced subgraph of a graph G, let TF be a minimal
triangulation of G[F ]. There exists a minimal triangulation TG of G such that TF is an
induced subgraph of TG.

Equivalently, for every clique KG of TG, the set KG ∩ F is a (possibly empty) clique of
TF .

Moreover, they consider the problem of finding a maximum induced subgraph of treewidth
at most t:

Proposition 7 ([35]). Given a graph G and with its set ΠG of potential maximal cliques, prob-
lem Maximum Induced Subgraph of Treewidth ≤ t can be solved in time O(|ΠG|nt+4).

By Propositions 7, 4 and 5, we deduce that for fixed t the problem can be solved in
O(1.7347n) time for arbitrary graphs, and in polynomial time for classes of graphs with
polynomial number of minimal separators.
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3 Optimal induced subgraph for P and t

Let t ≥ 0 be an integer and P(G,X) be a property. We define the following generic problem.

Optimal Induced Subgraph for P and t
Input: A graph G
Task: Find sets X ⊆ F ⊆ V such that X is of maximum size, the induced subgraph G[F ]
is of treewidth at most t and P(G[F ], X) is true.

Let us give two examples of problems that are particular cases of Optimal Induced
Subgraph for P and t, when P(G,X) is a regular property.

1. Let F be a finite family of graphs containing at least one planar graph. The problem
Maximum induced F-minor free graph takes as input a graph G and asks for an
induced subgraph G[F ] such that G[F ] contains no minor from F , and F is of maximum
size for this property. As we shall see in details in Section 4, the property P(G[F ], X)
expressing the fact that G[F ] is F-minor free and X = F is the vertex set of G[F ] can
be expressed by a CMSO. Since F contains a planar graph, G[F ] must be of treewidth
at most t for some constant t depending only on F [64]. Therefore, this problem (or the
equivalent problem Minimum F-Deletion) is a particular case of Optimal Induced
Subgraph for P and t.

2. The problem Independent H-Packing was introduced by Cameron and Hell [18].
Here H denotes a finite set of connected graphs, and the task is to find, in an input
graph G, a maximum number of disjoint copies of graphs from H such that there is
no edges between the copies. Clearly these copies induce a subgraph G[F ] of bounded
treewidth. We will give a CMSO-formula expressing the property P(G[F ], X), which is
true if and only if G[F ] is a collection of copies of H, and X has exactly one vertex in
each connected component of G[F ]. This problem, generalizing the Maximum Induced
Matching, is again a particular case of Optimal Induced Subgraph for P and t.

We prove here the main theorem of this article.

Theorem 1. For any fixed t and any regular property P, the problem Optimal Induced
Subgraph for P and t is solvable in |ΠG|nt+O(1) time, when ΠG is given in the input.

Let us note that by Proposition 2, results of Theorem 1 hold for every property P(G,X)
expressible by a CMSO-formula. Combined with Propositions 4 and 5, we obtain the following
application of Theorem 1.

Corollary 1. For any fixed t and regular property P, problem Optimal Induced Subgraph
for P and t can be solved in O(1.7347n) time for arbitrary graphs, and in polynomial time
for classes of graphs with polynomial number of minimal separators.

3.1 Notations and data structures

Our algorithm proceeds by dynamic programming on blocks and on good triples. The general
strategy of dynamic programming over blocks and good triples follows the ideas from [32] and
[35] for computing the treewidth and subgraphs of bounded treewidth. However, the devil is
in details, and we need more work to make this strategy applicable for our problem.

12



Recall that in our definition of (t+1)-terminal graphs, the set of terminals is ordered. The
vertices of our graph are numbered from 1 to n. An ordered set W of vertices corresponds to
this natural ordering over set W . Property P is regular, so notations C, h and �f correspond
to Definition 1.

Let G[F ] be an induced subgraph of G and let TF be a triangulation of G[F ]. We say
that a minimal triangulation TG of G respects TF if, for any clique K of TG, its intersection
with F is a clique in TF . By Proposition 6, if G[F ] is of treewidth at most t, then there
exists a (minimal) triangulation TF of G[F ] of width at most t, and a minimal triangulation
TG of G respecting TF .

The next definition and the following notations are crucial for our algorithm.

Definition 2 (Partial Compatible Solution). Let (S,C) denote a full block and (S,C,Ω)
denote a good triple. Let W ⊆ S (resp. W ⊆ Ω) be a vertex subset of size at most t+ 1 and
c ∈ C be a homomorphism class for property P. We say that (G[F ], X) is a partial solution
compatible with (S,C,W, c) (resp. with (S,C,Ω,W, c)) if:

1. F ⊆ S ∪ C and F ∩ S = W (resp. F ∩ Ω = W );

2. the (t+ 1)-terminal recursive graph H = (F,W,E(G[F ])) satisfies h(H,X) = c;

3. there is a triangulation TF of G[F ] of width at most t and a minimal triangulation TG
of G respecting TF , such that S is a minimal separator (resp. Ω is a maximal clique)
of TG.

The third condition implies that W is a clique in the triangulation TF of G[F ].
Let α(S,C,W, c) (resp. β(S,C,Ω,W, c)) denote the size of a largest vertex subset X

such that (G[F ], X) is a partial solution compatible with (S,C,W, c) (resp. compatible with
(S,C,Ω,W, c)). Observe that in the β function, W represents the intersection between the
partial solution and the potential maximal clique Ω, while in the definition of the α func-
tion, W is the intersection of the partial solution with the minimal separator S. If partial
compatible solutions do not exist, we simply set α or β to −∞.

3.2 The algorithm

Our algorithm proceeds by dynamic programming on full blocks and good triples. By [32],
the number of good triples is O(n|ΠG|). The blocks are first sorted by size. For each
block (S,C) by increasing size, we first compute the values β(S,C,Ω,W, c) from values
α(Si, Ci,Wi, ci) corresponding to smaller blocks, then we compute the values α(S,C,W, c)
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from values β(S,C,Ω,W ′, c′), as described in Algorithm 1.

Algorithm 1: Optimal Induced Subgraph for P and t

Input: graph G and ΠG

Output: sets X ⊆ F ⊆ V (G) such that G[F ] has treewidth at most t, P(G[F ], X) is
true and X is of maximum size

1 Order all full blocks by inclusion;
2 forall the full blocks (S,C) in this order do
3 forall the good triples (S,C,Ω), all W ⊆ Ω of size ≤ t+ 1 and all c ∈ C do
4 if Ω = S ∪ C then
5 Compute β(S,C,Ω,W, c) using Equation 2;
6 else
7 Compute β(S,C,Ω,W, c) using Equations 4, 5, 6, and 7 ;

8 forall the W ⊆ S of size ≤ t+ 1 and all c ∈ C do
9 Compute α(S,C,W, c) using Equation 3;

10 Compute the optimal solution using Equation 8;

Consider a (t + 1)-terminal recursive graph D = (VD, T, ED) and let c be a homomor-
phism class. Although this is not explicitly required by the definition of regular properties
(Definition 1), we may assume w.l.o.g. that all sets Y such that h(D,Y ) = c have the same
intersection with the set T of terminals. (Otherwise, if sets Y and Y ′ have different intersec-
tions with T but h(D,Y ) = h(D,Y ′) = c, we can “split” class c in at most 2t+1 classes, one
for each possible intersection between T and such a vertex subset Y .) Moreover the class c
encodes the intersection of Y with the set of terminals of D, i.e., given the homomorphism
class c, we can retrieve the rank of the vertices of Y ∩ T .

Therefore we assume that we have a function term(c, T ), taking a class c and an ordered set
T of terminals, and returning the terminals that belong to Y , for any Y such that h(D,Y ) = c.

The base case. The base case consists in minimal full blocks (S,C,Ω), in which case
Ω = S ∪ C by [12]. In this situation, for any partial solution (G[F ], X) compatible with
(S,C,Ω,W, c) we must have F = W , hence G[W ] corresponds to a base (t + 1)-terminal
graph. Also, we must have X = term(c,W ), so X is unique (or might not exist).

β(S,C,Ω,W, c) =

{
|X| if there is X ⊆W such that h(G[W ], X) = c
−∞ otherwise

(2)

The computation of each value β(S,C,Ω,W, c) corresponding to a base case takes O(n)
time, because we have to store the value in a table indexed by (S,C,Ω, c). The number of
good triples is O(n|ΠG|) so altogether these computations take O(nt+3|ΠG|) time. (Actually,
one can prove by a more careful analysis that the number of good triples corresponding to
base cases is at most n.)

Computing α from β. Our goal is to compute α(S,C,W, c) from values β(S,C,Ω,W ′, c′)
such that (S,Ω, C) is a good triple and W = W ′ ∩ S.

Consider any partial solution (G[F ], X) compatible with (S,C,W, c). Let TF be a trian-
gulation of G[F ] like in Definition 2 and let TG be a minimal triangulation of G respecting
TF . Let Ω be the maximal clique of TG such that S ⊆ Ω ⊆ S ∪ C (this clique is unique
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by [12]) and take W ′ = Ω ∩ F . Note that (G[F ], X) is also a partial compatible solution
for (S,C,Ω,W ′, c′) where c′ is the homomorphism class of h(H ′, X); here H ′ is the (t + 1)-
terminal recursive graph (F,W ′, E(G[F ])). Also observe that the (t + 1)-terminal graph
H = (F,W,G[F ]) is obtained from H ′ by the unary composition operation f(W ′,W ) that
consists in removing W ′\W from the set of terminals, and possibly renumbering the remaining
terminals. Therefore �f(W ′,W )(c

′) = c.
We claim that:

Lemma 1.
α(S,C,W, c) = maxβ(S,C,Ω,W ′, c′), (3)

where the maximum is taken over potential maximal cliques Ω such that (S,C,Ω) is a good
triple, all subsets W ′ ⊆ Ω of size at most t+ 1 such that W ′ ∩ S = W and all classes c′ ∈ C
such that �f(W ′,W )(c

′) = c.

Proof. By the above observation, α(S,C,W, c) is at most the right-hand side of the equality.
Conversely, let (S,C,Ω,W ′, c′) be the quintuple realizing the maximum value of the right-hand
side expression. Let (G[F ], X) be a partial solution compatible with (S,C,Ω,W ′, c′). Observe
that (G[F ], X) is also a partial solution compatible with (S,C,W, c), hence α(S,C,W, c) ≥
|X|. This proves the correctness of the formula computing α(S,C,W, c).

For computing all values α(S,C,W, c) from values β(S,C,Ω,W ′, c′), we proceed in a
slightly different and more efficient way than the one described in the Algorithm 1. When
β(S,C,Ω,W ′, c′) is computed (lines 5 or 7 of the algorithm), if �f(W ′,W )(c

′) = c we sim-
ply update the value of α(S,C,W, c) by taking the maximum between the previous value
and β(S,C,Ω,W ′, c′). This only costs an extra O(n) for each quintuple (S,C,Ω,W ′, c′).
The number of such quintuples is O(nt+2|ΠG|), thus the total cost of these computations is
O(nt+3|ΠG|).

Computing β from α. We now compute β(S,C,Ω,W, c) from values α(Si, Ci,Wi, ci) where
Ci, 1 ≤ i ≤ p are the connected components of G[C \ Ω], Si = NG(Ci), Wi = Ci ∩ Si and ci
are classes (still to be guessed). Recall that, by [12], (Si, Ci) are full blocks.

Intuitively, let (G[F ], X) be an optimal partial solution for β(S,C,Ω,W, c). We denote by
H = (F,W,EH) the (t+ 1)-terminal recursive graph corresponding to G[F ] with terminal set
W , and let Hi = (Fi,Wi, Ei) be its trace on the smaller block (Si, Ci). Hence Fi = F∩(Si∪Ci),
Wi = W ∩Si and Ei = E(G[Fi]). Also denote Xi = X∩(Si∪Ci). Observe that H is obtained
from the smaller His as follows:

• on each Hi, we introduce the terminals of W \ Wi, obtaining a graph H+
i = (Fi ∪

W,W,E+
i ) with W as set of terminals and with E+

i = E(G[Fi ∪W ]) as edge set.

• we perform a sequence of joins, gluing one by one H+
1 , H

+
2 , . . . ,H

+
p on the same set of

terminals W .

Formally, let us first define δi(S,C,Ω,W, c
+
i ) to be the size of the largest partial solution

(G[F+
i ], X+

i ) compatible with (S,C,Ω,W, c+i ) such that F+
i ⊆ Ω ∪ Ci. (This partial solution

was denoted above by H+
i , F+

i corresponds to Fi∪W , and X+
i is Xi∪(X∩W ).) Consider the

composition operation in(Wi,W ) which takes two (t+ 1)-terminal graphs, with terminal sets
Wi and W respectively, and composes them into a new (t+1)-terminal graph having W as set
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of terminals. In the gluing operation, terminal number j of Wi is glued on terminal number
k of W if and only if they correspond to the same vertex of G. Hence, this composition
operation in(Wi,W ) only depends on Wi and W . Let XW ⊆ W , let G[W ] denote the base
(t+ 1)- having W as set of terminals, and cW be the homomorphism class h(G[W ], XW ).

Lemma 2.

δi(S,C,Ω,W, c
+
i ) = max

ci,cW s.t. �in(Wi,W )(ci,cW )=c+i

α(Si, Ci,Wi, ci)+ |term(cW ,W )\ term(ci,Wi)|

(4)
over all classes ci and cW such that �in(Wi,W )(ci, cW ) = c+i and cW = h(G[W ], XW ) for some
XW ⊆W .

Proof. Let (G[F+
i ], X+

i ) be a maximal partial solution compatible with (S,C,Ω,W, c+i ) such
that F+

i ⊆ Ω∪Ci. Denote Fi = F+
i ∩(Si∪Ci), Xi = X+

i ∩(Si∪Ci), XW = X∩W . Observe that
(G[Fi], Xi) is a partial solution compatible with (Si, Ci,Wi, ci) for some class ci, that cW =
h(G[W ], XW ), and these classes must satisfy �in(Wi,W )(ci, cW ) = c+i . Hence δi(S,Ω, C,W, c

+
i )

is at most equal to the right-hand side of the equation (note that term(cW ,W )\term(ci,Wi) =
X+

i \Xi).
Conversely, let ci, cW be the classes maximizing the right-hand side of the equation. Take

a maximum partial solution (G[Fi], Xi) contained in Si ∪Ci, compatible with (Si, Ci,Wi, ci),
where �in(Wi,W )(ci, cW ) = c+i . Then the graph (Fi ∪W,W,E(G[Fi ∪W ])) together with the

vertex subset Xi ∪ term(cW ,W ) is a partial solution compatible with (S,C,Ω,W, c+i ), and
the equality follows.

We introduce another notation γi(S,C,Ω,W, c), corresponding to the largest partial solu-
tion compatible with (S,C,Ω,W, c), contained into Ω ∪ C1 ∪ · · · ∪ Ci. It corresponds to the
gluing of some partial solutions (H+

1 , X
+
1 ), . . . (H+

i , X
+
i ).

Lemma 3. Function γi is computed as follows.

γ1(S,C,Ω,W, c) = δ1(S,Ω, C,W, c) (5)

For any i, 2 ≤ i ≤ p,

γi(S,C,Ω,W, c) = max
c′,c′′

γi−1(S,C,Ω,W, c
′) + δi(S,Ω, C,W, c

′′)− |term(c′,W )|, (6)

over all characteristics c′, c′′ ∈ C such that �g(W )(c
′, c′′) = c, where g(W ) is the composition

operation corresponding to a join operation on W . I.e., the matrix m(g(W )) of g(W ) has
|W | rows, and mj,1(g(W )) = mj,2(g(W )) = j for each row j.

Proof. The proof is trivial for γ1.
Now for any F ⊆ Ω ∪ C1 ∪ · · · ∪ Ci, note that (G[F ], X) is a partial solution compatible

with (S,C,Ω,W, c) if and only if (G[F \Ci], X \Ci) (resp. (G[F \ (C1 ∪ · · · ∪Ci−1)], X \ (C1 ∪
· · · ∪Ci−1))) are partial solutions compatible with (S,Ω, C,W, c′′) (resp. (S,C,Ω,W, c′)) and
�g(W )(c

′, c′′) = c. The term |term(c′,W )| corresponds to X ∩W and avoids over-counting of
these vertices.

The following result is a direct consequence of the definition of β and γ functions.
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Lemma 4.
β(S,C,Ω,W, c) = γp(S,C,Ω,W, c). (7)

We claim that computing, for a fixed quadruple (S,C,Ω,W ), the values β(S,C,Ω,W, c)
from values α, takes O(n2) time. Again by [32], the smaller blocks (Si, Ci) can be listed in
O(m) time. For each i, the computation of function δi(S,Ω, C,W, c

+
i ) takes O(|Si| + |Ci|)

time, because we need to access the values α(Si,Wi, Ci, ci). The sum of these values is at
most n + m [32]. Computing γi(S,C,Ω,W, c) from values γi−1 and δi can be done in O(n)
time for each i.

Therefore the running time of the algorithm is the number of quintuples (S,C,Ω,W, c)
times n2, that is O(|ΠG|nt+4).

The global solution. It can be obtained by considering the (special) full block (∅, V ).

Lemma 5. The solution size is
max

c
α(∅, V, ∅, c), (8)

over all accepting classes c, i.e., classes such that (h(G,X) = c) implies that P(G,X).

Proof. By definition of regular properties and of α(∅, V, ∅, c), our problem has a solution of
size at least maxc α(∅, V, ∅, c) over accepting classes c.

Let (G[F ], X) be a maximum size solution for our problem. By Proposition 6, this so-
lution is compatible with α(∅, V, ∅, c) for the class c of the (t + 1)-terminal graph graph
(F, ∅, E(G[F ])), which achieves the proof of the lemma.

This latter computation takes constant time.
The total running time of the algorithm is O(|ΠG|nt+4). Note that, instead of keeping

the size of the largest solution (G[F ], X), we could explicitly store the vertex subsets (F,X)
of G.

3.3 Extensions

Theorem 1 can be extended to weighted and annotated versions of problem Optimal Induced
Subgraph for P and t, for any t ≥ 0 and any regular property P.

Optimal Weighted Annotated Induced Subgraph for P and t
Input: A graph G = (V,E) a weight function w : V → R, a set U ⊆ V of annotated
vertices and a number t.
Task: Find sets X ⊆ F ⊆ V such that F contains U , the induced subgraph G[F ] is of
treewidth at most t, property P(G[F ], X) is true and X is of maximum weight under
these conditions.

Theorem 2. For any fixed t and any regular property P, the problem Optimal Weighted
Annotated Induced Subgraph for P and t is solvable in |ΠG|nO(1) time, when ΠG is
given in the input.

In particular the problem can be solved in O(1.7347n) time for arbitrary graphs, and in
polynomial time for classes of graphs with polynomial number of minimal separators.

17



For this purpose, we slightly adapt the definitions of α and β functions. In order to force
the annotated vertices to be in F , each value α(S,C,W, c) (resp. β(S,C,Ω,W, c) such that
U∩S 6⊆W (resp. U∩Ω 6⊆W ) is immediately set to −∞, meaning that such a partial solution
is rejected.

In order to maximize the weight of the solution, the values α(S,C,W, c) (respectively
β(S,C,Ω,W, c)) will correspond to the maximum weight over partial solutions compatible
with (S,C,W, c) (resp. (S,C,Ω,W, c)). In the algorithm, we simply replace the cardinality of
sets (e.g., |X| in Equation 2, |term(c′,W )| is Equation 6 and |term(cW ,W ) \ term(ci,Wi)| in
Equation 4) by the weights of these sets.

We also point out that the weights can be negative. In particular, we can use Theorem 2
to compute an induced subgraph G[F ] of treewidth at most t and a subset X ⊆ F such that
P(G[F ], X) is true, and X is of minimum size (or weight) under these conditions.

One can imagine more extensions of Theorems 1 and 2. A natural one consists in finding
sets X and F such that the size of X is exactly an input value v. For this purpose, we
can adapt our definitions of α and β to store, for each possible value v′ ≤ v, a boolean
α(S,C,W, c, v′) (resp. β(S,C,Ω,W, c, v′)), set to true if and only if there exists partial solution
(G[F ′], X ′) compatible with (S,C,W, c) (resp. (S,C,Ω,W, c) such the size of X ′ is exactly
v′. The computation of α and β is quite straightforward, by adapting Equations 2 to 8. The
complexity of the algorithm is multiplied by a polynomial factor.

Even more involved, we can consider properties P(G,X1, . . . , Xp, E1, . . . , Eq), where each
Xi is a vertex subset and each Ej is an edge subset of graph G. The notion of regularity
extends in a very natural way to several variables. Recall that Borie et al. [11] proved that
all properties expressible by CMSO-formulae are regular, so we are allowed to use any (fixed)
number of free variables corresponding to vertex sets and edge sets.

Let t ≥ 0 be an integer and P(G,X1, . . . , Xp, E1, . . . , Eq) be a regular property on graphs
and vertex subsets Xi and edge subsets Ej . We define the following generic problem.

Constrained Induced Subgraph for P and t

Input: A graph G, integer values v1, . . . , vp ≤ n and w1, . . . , wp ≤ n(n−1)
2

Task: Find F ⊆ V , sets Xi ⊆ F and Ej ⊆ E(G[F ]) such that the induced subgraph G[F ]
is of treewidth at most t, P(G,X1, . . . , Xp, E1, . . . , Eq) is true, each set Xi is of size vi
and each set Ej is of size wj .

Since property P is regular, we need to adapt the definition of partial solutions to more
variables (again very naturally) and then we define as above boolean functions

α(S,C,W, c, v′1, . . . , v
′
p, w

′
1 . . . , w

′
q),

respectively
β(S,C,Ω,W, c, v′1, . . . , v

′
p, w

′
1 . . . , w

′
q)

to be true if there exists a partial solution (G[F ′], X ′1, . . . , X
′
p, E

′
1, . . . , E

′
q) compatible with

(S,C,W, c) (resp. (S,C,Ω,W, c)) such that each X ′i is of size v′i and each E′j is of size w′j .
For computing the α and β values, we must again adapt Equations 2 to 8. Basically, for each
class c, the function term(c,W ) used in the equations for a homomorphism class c and an
order set of terminals W must now return each intersection of type X ′i∩W for vertex sets and
E′j ∩G[W ] for edge sets. These intersections will be used to avoid overcounting when glueing

partial solutions. The complexity of the algorithm becomes larger by a factor of nO(p+q).
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Therefore we can solve problems like finding, among maximum induced subgraph of
treewidth at most t, the one with minimum dominating set.

4 Applications

In this section we discuss several applications of Theorem 1. Our results are summarized in
the following theorem. Recall that the problems have been defined in the Introduction.

Theorem 3. Let G be an n-vertex graph given together with the set of its potential maximal
cliques ΠG. Then

• Maximum Induced Subgraph with ≤ ` copies of Fm-cycles,

• Maximum Induced Subgraph with ≤ ` copies of p-cycles,

• Maximum Induced Subgraph with ≤ ` copies of Minor Models from F , where
F contains a planar graph,

• Independent G(t, ϕ)-Packing, and

• k-in-a-Graph From G(t, ϕ)

are solvable in time |ΠG| ·nO(1). Here the hidden constants in O depend on m, p, `, F , t, and
ϕ.

Combined with Proposition 5, Theorem 3 implies the following.

Corollary 2. Let G be an n-vertex graph. All problems from Theorem 3 are solvable in time
O(1.7347n).

The proof of Theorem 3 follows from Theorem 1 and Lemmata 6, 7, 8, 9, and 10.
Let us remark that Theorem 3 also holds for different modifications of these problems, like

requirements of the maximum induced subgraph being connected, of maximum vertex degree
at most some constant ∆, etc. Such modifications easily capture problems like computing a
longest induced path, cycle, or an induced tree with given maximum vertex degree.

Hitting and packing cycles of length 0 (mod m). We will need the following result of
Thomassen.

Proposition 8 ([70]). For every integers `,m > 0 there exists an integer k(`,m) > 0 such
that the treewidth of a graph with at most ` vertex-disjoint cycles from Fm is at most k(`,m).

With the help of Proposition 8, we obtain the following lemma.

Lemma 6. Maximum Induced Subgraph with ≤ ` copies of Fm-cycles is a special
case of Optimal Induced Subgraph for P and t with t = f(`,m), where f depends only
on m and `.

Proof. For a graph G let F be the maximum vertex set such that G[F ] has at most ` vertex-
disjoint cycles from Fm. We put f(`,m) = k(`,m), where k(`,m) is the integer from Propo-
sition 8. By Proposition 8, the treewidth of GF is at most f(`,m).
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Then Maximum Induced Subgraph with ≤ ` copies of Fm-cycles is to maximize
|X| for the following property

P(G[F ], X) = {F = X and G[F ] contains at most ` vertex-disjoint cycles from Fm.}

To show that P(G[F ], X) is regular, we observe that it is expressible by a CMSO-formula.
Indeed, this formula expresses that for every partition of V (GF ) into `+ 1 subsets, there is a
subset containing no cycle from Fm.

Hitting long cycles. We need the following result, which is due to Birmelé et al.

Proposition 9 ([7]). Graphs without ` disjoint cycles of length at least p are of treewidth
O(`2p).

By making use of Proposition 9, it is easy to prove the following lemma.

Lemma 7. Maximum Induced Subgraph with ≤ ` copies of p-cycles is a special case
of Optimal Induced Subgraph for P and t with t = O(`2p).

Proof. For a graph G let F be the maximum vertex set such that G[F ] has at most ` vertex-
disjoint cycles of length at least p. By Proposition 9, the treewidth of G[F ] is at most O(`2p).
Then we are maximizing |X| for the following property

P(G[F ], X) = {F = X and G[F ] contains ≤ ` vertex-disjoint cycles of length ≥ p.}

To show that this property is regular, we observe that property of not having a cycle of length
at least p is expressible in CMSO. Indeed, a property of a set C of vertices to induce a cycle
is CMSO, and because p is fixed, the formula expressing the sentence that for every subset C
inducing a cycle, the number of elements is at most p, is of constant length. Because ` is also
fixed, it is possible to express by a constant size CMSO-formula the sentence that for every
partition in ` + 1 subsets there is a subset inducing a subgraph without a cycle of length at
least p.

Excluding planar minors. The following proposition follows almost directly from the
excluded grid theorem of Robertson and Seymour [64], see also [65].

Proposition 10 ([64]). For every integer ` > 0 and family F containing a planar graph, there
exists an integer k(`,F) > 0 such that the treewidth of a graph with at most ` vertex-disjoint
minor models from F is at most k(`,F).

Lemma 8. If F contains a planar graph, then Maximum Induced Subgraph with ≤ `
copies of Minor Models from F is a special case of Optimal Induced Subgraph for
P and t with t = k(`,F).

Proof. For a graph G let F be the maximum vertex set such that G[F ] has at most ` vertex-
disjoint models of minors from F . By Proposition 10, the treewidth of G[F ] is at most
k(`,F). The property that a graph does not contain a fixed graph as a minor is known to be
expressible in CMSO. This implies that the property

P(G[F ], X) = {F = X and G[F ] has ≤ ` vertex-disjoint minor models from F}

is regular.
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Independent packing.

Lemma 9. Independent G(t, ϕ)-Packing is a special case of Optimal Induced Sub-
graph for P and t.

Proof. For a graph G let F be a vertex set such that GF = G[F ] has the maximum number
of connected components, and each of the components is in G(t, ϕ). Because the treewidth
of every component does not exceed t, the treewidth of G[F ] does not exceed t. We use
cc(G[F ]) to denote the set of connected components of G[F ]. Because the property that
every connected component has regular is also regular, we have that the following property
is regular

P(G[F ], X) = {[X ⊆ V (GF )] ∧ [∀C ∈ cc(GF )(C ∈ G(t, ϕ) ∧ |X ∩ C| = 1)].}

k-in-a-graph. Because in k-in-a-Graph From G(t, ϕ), k is part of the input we need the
annotated variant of the main theorem (Theorem 2). The following lemma follows from the
definition of the problems.

Lemma 10. k-in-a-Graph From G(t, ϕ) is a special case of Optimal Weighted Anno-
tated Induced Subgraph for P and t.

5 Graph classes

In this section we discuss the consequences of Theorem 3 for special graph classes. In par-
ticular, by Proposition 4, every class of graphs with polynomially many minimal separators
also has polynomially many potential maximal cliques. For example, every n-vertex weakly
chordal graph, i.e. graph with no induced cycle or its complement of length greater than four,
has O(n2) minimal separators [12]. This class of graphs is a generalization of many graph
classes intensively studied in the literature like chordal, split, and interval graphs. Another
class of graphs of this type is the class of circular-arc graphs, intersection graphs of a set of
arcs on the circle. Every circular-arc with n vertices has at most 2n2−3n minimal separators
[52]. The class of d-trapezoid graphs is defined as follows. Let L1, . . . , Ld be d parallel lines
in the plane. A d-trapezoid is the polygon obtained by choosing an interval Ii on every line
Li and connecting the left, respectively, right endpoint of Ii with the left, respectively, right
endpoint of Ii+1. A graph is a d-trapezoid graph if it has an intersection model consisting of d-
trapezoids between d parallel lines. Every d-trapezoid graph has at most (2n−3)d−1 minimal
separators [55], see also [15]. An intersection graph of polygons enclosed by a bounding circle
is is know as a polygon-circle graph. As it was observed by Suchan in [68], every polygon-circle
with n vertices has O(n2) minimal separators. See Fig 1 of the Introduction for the relations
between most known classes of graphs with polynomially many minimal separators. We refer
to the encyclopedia of graph classes [15] for definitions of different graphs from Fig 1.

Let us remark that the only information for our algorithms we need is the bound on the
number of minimal separators in the specific graph class. While many of the algorithms from
the literature for intersection classes of graphs strongly use the intersection model this is not
necessary for our algorithms—they produce correct output regardless of whether the input
actually belongs to the specific class of graphs. If the number of minimal separators and thus
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potential maximal cliques is bounded, our algorithm correctly solves the problem. Otherwise,
the algorithm correctly reports that the given input is not from the restricted domain. Such
type of algorithms were called robust by Raghavan and Spinrad [62]. For example, while
recognition of d-trapezoid and polygon-circle graphs is NP-complete [72, 61], our algorithm
either correctly solves the problem or outputs that the input graph is not d-trapezoid or
polygon-circle.

Corollary 3. All problems from Theorem 3 are solvable in polynomial time on classes of
graphs from Fig 1.

On several classes of graphs even more general problems can be solved. The observation
here is that for many classes of graphs from Fig 1, the treewidth of a graph is upper bounded
by some function of other parameters like the maximum clique-size or maximum degree.

For example, Yannakakis and Gavril [73] have shown that for every fixed χ, a maximum
induced subgraph of a chordal graph colorable in χ colors can be found in polynomial time.
To see why this result follows as a corollary of our theorem, let us observe that for chordal
graphs, as for all perfect graphs, the chromatic number is equal to the maximum clique size,
see e.g. [44]. On the other hand, the treewidth of a chordal graph is known to be equal to the
maximum clique size minus one. Thus every induced χ-colorable subgraph of a chordal graph
is of treewidth at most χ− 1. Since colorability in a constant number of colors is expressible
in CMSO, the result follows.

For other variant of colorings, we need the the following proposition due to Gaspers et al.

Proposition 11 ([39]). Let G be a graph of maximum vertex degree at most D. Then the
treewidth of G is at most

• 4D, if G is a circle graph,

• 2D, if G is a weakly chordal graph or a circular-arc graph.

Combined with Proposition 11, Theorem 3 allows us to show that on several graph classes,
in addition to problems encompassed by Corollary 3, even larger class of problems can be
solved efficiently. For example, edge coloring of a graph is an assignment of colors to the
edges of the graph so that no two adjacent edges have the same color. The chromatic index
of a graph is the minimum number of colors required for edge coloring. By Vizing’s theorem,
for every graph with maximum vertex degree D, its chromatic index is either D or D + 1.
Since edge coloring in a constant number of colors is expressible in CMSO, we conclude that
the problem of finding a maximum induced edge-colorable in k colors subgraph (for a fixed
constant k) is solvable in polynomial time on circle, weakly chordal and circular-arc graphs.
Similarly, the problems like for a fixed constant k finding a maximum induced (connected)
subgraph of maximum vertex degree at most k are also solvable in polynomial time on these
classes of graphs.

The next lemma provides a different set of applications of the main theorem for special
graph classes.

Lemma 11. Let G be a graph excluding some fixed graph H as a minor. Then the treewidth
of G is at most

• f(H) for some function f of H only, if G is a weakly-chordal graph, and

22



• 3|V (H)| if G is a circular-arc graph.

Proof. Let G be a weakly chordal graph excluding H as a minor. By a theorem from [29],
there is a constant cH such that every H-minor-free graph of treewidth at least cHk

2 can
be transformed by making only edge contractions either to a planar triangulation Γk of a
(k×k)-grid, or to Πk, which is a graph obtained from Gk by adding a universal vertex. Since
both Γk and Πk for k ≥ 3 contain an induced cycle of length at least 6, we conclude that
the treewidth of G does not exceed some constant depending only on H. Indeed, otherwise a
contraction of G, and hence G too, would contain an induced cycle of length more than 4.

For circular-arc graphs, we can prove the statement of the lemma by using the observation
from [52] that every potential maximal clique of a circular-arc graph is the union of at most
of three cliques. Thus every circular-arc graph of treewidth at least 3|V (H)| should contain a
potential maximal clique of size at least 3|V (H)|, and hence a clique of size at least |V (H)|.
Thus every circular-arc graph of treewidth at least 3|V (H)| contains H as a minor.

By combining Lemma 11 with Theorem 3, we obtain that Minimum F-Deletion is
solvable in polynomial time on circular-arc and weakly chordal graphs for every finite family
F of graphs. The requirement that F contains a planar graph can be omitted in this case.

6 Conclusion

While regular properties and CMSO capture many interesting problems, it seems that the
approach based on minimal triangulations is not restricted by these settings. Take for example
the following problem.

Minimum Induced Disjoint Connected `-Subgraphs
Input: A graph G, and a collection {T1, T2, . . . , Tp} of terminal vertices, Ti ⊆ V (G), of
size at most `.
Task: Find a set F ⊆ V (G) of minimum size such that G[F ] has connected components
C1, C2, . . . , Cp and for every 1 ≤ i ≤ p, Ti ⊆ Ci.

This problem is a generalization of the Induced Disjoint Paths, where for a given set
of p pairs of terminals xi, yi, 1 ≤ i ≤ p, the task is to find a set of paths connecting terminals
such that the vertices from different paths are not adjacent. Belmonte et al. [4] have shown
that Induced Disjoint Paths is solvable in polynomial time on chordal graphs. Because p
is part of the input and not fixed, this problem cannot be expressed by a CMSO-formula of
constant size. On the other hand, by applying a modification of the dynamic programming
algorithm over potential maximal cliques and minimal separators, it is possible to show that
this problem is solvable in time proportional to the number of potential maximal cliques, up
to polynomial factor nt+O(1).

Another example can be the following problem. Let t be an integer.

Homomorphism from t-Treewidth Subgraph
Input: Graph G and H
Task: Find a set F ⊆ V (G) of maximum size such that the treewidth of G[F ] is at most
t and there is a homomorphism from G[F ] to H.

By the classical result of Yannakakis and Gavril [73], for every fixed χ, a maximum
induced subgraph of a chordal graph colorable in χ colors can be found in polynomial time.
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Because coloring into χ colors is homomorphism in a complete graph on χ vertices, and
because the treewidth of a χ-colorable chordal graph is at most χ − 1, Homomorphism
from t-Treewidth Subgraph extends this problem. However, the property of having a
homomorphism to H is not CMSO-expressible because H is part of the input. Moreover,
it is easy to see that already very special case of graph homomorphism problem, where we
are asked for a homomorphism from a clique of size k (and thus of treewidth k − 1) to
H is equivalent to deciding if H has a clique of size at least k, which is W[1]-hard. Thus
homomorphism from G to H parameterized by the treewidth of G is W[1]-hard. But on the
other hand, dynamic programming over potential maximal cliques and minimal separators
shows that Homomorphism from t-Treewidth Subgraph is solvable in time proportional
to the number of potential maximal cliques, up to polynomial factor nO(t).

Both examples indicate that even more general framework capturing problems solvable
in time proportional to the number of potential maximal cliques can exist. Defining such a
general framework is an interesting open question.

Another open question concerns counting problems. Our approach does not work for
counting problems due to potential double counting in the process of computing functions α
and β. We do not exclude a possibility that with additional (clever) ideas the main algorithm
of the paper can also count maximum sets with regular properties but we do not know how
to do it, and leave it as an interesting open question.

Another problem which seems to be very much related but still cannot be handled directly
by our approach is Connected Feedback Vertex Set, where we are asked to find a
minimum feedback vertex set inducing a connected subgraph. Interestingly, out approach
works without problems for Maximum Induced Tree, where the task is to find a minimum
feedback vertex set such the remaining graph is connected, i.e. a tree.
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