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Abstract. Optical flow is a powerful tool for the study and analysis of
motion in a sequence of images. In this article we study a Horn—Schunck
type spatio-temporal regularization functional for image sequences that
have a non-Euclidean, time varying image domain. To that end we con-
struct a Riemannian metric that describes the deformation and structure of
this evolving surface. The resulting functional can be seen as natural geo-
metric generalization of previous work by Weickert and Schnorr (2001) and
Lefevre and Baillet (2008) for static image domains. In this work we show
the existence and wellposedness of the corresponding optical flow problem
and derive necessary and sufficient optimality conditions. We demonstrate
the functionality of our approach in a series of experiments using both
synthetic and real data.
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1. Introduction

Optical flow. Optical flow is a powerful tool for detecting and analyzing motion in a
sequence of images. The underlying idea is to depict the displacement of patterns in
the image sequence as a vector field — the optical flow vector field — generating the
corresponding displacement function. This framework has applications in a variety of
areas connected to computer graphics and video analysis, e.g. in video compressing,
video surveillance or vision-based robot navigation.
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Variational methods. In their seminal article [20], Horn and Schunck proposed a
variational ansatz for the computation of the optical flow vector field. In this ap-
proach one minimizes an energy functional consisting of a similarity (data) term and
a reqularity term:

@ = argmin £(u) = argmin (S(u) + R(u)) .
u€H u€H
Here H denotes an admissible space of vector fields, R denotes the regularity term
for the vector field u, and S denotes the similarity term, which depends on the image
sequence Z under consideration. This method turned out to be particularly successful,
as the resulting optical flow fields satisfy certain desirable properties governed by the
choice of the regularization term R.

In their article, Horn and Schunck considered the optical flow problem for a sequence
of images defined on some domain in R2. They proposed to use the L?-norm of the
first derivative of the vector field u as a regularization term. The wellposedness of
this ansatz has been shown first by Schnérr in [36]. There they had to impose an
additional assumption on the image sequence in order to ensure the coercivity of the
functional &; this is mainly caused by the so called aperture problem, which results
from the impossibility of detecting or discriminating certain types of motion in a very
regular image.

After the development of the Horn—Schunck functional, several extensions and im-
provements of the regularization term have been developed, see e.g. [4, [12] 13| 29]
30, B2]. A survey on variational techniques for optical flow can be found in [40]. In
the article [31], Nagel proposed to add regularization in time via smoothing across
image discontinuities. Time smoothing of the flow field, on the other hand, has been
introduced by Weickert and Schnorr in [42], where the authors considered an addi-
tional term containing the time derivative of the vector field u in the definition of the
regularization functional. This alteration still yields a convex energy functional and
thus the wellposedness of the optical flow problem can be proven employing similar
methods as for the original Horn—Schunck functional. While these results have been
derived for domains in R2, the situation of more general — possibly curved — image
domains has not been considered there. A first attempt in this direction can be found
in [211, B8], where the authors introduced the optical flow functional for images on the
round sphere. Finally, the case of an arbitrary compact two-dimensional manifold as
image domain has been studied in [26]. There the authors discuss the usage of the
Horn—Schunck functional on a manifold and prove a similar wellposedness result as for
the plane.

Time varying image domains. Recently, Kirisits, Lang and Scherzer have studied the
optical flow problem on a time varying image domain [24] 25]. The motivation for that
was an application in volumetric microscopy, where one studies the early development
of a zebra-fish embryo. In this setting, almost all movement between consecutive
images takes place on the surface of the embryo’s yolk cell, which, however, is time-
dependent as well. In theory, it would be possible to use the complete volumetric data
in order to compute a three-dimensional optical flow field. In practice, however, this



is not viable because of the huge amount of data involved. Instead, it makes sense to
extract the moving surface in a first step and then to compute the flow field on this
surface in a second, separate step.

The main mathematical challenge at this point is the correct treatment of a vector
field on a moving manifold M; C R3 t € [0,7]. We assume in this paper that
this manifold is given by a family of parametrizations f(¢,-): M — R3, where the
configuration space M is a fixed compact two-dimensional manifold (possibily with
boundary). The image sequence is defined on this moving manifold, and it is assumed
that the structure of the manifold has an influence on the deformation of the image
sequence. The difficulty is to capture the structure of the moving manifold in the optical
flow field. Therefore, one has to develop a regularization term that depends on the
induced, changing Riemannian metric.

At this point, we want to note that it would, in principle, be possible to use some
fixed Riemannian metric on M in order to obtain a regularization term like in [26].
Then one would lose, however, all the information about the correct manifold M,
as well as its movement in space. In the experimental section we will compare this
naive approach to our geometrical method and we will see that there is a significant
difference in the resulting optical flow fields.

Contributions of the article. One possibility of a regularization term capturing the
structure of a moving manifold has already been given in [24] 25]. In this article
we propose a different one that is induced by a metric g on the product manifold
M = [0,T] x M. This metric g is constructed in such a way that it incorporates all
available information on the moving image domain:

96, = (652 f*<-?->Ra> '

The constant o > 0 is a weighting parameter and f*(-, -)gs denotes the induced surface
metric of the parametrization f at time t. Given such a metric, we can use a weighted
H'-norm as regularization term:

R(a) = | Bg(a, )+ 51 (Va, Va) vol(g) .
M

This regularization term is defined for vector fields @ on the product manifold M.
However, since we do not want to change the time parametrization, we will only
consider vector fields with vanishing time component, cf. Remark [7] for a more detailed
explanation of this choice. Moreover, gi denotes the extension of the metric to 1-1
tensor fields, V denotes the covariant derivative of g and vol(g) is the corresponding
volume form. Note that this term enforces spatio-temporal regularity, as it contains
derivatives in both time and space. The parameter « that is included in the definition
of the metric allows to penalize regularity in time and space separately. This choice
for the regularization term is a natural geometric generalization of the regularization
term on the static manifold [0, T] x R? from [42].



If we decide to enforce no regularity in time, then the optical flow problem reduces
for each time point ¢; to the optical flow problem on the static manifold M,,. In this
case, our regularization term equals the regularization term used in [26].

The similarity term we use in this paper is simply the squared L2-norm of the defect
of the optical flow equation, that is,

sun::[%az1+4xngu»2wﬂ@).

Regarding the wellposedness of this optical flow problem we obtain the following result:

Theorem 1 (Wellposedness of the optical flow problem). Let M; C R? be a
moving two-dimensional compact surface, the movement of which is described by a
family of parametrizations f: M — R3. For all parameters 8,y > 0 and any image
sequence I € W1>°(M) the optical flow functional

(@) = S(a) + R(a)
has a unique minimizer in
dom(&) := {u € H' (M, TM) : @ = (00;,u) with uw € H*(M,TM)}.

A similar result is also shown under the assumption of partial Dirichlet boundary
conditions. The L2-norm in the regularization term is added to enforce the coercivity
of the energy functional. We also discuss under which assumptions we can set the
parameter 8 to zero and still obtain a wellposedness result for our functional. We
compare our functional to the functionals introduced by Kirisits et al. [24] 25] and
discuss the wellposedness of the optical flow problem using the regularization terms
that are employed there.

Finally, we demonstrate the functionality of our approach in a series of experiments
using both synthetic and real data. In these experiments we also show the difference
between our approach and the straightforward approach, that does not use the actual
structure of the moving manifold. In both experiments one can see notably different
results in regions of the manifold where either the curvature or the deformation of the
manifold is large.

Another important topic is the strong dependence of the optical flow field on the
parametrization of the moving manifold. In appendix [A] we present a brief discussion
on a possible approach to compute realistic parametrizations given an observed moving
un—parametrized manifold. The long term goal will be the combination of segmentation
and computation of the optical flow, which we hope will lead to more reliable results.

Organization of the article. In Section [2] we recall the differential geometric and
functional analytic tools that we will use throughout the article. Readers that are
acquainted with the theory of Sobolev spaces of vector fields on Riemannian manifolds
might skip this part and directly start with Section 3] which contains the rigorous math-
ematical formulation of the optical flow problem studied in this article. In Section [4]



we construct the regularization term that we employ in this article, prove the well-
posedness of the corresponding functional and derive the optimality conditions. Up to
this point all calculations and results are presented in a coordinate independent man-
ner. In order to obtain an implementable version we derive in Section [5| a coordinate
version of the optimality conditions. This involves rather technical calculations, that
are partly postponed to the appendix. In Section [f] we show numerical experiments
that demonstrate the functionality of the proposed energy functional. The appendix
contains a discussion on how to compute the parametrization of the moving manifold
and the actual calculations of the coordinate version of the optimality conditions.
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2. Mathematical Preliminaries

In this section we are going to recall the differential geometric and functional analytic
tools for Sobolev spaces of vector fields on 2-dimensional embedded surfaces, which
we will need throughout the article. A more detailed overview on these topics can be
found e.g. in [I0, Sect. 3].

Riemannian geometry. We are working on 2-dimensional surfaces that are embedded
in R? and parametrized by a mapping

f:M—R?

from some configuration space M into R3. We will always assume that M is a com-
pact 2-dimensional manifold, possibly with boundary; typical examples are the 2-
dimensional sphere S? or the torus S* x S'. The mapping f is assumed to be smooth
(that is, at least C2) and injective with injective tangential mapping Tf: TM — R?
(in other words, f is a smooth embedding).

The embedding f induces in a natural way via pullback a Riemannian metric g on
the configuration space M. For tangent vectors X, Y € T, M, x € M, it is given by

g(X,Y) = (F(, Jpa)(X,Y) i= (To f. X, T f.Y )s .

Here (-, -)gs denotes the standard scalar product on R and 7} f.X denotes the appli-
cation of the differential T, f : T,M — R? of the embedding f to the tangent vector
XeTl, M.



In a chart (V,v) on M the expression of the metric reads as

glv =Y gidv' @ dv! = (9:f,0; f)gsdv’ @ dv’

.9 2]

Next we note that the metric induces an isomorphism between the tangent bundle
and the cotangent bundle

g: TM - T*M, X g(X,):=X",
with inverse §~!. Therefore g defines a metric on the cotangent bundle T*M via

9 e, B) = alg~(B)).

In this article we will need the extension of the metric to 1-1 tensor fields. The reason
for this is, that this type of tensor field occurs as derivative of a vector field on M,
which will be a part of our regularization term. On these tensor fields the metric is
given by

gl =g®g "

Applied to a 1-1 tensor field A this equals the squared Hilbert Schmidt norm of A:
gi(A, A) = Tr(A*A),

where the adjoint A* is computed with respect to the Riemannian metric g. Here we
have interpreted A as a linear mapping from T, M to T,, M.

Sobolev spaces of vector fields. The Riemannian metric g on M induces a unique
volume density, which we will denote by vol(g). In the chart (V,v) its formula reads
as

vol(g)|v = /det((0if. 9, f)ge) |dv" A do?).

The Levi—Civita covariant derivative of the metric g, which is the unique torsion-free
connection preserving the metric g, will be denoted by V9. When it is clear from the
context, we omit the g and simply write V instead of V9. Note that VY is just the
tangential component of the usual derivative in the ambient space R?, more precisely,
for a vector field u € C*° (M, TM)

Tf.V9% = projpiay VE (Tfu).
We define the Sobolev norms of orders zero and one by
Julfy, = | swwyvolls).
M
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The Sobolev space H*(M,TM) is then defined as the completion of the space of
all vector fields u € C°°(M,TM) with respect to the norm | - [j1,4. On a compact
manifold different metrics yield equivalent norms and thus lead to the same Sobolev
spaces. We note that, as for Sobolev spaces in R", there is an alternative, equivalent
definition of H'(M, T M) as the space of all square integrable vector fields with square
integrable weak derivatives.

For the definition of more general Sobolev space on manifolds we refer to [39]; see
also [7] for an exposition in a similar notation as it is used in this article. An extension
of this theory to non-compact manifolds can be found in the book [14].

3. Problem Formulation

We assume that we are given a moving two-dimensional compact surface M, C R3,
t € [0,T] the movement of which is described by a family of parametrizations f. For
the moment, we will restrict ourselves to compact surfaces without boundary, but we
will discuss the situation of manifolds with boundary later. More precisely, we assume
that there exists a two-dimensional compact C?-manifold M and a C?-mapping

f:00,T) x M — R3

such that for every fixed time t € [0,T] the mapping f(¢,-) is an embedding and its
image equals M;. The mapping f defines the movement of the manifold in the sense
that the path of a point y = f(0,z) € M, is precisely the curve t — f(t,z). Or, a
point y; € M, corresponds to a point yo € My, if and only if there exists v € M
with y1 = f(t1,2) and y2 = f(t2, 2).

Next we model the movement of an image on this moving surface. For simplicity we
will only consider grey-scale images, although the model does not change significantly
if we also allow color, that is, vector valued, images. We stress that in our model the
movement of the image is not solely driven by the movement of the surface, but that
there is also an additional movement on the surface, the reconstruction of which is
precisely what we are aiming for.

The image sequence we are considering is given by a real valued function Z on

M= | {t} x M, C[0,T] x R?;

0<t<T

for each t € [0, T], the function Z(¢,-): M; — R is the image at the time ¢. Moreover,
there exists a family of diffeomorphisms ¥(t,): My — M, such that

Z(0,z) = Z(t,¥(t, ).

That is, the diffeomorphisms ¥(¢, -) generate the movement of the image on the evolving
surface.

Next, it is possible to pull back the image and the driving family of diffeomorphisms
to the configuration space M. Doing so, we obtain a time dependent function I': [0, 7] x
M — R defined by

I(t,2) = I(t, f(t,2))



and a family of diffeomorphisms (¢, ) of M defined by

ftp(t,x)) = (2, £(0,2))

such that
I(O,.’L’) = I(taw(t’x)) (1)

for all t € [0,T] and x € M.

Furthermore we assume that the diffeomorphisms ¢(t,-) are generated by a time
dependent vector field uw on M. Then the curves ¢t — (¢, x) are precisely the integral
curves of u, that is,

Oep(t, ) = ult, p(t, ). (2)

If the image I is sufficiently smooth, it is possible to compute the time derivative of
equation (I). Using the relation and the fact that (¢, -) is surjective, we then see
that the image I and the vector field u satisfy the optical flow equation

0=0I(t,x) + D, I(t,x)u(t,x) (3)

on [0, T] x M. We do note that in the equation (3] all information about the movement
of the manifold is suppressed, as all the functions have been pulled back to M. It is,
however, possible to re-introduce some knowledge of M by formulating the optical flow
equation not in terms of differentials but rather in terms of gradients. To that end
we denote by ¢ the time dependent Riemannian metric on M that is induced by the
family of embeddings f(t,-). Since by definition V9I(t,-)* = D,I(t,-), we can rewrite
the optical flow equation as

0=20I(t,x) 4+ g(VII(t,x),u(t,z)) (4)

for all (t,z) € [0,T] x M.

Now assume that the model manifold M is a compact manifold with boundary.
Then the same model of a moving image on the embedded manifolds M; is possible,
as long as it is guaranteed that the boundary of the manifold acts as a barrier for the
movement of Z. That is, the diffeomorphisms (¢, ) satisfy the additional boundary
condition p(t,x) = x for x € M. In this case, one arrives at the same optical flow
equation , but, additionally, one obtains (partial) Dirichlet boundary conditions of
the form wu(t,z) = 0 for all (¢,x) € [0,T] x OM.

The situation is different, when the image Z actually moves across the boundary
of My, which can occur if the manifold with boundary M; represents the limited
field of view on a larger manifold that contains the moving image. Then it is not
reasonable to model the movement of the image by a family of global diffeomorphism
Y(t,-). However, locally it can still be modeled as being generated by a family of local
diffeomorphisms, which in turn can be assumed to be generated by a time dependent
vector field on M. With this approach, one arrives, again, at the same optical flow
equation . The difference to the situations discussed above is that the integral
curves of © may be defined only on bounded intervals.



The Inverse Problem. Now we consider the inverse problem of reconstructing the
movement of a family of images from the image sequence. We assume that we are given
the family of manifolds M, together with the parametrizations f(¢,-) and the family
of images I(t,-) (already pulled back to M). Our task is to find a time dependent
vector field u on M that generates the movement of I; in other words, a vector field u
that satisfies the optical flow equation .

Solving this equation directly is not sensible, as, in general, the solution, if it exists,
will not be unique: The optical flow equation does not “see” a flow that is tangential
to the level lines of the image I. Thus, if v is any solution of and the vector field
w satisfies

g(ng(t, x)? w(t7 .’13)) =0,

then also u+ w is a solution; this is called the aperture problem (see [16]). In addition,
the whole model fails in the case of noise leading to non-differentiable data I. In order
to be still able to formulate the optical flow equation, it is possible to pre-smooth the
image I, but this will invariably lead to errors in the model and thus the optical flow
equation will only be satisfied approximately by the generating vector field u. For
these reasons, it is necessary to introduce some kind of regularization. Note that the
main focus lies here in the problem of solution selection.

4. Classical Variational Regularization

One of the most straightforward regularization methods is the application of Tikhonov
regularization, where we try to minimize a functional composed of two terms, a simi-
larity term, which ensures that the equation is almost satisfied, and a regularity term,
which ensures the existence of a regularized solution and is responsible for the solution
selection.

4.1. Spatial Regularization

If we consider only spatial regularity, the definition of the regularity term is straight-
forward, using for each time point ¢ the pullback metric

This leads to the energy functional

E(u) :=S(u) + R(u)

T
- / / (O] + g(VOL, ) + Bylu, u) + vg-(Vou, V9u) vol(g) dt
0 M

here 8 and ~ are weighting parameters. In this case the problem completely decouples
in space and time, i.e., the optimal vector field v has to be minimal for each time point
separately. Thus the problem reduces for each time ¢ to the calculation of the optical



flow on the (static) Riemannian manifold (M, g(t)), which yields for each time point ¢
the Energy functional

E(ult, ) = /M (O] + g(V91,u)? + Bo(u, u) + g (Yo, Vou) vol(g) .

This functional is well investigated. For 8 > 0 the coercivity of the energy functional
is clear and one can easily deduce the well-posedness of the optical flow problem. In
[26] 136] it was shown that one can guarantee the coercivity of the energy functional for
8 = 0 by requiring the image sequence to satisfy additional conditions. The conditions
in [36] for optical flow in the plane require that the partial derivatives of the image I
are linearly independent functions. This is equivalent to the requirement that no non-
trivial constant vector field u satisfies the optical flow equation for the given image.
Similar requirements are commonly found for Tikhonov regularization with derivative
based regularization terms, see e.g. [T, 5l [I7] and [34) Section 3.4]. In the case of
a non-flat manifold M, the condition translates to the non-existence of a non-trivial
covariantly constant vector field satisfying the optical flow equation. Obviously, this
condition is automatically satisfied, if the only covariantly constant vector field is
u = 0, and thus it may be omitted in manifold settings, see [26].

4.2. Regularization in time and space

In the following we will look for solutions that additionally satisfy a regularity con-
straint in time ¢. For the optical flow in the plane R?, this method has been introduced
in [42). Spatio-temporal regularization of the optical flow on moving manifolds, has
also been considered in [24], but with a different regularity term than the one we will
construct in the following.

In order to construct the regularity term, we consider the product manifold

M :=1[0,T] x M

and equip it with the almost product metric

96, = (062 f*<~?~>Rs> '

The parameter o > 0 is a weighting parameter, which is included in order to be able to
penalize spatial regularity and regularity in the time variable differently. This metric
is called almost product metric due to the dependence of the metric g(+,-) = f*(-, )gs
on the time t. In order to simplify notation we denote V9 by V from now on.

Remark 2. In the following, we will always indicate by a “bar” (*) that an object is
related to the product manifold M. For instance, § denotes a metric on M, whereas g
denotes a (time dependent) metric on M. Similarly, @ will later denote a vector field
on M, whereas u will denote a time dependent vector field on M. u

10



Remark 3. We could also consider M as an embedded submanifold of R x R3:
f'{[O,T]xM - R xR3,
' (t,z) = (L f(t).

We stress here that the metric g is not the pullback of the (time scaled) Euclidean
metric on M by the parametrization f. Instead, it is constructed in such a way that
the paths of the points on M are at each time ¢ orthogonal to the manifold M;.
Moreover, these paths are geodesics with respect to g. These properties do, in general,
not hold for the usual pullback metric. n

From now on we will identify a time dependent vector field u on M with the vector
field B B
a(t,x) := (00, u(t,x)) € C°(M,TM)

and define both the similarity term and the regularization term in terms of u. Taking
the squared L?-norm with respect to the metric g of the right hand side of the optical
flow equation we obtain for the similarity term the functional

S(@) = 0.1 + (VoL u)l[5 4
- /]\7[ (at‘[(ta :C) + g(vg‘[(ta CE), u(tv x)))Q VOl(g)

T
— / (O I(t,2) + g(VII(t, ), u(t, 2)))? vol(g) dt .
0 M

Here we used the fact that the volume form on M splits into vol(g) = a vol(g) dt.
For the regularization term we use a weighted H'-norm of the vector field @, that
is,

R(a) = Bllall§ ; +~IIVallg 5 , ()

where 8 and v are weighting parameters. In (B)), the term ||@||3 ; denotes the L2-norm
of the vector field @ and ||Va||3 ; denotes the norm of its derivative with respect to
the Riemannian metric g , that is,

Hu||0g / / u, u) vol(g) dt ,
IVallg ; = / / (Va, Va) vol(g) dt .

To summarize, we propose to solve the optical flow problem on a moving manifold
by minimizing the energy functional

E(u) .= S(u) + R(u)

_ - (6)
=10 + g(VL,u)§ 5 + Bllulls 5 + IVl 5,

11



which is defined on

dom(€) = {u e H'(M,TM): @ = (09;,u)} .

Remark 4. Note that the regularization term depends implicitly on the parameter «
as well. However, a large value of a leads to less time regularity, which is in contrast
to the influence of the parameters 5 and ~. Formally, the limit &« — oo corresponds to
no time regularization at all. n

Remark 5. We stress the difference between the regularization term proposed in this
article and the one from [25], which is given by

T
R(u) = / /M NolProjpng, Os(T ) + A [projpeane, VF° (T £,

Even though the latter functional is also a natural generalization of [42] — from an
embedded point of view —, there is no obvious metric on M for which it is a weighted
homogeneous H!-norm. n

Remark 6. In the case § = 0, where R is the homogeneous Sobolev semi-norm, only
variations of the movement on the manifold are penalized but not the overall speed
of the movement. In contrast, a positive value of 8 encourages a low speed, which
may lead to a systematic underestimation of the magnitude of the computed flow. For
this reason the choice § = 0 is usually preferable. Note, however, that one of the
basic assumptions in our model is that most of the movement of the image is driven
by the movement of the manifold. Thus, using a positive value of 8 can be justified
and is somehow natural provided that this assumption holds. In addition, the actual
numerical computation of the flow field is easier for § > 0 because the condition of
the resulting linear equation becomes better with increasing 5. Still, we have used the
parameter choice § = 0 for our numerical experiments later in the paper. ™

Remark 7. Tt is also possible to identify the non-autonomous vector field u on M with
the vector field 4(t,z) := (10;,u(t,z)) on M, which incorporates the movement of
the image both in time and space. If one does so, however, one has to be careful
about the regularity term. Simply using the squared (weighted) H!-norm of @ has the
undesirable effect that the natural movement of the manifold, which is given by the
vector field g := (19, 0), need not be of minimal energy for the regularization term:
the vector field g is in general not covariantly constant. Instead of the norm of the
vector field 4 itself one should therefore penalize the norm of the difference between
and 1. Doing so, one arrives at the same regularization term as above, although
the interpretation is slightly different. n

4.3. Wellposedness

The proof of the wellposedness of our model, that is, the question whether the proposed
energy functional £ attains a unique minimizer in dom(&), is quite straightforward.

12



In the following result, we denote by W°°(M) the space of functions on M with an
essentially bounded weak derivative.

Theorem 8. Assume that a, 3,y > 0 and that I € W1 (M). Then the functional
E(u) = S(u) + R(u)
defined in (6) has a unique minimizer in dom(E).

Remark 9. We will see in Sect. [£4] that this optimization problem is in a natural way
connected to Neumann boundary conditions. If we want to consider mixed boundary
conditions instead—Dirichlet in space and Neumann in time—we have to restrict the
domain of the energy functional to

domg(€) :={u € dom(E) : =0 on [0,T] x IM}.
The wellposedness result remains valid on domg(E). n

Proof. The condition I € W°°(M) guarantees that the similarity term S(%) is finite
for every square integrable vector field on M; in particular it is proper. From the
condition S > 0 we obtain that the regularization term R and therefore also the
energy functional £ is coercive. Thus £ is a proper and coercive, quadratic functional
on the Hilbert space dom(&), which implies the existence of a unique minimizer (cf. [34}
Section 3.4] or [36]). O

Remark 10. The condition S > 0 is not necessary if there is another way of guaran-
teeing the coercivity of the regularization term. This is for instance possible, if there
exists no non-trivial covariantly constant vector field of the form @ = (09;,u) on M. In
that case, the homogeneous Sobolev semi-norm |[Val[g ; is in fact a norm on dom(&)
that is equivalent to the standard Sobolev norm, and therefore also the parameter
choice 8 = 0 guarantees the coercivity of £. Note that this condition is independent
of the moving image 1.

More generally, even if there are non-trivial, admissible, covariantly constant vector
fields on M, the energy function will be still coercive for f = 0, as long as no such
vector field satisfies the optical flow equation 9,1+ g(V9I,u) = 0. Note, however, that
the numerical computation of a minimizer may become difficult, because the problem,
though still wellposed, may become ill-conditioned as the parameter g approaches
Zero. ]

Remark 11. With a similar argumentation one can show that the functionals proposed
in [24, 25] are wellposed provided they are coercive, compare Remark Because there
all the regularization terms penalize only the derivative of the vector field v but not its
size, the coercivity will only hold if one of the conditions in Remark [L0]is satisfied. m
4.4. The optimality conditions

Lemma 12. The L? gradient of the optical flow energy functional £ is given by
grad £(ii) = 2 (EM +g(Ver, u)) (0,V91) + 261 + 2yAPa .

13



o For & seen as functional on dom(E) its domain of definition is the set of all
vector fields u € dom(E) satisfying Neumann boundary conditions, i.e.,

dom(grad(€)) = {@ € dom(€) : V,al,, =0} ,
where v denotes the normal to the boundary of M with respect to §.

e For & restricted to domg (&) its domain of definition is the set of all vector fields
u € domg(E) satisfying mized boundary conditions, more precisely,

domy(grad(€)) = {a € domg(€) : @Vﬂ|{o,T}xM = 0} .
Note here that on {0,T} x M the normal vector v is given by v = 0.
Here AP denotes the Bochner Laplacian of g, which is defined via
AP =V*'V,
with V* denoting the L2-adjoint of the covariant derivative. The Bochner Laplacian
differs only by a sign from the usual Laplace Beltrami operator.

Proof. We calculate the gradients for the two terms separately. Using a variation
du = (0, 0u) we obtain the following expression for the variation of the similarity term:

D (8(a)) (du) = 2 /OT/M <8tl+g(vgl,u))g(vgl, u) vol(g) dt .

From this equation one can easily read off the L? gradient of the similarity term. It
reads as )
grad™ (S(a)) = 2(&] +g(Ver, u)) (0, V1) .

The variation of the regularization term is given by
D (R(a)) (6u) = 2015/ / g(a, ou) vol(g) dt + 2047/ / g1 (Va, Véu) vol(g) dt
o Jm o Jm

T T
= 2a6/0 /M g(a@, du) vol(g) dt + 2a’y/0 /M g(V*Vau,éu) vol(g) dt

T T

+ 204’}// / (V. a, 6u) vol(g)|oardt + 2047/ 3(Va, 1, 6u) vol(g)
0 Jom M 0

The second step consists of a partial integration using the L? adjoint of the covariant
derivative, which we denote by V*. The last two term in the above expression are the
boundary term that results from the partial integration. From this we can read off
the formula for the gradient of the regularization term. Taking into account that the
outer normal vector to the boundary of {0,7} x M is given by v = J; this concludes
the proof on dom(€). For domg(€) the situation is simpler, since the first boundary
integral is already zero if u € dom, (). O
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Because of the strict convexity of the energy functional &£, a vector field u is a
minimizer if and only if it is an element of dom(grad(€)) and grad £(u) = 0. Thus we
obtain the following result:

Theorem 13. The minimizer of the energy functional £ on dom(&) defined in @ 1s
the unique solution @ = (00, u) of the equation

(8tl +g(VI, u)) (0,V91) + Bu+yAPa=0 in M,
Vo= (0,V,u)=0 in[0,T] x OM

Vo, u=0 in{0,T} x M.
If we restrict the energy functional to domg (&) it is the unique solution of

(6t1 +g(VI, u)) (0,V91) + B+ yABa =0 in M,
Vo, = in {0, T} x M,
=0 in[0,T] x OM.

5. The optimality conditions in local coordinates

The aim of this section is to express the previously derived optimality conditions in
a local coordinate chart in order to obtain an implementable version of the previous
sections. To simplify the exposition, we will restrict ourselves to the case of mixed
boundary conditions. Note that this includes in particular the situation where M is a
compact manifold without boundary.

Let (V,v) be a local chart on M with coordinate frame 0y, d2. In the following we
will use the Einstein summation convention in order to simplify the notation.

The main computational difficulty is the computation of the Bochner Laplacian
AB = V*V, as it involves the adjoint of the covariant derivative. This is most easily
done in an orthonormal frame with respect to the metric g. We stress here that the
natural frame (9, 01, 92) is in general not orthonormal, because §(d1,92) = g(01,02) =
(01 f, 02 f)rs will be different from 0. Note, however, that the construction of the metric
implies that g(d;,9;) = 0 for ¢ = 1,2. We can therefore obtain an orthonormal frame
by scaling the vector 9; to unit length and, for instance, applying the Gram—Schmidt
orthogonalization process to the (time and space dependent) vectors 9, 92. Doing so,
we obtain an orthonormal frame of the form

_ 1 _ _
Xo = (aat»()% X1 =(0,X1), X2 = (0, X>)

with space dependent vector fields X (t,-) and Xa(t,-) on M NV. The (time and space
dependent) coordinate change matrix between these two bases will be denoted by A;
we have

X\ (o 10 0\ /(o
)gl =A 81 = 0 a% a% 81
Xg 82 0 a% a% 82

15



Note that the coefficient function a? will be the constant 0 if the Gram—Schmidt process
is used for orthogonalization. -
In the orthonormal frame {X;}, the norm of V& can be written as

where_@ x,u denotes the covariant derivative of the vector field @ along X;. Writing @
as u’ X, the covariant derivative can be computed as
Vi, i= (Xiaj + a’“wfk> X;

where (I)fk are the connection coefficients. These are defined by the equations

In order to actually compute the connection coeflicients, we use the fact that they
are related to the Christoffel symbols I'%, of § with respect to (9;, 01, 92) via

i 0o —m | —{-npm) ~h-
@), = (a;0pay’ + azapTy,) ajgmn -

Finally, the Christoffel symbols are defined as
_ 1 .
INVES 59"” (gmk,é + Gmek — le,m) ;

where {g*} denote the coefficients of the metric g with respect to (;,0;,0s), and

{Gik,e} denotes the partial derivatives of the coefficients of the inverse metric gL

Applying these definitions to our special situation, we arrive at the following explicit
formula for the optimality conditions in local coordinates:

Theorem 14 (Optimality conditions in local coordinates). In the chart (V,v),
the unique minimizer _
= (00, u) = (0,u'X;)

of the energy functional £ defined in @ solves the equation
(Aj + BIu™ + CM 0,k + Dfmagmuj) X; =0, inV x(0,T), (7)
1 _ .
(aatuj + ukwék) X;=0, onV x{0,T}, (8)
where
AT = 9,10;1g° b1,
Bi, = 8ulal, 0;1g™b] + Bo), — v X (alde],, + alh,@,) — L&, I,
CP = —y Y (Glatoay + 2wl at) — 16l apTn

n0»
m ~L=m
D" = —v 3" a;ai,

16



and b{c is the X;-component of Of.
The connection coefficients @), of {X;} are given by

0, if 7 =0 and either i =0 or k =0,
aatalT9 if =0 and ik #0,
i 0, ifj#0andi=k=0, )
ik é(@ta? + aﬁfg’;)agbgmh, ifi=0 and j,k # 0,
éafa?gmhf%, if k=0 and j,i # 0,
(aldpal + alafTy) a?gmh if 4,0,k # 0.

Moreover, the Christoffel symbols f‘zk have the form

0, if 7 =0 and either i =0 or k =0,
O gi .

Gk if =0 andik+0,
202

9740igre, ifi=0 and j,k #0,

9740 gie, if k=0 and j,i #0,

2070 f, Ouf)rs, if jyisk # 0.

The derivations of this equation and of the coordinate expression of the connection
symbols and the Christoffel symbols are postponed to the appendix.

6. Experimental Results

Numerical implementation. We illustrate the behaviour of the proposed model in
two experiments. In both of them the moving surface M; C R? is parametrized glob-
ally by a function f :[0,7] x M — R3, where M C R? is a rectangular domain. Note
that, due to the chosen images, we can always set § = 0 and still have wellposed-
ness, cf. Remark We also conducted experiments with a positive value of 8, which
yielded faster convergence of the numerical method. The main difference to the results
with 8 = 0 were shortened flow fields.

We solve the optimality conditions from Thm. T4 with finite differences on a kxmxn
grid approximation of M. Derivatives in all three directions are approximated by
central differences and the resulting sparse linear system is solved with the standard
Matlab implementation of the generalized minimal residual method (GMRES).

Experiment |, synthetic data. The first image sequence we apply our model to are
20 frames of the well known Hamburg Taxi sequenceﬂ scaled to the unit interval. The
sequence has a resolution of 255 x 190, which leads to a total number of 9.7 - 10° grid
points.

IThe movie can be dowloaded from http://i21www.ira.uka.de/image_sequences/
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Figure 1: The data considered in Experiment I at frames 1, 6, 11, 16, and 20. Top
row: the pulled back image sequence I. Middle row: the moving surface Mj.
Bottom row: the image sequence 7.

The surface we consider is a ring torus whose major circle turns into an ellipse while
its tube of uniform thickness grows ripples over time. The corresponding embedding
reads

(R+ % +7(t, 21) cos x2) cos 1
flt o1, 22) = (R + r(t,z1) cos xa) sin xy ,
r(t,x1)sinxy

where R = 2, r(t,z1) = 1 + g5 sin8z1, and (x1,22) € [0,27)%. In Fig. we show I,
M; and T.

In Figs. [2| and [3| results for the parameter choice « =y =1 and 8 = 0 are depicted.
The finite difference step size h was set to 1 for all three directions. The GMRES
algorithm was terminated after a maximum of 2000 iterations with a restart every 30
iterations. This led to a relative residual of 5.1-1073. In Fig. We use the color coding
from [6] to visualize the optical flow. This is done by applying it to the pulled back
vector field first, and drawing the resulting color image onto M; via f afterwards.

Finally, we illustrate how the moving surface influences the optical flow vector field.
To that end we repeat Experiment I on the flat torus with all parameters unchanged.
That is, we compute the optical flow from the Hamburg Taxi sequence according to
the model of Weickert and Schnorr [42] only with periodic boundary conditions. In
Fig. [f] we juxtapose the resulting vector field with the optical flow computed on the
deforming torus. A common measure for comparing two optical flow vector fields u

18



Figure 2: The optical flow vector field resulting from Experiment I at frames 1, 10, and
19. Top row: the pull back of the vector field. Bottom row: the vector field
on the moving surface. The vectors have been scaled for better visibility.

and v is the angular error

(L, u), (1,v))gs
|(17u)‘R3|(1av)|R3'

See [6] for example. The main purpose of adding the additional component 1 to both
vectors is to avoid division by zero. Extending the above definition in a straightforward
way to vector fields in R?® we show in Fig. [5| the angular error between the optical
flow computed on the deforming and flat torus, respectively, both before and after
pushforward to the deforming torus. Note that two unit vectors u,v € R? standing at
an angle of 7/5 would have an angular error of approximately 0.44. Another common
measure is the so-called endpoint error |u — v|gs, which also takes into account the
lengths of the vectors. However, since vector lengths are typically affected by the choice
of regularization parameters and finding comparable values for the flat and deforming
torus is not straightforward, we chose not to visualize the endpoint error.

arccos

Experiment Il, microscopy data. Finally, we test our model on real-world data. The
image sequence under consideration in this section depicts a living zebrafish embryo
during the gastrula period and has been recorded with a confocal laser-scanning mi-
croscope. The only visible feature in this dataset are the embryo’s endodermal cells
which, expressing a green fluorescent protein, proliferate on the surface of the embryo’s
yolk. Understanding and reconstructing cell motion during embryogenesis is a major
topic in developmental biology and optical flow is one way to automatically extract
this information [3], 2 25 B5]. See [23] for a detailed account on the embryonic de-

19



a

Figure 3: The color-coded optical flow vector field resulting from Experiment I at
frames 10, 11, 12, and 13. First row: image sequence with pulled back
vector field superimposed. Second row: vector field on the moving surface.
The color wheel is shown at the very bottom.

> “ » »

- - - -
O

Figure 4: Comparison of the optical flow from Experiment I with the optical flow com-
puted in the plane. First row: optical flow from Fig. [3] first row, with re-
moved image. Second row: optical flow computed in the plane with periodic
boundaries. The color wheel is shown at the very bottom.
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Figure 5: Angular errors at frame 19 between the optical flow vector fields computed
on the flat and deforming torus, respectively. Left: R? angular error between
the pulled back vector fields. Right: R? angular error between the pushed
forward vector fields.

Figure 6: The data considered in Experiment II at frames 1, 6, 11, 16, and 20. Top
row: the pulled back image sequence I. Middle row: the moving surface Mj.
Bottom row: the image sequence Z.
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Figure 7: The color-coded optical flow vector field resulting from Experiment II at
frames 1, 4, 7, 10, 11, 14, 17, 20.

Figure 8: Comparison of the optical flow from Experiment II (frames 11 14, 17, 20)
with the optical flow computed in the plane. First row: pull back optical
flow from Fig. [7] second row. Second row: optical flow computed in the
plane. The color wheel is shown at the very bottom.
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Figure 9: R? angular errors at frame 20 between the optical flow computed on the
zebrafish surface and the optical flow computed in the plane, but pushed
forward to the same surface.

velopment of a zebrafish, and [27] for more information on laser-scanning microscopy
and fluorescent protein technology.

The considered data do not depict the whole embryo but only a cuboid section of
approximately 540 x 490 x 340 um?>. They have a spatial resolution of 512 x 512 x 40
voxels and the elapsed time between two consecutive frames is about four minutes.
As in [25], B5] we avoid computational challenges by exploiting the fact that during
gastrulation endodermal cells form a monolayer. This means they can be regarded as
sitting on a two-dimensional surface. Therefore, by fitting a surface through the cells’
positions, we can reduce the spatial dimension of the data by one. We refer to [25] on
how this surface extraction was done.

In this particular experiment we apply our model to 21 frames of the resulting
2D cell images with a resolution of 373 x 373 and again scaled to the unit interval.
The extracted surface can be conveniently parametrized as the graph of a function
z(t, 1, x2) describing the height of the surface. That is, f takes the form

f(taxlaxQ) = ($1,1’2,Z(t,$1,x2)).

In Fig. [6] we show I, M; and Z. The regularization parameters were set to a = 10,
B8 =0, v =1 and for the spatial boundaries we chose homogeneous Dirichlet boundary
conditions. The GMRES solver converged faster this time and was terminated after
the relative residual dropped below 1073, Results are shown in Fig. In Fig. |8 we
juxtapose the pulled back optical flow with the optical flow computed in the plane with
the same parameters. Finally, we again compare the two vector fields by computing
their angular error. This time we do so after push forward only, since for real-world
data we are primarily interested in the vector field on the embedded surface.
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7. Conclusion

Choosing a suitable regularization term is a major challenge in the computation of
the optical flow on a moving manifold when using variational methods. The main
question is how to incorporate the structure of the manifold and of its movement
into the regularization. In this paper we have approached this problem from a purely
differential geometric point of view. We have constructed a Riemannian metric on
the time-dependent manifold in such a way that the paths of points on the manifold
are geodesics with respect to this metric. We have then used a Horn—Schunck type
quadratic regularization term with additional time smoothing for the computation of
the optical flow. The experiments performed within this setting indicate the viability
of this approach and also show that using the manifold structure can have a significant
influence on the computed optical flow field. Still, because of the usage of a quadratic
regularization term that is not adapted to the image structure, the resulting flow fields
tend to be oversmoothed. The next step is therefore the extension to more complicated,
anisotropic regularization terms as discussed in [41], which may be more accurate for
certain applications of optical flow.

Appendix

A. Finding the parametrization

So far we have assumed, that we are given the moving surface with a fixed parametriza-
tion. In applications this parametrization might be unknown, i.e., one might only ob-
serve the shape of the surface, but not its actual parametrization. Thus one will need
to extract the parametrization from the observed data. In this part we will briefly
sketch a possible approach to achieve this goal.

Remark 15. Note that the choice of parametrization will have a tremendous influence
on the resulting optical flow field. In particular one can choose a parametrization,
such that the optical flow field is almost zero. To achieve this one can take any fixed
parametrization f(t,-) and solve the optical flow problem for this parametrization using
small regularization parameters. Then one can use the resulting optical flow field v
to generate a path of diffecomorphisms o(t,-) € Diff(M). Then the path f(t,z) =
f(t,o(t,x)) has the desired property. n

In the following we will assume that the evolution of the image has no influence on the
evolution of the surface—the influence of the surface evolution on the image evolution is
taken into account by the nature of the regularization term. Furthermore we assume
that we are given only the shape of the surface at each timepoint ¢, but not the
actual parametrization, i.e., that we are given a path in the space of unparametrized,
embedded surfaces; see [28] [I8] for a rigorous mathematical definiton of this infinite
dimensional manifold.
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At each time point ¢ we can now choose any parametrization of the surfaces yielding
a path of embeddings
f:00,T] x M — R3.

Thus we have reduced the problem to finding the path of reparametrizations that best
corresponds to the observed shape evolution.

One way to tackle this problem is to define an energy functional on the space of
embeddings that incorporates the available information on realistic shape evolutions.
In order to be independent of the initial parametrization of the path of surfaces we
require that the energy functional is invariant under the action of the diffeomorphism
group, i.e., E(f(t,¢o(z)) = E(f(t,z)), for all ¢ € Diff(M). In this case, the energy
functional on the space of parametrized surfaces induces an energy functional on the
shape space of unparametrized surfaces. Such a functional can be defined using a
Riemannian metric, a Finsler type metric, or by some even more general Lagrangian,
see e.g. [9] [TT], 37, 22], B3], 19, §].

For the sake of simplicity, we will focus on the Riemannian case only, i.e.,

T
B(f) = / Gy (fon fo)it,

where G is some reparametrization invariant metric on the manifold of all embeddings.
For historical reasons going back to Euler [I5], these metrics are often represented
via the corresponding inertia operator L:

G(fi fr) = A ALy i) vol(g).

The simplest such metric is the reparametrization invariant L?-metric — or H°—metric.
This metric is induced by the operator L = Id:

G?c(ft7ft) = /M<ft7ft>V01(9)~

In order to guarantee that the bilinear form G really induces a Riemannian metric, we
require L to be an elliptic pseudo-differential operator, that is symmetric and positive
with respect to the L?-metric. In addition we assume that L is invariant under the
action of the reparametrization group Diff (M). The invariance of L implies that the
induced metric G* is invariant under the action of Diff(M) as required. Using the
operator L, one can include physical or biological model-parameters in the definition
of the metric.

Now we want to find the optimal reparametrization of the initial path f with respect
to this energy functional. Therefore we have to solve the optimization problem:

Y(t,z) = argmin E(f(t, ¢(t,2)).
peC=([0,T),Diff(M))
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Further expanding the energy functional using the invariance of the Riemannian metric
yields:

T
E&ﬂawaD:iA Gy (forf) + Go(fo TH(pro ™))

+Gr(Tf(proe™ "), Tf(piop™t))dt.

Remark 16. As an example we want to consider this functional for the L2-metric.
Therefore we decompose f; for each time point ¢ into a part that is normal to the
surface f and a part that is tangential:

fe=TFf + fi-

Since these parts are orthogonal to each other — w.r.t. the L?-metric — the energy
functional reads as

E(f(t,o(t,x)) = /M<ftl) fiyvol(g) + /M g(f + oo™ fT + oo ) vol(g)
This functional is minimal for

prop t=—f.

This however corresponds to a reparametrization ¢ such that f = f o ¢ consists only
of a deformation in normal direction. u

Remark 17. For a more general metric G this will not hold anymore, since normal
and tangential vector fields might not be orthogonal with respect to the GT-metric.
Instead one can show that for the optimal path f we will have that Lf; is normal,
cf. [9] ]

B. Proof of Theorem 14

In the following we give a sketch of the derivation of the formulas in Theorem
Lemma 18. The Christoffel symbols of the metric g have the form given in .

Proof. This is a straight forward computation using the definition of the Christoffel
symbols as

_ 1. B B
=39 (gmk,l + Imik — gkl,m)

2
and the fact that the metric g and its inverse have the forms
a®> 0 0 a2 0 0
g=10 g1 g2 and g'=10 g g2,
0 g1z g2 0 12 g%
respectively, and
gij = (0if, 0; f)rs. O
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Lemma 19. The symbols (Dzk have the form given in @D
Proof. The connection coeflicients @gk are defined as

wh, = (aloway + alapTy,) a g, .
Moreover, the coordinates af have the form

a”l ifi=0=0,
at=1<0 ifi=0and £#£0, ori#0and ¢ =0,
at if 4,0 # 0.

i

Using these facts and the form of the Christoffel symbols derived in (10]), the result
follows from a straight forward calculation. O

Lemma 20. The LQ-g(‘adient of the similarity term S in the energy functional £ can
be written for u = (0,w X;) as

grad S(u) = 2(0,1 + C%Iafnum)akfgikbin.
Proof. As shown in Theorem [[2] the gradient of S has the form
grad S(a) = 2(0,1 + g(VI1,u))(0,VI).
Denote now by @’ the coordinates of u with respect to d;, that is, u = @ 9;. Then
g(V9I1,7) = (D 1) = (91)i’.

Moreover we have
~¢

it =al um.
Moreover, the coordinate expression of VII is (0y1)g*9;. Therefore we obtain
grad S(a) = 2(0,1 + O¢lal,u™) 0, Ig™0;.

Since 9; = biX 7, we obtained the claimed representation. O

Lemma 21. In the local coordinate frame Xy = é@t,f(l,f(g the Bochner Laplacian
on the Riemannian manifold (M, g) of a vector field @ satisfying Neumann boundary
conditions

is given by
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Proof. To calculate the expression of the Laplacian we have to compute the formula
for the L?-adjoint of the covariant derivative. Taking two vector fields @, ¥ we have

//M uvvol )dt = //M @, Vo) vol(g) dt
;/0 /Mg(vX i,V £,9) vol(g) dt.

Using (Vx,g) = 0 we obtain the following expression for the first summand (i = 0):
e - -
s / 9(Va,, Va,0) vol(g) dr
M
= / / 9 (§(Va,u,v)) vol(g) dt 7/ / —3(Va, (Va,u),v) vol(g) dt

- E at (/ 3(Va,,) vol(g ) dt—/ / —G(Va,u,7)d; vol(g) dt
/ / Vat 2,1, v) vol(g) dt .

Using the variational formula [I0] Section 4.6]

d; vol(g) = Tr(g~sg) vol(g)

/ / (Vo, 1, Va,v) vol(g) dt
== (/ 9(Va,u,v)vol(g )) ’:

//zvig Vo, i, ) Tr(g~8,g) vol(g) dt

f/ / gg(vghatﬂ,ﬁ)vol(g)dt.
0o Jm

Note that for Neumann boundary conditions the first term in the above expression
vanishes.
Since M has no boundary, the other summands in the formula for A® are similar

yields
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but simpler:

2 T
= Z/ / §(V%, x,1,v) vol(g) dt .
=170 JM

Combining these equations we obtain the desired formula for AZ. O

Proof (of Theorem . We have already derived the representation of the Christoffel
symbols and connection coefficients.

Next, we will derive an explicit representation of the Bochner Laplacian in coordi-
nates. To that end, we treat the two terms in separately. For the second term we
note that

Vi, = (@5 Omt? +u™@,,)X;
and thus we obtain

1 — C - 1 % m—7J
~5 Tr(g latg)VXou =59 8, ginu W}

Moreover, we obtain from that
gikatgik = f‘20~
Hence, the first term becomes

Tl 09) ¢ o L g i me
T Vg, = 5 T O + 0" @,) X (12)

For the second term, we compute
Vs, (Vx,0) = Vi, (@000 + 'l ) X,
— (a;”@m (@op’ +u@),) + (alou™ + ukwgg)wjm)X ;

3
= am™o. ~J —m —J k amo _ga j (13)
= ((@]" Oy, + 0w, Ju” + @ Oma; Opu
+ Qd;nwgka7rzuk + Cﬂnéfagmuj)Xj.

Combining Lemma equations and , and the fact that the gradient of
|\a||37g is simply 2u’ X;, we arrive, after dividing everything by two, at ; equations
are simply the Neumann boundary conditions in coordinate form. (I
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