
APPLICATIONS OF THE CROSS-ENTROPY METHOD TO IMPORTANCE

SAMPLING AND OPTIMAL CONTROL OF DIFFUSIONS

WEI ZHANG2 , HAN WANG1 , CARSTEN HARTMANN1,* , MARCUS WEBER2 , AND CHRISTOF
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Abstract. We study the cross-entropy method for diffusions. One of the results is a versatile cross-entropy

algorithm that can be used to design efficient importance sampling strategies for rare events or to solve optimal

control problems. The approach is based on the minimization of a suitable cross-entropy functional, with a

parametric family of exponentially tilted probability distributions. We illustrate the new algorithm with several

numerical examples and discuss algorithmic issues and possible extensions of the method.

Key words. importance sampling, optimal control, cross-entropy method, rare events, change of measure.

AMS subject classifications.

1 Introduction This article deals with the application of the cross-entropy method to

diffusion processes, specifically, with the application to importance sampling for rare events

and optimal control. Generally, the cross-entropy method is a Monte-Carlo method that was

originally developed for the efficient simulation of rare events in queuing models and that has

been extended to, e.g., combinatorial optimization or analysis of networks in the meantime

[18, 4]. To our knowledge, however, the cross-entropy approach has not been analyzed or used in

combination with diffusion processes, even though there have been significant research activities

in the direction of efficient algorithms for importance sampling and optimal control of high

dimensional multiscale diffusions; see, e.g., [5, 23, 24] for some ideas related to importance

sampling of rare events or [20, 25] for problems in optimal control.

We will exploit the fundamental duality between importance sampling and optimal control,

which arises due to the fact that both problems admit a variational formulation that boils down

to finding an optimal transformation of the underlying path space measure [6]. Algorithms

for computing an optimal change of measure usually seek an approximation of the optimal

measure with respect to some distance on the space of (probability) measures. Here, we will

use the Kullback-Leibler divergence, which, although not a metric, is a numerically convenient

and widely used similarity measure for probability measures. The cross-entropy method then

provides a general algorithm to find the minimizer of the Kullback-Leibler divergence among a

family of parameterized probability measures, and the main purpose of this paper is to formulate

the method in the context of diffusions and to discuss its application to importance sampling

and optimal control.

This paper is organized as follows. The cross-entropy method in path space is outlined

in Section 2 and discussed in the context of importance sampling and the dual optimal control

problem. Section 3 is devoted to the formulation of the cross-entropy algorithm for diffusions.

Several numerical examples are studied in Section 4. We summarize our findings in Section 5.
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2 The cross-entropy method in path space In this section, we discuss how to use

the cross-entropy method for stochastic differential equations. The mathematical set-up will

be largely based on the application of the method to importance sampling, which is the most

standard application of the cross-entropy method in the literature. The associated (dual) optimal

control problem will be briefly discussed at the end of this section.

2.1 Problem set-up Consider zs ∈ Rn satisfying

dzs = b(zs)ds+
√

2ε dws , 0 ≤ s ≤ T

z0 = x
(2.1)

where ε > 0 is constant, b : Rn → Rn is a smooth vector field, and w is n-dimensional Brownian

motion. Further let O ⊂ Rn be open and bounded and call

τ = inf{s > 0: zs /∈ O} (2.2)

the first exit time of the set O ⊂ Rn. In the following we will use Z to denote a path (trajectory)

{zs : 0 ≤ s ≤ T} and use the notation zs ∈ Rn for the state at time s. Accordingly we denote

by F (Z) a path functional that, throughout this paper, is assumed to be of the form

F (Z) = exp

(
−1

ε

∫ τ∧T

0

G(zs) ds−
1

ε
H(zτ∧T )

)
. (2.3)

for some continuous and bounded functions G,H : Rn → R and with τ ∧ T = min{τ, T}. We

consider a Monte Carlo method to compute the quantity

`(x) = E(F (Z)), (2.4)

with E(·) = E(·| z0 = x) denoting the conditional expectation over all realizations of (2.1)

starting at z0 = x. A special and interesting case is when G = 0 and H = −ε log 1∂O with ∂O

denoting the smooth boundary of the set O, in which case

E(1∂O(zτ∧T )) = P(τ ≤ T ), (2.5)

is the probability of trajectories starting at z0 = x to reach the boundary of O before time T .

The exit time distribution of a set provides details about, e.g., transition mechanisms and is a

common quantity to analyze metastable dynamics.

2.2 Importance sampling We now formulate the cross-entropy method for diffusions.

In doing so, we follow the relevant literature [4, 18] and first introduce the general concept of

importance sampling in path space, before we establish the link with optimal control. Suppose

we are able to generate path samples from a family of probability measures {µλ}λ∈F on the

space of continuous functions C([0, T ],Rn) that are parametrized by λ ∈ F ⊂ Rm where the

dynamics (2.1) corresponds to λ = 0; for the sake of simplicity, we set F = Rm. We use the

shorthand µ = µ0 and refer to µλ 6=0 as the tilted probability measure. We further assume that

every µλ has a probability density f(·;λ) with respect to the scaled Wiener measure νε.
∗

∗The scaled measure νε is the probability measure induced by the scaled Brownian motion
√

2εws on the

space C([0, T ],Rn). It is related to the standard Wiener measure underlying the standard Brownian motion ws

by rescaling of time, which follows from the fact that ws and
√

2εws/(2ε) have the same law.
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The idea of importance sampling is—instead of drawing samples from the measure µ—to

generate samples from an alternative probability measure η = g(·)νε that is absolutely continuous

with respect to µ, but that yields Monte-Carlo estimators that have, e.g., smaller variance or

bounded relative error as the probability of the rare goes to zero [12]. Using independent draws

from η an unbiased Monte Carlo estimator of (2.4) is given by

`N =
1

N

N∑
i=1

F (Z̃i)f(Z̃i;0)

g(Z̃i)
, (2.6)

where the trajectories Z̃i, i = 1, · · · , N are independent realizations from η. It is well known

that the optimal measure η∗ that minimizes the variance of the estimator has the density

g∗(Z) =
F (Z)f(Z;0)

`
. (2.7)

It is easy to see that the thus defined η∗ yields a zero variance estimator. Note however that it

depends on ` = E(F (Z)), which is the quantity that we want to compute.

The idea of the cross-entropy method is to find the best approximation of η∗ among the

family µλ,λ ∈ F of tilted probability measures. The approach is based on minimizing the

Kullback-Leibler divergence, which in our case can be defined as follows: given two probability

measures µ1 = g1νε, µ2 = g2νε that are absolutely continuous with respect to the scaled Wiener

measure, the Kullback-Leibler divergence or relative entropy between µ1 and µ2 is defined as

D(µ1, µ2) = Eµ1

(
log

dµ1

dµ2

)
(2.8)

where the expectation with respect to the measure µ1 is defined as

Eµ1

(
log

dµ1

dµ2

)
=

∫
log

dµ1

dµ2
dµ1 =

∫
g1 log g1 dνε −

∫
g1 log g2 dνε . (2.9)

Cross-entropy method I. The cross entropy method now seeks an optimal change of

measure by solving the minimization task

min
λ∈Rm

D(η∗, µλ) (2.10)

for the tilt parameter λ ∈ Rm. Not knowing what η∗ is, this still sounds like an infeasible

minimization problem. It turns out, however, that we need to know η∗ only up to a constant

prefactor, which in our case, since x is fixed, eliminates the unknown quantity ` = `(x). Using

(2.7) and (2.8), the minimization problem is equivalent to the following maximization problem

max
λ∈Rm

Eµ(F (Z) log f(Z;λ)) . (2.11)

For the efficient numerical solution of (2.11) it is often convenient to allow for drawing

samples from a probability measure that somehow “in between” µ and µλ∗ . This will give us

some extra freedom to use, e.g., an iterative solver for the maximization problem (2.11). Letting

v ∈ Rm denote an arbitrary family parameter, our maximization problem can be recast as

max
λ∈Rm

Eµv (F (Z)h(Z;v) log f(Z;λ)), (2.12)
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where

h(Z;v) =
f(Z;0)

f(Z;v)
. (2.13)

An unbiased estimator of (2.12) is

max
λ∈Rm

1

N

N∑
i=1

F (Z̃i)h(Z̃i;v) log f(Z̃i;λ) (2.14)

where Z̃i, i = 1, · · · , N are independent realizations generated from µv. The necessary condition

for λ∗ being a maximizer of (2.14) is obtained by taking the gradient with respect to λ:

N∑
i=1

F (Z̃i)h(Z̃i;v)∇λ log f(Z̃i;λ) = 0 . (2.15)

The degree of difficulty when solving (2.15) numerically of course depends on the parame-

terization of the tilted family of distributions. In Section 3, we will introduce a family of tilted

distributions that turns (2.15) into a linear system of equations for the unknown λ.

2.3 Optimal control In this section, we consider the cross-entropy method for the solu-

tion of certain optimal control problems for diffusion processes. To this end consider the optimal

control problem with cost function [20, 25]

J(u) = Eµu

(∫ τ∧T

0

G(zs) +
1

4
|us|2ds+H(zτ∧T )

)
, (2.16)

with bounded continuous function G,H : Rn → R and us ∈ Rn being a measurable control

that will specified below. The expectation Eµu with respect to the probability measure µu is

understood as the expectation over all realizations of the controlled dynamics

dzs = (b(zs) + us) ds+
√

2ε dws, 0 ≤ s ≤ T

z0 = x
(2.17)

We suppose that G ≥ 0 and, for the ease of notation, we set H = 0. We wish to minimize (2.16)

under the constraint (2.17) and over all measurable controls u that are adapted to the filtration

generated by the Brownian motion driving the dynamics (2.17).

Control problem of the above form are called linear-quadratic as the control appears linearly

in the equations of motion and quadratically in the cost functional; the dependence on the states

z may be nonlinear though. An example is the alignment of a molecule in solution in a laser field

(modelled by u), where the cost measures the deviation of the molecule from a given reference

configuration and the energy exterted by the laser [21]. Other applications of stochastic control

problems of the form (2.16)–(2.17) involve molecular dynamics [20], photochemistry [1], material

science [22], or mechanical engineering [26], to mention just a few.

Under suitable conditions on the vector field b, it is known that the optimal control prob-

lem (2.16)–(2.17) has a unique viscosity solution in form of a Markovian feedback control [9].

Specifically, there exists a continuous and bounded function c : [0, T ]× Rn → Rn, such that the

minimizer û = argmin J(u) of the cost functional J is of the form

ûs = c(s, zs) , (2.18)

4



with c(t, x) = −2∇v(t, x) and v being the value function or optimal cost-to-go:

v(t, x) = min
u

Eµu

(∫ τ∧T

0

G(zs) +
1

4
|us|2ds+H(zτ∧T )

∣∣∣∣zt = x

)
. (2.19)

Now call µ, µ̂ the probability measures on the path space C([0, T ],Rn) corresponding to

(2.17) with u = 0 and û. Then, using the Legendre-type dual relation, we have [3, 10]

J(û) = −ε logEµ

(
exp

(
−1

ε

∫ τ∧T

0

G(zs) ds

))
, (2.20)

where, by Jensen’s inequality (see [9, Sec. VI.2]), we know that µ̂-a.s.

exp

(
−1

ε

∫ τ∧T

0

G(zs) ds

)
dµ

dµ̂
= Eµ

(
exp

(
−1

ε

∫ τ∧T

0

G(zs) ds

))
(2.21)

From the above we conclude that (see [9, Sec. VI.3] for details)

J(u) = Eµ̂

(∫ τ∧T

0

(
G(zs) +

1

4
|us|2

)
ds

)
dµu
dµ̂

= J(û) + Eµ̂

((
ε log

dµ

dµ̂
+

1

4

∫ τ∧T

0

|us|2 ds

)
dµu
dµ̂

) (2.22)

After some rearrangement and simplification, we obtain the following simple relationship:

J(u) = J(û) + εD(µu, µ̂). (2.23)

where D(·, ·) is the Kullback-Leibler divergence as defined in (2.8).

Cross-entropy method II. Computing the optimal control û can be tedious, or is in-

feasible if the dynamics are high dimensional. As a remedy we suggest again to find the best

approximation of µ̂ = ĝ(·)νε among a suitably defined family µλ,λ ∈ F of tilted probability mea-

sures that are absolutely continuous with respect to νε. Sticking to the notation from Section 2,

it readily follows that the minimizer of (2.23) has the density

ĝ(Z) ∝ exp

(
−1

ε

∫ τ∧T

0

G(zs) ds

)
f(Z; 0) (2.24)

with respect to νε, which is should be compared to the corresponding expression (2.7) for the

optimal importance sampling distribution. By Girsanov’s theorem there is a one-to-one cor-

respondence between the control force u = u(λ) and a certain family of exponentially tilted

probability measures µλ. Instead of minimizing (2.16) subject to the dynamics (2.17), we solve

the constrained optimization problem

min
λ∈Rm

J(u(λ)). (2.25)

subject to the dynamics (2.17). From (2.23), we know that solving (2.25) is equivalent to

minimizing the Kullback-Leibler divergenceD between µu and µ̂, which, however, is still not easy.

On the other hand, inspired by the discussions in Section 2, we can apply cross-entropy method
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to minimize the relaxed entropy functional D(µ̂, µu) rather than D(µu, µ̂). As a consequence,

the problem is reduced to the case in Section 2.

Note that the relaxed problem solved by the cross-entropy method is different from (2.25),

as the Kullback-Leibler divergence is not symmetric. Yet both (2.25) and its relaxed version

agree at the minimum, therefore the hope is that the latter yields a reasonable approximation

of the optimal control problem—given that the family of tilted distributions is cleverly chosen.

3 Cross-entropy algorithm In this section, we will specify the family {µλ}λ∈F of tilted

probability measures that we are going to use for the procedure introduced above and formulate

the cross-entropy algorithm. As a first step, let µ denote the probability measure on C([0, T ],Rn)

that is induced by the dynamics (2.1) and let νε be scaled Wiener measure associated with

dxs =
√

2ε dws, 0 ≤ s ≤ T

x0 = x.
(3.1)

By Girsanov’s theorem [15], we have

dµ = exp

(
−1

ε
S(Z)

)
dνε , (3.2)

with the action

S(Z) = −
√
ε

2

∫ τ∧T

0

b(zs) · dws −
1

4

∫ τ∧T

0

|b(zs)|2 ds

= −1

2

∫ τ∧T

0

b(zs) · dzs +
1

4

∫ τ∧T

0

|b(zs)|2ds
(3.3)

where the stochastic integral is interpreted in the sense of Itô [15]. A remark is in order.

Remark 1. We could rewrite (3.2)–(3.3) as a Stratonovich integral using the relationship∫ τ∧T

0

b(zs) · dzs =

∫ τ∧T

0

b(zs) ◦ dzs − ε
∫ τ∧T

0

div b(zs) ds , (3.4)

by which we obtain

dµ = exp

(
1

2ε

∫ τ∧T

0

b(zs) ◦ dzs −
1

4ε

∫ τ∧T

0

(|b(zs)|2 + 2εdiv b(zs)) ds

)
dνε (3.5)

The associated action functional

S(Z) = −1

2

∫ τ∧T

0

b(zs) · dzs +
1

4

∫ τ∧T

0

|b(zs)|2ds+
ε

2

∫ τ∧T

0

div b(zs)ds (3.6)

is closely related to what is known as the Onsager-Machlup functional in the physical literature.

See [7] for details. We will stick to Itô interpretation of (3.3) in the following.

3.1 Choosing a family of path space measures We will confine our attention to

a special class of tilted probability distributions that is suggested by the the optimal control

problem from in Section 2.3. To this end, let {φi}1≤i≤m denote a set of continuously differentiable

basis functions φi : [0, T ]× Rn → R. The cross-entropy method will be based on realizations of

dzs = (b(zs) + c(s, zs;λ)) ds+
√

2εdws, 0 ≤ s ≤ T

z0 = x ,
(3.7)
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with

c(s, x;λ) = 2

m∑
i=1

λi∇φi(s, x) . (3.8)

(The scaling factor 2 is merely conventional.) It follows from Girsanov’s theorem that the

associated path probability measure µλ has a density f(·;λ) with respect to the scaled Wiener

measure νε. It is given by the usual exponential expression

f = exp

(
1

2ε

∫ τ∧T

0

(b(zs) + c(s, zs;λ)) · dzs −
1

4ε

∫ τ∧T

0

|b(zs) + c(s, zs;λ)|2 ds

)
. (3.9)

As a consequence, we can generate independent samples from µλ by repeatedly simulating the

controlled dynamics (3.7). Since the tilting parameter λ = (λ1, . . . , λm) enters linearly, the

associated cross-entropy maximization problem (2.14) is strictly convex and thus has a unique

solution. Note that, indeed, µ0 = µ is the probability measure corresponding (2.1).

3.2 Iterative cross-entropy optimization of control policies Defining

f(Z;λ) = exp

(
−1

ε
S(Z;λ)

)
, (3.10)

with the action

S = −1

2

∫ τ∧T

0

(b(zs) + c(s, zs;λ)) · dzs +
1

4

∫ τ∧T

0

|b(zs) + c(s, zs;λ)|2ds (3.11)

and noting that

∇λ log f(Z;λ) = −1

ε
∇λS(Z;λ), (3.12)

the necessary optimality condition (2.15) can be recast as a linear system of equations:

Aλ = r, (3.13)

where A = (Aij)1≤i,j≤m and r = (ri)1≤i≤m with

Aij = 2

N∑
k=1

F (Zk)h(Zk;v)

∫ τ∧T

0

∇φi(s, zks )∇φj(s, zks ) ds,

ri =

N∑
k=1

F (Zk)h(Zk;v)

(∫ τ∧T

0

∇φi(s, zks ) · dzks −
∫ τ∧T

0

∇φi(s, zks ) · b(zks ) ds

)
.

(3.14)

Here v ∈ Rm is an arbitrary vector, and Zk = (zks )0≤s≤T denotes the sample paths of (3.7) with

control us = c(s, zks ;v). Note that the realizations are generated from µv and therefore do not

depend on λ. Further notice that the matrix A is positive definite if the basis functions φi are

linearly independent, which implies that (3.14) has a unique solution.

It thus seems that the solution of the discrete maximization problem (2.14) can be obtained

by just solving the linear equation (3.14). However, in real applications the expectation value `

of F (Z) in (2.4) is very small so that it is difficult to estimate the coefficients (3.14) accurately

enough, which renders the solution of (2.14) inaccurate. In many applications, the reason for this
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is metastability of the dynamics when ε� 1. In this case, the trajectories are long and ` is small,

which means computing (3.14) is both time-consuming and inaccurate. Inspired by the original

cross-entropy method [4], we may overcome this problem by starting from a higher temperature

(here: ε) and compute (3.14) while decreasing the temperature. The proposed iterative method

to solve (2.14) is illustrated in Algorithm 1.

Algorithm 1 Cross-entropy algorithm

1: Define ε0 > ε1 > . . . > εk = ε, set v(0) = 0.

2: for j = 0 to k do

3: generate Nj trajectories zi, i = 1, 2, · · · , N from dynamics (3.7), with λ = v(j), ε = εj .

4: compute the coefficients of A(j), r(j) from (3.14) with v = v(j), and solve the linear

equations A(j)v(j+1) = r(j).

5: end for

We conclude this subsection with a few remarks on possible extensions of the method.

Remark 2. It is straightforward to relax the restriction of the fixed initial condition and

consider distributed initial conditions instead, i.e. z0 = x ∈ Rn following some probability dis-

tribution π on Rn. All considerations and the cross-entropy method remain valid without al-

terations, if the sum over the N realizations of the dynamics is replaced by the sum over all

realization and the sum over sufficiently many independent initial conditions x ∼ π.

Remark 3. We briefly mention two possible generalization of the above algorithm. The

first generalization concerns dynamics with multiplicative noise:

dzs = b(zs)ds+
√

2εσ(zs) dws , (3.15)

where the n × n matrices a(·) = σ(·)σ(·)T are positive definite with bounded inverses. Defining

the weighted scalar product 〈u, v〉 = uT (a(z))−1v, then all considerations remain valid, with the

dot product u · v being replaced by 〈u, v〉. In particular, (3.3) must be replaced by

S(Z) = −1

2

∫ τ∧T

0

〈b(zs), dzs〉+
1

4

∫ τ∧T

0

‖b(zs)‖2ds , (3.16)

where ‖v‖ =
√
〈v, v〉 is the norm induced by the scalar product 〈·, ·〉. Another important class of

systems are Langevin-type diffusions with degenerate noise:

dxs = ys ds

dys = − (∇V (xs) + ys) ds+
√

2εdws ,
(3.17)

Here (xs, ys) ∈ R2n are the state variables and V : Rn → R is a smooth potential energy that is

bounded below and sufficiently growing at infinity; more general variants of (3.17) can be consid-

ered too, but we refrain from discussing the most general scenario here. Langevin diffusions have

the property that, even though the noise is degenerate and hence the tilting of the distribution can

be only in the direction of some variables, one has control over the full path space distribution.†

†The reason for this lies in the fact that the Langevin equation satisfies a condition known as complete

controllability, which ensures that noise drives all degrees of freedom in the system [13].
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Remark 4. If the terminal time T is large, it is possible to suppress the time dependence

of the basis functions and consider only functions φj = φi(x). In this case the optimal tilting is

not explicitly time-dependent as is the case in optimal stopping problems (see, e.g., [16]).

4 Numerical examples In this section, we will study the cross-entropy method with

some concrete dynamics and illustrate some numerical results.

4.1 Optimal transition of a one-dimensional bistable system We begin by studying

the following optimal control problem: minimize

J(u) = Eµu

(
τ +

1

4

∫ τ

0

u2s ds

)
, (4.1)

under the tilted dynamics

dzs = (us − V ′(zs)) ds+
√

2εdws . (4.2)

with ws standard one-dimensional Brownian motion and the bistable potential

V (x) =
1

2
(x2 − 1)2 . (4.3)

The double well potential V has two minima at x0 = −1 and x2 = 1 and a local maximum at

x1 = 0, and we define

τ = inf{s > 0: |zs − x2| ≤ 1} (4.4)

to be the first hitting time of the right well. The temperature (noise level) is set to ε = 0.2.

Throughout this section we choose a fixed initial condition z0 = x0.

The control task thus consists in minimizing the transition time from the left to the right

well by tilting the potential energy landscape, while penalizing too strong tilting. The cost

functional considered here is a variant of (2.16) for T → ∞ with running cost G = 1 and

terminal cost H = 0. In all numerical computations, however, T =∞ is replaced by a large but

finite terminal time T < ∞, so that τ ∧ T ≈ τ < ∞; the latter is to make sure that Girsanov’s

theorem is applied to a finite stopping time.

Representation and optimization of control policies. As basis functions for repre-

senting the feedback controls we use three (unnormalized) Gaussians of the form

φi(x) = exp

(
− (x− xi)2

2r2

)
, i = 0, 1, 2 , (4.5)

with r = 0.5 (see Fig. 4.1). Note that the basis functions are independent of time, which is due

to the fact that the time dependence of the optimal tilting is relatively weak in our case.

We generate trajectories using the Euler-Maruyama scheme with time step dt = 1.0×10−3.

The number of realizations used in Algorithm 1 is set to Nj = 104 for all temperature steps

εj = (2j + 1)−1, j = 0, 1, 2. The algorithm is initialized with v(0) = 0, from which v(j+1) is

obtained in the jth step with j = 0, 1, 2. Note that applying a control force ujs = c(s, zs;v
(j)) in

the j-th iteration is equivalent to modifying the potential by

V I,j(x) = V (x)− 2
∑
i∈I

v
(j)
i φi(x) (4.6)
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Fig. 4.1: One-dimensional basis functions φ0, φ1, φ2.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x

−2

−1

0

1

2

3

4

5

6

V

Potential

no. of iter = 0

no. of iter = 1

no. of iter = 2

no. of iter = 3

(a) basis {φ0}
−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

x
−3

−2

−1

0

1

2

3

4

5

6

V

Potential

no. of iter = 0

no. of iter = 1

no. of iter = 2

no. of iter = 3

(b) basis {φ1}

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x

−3

−2

−1

0

1

2

3

4

5

6

V

Potential

no. of iter = 0

no. of iter = 1

no. of iter = 2

no. of iter = 3

(c) basis {φ0, φ1}
−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

x

−6

−4

−2

0

2

4

6

V

Potential

no. of iter = 0

no. of iter = 1

no. of iter = 2

no. of iter = 3

(d) basis {φ0, φ2}

Fig. 4.2: Effective potentials for one-dimensional dynamics. The modified potentials V I,j(x),

j = 0, 1, 2, 3, obtained by performing Algorithm 1, with different sets of basis functions as

explained in the text.

where I ⊂ N is the index set of the basis functions. We denote the optimized potential by

V I(x) = V I,3(x). The numerical results for index sets I ⊂ {0, 1, 2} are presented in Figure 4.2

and Figure 4.3. Figure 4.2 shows the modified potentials using four different index sets

I ∈ {{0}, {1}, {0, 1}, {0, 2}} . (4.7)

It can be seen that the solution is relatively sensitive to basis functions that either do not capture

the relevant region of state space (here: the transition region around the maximum at x1 = 0)

or that are supported in regions that are not sampled (here: rightmost energy well).
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Comparison with reference solution. To analyze the accuracy of the cross-entropy-

algorithm in more detail, we computed the solution of the optimal control problem (4.1) by

solving a Feymann-Kac type elliptic boundary value problem using a highly accurate finite

element discretization (see [20] for details); this is our reference solution. We then apply the cross-

entropy method with 17 Gaussian basis functions with centres ak = −1.5+0.1k, k = 0, 1, · · · , 16

and variance r = 0.1 and compute the modified potential via Algorithm 1. From Fig. 4.3, we

see that cross-entropy solutions with 17 basis functions can approximate the reference solution

quite well. We also observe that a similarly good approximation can be obtained with a single

well-chosen basis function φ1. This indicates the possibility to solve high-dimensional problems

with few basis functions.

With the optimized potentials, we then generate N = 106 samples from the controlled

dynamics and compute the value of the associated cost function (4.1). The results are presented

in Table 4.1: We clearly observe that the best results are obtained when the basis functions

capture the relevant transition region (here: φ1), since with the index sets 2 and 3, the cost

value 1.31 is closer to the exact solution 1.25 than elsewhere.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x

−3

−2

−1

0

1

2

3

4

5

6

V

Potential

original

exact

basis 1

17 basis

Fig. 4.3: Optimal control problem. Optimized potential V I(x) with a single basis function φ1

compared to the cross-entropy optimized potential with 17 basis functions and the (”exact”)

reference solution. The potentials are vertically shifted for better presentation.

4.2 Exit time distribution of a one-dimensional bistable system We continue

our study with the computation of the exit time distribution P(τ ≤ T ) of the bistable dy-

namics from the last subsection; the dynamics and the parameters are the same as in Sec-

tion 4.1. Our aim is to compute a discrete approximation of the exit time distribution using

T ∈ {2.0, 1.0, 0.5, 0.3, 0.2, 0.1} using importance sampling with two sets of basis functions, {φ0}
and {φ1} and compare it to standard Monte Carlo.

Acceleration index. In order to measure the speed-up gained by importance sampling

(IS) compared to standard Monte Carlo (MC) we define the acceleration index

I =
VarMC

VarIS
(4.8)

as the ratio of MC and IS sample variances. According to the central limit theorem, the variances

of the two methods will decrease as N−1 with the number N of trajectories, and hence the
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basis set coefficients cost mean of τ

{φ0} (−1.252, 0, 0) 5.14 2.02

{φ1} (0, 1.313, 0) 1.31 0.57

{φ0, φ1} (−0.078, 1.246, 0) 1.31 0.57

{φ0, φ2} (−1.139, 0, 0.975) 3.88 1.73

17 Gaussians /reference 1.27/1.25 0.52/0.52

Table 4.1: One-dimensional optimal control problem with different sets of basis functions. The

cost is given by the expectation (4.1) that is computed from N = 106 samples. The last column

shows the mean of the stopping time τ under the modified dynamics. The last row displays the

results for 17 Gaussian basis functions and the reference solution.

T coefficients P(τ ≤ T ) Var Accel. I Traj. Usage

2.0 (−0.592, 0, 0) 9.22× 10−2 1.8× 10−2 4.7 61%

1.0 (−0.984, 0, 0) 3.23× 10−2 2.2× 10−3 13.7 48%

0.5 (−1.570, 0, 0) 6.45× 10−3 1.3× 10−4 50.3 39%

0.3 (−2.321, 0, 0) 9.51× 10−4 4.8× 10−6 198.6 33%

0.2 (−3.219, 0, 0) 9.53× 10−5 8.7× 10−8 1091.8 27%

0.1 (−5.830, 0, 0) 1.22× 10−7 7.0× 10−13 very large 16%

Table 4.2: Computation of P(τ ≤ T ) by importance sampling, based on N = 106 independent

realizations a single basis function φ0. “Accel.” I (acceleration) measures the computational

speed-up of importance sampling relative to standard MC. “Traj. Usage” denotes the portion

of trajectories satisfying τ ≤ T under the modified dynamics.

acceleration index I has the following interpretation: If N is sufficiently large and IS reaches

a certain error with N trajectories, MC requires about IN trajectories to achieve the same

error. Thus, I is the speed-up factor of IS relative to MC, provided that we can ignore the

computational overhead associated with importance sampling (which is the case here).

Comparison with standard Monte-Carlo. Tables 4.2–4.4 and Figure 4.4. Tables 4.2

and 4.3 show the results of importance sampling with basis function {φ0} and {φ1}, respectively,

Table 4.4 records the result of vanilla Monte Carlo. We observe that, for each value of T , the

variances of the importance samplers are largely reduced compared to those of standard Monte

Carlo. The difference increases when T decreases as is to be expected, for the event {τ ≤ T} is

rarer the smaller T is. Note that for T = 0.1 standard Monte Carlo cannot be used at all because

not a single realization is generated that hits the set boundary, while importance sampling still

gives a reasonable estimate; see Table 4.4.

In Figure 4.4, the optimized potentials resulting from IS are plotted for different values of T

and different sets of basis functions. As expected the optimized potentials become increasingly

different from the original potential the smaller the value of T , indicating that larger forces are

needed when the event is rarer.
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T coefficients P(τ ≤ T ) Var Accel. I Traj. Usage

2.0 (0, 0.680, 0) 9.23× 10−2 9.2× 10−3 9.1 85%

1.0 (0, 1.059, 0) 3.23× 10−2 1.0× 10−3 30.0 81%

0.5 (0, 1.636, 0) 6.46× 10−3 7.4× 10−5 86.9 68%

0.3 (0, 2.360, 0) 9.49× 10−4 3.0× 10−6 310.9 56%

0.2 (0, 3.237, 0) 9.56× 10−5 5.9× 10−8 1621.2 46%

0.1 (0, 5.821, 0) 1.21× 10−7 4.1× 10−13 very large 26%

Table 4.3: Computation of P(τ ≤ T ) for the one-dimensional dynamics, based on N = 106

independent realizations a single basis function {φ1}; see Tab. 4.2 for comparison.

T P(τ ≤ T ) Var Accel. Traj. Usage

2.0 9.23× 10−2 8.4× 10−2 1.0 9.2%

1.0 3.22× 10−2 3.1× 10−2 1.0 3.2%

0.5 6.28× 10−3 6.2× 10−3 1.0 0.6%

0.3 1.00× 10−3 1.0× 10−3 1.0 0.1%

0.2 9.30× 10−5 9.3× 10−5 1.0 0.009%

0.1 0.00 − 1.0 0.0%

Table 4.4: Computation of P(τ ≤ T ) for the one-dimensional dynamics by standard Monte-

Carlo, based on N = 106 independent realizations; compare Tabs. 4.2 and 4.3.

4.3 Conformational transition of solvated butane As a nontrivial test case, we now

apply the cross-entropy algorithm to the conformational dynamics of solvated butane. Specifi-

cally, we compute the cumulative distribution function of the gauche-trans transition time.

The butane is simulated in a 3.0 × 3.0 × 3.0 nm3 box with periodic boundary conditions,

using the GROMOS 45a3 force field [19] with a modified GROMACS 4.5 [17]. The simulation

box contains 900 SPC/E [2] water molecules. The dynamics are governed by the underdamped

Langevin equation

dri = m−1i pidt,

dpi = [fi(r) + ui]dt− γpidt+ σidwt,
(4.9)

where r = (r1, . . . , rN ) ∈ R3N and p = (p1, . . . , pN ) ∈ R3N , with ri denoting the Cartesian

coordinate of the i-th atom and with pi ∈ R3 being the conjugate momentum. Friction constant

γ and noise coefficients σi are coupled by the fluctuation-dissipation relation σ2
i = 2γmikBΘ

where kB is Boltzmann’s constant, Θ is the temperature and mi is the mass of the i-th atom

(here: ε = kBΘ). Here fi(r) denotes the force resulting from the GROMOS 45a3 force field and

ui is the additional biasing force on the i-th atom. The force term reads

fi(r) = −∇riVbonded(r)−∇riVnon-bonded(r). (4.10)
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Fig. 4.5: The butane molecule.

It involves bonded and non-bonded interactions. The bonded interactions are

Vbonded(r) =Vb(r) + Vθ(r) + Vφ(r)

=

Nb∑
k=1

1

4
kb(b

2
k(r)− b2k,0)2 +

Nθ∑
k=1

1

2
kθ(cos(θk(r))− cos θk,0)2

+

Nφ∑
k=1

kφ[1 + cos(δk) cos(mk φk(r))] (4.11)

where the bond potential Vb(r) is the energy due to the covalent bonds in the system, with

bk(r) being the instantaneous length of the k-th bond, bk,0 the constant equilibrium length, and

kb the force constant, Vθ(r) is the energy of the bond angle, with θk(r), θk,0 and kθ denoting

instantaneous angle, equilibrium angle and force constant; the third term is the energy of the

torsional dihedral angle, with φk(r), δk, mk and kφ denoting the instantaneous dihedral angle,

phase shift, multiplicity and the force constant. For a butane molecule as illustrated in Figure 4.5

covalent bonds are between the atoms 1–2, 2–3 and 3–4, bond angle interactions are between atom

triples 1–2–3 and 2–3–4, and dihedral angle interactions involve the atom quadruple 1–2–3–4.

The orders of magnitude of kb (= 7.15×106 kJ/(mol×nm4) for all bonds) and kθ (= 530 kJ/mol

for all bond angles) are much larger than the dihedral angle constant kφ (= 5.92 kJ/mol).
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Therefore the vibrations of the bonds and bond angles can be viewed as fast motions in the

system. The butane dihedral angle potential has multiplicity m = 3 and phase shift δ = 0,

which implies that the dihedral angle is essentially populated around three angles −60◦, 60◦ and

180◦. The first two are called gauche conformations, the other one is called trans conformation;

transitions between these conformations are the slow motions in the system. We constrain the

bonds and bond angles of the water molecules using the SETTLE algorithm [14]. The non-

bonded interaction potential is given by

Vnon-bonded(r) =
∑
i,j

[
C12,ij

r12ij
− C6,ij

r6ij

]
+
∑
i,j

1

4πε0

qiqj
rij

, (4.12)

where rij is the relative distance between atom i and j. The first term of (4.12) is the van der

Waals interaction and the second term is the Coulomb interaction, where qi denotes the partial

charge due to the atom i. During the simulation, the van der Waals potential is evaluated

numerically by the cut-off method with cut-off radius 9 nm, while for the Coulomb energy the

smooth particle mesh Ewald method (SPME) is used [8].

Importance sampling and parametrization of control policies. In order to compute

P(τ ≤ T ), we first generate an ensemble of initial conditions and run an equilibrium simulation

(i.e. with u = 0 in (4.9)) at 300 K, with friction constant 1.0 ps−1. The dihedral angle φ of the

butane molecule is monitored for every interval of 10 ps. If φ is in the range [40◦, 80◦] (corre-

sponding to the gauche conformation), then the system state (including all water coordinates)

is recorded, and used for the later study of gauche-trans transition. In our simulation, we only

record the first 5000 of these system states as an equilibrium sample of the gauche conformation.

As a next step, we run stopped simulations of (4.9) at 300 K with feedback control (u 6= 0)

and friction constant 10 ps−1; the process is stopped at τ ∧ T where τ is the time of first exit

from the gauche conformation. We define the exit from the gauche conformation as the entrance

to the trans conformation, which happens when the dihedral angle φ is equal or larger than 150◦.

The candidate feedback control ut = c(rt;λ) with c = (c1, . . . , cN ) used in the simulation

is assumed to depend only on the dihedral angle (that is a function of atomic coordinates):

ci(r;λ) = −∇riVctrl(φ(r)) = −∇ri
[ Nc∑
k=1

λk cos(kφ(r))

]
. (4.13)

The assumption that the control depends only on the dihedral angle is justified by the following

three observations: (1) the dihedral angle fully describes the conformational transition of the

butane molecule, (2) it is the slowest degree of freedom in the system relative to bond lengths,

bond angles and the motions of the water molecules, and (3) the explicit time dependence of the

control force is negligible; the influence of the potentially slow overall rotations of the butane

molecule that can couple to the internal conformational degrees of freedom on the optimal change

of measure is ruled out by numerical tests as is described below. As a consequence the optimal

control will be a function of the dihedral angle only—at least to a good approximation [25].

In this simulation, we choose the control potential Vctrl(φ(r)) to be a sum of cosine functions,

because the system is symmetric around φ = 0◦; the number of control functions is kept fixed at

Nc = 8 throughout the simulation. Numerical results confirm that the coefficient λ8 is already

very small compared to the dominant coefficients, which means that the number of basis functions
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Fig. 4.6: The dihedral potential and the dihedral potential with added control potential.

is large enough to capture the essential structure of the control. In all simulations the Langevin

equation (4.9) is discretized by the BAOAB scheme [11] with constant time step of 5× 10−4 ps.

We apply the cross-entropy algorithm to butane with T = 1.0, 0.5, 0.2 and 0.1 ps. From

each of the 5,000 equilibrium system states from the gauche conformation, we have launched 4

independent realizations of length τ ∧ T for T = 1.0, 0.5, and 0.2, which gives MIS = 20, 000

independent trajectories; for the smallest value T = 0.1 ps, we have simulated 12 independent

trajectories from each initial condition, resulting in 60,000 trajectories in total.

In order to compute the optimal control force u∗ efficiently we employ a further simplifica-

tion and remove all the water molecules. This is done because the vacuum simulation is much

cheaper than the simulation with water and the control forces calculated in vacuum are an accu-

rate approximation of the controls for the solvated molecule; the latter was verified numerically

by applying the cross-entropy method to solvated butane with the vacuum solution as initial

guess; no further iteration of the control forces was needed in this case.

Simulation results. The results of the importance sampling (IS) computations are sum-

marized in Figure 4.6, Table 4.5 and Table 4.6. In vacuum, we find probabilities P(τ ≤ T ) =

2.16 × 10−2, 8.66 × 10−3, 1.48 × 10−3 and 6.13 × 10−5 for T = 1.0, 0.5, 0.2 and 0.1 ps, respec-

tively. These values do not significantly differ from those of the solvated system as is shown in

the second column of Tab. 4.5. For comparison, Table 4.6 shows the result reference estimates

of P(τ ≤ T ), based on brute-force Monte-Carlo (MC) simulation with MMC = 100, 000 inde-

pendent realizations. The small absolute error of the IS scheme indicates that the assumption

that the control can be expressed solely in terms of the dihedral angle is reasonable. Only for

T = 0.1 ps the reference MC estimate cannot be trusted, because only 9 of the 100,000 trajec-

tories hit the trans conformation before time T ; hence for T = 0.1 ps, neither the estimate of

P(τ ≤ T ) nor of the error are reliable.

The fourth column of Table 4.5 shows the variance of the IS estimator that is drastically

reduced as compared with the brute force MC simulation. As before we have computed the

total acceleration index I, as a result of both variance reduction and the speed up of the rare

transition events (see the fifth column of Table 4.5). The column ”trajectory usage” presents
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T [ps] P(τ ≤ T ) Error Var Accel. I Traj. Usage

0.1 4.30× 10−5 0.77× 10−5 3.53× 10−6 12.2 0.4%

0.2 1.21× 10−3 0.11× 10−3 2.50× 10−4 4.8 5.4%

0.5 6.85× 10−3 0.38× 10−3 2.88× 10−3 2.4 8.3%

1.0 1.74× 10−2 0.08× 10−2 1.21× 10−2 1.4 12.3%

Table 4.5: Results for solvated butane, with controls acting on the dihedral angle only. “Er-

ror” denotes the expected error
√

Var/MIS of the IS estimator, where MIS is the number of

trajectories used. The meaning of the other columns is the same as in Tab. 4.2.

T [ps] P(τ ≤ T ) Error Var Accel. Traj. Usage

0.1 9.00× 10−5 3.00× 10−5 9.00× 10−5 1.0 0.009%

0.2 1.29× 10−3 0.11× 10−3 1.29× 10−3 1.0 0.1%

0.5 7.41× 10−3 0.27× 10−3 7.36× 10−3 1.0 0.7%

1.0 1.78× 10−2 0.04× 10−2 1.75× 10−2 1.0 1.8%

Table 4.6: Results for solvated butane: Brute force Monte Carlo estimate of P(τ ≤ T ).

the percentage of the trajectories that makes it to the trans conformation within time interval

[0, T ]. Figure 4.6 shows the effective dihedral angle potential (i.e. the original dihedral potential

Vφ(φ) plus the control potential Vctrl(φ)) where we only show the effective energy in the range

[40◦, 150◦], because the initial states of the trajectories are located in the range [40◦, 80◦], and

the trajectories are stopped when they reach φ = 150◦. For an easy comparison, all effective

energies are shifted by a constant, so that they all coincide at φ = 150◦. As expected the

resulting control forces are stronger the smaller T is.

5 Discussions As a continuation of our works [25, 24], we propose a cross-entropy al-

gorithm for diffusion processes and study its application to importance sampling and optimal

control. For instance, in our previous work [24], we have analyzed the effect of the use of sub-

optimal controls in multiscale systems with explicit scale separation, e.g., slow-fast systems or

diffusions in the small-noise limit. Here the situation is different, in that no such small parameter

or detailed information regarding the relevant degrees of freedom is used. On the other hand, in

the cross-entropy method, the approximation of the target measure and, consequently, efficient

importance sampling or control strategies crucially depend on a sensible choice of a function

basis. A good choice can be often based on prior knowledge about the dynamical system, such

as metastable states or reactive coordinates; it is easy to imagine that there is no way to obtain

satisfactory results when the basis functions used are not supported along the relevant degrees of

freedom. The relation between the cross-entropy method and methods for multiscale dynamical

systems is an interesting and yet open question that will be addressed in future work.
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