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Abstract. In this paper, we present a shock capturing discontinuous Galerkin (SC-DG) method
for nonlinear systems of conservation laws in several space dimensions and analyze its stability and
convergence. The scheme is realized as a space-time formulation in terms of entropy variables using
an entropy stable numerical flux. While being similar to the method proposed in [17], our approach
is new in that we do not use streamline diffusion (SD) stabilization. It is proved that an artificial
viscosity-based nonlinear shock capturing mechanism is sufficient to ensure both entropy stability
and entropy consistency, and consequently we establish convergence to an entropy measure-valued
(emv) solution. The result is valid for general systems and arbitrary order discontinuous Galerkin
method.
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1. Introduction. The class of nonlinear systems of conservation laws contains
many important examples, such as the Euler equations and the Navier-Stokes equa-
tions. The general form of a nonlinear m-system of conservation laws in several space
dimensions is

(1.1)

ut +
d∑
k=1

fk(u)xk = 0,

u(x, 0) = u0(x),

where the unknowns u = u(x, t) : Rd × [0,∞)→ Rm are the conserved variables and
fk : Rm → Rm, k = 1, . . . , d are (nonlinear) smooth flux functions with d = 1, 2, 3.

The initial condition u0(x) is assumed to have compact support to avoid techni-
calities arising from boundary conditions. Using this assumption together with finite
speed of propagation in hyperbolic problems, one may assume that the solution u(x, t)
has compact support for any finite time t and vanishes for |x| large.

It is well-known that (1.1) can produce shocks and discontinuities in finite time;
hence the solution cannot be interpreted in the classical sense. This motivates one to
introduce the concept of weak solution which is defined as a bounded function u that
satisfies (1.1) in distributional sense, i.e.

(1.2)

∫ ∞
0

∫
Rd
〈u,ϕt〉+

d∑
k=1

〈fk(u),ϕxk〉dx dt+

∫
Rd
〈u0(x),ϕ(x, 0)〉dx = 0,

for all functions ϕ ∈ (C∞c (Rd× [0,∞)) )m. Here the notation 〈u,w〉 denotes the inner
product between vectors u and v in the state space Rm. Also we will use the notation
a ·b as the notation for the inner product of vectors a and b in the physical space Rd.
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2 M. ZAKERZADEH AND G. MAY

In order to single out the physically admissible solutions we require solution u to
satisfy the entropy inequality condition

(1.3) U(u)t +

d∑
k=1

F k(u)xk ≤ 0,

in the distributional sense for all entropy flux U(u) : Rm → R and associated entropy
flux functions F k(u) : Rm → R for k = 1, . . . , d. Here U is convex and (U,F ) sat-
isfy the compatibility condition ∂uF

k(u) = ∂uU(u)∂uf
k(u). By defining entropy

variables as v = (Uu)T one can recast (1.1) in symmetric form as

uvvt +

d∑
k=1

fkvvxk = 0,

such that the matrix uv is symmetric positive definite and the matrices fkv are sym-
metric.

In general, the best a priori estimate one can get for the solutions of (1.1) is
the so-called entropy stability. This originates from the entropy inequality condition
(1.3) by integrating it over the spatial domain and considering an arbitrary time T
combined with compact support assumption which lead to the following global entropy
inequality

(1.4)
d

dt

∫
Rd
U(u) dx ≤ 0 =⇒

∫
Rd
U(u(x, T )) dx ≤

∫
Rd
U(u(x, 0)) dx.

This property can be viewed as the nonlinear extension of L2 stability for systems of
conservation laws and is desirable to be kept for the approximate solution uh as well.
This is the motivation behind entropy stable schemes, which were originally introduced
by Tadmor [30]. In a finite volume framework, these methods have been extended to
higher order Essentially Non-Oscillatory (ENO) schemes very recently [10,12]. In the
finite element context, in [18] entropy stability is constructed by adding streamline
diffusion (SD) in space-time formulation. Later formulations with streamline diffusion
and with/without shock capturing (SC) term are introduced in [21, 22, 28, 29]. The
extension to DG methods is presented in [20].

The above-mentioned methods are designed to satisfy the entropy stability condi-
tion; however this is not sufficient to conclude any sort of convergence for the numerical
scheme in the general case due to lack of enough a priori information on the solution.
Trying to obtain some sort of convergence leads to an even weaker notion of solu-
tion, the so-called entropy measure-valued (emv) solutions. These types of solutions,
introduced by DiPerna [7], are more general than weak solutions and permit a mean-
ingful convergence theory for numerical schemes approximating (1.1). We discuss this
concept later in §2.

For scalar equations, the emv solution contains the entropy weak solution as a
special case (when the initial data is a Dirac measure, see DiPerna [7]). Using this
theory, convergence to entropy weak solutions of scalar conservation laws has been
established for both continuous and discontinuous streamline diffusion finite element
methods [20–22, 28, 29]. In the case of systems, convergence to an emv solution has
been proved very recently in [10] for TeCNO schemes in the finite volume context and
in [17] for an SCSD discontinuous Galerkin (SCSD-DG) method.

On the other hand, despite the apparent need to include SD terms to control
the residual in these schemes, ideas questioning the necessity and even adequacy
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of linear stabilization (e.g. streamline diffusion) have gained momentum [9, 13, 14,
25]. Furthermore, while SD stabilization is often included in the analysis of DG
schemes, it is not commonly found in practical implementations. (There is a plethora
of examples, e.g., [4, 15, 26].) Recently, Nazarov in [25] suggested a stripped-down
version of the SCSD continuous Galerkin method of [22] for scalar equations using
linear (continuous) finite elements. The formulation of [25] disregards the SD term
and utilizes a residual based shock capturing as the only stabilization mechanism
while it is proved that the approximate solution still converges to the entropy weak
solution.

In the present paper we propose a class of DG schemes for (1.1), using only
a suitable nonlinear shock-capturing term for stabilization. We will show that our
method is entropy stable and satisfies the global entropy inequality (1.4). The main
goal of this paper is to prove that uniform L∞ bounded solutions of the suggested
scheme converge to an entropy measure-valued solution of (1.1) for arbitrary (fixed)
order of polynomial approximation.

The framework presented in [17], where convergence of a SCSD-DG method was
proved, is the skeleton of this work. In the present paper we extend the result of
[17] not only by proving that we can obtain adequate residual control without using
streamline-diffusion stabilization, but we also use refined estimates, resulting in a
shock capturing operator using nonlinear viscosity that is higher order small compared
to [17]. This results in a less diffusive method.

Section 2 gives a brief review on Young measures and mv solutions which will
later be used in the convergence proof. The space-time DG framework is introduced
in §3. This section also includes the explicit forms of the numerical diffusion and
shock capturing operators. In §4 the fully discrete entropy inequality and a BV-
estimate are obtained and §5 includes the proof of convergence to an entropy measure-
valued solution. Furthermore, in §6 we provide some numerical examples to show the
applicability of the method. Appendix A contains the proof of Lemmas 4.2 and 4.3.

2. Entropy measure-valued solutions. The notion of measure-valued solu-
tion is a generalization of the standard distributional (weak) solution of (1.1). We
follow [7] and define a measure-valued solution of (1.1) as a measurable map µ from
the physical domain Rd × R+ to the space of non-negative measures with unit mass
over the state domain Rm,

µ : y = (x, t) ∈ (Rd × R+) 7→ µy ∈ Prob(Rm),

which satisfies (1.1) in the following sense

(2.1)

∫
Rd

∫
R+

〈〈σ,µy〉E ,ϕt〉+

d∑
k=1

〈〈fk(σ),µy〉E ,ϕxk〉dxdt = 0,

for all test functions ϕ ∈ (C∞c (Rd × R+))m. Here y and σ denote the generic vari-
ables in space-time domain Rd × R+, and state domain Rm, respectively. Moreover,
the notation 〈g(σ),µy〉E denotes the expectation of function g with respect to the
probability measure µy as

〈µy, g(σ)〉E :=

∫
Rm
g(σ) dµy, g : Rm → Rm.
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Since the system (1.1) has an entropy extension with entropy pair (U,F ), µ is called
an admissible (or entropy) measure-valued solution if

(2.2)

∫
Rd

∫
R+

ϕt〈U(σ),µy〉E +

d∑
k=1

ϕxk〈F k(σ),µy〉E dxdt ≥ 0,

for all 0 ≤ ϕ ∈ C∞c (Rd×R+). The linearity of (2.1) and (2.2) with respect to µ helps
prove convergence of a bounded sequence of solutions produced by a vanishing viscos-
ity method, which is a significant problem for traditional weak solutions to nonlinear
systems. The following Young’s theorem provides such an appropriate interpretation
of convergence:

Theorem 2.1 (Theorem 2.1 of [28]). Let uj be a uniformly bounded sequence
in L∞(Rd × R+), i.e., for some constant C,

‖uj‖L∞(Rd×R+) ≤ C, j = 1, 2, 3, . . . .

Then there exists a subsequence (again denoted) uj and a family of measurable proba-
bility measures µy ∈ Prob(Rm), such that suppµy is contained in {y ∈ Rd×R+, |y| ≤
C} and the L∞ weak-∗ limit,

g(uj(·))
∗
⇀ ḡ(·),

exists for all continuous functions g and for almost all points y ∈ Rd × R+, where
ḡ := 〈µy, g(σ)〉E.

3. Space-time SC-DG formulation. Here, we introduce the shock capturing
discontinuous Galerkin (SC-DG) method for nonlinear systems of conservation laws
(1.1). A space-time framework, similar to that used in [17, 21, 22, 28, 29], is proposed
for discretization of the problem. We introduce the space-time triangulation, the
approximation space and in particular the structure of the shock capturing term.

3.1. Space-time triangulation. Adopting the compact support assumption
for the solution in a finite time interval [0, T ], we consider the space domain Ω ⊂ Rd
such that suppu(·, t) ⊂ Ω at each time t ∈ [0, T ]. In order to discretize (1.1), let
0 = t0 < t1 < ... < tN = T be a sequence representing discrete time steps, and let
In = [tn, tn+1) be the corresponding time intervals. We also denote the space-time
domain and space-time slabs by ΩT := Ω × [0, T ] and Sn := Ω × In, respectively.
Moreover d′ := dim(ΩT ) represents the space-time dimension and clearly d′ = d+ 1.

We consider a subdivision Tn = {κ} of Sn into disjoint convex∗ finite elements.
Without loss of generality, let us assume that

h = sup
κ,n

hκ <∞, κ ∈ Tn, n ∈ {0, . . . , N − 1},

where hκ is the exterior diameter of a space-time cell κ. The interior diameter of
an element (the diameter of the inscribed circle) is denoted by ρκ. We assume the
following quasi-uniformity condition

(3.1)
h

ρκ
≤ σ, ∀κ ∈ Tn,

∗The necessity of the convexity requirement becomes clear in the approximation estimates of the
H1-projection (5.1).
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with σ > 0 independent of h. The perimeter of κ is defined by pκ = Σe∈∂κ|e|, where
|e| is the d-measure of the face. The uniformity assumption (3.1) implies that (cf. [5])

(3.2)
1

µ
≤ pκhκ
|κ|

≤ µ, ∀κ ∈ Tn,

for some µ > 0 independent of h. Typically, κ might be a tetrahedron or a prism
defined as K×In, where K corresponds to spatial triangulation on Rd. Seeking easier
notation, from now on we present our formulation for prisms. Note, however, that
there is no restriction to extend this framework to tetrahedra or tilted prisms (cf. [20]
for more discussion).

Temporal trace values are denoted by wh
n,±(x) := wh(x, tn±) and to define spa-

tial trace quantities, if n is the outward normal to the spatial interface ∂K, we set
wK,±(x, t) := limε→0w(x± εn, t) as the associated trace values on an interface. Also
we introduce the notation JwK+

− := w+−w− for the (spatial or temporal) jump values
on the cell interface.

3.2. Variational formulation. The finite dimensional space for the approxi-
mate solution is defined as

Vqn = {w ∈ (L2(Sn))m : w|κ ∈ (Pq(κ))
m
,∀κ ∈ Tn}, n = 0, . . . , N − 1,

where Pq(κ) is the space of polynomials of at most degree q on a domain κ ⊂ Rd′ . We

also denote Vq =
∏N−1
n=0 Vqn as the approximation space in global space-time domain.

The approximating functions are considered discontinuous both in space and time.
The proposed shock capturing discontinuous Galerkin method has the following

quasi-linear (nonlinear in first argument and linear in the second one) variational form
in terms of entropy variables: Find vh ∈ Vq such that

(3.3) B(vh,wh) = BDG(vh, wh) + BSC(vh,wh) = 0, ∀wh ∈ Vq.

Note that we realize the functions in terms of entropy variables vh which are the basic
unknowns and the dependent conservative variables are derived via mapping u(vh).
In our notation, this mapping is sometimes omitted, e.g., f(vh) is written rather than
f(u(vh)).

The scheme (3.3) can be seen as the stripped-down version of the method sug-
gested in [17], by disregarding the streamline diffusion (SD) term which is usually
added to control the residual.

In the following we explain the details and explicit form of terms in (3.3).

3.3. DG quasi-linear form. Using the test function wh ∈ Vq to penalize the
interior residual of the cell, jumps of temporal values and spatial flux and applying
the integration by part leads to

BDG(vh,wh) =−
∑
κ,n

∫
In

∫
K

〈u(vh),wh
t 〉+

d∑
k=1

〈fk(vh),wh
xk
〉dxdt

+
∑
κ,n

∫
K

〈u(vhn+1,−),wh
n+1,−〉 − 〈u(vhn,−),wh

n,+〉dx

+
∑
κ,n

∫
In

∫
∂K

〈f̂(vh),wh
K,−〉dsdt.(3.4)
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Also we assume that the initial data vh0,− = vh(x, 0−) is obtained from a suitable
projection (e.g. L2-projection or the proposed H1-projection in (5.1)) of the initial
data v0(x) = v(u0(x)).

Here, f̂(vh) := f̂(vhK,−,v
h
K,+;n) denotes the (spatial) numerical flux function, a

vector-valued function of two interface states vhK,± and the interface normal n, which
is considered to be consistent and conservative. Also this numerical flux is supposed
to be entropy stable, i.e. following [17], we consider the spatial numerical flux in the
viscosity form as

(3.5) f̂(vh) = f?(vh)− 1

2
D(vh)

(
vhK,+ − vhK,−

)
,

where f?(vh) := f?(vhK,−,v
h
K,+;n) denotes the entropy conservative flux and

D(vh) := D(vhK,−,v
h
K,+;n) is the required numerical diffusion matrix to obtain the

entropy stability.
For comprehensive discussion on entropy conservative and entropy stable fluxes

we refer to the seminal paper by Tadmor [31], and just mention that for a general
system of conservation law f?(vh) can be written in the form

(3.6) f?(vh) =

∫ 1

0

f(vh(θ)) · ndθ.

where vh(θ) is a straight line parameterization connecting the two states vhK,− and

vhK,+ as

(3.7) vh(θ) = vh− + θJvhK+
−.

Unfortunately, (3.6) does not necessarily have a closed-form and is hard to cal-
culate. We refer to [31] for discussions on the practical method for obtaining entropy
conservative flux. Also we refer to [12] for explicit formulation of entropy conservative
fluxes for Euler and shallow water equations.

Moreover, we setD as a symmetric positive definite matrix with a uniform spectral
bound, i.e. there exist positive constants c and C independent of vh such that

(3.8) 0 < c〈w,w〉 ≤ 〈w, D(vh)w〉 ≤ C〈w,w〉, ∀w 6= 0.

In order to determine the diffusion operator explicitly we follow [17] and define

D(vhK,−,v
h
K,+;n) = R̃nP (Λn)R̃Tn.

Here, Λn and R̃n are eigenvalue and (scaled) eigenvector matrices of the Jacobian
matrix (f · n)u in the normal direction n, calculated at an averaged state between
vhK,− and vhK,+ (e.g., Roe average or arithmetic average). The scaled matrix of right

eigenvectors is given as R̃n = RnT such that R̃nR̃
T
n = uv. Here, matrix P is a

non-negative matrix that can be constructed as Roe-type or Rusanov-type [12]:
• Roe-type diffusion operator

P (Λn) = diag(|λ1|, . . . , |λm|),

• Rusanov-type diffusion operator

P (Λn) = max(|λ1|, . . . , |λm|)Im×m,

where λ1, . . . , λm are the eigenvalues of (f · n)u.
It is worth mentioning that, by C (or c) we will denote a positive constant inde-

pendent of h, not necessarily the same at each occurrence.
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3.4. Shock capturing operator. In order to stabilize the scheme in the pres-
ence of discontinuities we need to add a form of artificial viscosity. We expect this
operator to add a significant stabilization effect close to discontinuities, while only a
little viscosity is added in smooth regions. In this formulation, the residual of the
finite element solution is used as a sensor for presence of discontinuities.

Here we follow [2,17] in introducing the shock capturing operator as

BSC(vh,wh) =
∑
κ,n

∫
In

∫
K

εκ

(
〈wh

t , ũvv
h
t 〉+

d∑
k=1

〈wxk , ũvvxk〉
)

dxdt,(3.9)

where the viscosity εκ is defined as

(3.10) εκ =
hα1CSC1 Resκ + hα2CSC2 BResκ

∇vκ + hθ
.

Here, CSC1 and CSC2 are two positive constants and hθ is added as the regularization
parameter with parameter θ such that

(3.11) θ ≥ max{d
′

2
− α1

2
,
d′

2
− α2}.

Also the viscosity strength parameters α1 and α2 are chosen such that

(3.12) α1 ∈ (0, 2), α2 > 0.

The rationale behind these choices for θ, α1 and α2 are discussed later in §5. It should
be noted that the scaling of the viscosity coefficient (3.12) is less diffusive, compared
to range α1 ∈ (0, 1) and α2 ∈ (0, 1/2) in [17], due to refined estimates used in §5.

We denote the local residual and space-time gradient as

Res = u(vh)t +

d∑
k=1

fk(vh)xk ,(3.13)

∇v = (∇tv,∇x1
v, . . . ,∇xdv)T(3.14)

and we have the following definitions for the weighted cell and boundary residuals,
and the weighted gradient, respectively,

Res
2

κ :=

∫
In

∫
K

〈Res,vu(vh(x, t))Res〉dx dt,(3.15)

BRes
2

κ :=

∫
K

|Ju(vhn)K+
−|2 dx

+

∫
In

∫
∂K

(
|f?(vh)− f(vhK,−) · n|2 + |1

2
D(vh)JvhKK+

−|2
)

dsdt,(3.16)

∇v2

κ :=

∫
In

∫
K

〈vht , ũvv
h
t 〉+

d∑
k=1

〈vhxk , ũvv
h
xk
〉dxdt.(3.17)

Here by ũv we denote uv(ṽn,k), and ṽn,K is the cell average defined as

(3.18) ṽκ :=
1

|κ|

∫
In

∫
K

vh(x, t) dxdt.

Now the proposed SC-DG method (3.3) is well-defined. The rest of the paper
is basically devoted to the proofs of entropy stability and convergence to entropy
measure-valued solution for (3.3).
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4. Energy analysis. We first note that the approximate solution of (3.3) satis-
fies the global entropy inequality in the fully discrete sense. Then, by adopting some
additional assumptions, we show a weak BV-estimate.

4.1. Entropy stability. The entropy stability result is given as the following
theorem:

Theorem 4.1 (Theorem 3.1 of [17]). Consider the system of conservation laws
(1.1), equipped with strictly convex entropy function U and corresponding entropy
flux functions F k, k = 1, . . . , d. Furthermore, assume that the exact and approximate
solutions have compact support inside the spatial domain Ω. Then, the SC-DG scheme
(3.3) approximating (1.1) has the following properties:

(i) The scheme (3.3) is conservative in the following sense: If uh = u(vh) is the
approximate solution, then∫

Ω

u(vh(x, tN− )) dx =

∫
Ω

u(vh(x, t0−)) dx.

(ii) The scheme (3.3) is entropy stable i.e., the approximate solution uh admits the
following fully discrete global entropy bounds,∫

Ω

U(u∗(t0−)) dx ≤
∫

Ω

U(u(vh(x, tN− ))) dx ≤
∫

Ω

U(u(vh(x, t0−))) dx,

where u∗(t0−) is called the minimum total entropy state of the projected initial
data and is defined as

u∗(t0−) =
1

|Ω|

∫
Ω

u(vh(x, t0−)) dx.

Proof. (Sketch) The proof of this theorem is not strongly dependent on the
presence of streamline-diffusion stabilization, and is in fact very similar to the proof
presented in [17]. We give only a sketch here, mainly with the aim to introduce terms
that facilitate exposition of the material in the following. Consult [32] for a more
detailed version of the proof.

First we note that the conservation property (i) follows immediately from choos-
ing wh ≡ 1 in (3.3). The second assertion is obtained by considering the following
decomposition of (3.3) and inserting wh = vh in it, to prove a series of inequalities:

BSC(vh,vh) ≥ 0,

B(s)
DG(vh,vh) = −

∑
κ,n

∫
In

∫
K

d∑
k=1

〈fk(vh),wh
xk
〉dx dt

+
∑
κ,n

∫
In

∫
∂K

〈f̂(vh),wh
K,−〉dsdt ≥ 0,

B(t)
DG(vh,vh) = −

∑
κ,n

∫
In

∫
K

〈u(vh),wh
t 〉dxdt

+
∑
κ,n

∫
K

(
〈u(vhn+1,−),wh

n+1,−〉 − 〈u(vhn,−),wh
n,+〉

)
dx

≥
∫

Ω

U(u(vh(x, tN− )) dx−
∫

Ω

U(u(vh(x, t0−)) dx.
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These estimates together give the upper bound in (ii). The lower bound is obtained
exactly as in [17].

Now, assume that the spectral bound (3.8) holds, and there exist some constants
c and C independent of vh, such that

0 < c〈w,w〉 ≤ 〈w,uv(vh(x, t))w〉 ≤ C〈w,w〉, ∀w 6= 0.(4.1)

Then, we can make the inequalities of the proof of Theorem 4.1 sharper (cf. [17, 32]
for more details)

BSC(vh,vh) ≥ C
∑
κ,n

εκ‖∇vh‖2L2(κ),

B(s)
DG(vh,vh) ≥ C

∑
κ,n

∫
In

∫
∂K

|JvhKK+
−|2 dsdt,

B(t)
DG(vh,vh) ≥ C

∑
κ,n

∫
K

|JvhnK+
−|2 dx+

∫
Ω

U(vh(x, tN− )) dx−
∫

Ω

U(vh(x, t0−)) dx.

The global entropy inequality (ii) together with the above inequalities imply∑
κ,n

εκ‖∇vh‖2L2(κ) +
∑
κ,n

∫
K

|JvhnK+
−|2 dx+

∑
κ,n

∫
In

∫
∂K

|JvhKK+
−|2 dsdt ≤ C(vh0,−),(4.2)

which readily gives

(4.3)
∑
κ,n

εκ‖∇vh‖2L2(κ) ≤ C.

This result will be used in the later proofs. Also note that due to the conditions
(4.1) and (3.8), the weighted residual (in (3.15)) and weighted gradient (in (3.17)) are
norms equivalent to ‖Res‖L2(κ) and ‖∇vh‖L2(κ), respectively.

4.2. BV-estimate. In order to prove convergence, we require a BV-estimate for
the approximate solutions of the SC-DG method (3.3). Before reaching to that point
we need to state Lemmas 4.2 and 4.3. The proofs will be presented in the appendix:

Lemma 4.2. Let us assume that (4.1) holds and there exists a uniform spectral
upper bound for fv, i.e.

(4.4) 〈w,fvw〉 ≤ C〈w,w〉, ∀w 6= 0,

where C is uniform and independent of w. Then one can find a uniform upper bound
with respect to h for

(i) hγ
∑
κ,n

Resκ if γ ≥ d′ + α1

2
.

(ii) hγ
∑
κ,n

Resκ‖∇vh‖L2(κ) if γ ≥ α1.

Moreover, these expressions vanish as h→ 0, if the inequalities hold strictly.
A similar lemma can be stated for the boundary residual terms:
Lemma 4.3. Assuming that (3.8) and (4.4) hold, one can find a uniform upper

bound with respect to h for

(i) hγ
∑
κ,n

BResκ if γ ≥ d′

2
.
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(ii) hγ
∑
κ,n

BResκ‖∇vh‖L2(κ) if γ ≥ α2.

Moreover, these expressions vanish as h→ 0, if the inequalities hold strictly.

Now the BV-estimate is obtained as a corollary of Theorem 4.1, starting from
inequality (4.2):

Corollary 4.4. Let the assumptions of Theorem 4.1 hold and the diffusion
matrix D(vh) be spectrally bounded as in (3.8). Also we assume similar spectral
boundedness for uv, i.e., (4.1) holds. Then the approximate solution vh satisfies the
following weak BV-estimate:

∑
κ,n

∫
K

|JvhnK+
−|2 dx+

∑
κ,n

∫
In

∫
∂K

|JvhKK+
−|2 dsdt

+hα1

∑
κ,n

Resκ‖∇vh‖L2(κ) + hα2

∑
κ,n

BResκ‖∇vh‖L2(κ) ≤ C,(4.5)

where C is a positive constant dependent on the initial condition u0.

Proof. The first two terms of (4.5) are the same as (4.2). The remaining terms
can be obtained from Lemmas 4.2 and 4.3 by choosing γ = α1 and γ = α2 in part
(ii) of Lemmas 4.2 and 4.3, respectively. The BV-estimate follows.

Note that the spectral boundedness of the symmetrizer uv (and consequently vu)
as in (4.1), needs a deeper look. In [32] it is shown that this seems achievable for some
systems like shallow water equations and polytropic Euler equations by adopting some
physical constraints as well as L∞ bound on the approximate solution vh. This is
comparable to what Dutt [8] established for the Navier-Stokes equations.

5. Convergence analysis. In the convergence analysis of SC-DG scheme (3.3),
first in §5.1 the convergence of the sequence of bounded solutions to a mv solution is
proved. Then in §5.2 the admissibility of this solution is showed by satisfying some
entropy inequality.

5.1. Convergence to measure-valued solution. In order to show conver-
gence, we must revisit and modify the proof given in [17] to account for the removal
of the streamline diffusion term. Furthermore, we employ refined estimates on several
occasions, which leads to the less diffusive scaling of the shock-capturing operator (cf.
eq. (3.10) in §3.4).

First, let us introduce an H1-projection as the connection between infinite dimen-
sional and finite dimensional space of the solution.

Definition 5.1. The local H1-projection of ϕ ∈
(
C∞c (Ω × R+)

)m
into (Pq)m

is denoted by ϕh and is defined as ϕh = Πh(ϕ), with Πh|κ : (H1(κ))m → (Pq(κ))m;
where for all wh ∈ (Pq(κ))m we have∫

In

∫
K

〈∇ϕh, ũv∇wh〉dxdt =

∫
In

∫
K

〈∇ϕ, ũv∇wh〉dx dt,(5.1a) ∫
In

∫
K

ϕh dxdt =

∫
In

∫
K

ϕ dxdt.(5.1b)

Note that solving (5.1) corresponds to a discrete Neumann problem in κ. The regu-
larity of the solution of the elliptic problem and infinite differentiability of ϕ give the
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following estimates [20]:

‖∇ϕh‖L2(κ) ≤ ‖∇ϕ‖L2(κ),(5.2a)

‖ϕ−ϕh‖L2(κ) ≤ Chr‖∇rϕ‖L2(κ),(5.2b)

‖ϕ−ϕh‖L2(∂κ) ≤ Chr−
1
2 ‖∇rϕ‖L2(κ),(5.2c)

‖∇(ϕ−ϕh)‖L2(κ) ≤ Chr−1‖∇rϕ‖L2(κ),(5.2d)

where r = 0, 1, . . . , q+ 1. Note that (5.2b) and (5.2c)) utilize H2-regularity of the so-
lution of the Neumann problem (5.1). This requires the convexity of the triangulation
Tn = {κ}.

Also we need the following estimates between L2 and L∞. If ϕ ∈
(
C∞c (κ)

)m
, then

the following estimates hold

‖ϕ‖L2(κ) ≤ Ch
d′
2 ‖ϕ‖L∞(κ),(5.3a)

‖ϕ‖H1(κ) ≤ Ch
d′
2 ‖ϕ‖W 1

∞(κ).(5.3b)

In the following we assume that q ≥ 1 (For the case q = 0 our scheme reduces to
a standard finite volume scheme for which convergence analysis is presented in [5]).
The following theory establishes the convergence to mv solution for scheme (3.3):

Theorem 5.2. Let vh be the approximate solution of the system (1.1) by the
shock capturing DG scheme (3.3). Under the assumption of (3.8), (4.1) and

(5.4) ‖vh‖L∞(ΩT ) ≤ C,

the approximate solution converges to a measure-valued solution (2.1) of the system
of conservation laws (1.1).

Proof. Consider {vh}h>0 as the sequence of approximate solutions generated
by SC-DG scheme (3.3). We first show that as h → 0 the approximate solution is
consistent with weak solution (1.2) in the following sense
(5.5)

lim
h→0

∫ T

0

∫
Ω

〈u(vh),ϕt〉+

d∑
k=1

〈fk(vh),ϕxk〉dxdt = 0, ∀ϕ ∈ (C∞c (Ω× (0, T ))m.

The consistency (5.5) combined with Theorem 2.1, is the key to prove the weak-∗
convergence to a measure-valued solution.

Let us choose ϕ ∈ (C∞c (Ω× (0, T ))m and ϕh = Πh(ϕ) (as in Definition 5.1) and
define the internal and boundary parts of DG formulation as the following

B(int)
DG (vh,ϕh) = −

∑
κ,n

∫
In

∫
K

〈u(vh),ϕht 〉+

d∑
k=1

〈fk(vh),ϕhxk〉dxdt,(5.6)

B(bnd)
DG (vh,ϕh) =

∑
κ,n

∫
In

∫
∂K

〈f̂(vh),ϕhK,−〉dsdt(5.7)

+
∑
κ,n

∫
K

〈u(vhn+1,−),ϕhn+1,−〉 − 〈u(vhn,−),ϕhn,+〉dx.

Using (3.4) and (3.3) we note that

B(vh,ϕh) = B(int)
DG (vh,ϕh) + B(bnd)

DG (vh,ϕh) + BSC(vh,ϕh).(5.8)
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To prove consistency we observe that∫ T

0

∫
Ω

〈u(vh),ϕt〉+

d∑
k=1

〈fk(vh),ϕxk〉dxdt(5.9)

=
∑
κ,n

∫
In

∫
K

(
〈u(vh),ϕt〉+

d∑
k=1

〈fk(vh),ϕxk〉
)

dxdt

= B(int)
DG (vh,ϕh −ϕ)− B(int)

DG (vh,ϕh)

= B(int)
DG (vh,ϕh −ϕ)− B(vh,ϕh) + B(bnd)

DG (vh,ϕh) + BSC(vh,ϕh),

and seek to prove that (5.9) → 0 as h → 0 as (5.5). Recall that B(vh,ϕh) ≡ 0 by
definition of SC-DG scheme in (3.3) and we refer to [17] for the proof of the limit of

B(int)
DG (vh,ϕh −ϕ) and B(bnd)

DG (vh,ϕh). Here we only discuss the last term in (5.9).
We decompose the shock capturing term (3.9) as follows:

BSC(vh,ϕh) = B(1)
SC(vh,ϕh) + B(2)

SC(vh,ϕh)

=
∑
κ,n

∫
In

∫
K

(ε(1)
κ + ε(2)

κ )
(
〈ϕht , ũvv

h
t 〉+

d∑
k=1

〈ϕhxk , ũvv
h
xk
〉
)

dxdt,(5.10)

where ε
(1)
κ and ε

(2)
κ correspond to cell and boundary residual parts in the viscosity

coefficient in (3.10), respectively. First, considering B(1)
SC and using (4.1) yields

ε(1)
κ ≤ C

hα1Resκ
‖∇vh‖L2(κ)

.(5.11)

Therefore, by using (5.3b) and Cauchy-Schwarz inequality we get to

|B(1)
SC(vh,ϕh)| ≤ Chα1

∑
κ,n

Resκ‖ϕh‖H1(κ) ≤ Ch
d′

2 +α1
∑
κ,n

Resκ.(5.12)

Using Lemma 4.2, we find that B(1)
SC(vh,ϕh) vanishes as h→ 0, if α1 > 0.

Similarly for B(2)
SC we obtain

|B(2)
SC(vh,ϕh)| ≤ Ch

d′

2 +α2
∑
κ,n

BResκ.

Using Lemma 4.3 and choosing α2 > 0 one can see that B(2)
SC(vh,ϕh) vanishes as

h→ 0.
Owing to the L∞ bound on vh as (5.4) and based on the result of Theorem 2.1 ,

we can claim that there is a Young measure µ, such that

u(vh)
∗
⇀ 〈µy,u(σ)〉E ,(5.13)

fk(vh)
∗
⇀ 〈µy,fk(σ)〉E .(5.14)

as h → 0. In other words unlike weak solutions, nonlinearity in u(v) or fk(v)
commutes with this new sense of convergence. This establishes the convergence we
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look for; by (5.9), (5.13) and (5.14) we obtain

lim
h→0

∫ T

0

∫
Ω

〈u(vh),ϕt〉+

d∑
k=1

〈fk(vh),ϕxk〉dxdt

=

∫ T

0

∫
Ω

〈〈u(σ),µy〉E ,ϕt〉+

d∑
k=1

〈〈fk(σ),µy〉E ,ϕxk〉dxdt = 0,(5.15)

and the Theorem 5.2 follows.

5.2. Entropy consistency. The remaining step is showing that the solution
obtained by (3.3) is admissible, i.e. satisfies (2.2). Before stating the corresponding
theorem we introduce the following super approximation estimate or discrete commu-
tator property :

Lemma 5.3. Let vh ∈ Vq and ϕ is an infinitely smooth function ϕ ∈ C∞(κ).
Then the following results hold

‖ϕvh −Πh(ϕvh)‖L2(κ) ≤ C(ϕ)h‖vh‖L2(κ)(5.16)

‖ϕvh −Πh(ϕvh)‖L2(∂κ) ≤ C(ϕ)h1/2‖vh‖L2(κ)(5.17)

The proof of (5.16) is a special case of the proof presented in [3] and the boundary
estimate (5.17) can be proved along the same line as (5.16).

The entropy consistency result is given as the following theorem:
Theorem 5.4. Let vh be the approximate solution generated by the scheme (3.3).

We assume that vh is uniformly bounded as in (5.4) and the conditions (3.8) and (4.1)
hold. Then, the limit measure-valued solution µ satisfies the entropy condition (2.2).

Proof. We follow [17] and consider an infinitely smooth non-negative function
0 ≤ ϕ ∈ C∞c (Ω× (0, T )). Also in order that vhϕ can be inserted as the test function
in quasi-linear form B, it needs to be projected to the finite dimensional space Vq.
This is done using the H1-projection operator (5.1) and results in the following two
terms

(5.18) B(vh,Πh(vhϕ)) = B(vh,vhϕ) + B(vh,Πh(vhϕ)− vhϕ).

As we will show, the second term, which is called compensation term, vanishes as h
goes to zero while the first one provides us with the entropy inequality condition (2.2).

The first term can be decomposed in naive DG and shock capturing parts as

(5.19) B(vh,vhϕ) = BDG(vh,vhϕ) + BSC(vh,vhϕ).

Along the same lines as in [17], one can prove that

BDG(vh,vhϕ) ≥ −
∫ T

0

∫
Ω

U(vh)ϕt +

d∑
k=1

F k(vh)ϕxk dxdt.(5.20)

We do not repeat the proof here and refer to [17] for details. The shock capturing
part, using (3.9), can be written as

BSC(vh,vhϕ) =
∑
κ,n

∫
In

∫
K

εκ

(
〈vht , ũvv

h
t 〉+

d∑
k=1

〈vhxk , ũvv
h
xk
〉
)
ϕdxdt

+
∑
κ,n

∫
In

∫
K

εκ

(
〈vhϕt, ũvv

h
t 〉+

d∑
k=1

〈vhϕxk , ũvv
h
xk
〉
)

dxdt︸ ︷︷ ︸
A

≥ A,(5.21)
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and similar to (5.12) one can deduce that |A| → 0 as h→ 0. From (5.19), (5.20) and
(5.21) we have

B(vh,vhϕ) ≥ −
∫ T

0

∫
Ω

U(vh)ϕt +

d∑
k=1

F k(vh)ϕxk dxdt+A.

As h → 0, A vanishes and remembering the arguments on weak-∗ convergence in
Theorem 5.2 yields

(5.22) lim
h→0
B(vh,vhϕ)) ≥ −

∫ T

0

∫
Ω

ϕt〈U(σ),µy〉E +

d∑
k=1

ϕxk〈F k(σ),µy〉E dxdt.

Now we deal with the compensation term in (5.18) which contains the projection
error,

eΠ
vh := eΠ(vhϕ) = vhϕ−Πh(vhϕ),

and in the following we show that the compensation term vanishes as h goes to zero:

lim
h→0
B(vh, eΠ

vh) = 0.(5.23)

One can decompose B(vh, eΠ
vh) as follows

B(vh, eΠ
vh) = B(Res)

DG (vh, eΠ
vh) + B(rem)

DG (vh, eΠ
vh) + BSC(vh, eΠ

vh),(5.24)

with the following definitions

B(Res)
DG (vh, eΠ

vh) =
∑
κ,n

∫
In

∫
K

〈Res, eΠ(vhϕ)〉dx dt,(5.25)

B(rem)
DG (vh, eΠ

vh) =
∑
κ,n

∫
K

〈u(vhn,+)− u(vhn,−), (eΠ
vh)n,+〉dx(5.26)

−
∑
κ,n

∫
In

∫
∂K

〈f̂(vh)− f(vhK,−) · n, (eΠ
vh)K,−〉dsdt.

Now we need to show that each term in (5.24) vanishes as h→ 0.
First, the definition of H1-projection (5.1) obviously yields

(5.27) BSC(vh, eΠ
vh) = 0.

Using the definition of B(Res)
DG as (5.25) combined with (5.16) and (5.3a) gives

|B(Res)
DG (vh, eΠ

vh)| ≤ C
∑
κ,n

Resκ‖vhϕ−Πh(vhϕ)‖L2(κ)

≤ Ch1+ d′
2 ‖vh‖L∞(ΩT )

∑
κ,n

Resκ,(5.28)

which vanishes as h goes to zero if α1 < 2. This comes from Lemma 4.2 with γ = 1+ d′

2 .
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Moreover for B(rem)
DG , by definition (3.16) and estimates (5.17) and (5.3a), we

obtain

|B(rem)
DG (vh, eΠ

vh)| ≤ C
∑
κ,n

BResκ‖vhϕ−Πh(vhϕ)‖L2(∂κ)

≤ Ch1/2‖vh‖L∞(ΩT )

(
h
d′
2

∑
κ,n

BResκ

)
.(5.29)

Using Lemma 4.3, we observe that B(rem)
DG (vh, eΠ

vh) vanishes as h goes to zero.
Combining (5.27), (5.28) and (5.29) one can show (5.23). Then using (5.18),

(5.22) and (5.23) yields

0 ≡ lim
h→0
B(vh,Π(vhϕ)) ≥ −

∫ T

0

∫
Ω

ϕt〈U(σ),µy〉E +

d∑
k=1

ϕxk〈F k(σ),µy〉E dxdt.

This proves the entropy consistency introduced in (2.2).

6. Numerical experiments. In this section we present some numerical exper-
iments. First, in section 6.1, we solve a linear system of the one dimensional wave
equation to show that the order of convergence is optimal, and the presence of the
SC term does not ruin it. In this case (and in general for linear symmetrizable sys-
tems) the solution converges to the unique entropy solution. For more discussion on
this claim we refer to Theorem 4.7 in [17]. As examples of more general systems, we
present in section 6.2 a numerical solution of the dam break test case for the shallow
water equations, as well as solutions of the one dimensional Sod and Lax shock tube
for the Euler equations in section 6.3.

It is worth mentioning that the goal of presenting these results is to show that our
proposed scheme can give acceptable results in practice. This section is not meant to
verify the analytical claim of convergence to emv solutions of one dimensional Euler
or shallow water equations, respectively. The numerical proof of convergence to emv
solution should be considered in some statistical approach, see [23] (and references
therein) or [11].

The Netgen/Ngsolve library [27] has been used for geometry handling and mesh
generation as well as quadrature rules and the evaluation of basis functions. The non-
linear system obtained from the implicit space-time scheme is solved using damped
Newton method utilizing the ILU preconditioned GMRES available through the PETSc
library [1].

There are some free parameters in the scheme which need to be selected including
C1,2
SC , α1,2 and θ. Unless otherwise mentioned explicitly we set them as C1

SC = 1 and
θ = 0.5. Since our analytical results indicate that any α2 > 0 can be chosen, we have
set C2

SC = 0. The value of α1 is set to 1.5 in the case of wave equation and 1.3 in the
rest to be more diffusive. These settings give us acceptable result in most cases.

It should be noted that in the presented figures of the solution we draw the original
solution polynomial elementwise without any additional limitation.

6.1. Wave equation. The wave equation in one dimension can be written as
the following form

ht + cux = 0,(6.1)

ut + chx = 0,(6.2)
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where c is some constant value. In this case the system is linear and symmetric in its
original form and by choosing the entropy function as U(u) = 1

2 (h2 +u2) the entropy
variables would be the same as the conservative variables.

Hence, the entropy conservative flux would be the simple average of the flux values
at the edge and the diffusion operator is set to Rusanov type. In our numerical test
cases the boundary conditions are set to Dirichlet, the wave speed to c = 1 and the
final time to T = 1. Also the calculation domain is considered as [0, 3]. We use two
different initial settings:

6.1.1. Wave equation: smooth initial data. We consider

(6.3) h(x, 0) = sin(2πx), u(x, 0) = sin(2πx)/3.

We solve this for polynomial degrees q = 0, 1, 2, 3 with and without shock capturing.
The results are presented in Tables 6.1 and 6.2. One can observe that the naive DG
formulation (i.e without any stabilization) is sufficiently good in this smooth case.
Adding the shock capturing term merely adds some diffusive behaviour (in terms of
slightly larger error reported in Table 6.2), while it does not affect the accuracy of
the scheme in terms of rate-of-convergence. Asymptotically, we get the optimal order
q + 1 in convergence of the error in L1 norm, even in the presence of the SC term.

Only for very coarse meshes and high polynomial degree we see a significant
contamination of the accuracy (cf. last column of Table 6.2 ). With refining the mesh,
however, the order of convergence will be the order of consistency of the scheme, and
the error levels are not significantly compromised by the SC term.

Table 6.1: Convergence result for wave equation, smooth initial data without SC

q = 0 q = 1 q = 2 q = 3
h ‖e‖L1

order ‖e‖L1
order ‖e‖L1

order ‖e‖L1
order

1
10 1.869 4.668e-2 8.073e-3 1.997e-4
1
20 1.597 0.226 2.941e-2 0.666 2.114e-3 1.933 1.079e-4 0.888
1
40 1.146 0.477 6.328e-3 2.217 3.306e-4 2.677 6.994e-6 3.947
1
80 7.146e-1 0.682 1.410e-3 2.165 3.758e-5 3.137 3.788e-7 4.206
1

160 4.044e-1 0.821 3.243e-4 2.121 4.344e-6 3.113 2.099e-8 4.173

Table 6.2: Convergence result for wave equation, smooth initial data with SC

q = 0 q = 1 q = 2 q = 3
h ‖e‖L1

order ‖e‖L1
order ‖e‖L1

order ‖e‖L1
order

1
10 1.869 2.538e-1 2.570e-1 1.952e-1
1
20 1.597 0.226 5.862e-2 2.114 1.780e-2 3.852 1.483e-2 3.718
1
40 1.146 0.477 9.690e-3 2.596 6.467e-4 4.782 1.784e-5 9.698
1
80 7.146e-1 0.682 1.748e-3 2.470 4.997e-5 3.694 6.120e-7 4.865
1

160 4.044e-1 0.821 3.537e-4 2.305 4.754e-6 3.393 2.562e-8 4.578

6.1.2. Wave equation: discontinuous initial data. We consider

(6.4) (h, u)|t=0 =

{
(1, 1

3 ), x < 1.5,

(0, 0), x > 1.5.
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Like the smooth case we solve the problem with different polynomial degree, and both
with and without shock capturing. As we expect, based on Tables 6.3 and 6.4 , due
to presence of a discontinuity, the order of convergence cannot be better than 1, while
increasing q results in lower error.

Again, as in the smooth case, the presence of shock capturing mechanism does
not affect the order of convergence. On the other hand, as Figure 6.1 shows, while the
naive DG implementation shows lots of oscillations in the solution in the vicinity of
discontinuities, using the SC term reduces those oscillations considerably. Moreover,
comparing the result of linear and quadratic elements shows that using higher order
polynomials significantly helps in controlling the overshoot.

The effect of shock capturing parameters α1 and θ is shown in Figure 6.2. We
observe that by increasing α1 and decreasing θ the solution become less diffusive.
This shows that the extension of the admissible range for α1 in our work compared
to [17] can make the method less diffusive.

Table 6.3: Convergence result for wave equation, discontinuous initial data without
SC

q = 0 q = 1 q = 2 q = 3
h ‖e‖L1

order ‖e‖L1
order ‖e‖L1

order ‖e‖L1
order

1
10 4.279e-1 1.211e-1 6.241e-2 4.021e-2
1
20 3.435e-1 0.317 7.444e-2 0.702 4.311e-2 0.534 3.425e-2 0.231
1
40 2.554e-1 0.427 4.466e-2 0.737 2.464e-2 0.807 1.908e-2 0.844
1
80 1.835e-1 0.477 2.674e-2 0.740 1.429e-2 0.786 1.089e-2 0.809
1

160 1.304e-1 0.493 1.569e-2 0.769 8.168e-3 0.807 6.157e-3 0.823

Table 6.4: Convergence result for wave equation, discontinuous initial data with SC

q = 0 q = 1 q = 2 q = 3
h ‖e‖L1

order ‖e‖L1
order ‖e‖L1

order ‖e‖L1
order

1
10 4.279e-1 1.207e-1 8.421e-2 7.577e-2
1
20 3.435e-1 0.317 7.891e-2 0.613 5.518e-2 0.609 4.495e-2 0.753
1
40 2.554e-1 0.427 4.628e-2 0.769 3.003e-2 0.878 2.305e-2 0.963
1
80 1.835e-1 0.477 2.732e-2 0.761 1.659e-2 0.856 1.252e-2 0.882
1

160 1.304e-1 0.493 1.586e-2 0.784 9.371e-3 0.824 6.813e-3 0.876

6.2. Shallow water equations. The shallow water equations which describe
the disturbance propagation in incompressible fluids under the influence of gravity
can be written as

ht + (hu)x = 0,(6.5)

(hu)t + (hu2 +
1

2
gh2)x = 0,(6.6)

where h and u are the depth and the velocity of the water, respectively and g = 1
is the gravity acceleration. The entropy function in this case is defined as the total
energy U = 1

2

(
hu2 + gh2

)
. Hence, the corresponding entropy variables and entropy
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Fig. 6.1: Wave equation, discontinuous initial data, h = 1/20
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Fig. 6.2: Wave equation, discontinuous initial data, q = 2, h = 1/20, effect of two
parameters, α1 (left) and θ (right)

conservative flux can be set as in [12]. Also we choose Rusanov type for the diffusion
operator of the entropy stable flux.

Moreover, we set the initial condition for dam break problem as follows

(h, u)|t=0 =

{
(1.5, 0), x < 0,

(1, 0), x > 0.
(6.7)

We take the computational domain as [0, 10], with Dirichlet boundary condition,
and the final time is set to T = 1. In Figure 6.3, we present the result with q = 2
with/without shock capturing versus the exact solution calculated by SWASHES code
[6].
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The result and their comparison with the exact solution shows a good control of
the shock with acceptable overshoot, and the shock is quite sharp.
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Fig. 6.3: Dam break, height, h = 1/20

6.3. Euler Equations for polytropic gas. The one-dimensional Euler equa-
tions can be written as

ρt + (ρu)x = 0,(6.8)

(ρu)t + (ρu2 + p)x = 0,(6.9)

Et + (u(E + p))x = 0,(6.10)

where ρ, u and E correspond to density, velocity and total energy of the gas, respec-
tively. Here p is the pressure of the gas and is defined as p = (γ−1)(E− 1

2ρu
2), where

γ is the adiabatic exponent which is set to 1.4 in all experiments here.

Following [19] the entropy function defined as U(u) = − ρs

γ − 1
, where s is the

specific entropy defined as s = ln p − γ ln ρ. The corresponding definition of entropy
variables and entropy conservative flux f? as well as diffusion operator is defined
according to [19]. We consider two types of Riemann problems for our numerical test
in the domain [0, 10]. The boundary conditions are set to Dirichlet type with the
following initial conditions

(6.11) (ρ, u, p)t=0 =

{
(ρL, uL, pL) x < 5,

(ρR, uR, pR) x ≥ 5,

which we define as the right and left states for the following two cases:

6.3.1. Sod shock tube. Here the initial condition is in the form (6.11) with
the values

(6.12) (ρL, uL, pL) = (1, 0, 1), (ρR, uR, pR) = (0.125, 0, 0.1).
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The results are presented in Figure 6.4. We observe that the presented shock captur-
ing mechanism acts effectively near both shock waves and the contact discontinuity.
Our solution compares well to the results of [17], which are improved by some pressure
scaling as well as streamline diffusion. Moreover while increasing polynomial degree
from q = 0 to q = 1 significantly improves the solution quality, the quadratic polyno-
mial solution is quite similar to the linear one, and only improves the overshoots near
the shock wave.
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0.6

0.8

1 SC

No SC

(b) q = 2, with/without SC

Fig. 6.4: Sod shock tube, density, h = 1/20

6.3.2. Lax shock tube. Here the initial condition is in the form (6.11) with
values

(6.13) (ρL, uL, pL) = (0.445, 0.698, 3.528), (ρR, uR, pR) = (0.5, 0, 0.571).

Again, comparing results with [17] shows that the shock capturing mechanism is
effective in alleviating the oscillations. The general behaviour here is similar to the
Sod case, but with larger overshoots due to the stronger shock.

7. Conclusion. In this work we have shown the capability of the shock capturing
mechanism to ensure the convergence to entropy measure-valued solution for nonlin-
ear systems of conservation laws. We followed the framework presented in [17] for
streamline diffusion shock capturing discontinuous Galerkin methods, and introduced
a stripped-down version by omitting the streamline diffusion term while retaining the
entropy stability and convergence of the method. Also using super approximation
estimates, we succeeded to ‘relax’ the scaling in the viscosity and obtain a less dif-
fusive method. Furthermore, the applicability of the method was presented through
numerical experiments.

An improved version of our scheme might consider a dimensionally consistent of
the shock capturing operator. (See [16] for a dimensionally consistent formulation
with SD term.) This is left for future work.
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Appendix. Proof of Lemma 4.2 and Lemma 4.3. Here we present the
proofs of the Lemmas 4.2 and 4.3. Note that by notation Γ we mean a h-dependent
constant Γ = Chβ , where C is independent of h.

Assuming that (4.1) and (4.4) hold and remembering the definition (3.13), the
residual can be bounded from above as |Res| ≤ C|∇vh|. Consequently one can easily
obtain

(A.1) Resκ ≤ C‖∇vh‖L2(κ).

A.1. Proof of Lemma 4.2.
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(i) We split the summation into summations on κ> := {κ : ‖∇vh‖L2(κ) ≥ Γ} and

κ< := {κ : ‖∇vh‖L2(κ) < Γ} as

hγ
∑
κ,n

Resκ = hγ

(∑
κ∈κ>

Resκ +
∑
κ∈κ<

Resκ

)
= I1 + I2.(A.2)

We estimate each of terms I1 and I2 separately:
• Bound on I1: Remembering the definition of εκ in (3.10) gives

I1 ≤ Chγ−α1

∑
κ∈κ>

εκ‖∇vh‖L2(κ) + hγ−α1

∑
κ∈κ>

εκh
θ

≤ Ch
γ−α1

Γ

∑
κ,n

εκ‖∇vh‖2L2(κ) +
hγ−α1+θ

Γ2

∑
κ,n

εκ‖∇vh‖2L2(κ)

≤ C
(
hγ−α1

hβ
+
hγ−α1+θ

h2β

)
,(A.3)

where (4.2) is used in the last estimate.
• Bound on I2: Using (A.1) one can show that Resκ < CΓ holds where
‖∇vh‖L2(κ) ≤ Γ and consequently

(A.4) I2 < Chγ+β

(∑
κ,n

1

)
≤ Ch−d

′
hγ+β ,

where the term h−d
′

stands for the number of all space-time elements in
the domain which is true thanks to the quasi-uniformity condition (3.1).

Considering bounds on I1 and I2, yields

(A.5) hγ
∑
κ,n

Resκ ≤ C
(
hγ−α1−β + hγ−α1+θ−2β + hγ+β−d′

)
.

For (A.5) to be bounded (regarding to h) it is required that

γ − α1 − β ≥ 0,(A.6a)

γ − α1 + θ − 2β ≥ 0,(A.6b)

γ + β − d′ ≥ 0.(A.6c)

If one can find a possible value for (here the only) free parameter β, then (A.5)
is bounded by initial condition implied in C and the diameter of the space-time
domain. Also this bound goes to zero as h→ 0 in the case of strict inequality.
Considering (A.6a) and (A.6c) gives

(A.7) d′ − γ ≤ β ≤ γ − α1,

which implies γ ≥ d′+α1

2 . A similar calculation using (A.6b) and (A.6c) leads to

the condition γ ≥ 2d′+α1−θ
3 . Using the condition on θ in (3.11), one can check

that the second condition reduces to the first one, and we only need to satisfy
γ ≥ d′+α1

2 . This completes the proof of part (i) of Lemma 4.2.
Note that the maximum rate of convergence with respect to h occurs when
β = θ = d′−α1

2 . For this choice all terms in brackets on the right hand side of

(A.5) reduce to hγ−
α1+d′

2 .
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(ii) We show that we can find a uniform upper bound in case of γ = α1. Then the
theorem is obviously true for γ > α1.
From the (4.3) and the definition of εκ in (3.10) we have

(A.8)
∑
κ,n

hα1Resκ‖∇vh‖2L2(κ)

‖∇vh‖L2(κ) + hθ
≤ C.

Using the arguments of Lemma 4.2 with γ = θ + α1, we can claim that

(A.9)
∑
κ,n

hα1hθResκ ≤ C,

if θ + α1 ≥ d′+α1

2 , i.e. θ ≥ d′−α1

2 . This is true by condition (3.11).
Now, one should note that

(A.10) ‖∇vh‖L2(κ) ≤ max{hθ,
2‖∇vh‖2L2(κ)

‖∇vh‖L2(κ) + hθ
},

which can be easily seen by a graphical argument. Using (A.8) and (A.9) com-
bined with (A.10) yields

hα1

∑
κ,n

Resκ‖∇vh‖L2(κ) ≤ hα1

∑
κ,n

Resκ max{hθ,
2‖∇vh‖2L2(κ)

‖∇vh‖L2(κ) + hθ
} ≤ C.

The bound C vanishes as h→ 0 if γ > α1.

A.2. Proof of Lemma 4.3.
(i) Using (4.2), (3.8) and the definition of BResκ (3.16), one can conclude that the

first and last term of
∑

BRes
2

κ are bounded. For the second term, using the
definition of the entropy conservative flux (3.6) and its consistency yields

f?(vh)− f(vhK,−) · n = f?(vhK,−,v
h
K,+;n)− f?(vhK,−,vhK,−;n)

=

∫ 1

0

fk(vh(θ))− fk(vhK,−) dθ

=

∫ 1

0

θ

m∑
i=1

aif
k
v(bi(θ)) dθ JvhKK+

−(A.11)

with coefficients ai ∈ [0, 1] such that
∑m
i=1 ai = 1 and bi(θ)s are some values on

the straight line connecting vhK,− and vh(θ). The value vh(θ) is defined by the
parameterization introduced in (3.7). The last identity is the result of the mean
value theorem for a vector-valued function (cf. e.g. [24]).
By assuming the boundedness as in (4.4), (A.11) can be bounded from above by

(A.12) |f?(vh)− f(vhK,−) · n| ≤ C|JvhKK+
−|.

The estimate (4.2) combined with (A.12) leads to

(A.13)
∑
κ,n

BRes
2

κ ≤ C,

and the proof completes with recalling that h
d′
2

∑
κ,n

BResκ ≤ C
(∑
κ,n

BRes
2

κ

)1/2
.
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(ii) The proof proceeds along the same lines as the proof of part (ii) of Lemma 4.2,
by using (4.3) and the uniform bound presented in part (i).

In the proof it is needed to have θ + α2 ≥ d′

2 which implies θ ≥ d′

2 − α2. This is
the requirement on the regularization parameter θ in (3.11).


