
Lawrence Berkeley National Laboratory
LBL Publications

Title
High-Order Quadrature Methods for Implicitly Defined Surfaces and Volumes in
Hyperrectangles

Permalink
https://escholarship.org/uc/item/2fj3v12g

Journal
SIAM Journal on Scientific Computing, 37(2)

ISSN
1064-8275

Author
Saye, RI

Publication Date
2015

DOI
10.1137/140966290

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2fj3v12g
https://escholarship.org
http://www.cdlib.org/

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. SCI. COMPUT. c© 2015 Society for Industrial and Applied Mathematics
Vol. 37, No. 2, pp. A993–A1019

HIGH-ORDER QUADRATURE METHODS FOR IMPLICITLY
DEFINED SURFACES AND VOLUMES IN HYPERRECTANGLES∗

R. I. SAYE†

Abstract. A high-order accurate numerical quadrature algorithm is presented for the evaluation
of integrals over curved surfaces and volumes which are defined implicitly via a fixed isosurface of a
given function restricted to a given hyperrectangle. By converting the implicitly defined geometry into
the graph of an implicitly defined height function, the approach leads to a recursive algorithm on the
number of spatial dimensions which requires only one-dimensional root finding and one-dimensional
Gaussian quadrature. The computed quadrature scheme yields strictly positive quadrature weights
and inherits the high-order accuracy of Gaussian quadrature: a range of different convergence tests
demonstrate orders of accuracy up to 20th order. Also presented is an application of the quadrature
algorithm to a high-order embedded boundary discontinuous Galerkin method for solving partial
differential equations on curved domains.

Key words. quadrature, integration, implicit surfaces, level set function, level set methods,
high order

AMS subject classifications. 65D30, 65N30

DOI. 10.1137/140966290

1. Introduction. In this paper, we develop high-order accurate numerical
quadrature methods for the evaluation of integrals over curved surfaces and volumes
whose geometry is defined implicitly via a fixed isosurface/level set of a smooth func-
tion φ : Rd → R. In particular, assuming that the zero level set of φ defines the geome-
try, let Γ = {x : φ(x) = 0} denote the surface (“interface”) and let Ω = {x : φ(x) < 0}
be the region on the negative side of the surface. We consider surface integrals and
volume integrals of the form

(1.1)

∫
Ω∩U

f dx and

∫
Γ∩U

g dS,

where U ⊂ R
d is a given hyperrectangle (e.g., a rectangle in two dimensions, or rec-

tangular box in three dimensions), with sufficiently smooth but otherwise arbitrary
integrands f and g. Integrals like these arise in a variety of applications involving
implicitly defined geometry, such as in level set methods [19, 25, 18] for propagating
interfaces in computational physics, embedded boundary methods for solving partial
differential equations on curved domains [13], and in the treatment of jump conditions
and singular source terms [3, 28, 26, 12, 6]. As an example, the weak formulation of
a finite volume or finite element method may require integration over curved parts of
a mesh element, thus requiring integrals of the form (1.1) where U is an individual

∗Submitted to the journal’s Methods and Algorithms for Scientific Computing section April 23,
2014; accepted for publication (in revised form) January 14, 2015; published electronically April
23, 2015. This research was supported by a Luis W. Alvarez Postdoctoral Fellowship at Lawrence
Berkeley National Laboratory, by the Laboratory Directed Research and Development Program of
LBNL, and by the Applied Mathematics Program of the U.S. DOE Office of Advanced Scientific
Computing Research under contract DE-AC02-05CH11231. Some computations used the resources
of the National Energy Research Scientific Computing Center (NERSC), which is supported by the
Office of Science of the U.S. DOE under contract DE-AC02-05CH11231.

http://www.siam.org/journals/sisc/37-2/96629.html
†Applied Mathematics Department, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

(rsaye@lbl.gov).

A993

D
ow

nl
oa

de
d

08
/0

5/
17

 to
 1

28
.3

.3
.2

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://www.siam.org/journals/sisc/37-2/96629.html
mailto:rsaye@lbl.gov

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A994 R. I. SAYE

mesh element. It is often necessary to calculate these integrals with a high degree of
accuracy in order to ensure consistency in the weak formulation (i.e., reduce associ-
ated “variational crimes”). Since the corresponding integrands are often high-order
polynomials, this in turn requires a high-order quadrature scheme to calculate the
integrals in (1.1) on individual mesh elements. In this paper, we restrict our attention
to the case that U is a hyperrectangle; extension of the presented approach to other
cases, e.g., triangular or tetrahedral elements, is briefly discussed.

For a sufficiently smooth but otherwise arbitrary level set function φ, it is difficult
to directly construct accurate quadrature schemes for the integrals in (1.1). It follows
that a quadrature scheme must be computed; i.e., a set of quadrature nodes and
weights needs to be found. The geometry of Ω ∩ U and Γ ∩ U will necessarily be
approximated in the process. The goal is to find an efficient quadrature scheme with
an acceptable number of quadrature nodes which yields a high-order approximation
to the integrals in (1.1).

The quadrature algorithm developed in this work has the following features:
• The output is a quadrature scheme of the form∫

Ω∩U

f dx ≈
∑
i

wif(xi) and

∫
Γ∩U

g dS ≈
∑
j

w̃jg(x̃j),

where the weights wi and w̃j are strictly positive, with the quadrature nodes
strictly inside their respective domains: xi ∈ Ω ∩ U and x̃j ∈ Γ ∩ U . Thus,
there is no need to define or extend f or g throughout all of U .

• The algorithm is based on Gaussian quadrature and inherits its high-order
convergence rates. In particular, in d dimensions, based on a Gaussian
quadrature scheme of order q, the total number of quadrature nodes is O(qd)
in the case of the volume integral and O(qd−1) in the case of the surface inte-
gral. For sufficiently smooth problems, the order of accuracy is approximately
2q.

• Continuity of the level set function between different grid cells/mesh elements
U is not assumed; it is only required that φ be smoothly defined in U itself.
The method can therefore be used, for example, in a discontinuous Galerkin
setting in which φ is evolved using level set methods discretized by discontin-
uous Galerkin methods.

• The overall approach is dimension independent; in particular, the same for-
mulation can be used in both two- and three-dimensional applications.

The outline of the paper is as follows. In section 2, common strategies for eval-
uating integrals on implicitly defined geometry are briefly reviewed for comparison.
Section 3 presents the high-order quadrature algorithm developed in this work, fol-
lowed by a series of convergence tests in section 4 which examine the accuracy and
behavior of the algorithm in different scenarios. Lastly, section 5 presents an appli-
cation of the method to an embedded boundary discontinuous Galerkin method for
solving partial differential equations on curved geometry before concluding with a
short discussion in section 6.

2. General approaches and related work. General strategies for computing
integrals on implicitly defined curved surfaces or volumes typically involve one of the
following techniques: approximating the geometry of the interface by geometrically
reconstructing it, using discrete Dirac delta or Heaviside functions, or appealing to the
divergence theorem to reduce the dimension of the problem by replacing the integral
with a boundary integral.

D
ow

nl
oa

de
d

08
/0

5/
17

 to
 1

28
.3

.3
.2

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

QUADRATURE METHODS FOR IMPLICITLY DEFINED DOMAINS A995

Methods which explicitly reconstruct the interface typically use a form of piece-
wise linear interpolation to find a faceted mesh representation of the surface, for
example, through marching cubes [14] or marching tetrahedra [9, 20, 4] algorithms.
Standard quadrature schemes are then applied to the surface and volume elements
(e.g., triangles or tetrahedra) and result in a second-order accurate approximation
of the surface and volume integrals; see, e.g., [15, 11, 31]. For increased accuracy,
subdivision techniques are often used to locally refine the mesh geometry. However,
the number of subdivisions, and thus ultimately the accuracy, is often limited as
otherwise this technique can become too computationally expensive. This can be
avoided by using higher-order interface reconstruction schemes, which typically in-
volve transforming a quadrature scheme defined on reference shape (e.g., a triangle)
into one appropriate for a curved shape by means of a smooth mapping; see, e.g.,
[5], which demonstrates a third-order accurate method. However, the construction of
well-defined mappings with smooth Jacobians suitable for high-order quadrature can
be intricate and difficult, due to their sensitive dependence on the topology of the
interface inside an element.

An approach which does not require explicit reconstruction of the interface is to
use discrete delta functions or discrete Heaviside functions. For a level set function
φ defined on a uniform Cartesian grid, this method replaces the surface integral and
the volume integral by a weighted summation of the integrand over all grid points xi
of the Cartesian grid:

∫
Γ

f =

∫
V

fδ(φ)|∇φ| ≈ hd
∑
i

f(xi)δh(φ(xi))|∇hφ(xi)|

and

∫
Ω

f =

∫
V

fH(−φ) ≈ hd
∑
i

f(xi)Hh(−φ(xi)).

Here, V is a rectangular domain enclosing all of Ω, while δh and Hh are discrete
versions of the Dirac delta and Heaviside functions which are smoothed out by an
amount depending on the grid cell size h. Tornberg and Engquist [29] showed that a
common choice for the regularized delta function may lead to a nonconvergent scheme
with O(1) errors as h → 0. Improved discretizations take into account gradient in-
formation of the level set function to locally modify the amount of smoothing and
lead to first- or second-order accurate schemes [8, 27, 30, 35, 16]. Higher-order dis-
cretizations are possible, as demonstrated by Wen [32, 33, 34], where fourth-order
accurate discrete delta functions are computed. However, all of these schemes, both
low-order and high-order, have a strong reliance on the cancellation of errors in the
summation over regularly spaced grid points. It follows that they have limited use
on highly unstructured meshes, for piecewise discontinuous level set functions, or for
surfaces which are not closed.

Another possibility is to make use of the divergence theorem to rewrite the integral
as a boundary integral, as follows. Let U be a mesh element (such as a single cell
of a Cartesian grid or a tetrahedron in a three-dimensional mesh) and consider the
volume integral

∫
Ω∩U

f , where f is known. Suppose we can construct a vector-valued

function u : Rd → R
d whose divergence is f , e.g., in three dimensions, one possibility

is to define u(x, y, z) =
(∫ x

0
f(s, y, z) ds, 0, 0

)
, computed via analytical or numerical

D
ow

nl
oa

de
d

08
/0

5/
17

 to
 1

28
.3

.3
.2

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A996 R. I. SAYE

integration. Then

(2.1)

∫
Ω∩U

f =

∫
Ω∩U

∇ · u =

∫
∂(Ω∩U)

u · n =

∫
Γ∩U

u · n+

∫
Ω∩∂U

u · n,

where n is the unit outward pointing normal vector on the boundary of Ω ∩ U . Note
that the last integral on the right is on the boundary of the mesh element U , while
the second last integral is of the form of an implicitly defined surface integral. Now
consider the surface integral alone, i.e.,

∫
Γ∩U g, where g is known. In this case, sup-

pose that we can find or construct a different vector-valued function ũ satisfying two
conditions: ∇·ũ = 0 in U and ũ·n = g on the surface Γ. Then by a similar application
of the divergence theorem,

(2.2)

∫
Γ∩U

g = −
∫
Ω∩∂U

ũ · n.

Thus, both the volume integral in (2.1) and the surface integral in (2.2) can be con-
verted into an integral over that part of the boundary of U which is inside Ω, provided
the proxy vector-valued fields can be found. The resulting integrals are themselves
integrals over implicitly defined domains, and so the procedure can be repeated in
one fewer dimensions, leading to a recursive scheme on the number of spatial dimen-
sions. Müller, Kummer, and Oberlack [17] used this technique to construct high-order
quadrature schemes for quadrilateral, triangular, and hexahedral elements. In that
work, it was assumed that the surface integral integrand, g, could be smoothly ex-
tended off the surface Γ and that the normal vector field induced by φ, i.e., ∇φ/|∇φ|,
was smooth throughout U ; with these assumptions, a moment-fitting method was
used to choose the best representative for ũ coming from a finite-dimensional space of
divergence-free vector-valued functions via a least-squares problem. In particular, for
p quadrature nodes per dimension (i.e., pd in total for each U), approximate conver-
gence rates of order p+1 were demonstrated [17]. We note, however, that techniques
which use integration by parts may not directly work if the boundary term is empty,
i.e., Ω∩∂U = ∅. If it is empty, then (2.2) necessarily requires that

∫
Γ∩U g = 0, which

is not true for arbitrary g. This inconsistency arises in assuming that a divergence-free
vector-valued function with the required property does indeed exist. As we later show
in Figure 2, situations for which Ω ∩ ∂U is empty can arise even for highly resolved
surfaces. Special care must be taken in such circumstances (such as using subdivision
strategies), in order to ensure that the geometry of Γ has been accurately captured.

In comparison, the high-order method presented in this paper produces a quadra-
ture scheme for each individual mesh element U which only requires the integrands
to be evaluated on Ω ∩ U (for volume integrals) or Γ ∩ U (for surface integrals). As
a result, the scheme does not rely on cancellation of errors when summing over the
entire grid, nor does it rely on extension functions of the integrand. In addition, the
quadrature weights are strictly positive—this can be advantageous, for example, in the
context of finite element methods since then the associated mass matrices computed
by the quadrature scheme will automatically be positive definite.

3. Quadrature on implicitly defined domains via dimension reduction.
Since the implicit representation of a surface or volume has little explicit dependence
on the number of spatial dimensions, a motivating goal in designing a quadrature
scheme for implicitly defined domains is for the algorithm to be applicable in any
number of spatial dimensions. In addition, we would like it to be high-order accurate,

D
ow

nl
oa

de
d

08
/0

5/
17

 to
 1

28
.3

.3
.2

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

QUADRATURE METHODS FOR IMPLICITLY DEFINED DOMAINS A997

Fig. 1. Depending on the sign of ∂xiφ, assumed constant throughout the hyperrectangle, the
region {φ < 0} is either (a) beneath or (b) above the graph of the height function xi = h(x̃)
characterizing the zero level set of φ. Here, x̃ ∈ R

d−1 and so the x̃-axis abstractly represents a
(d− 1)-dimensional space.

suggesting that methods like Gaussian quadrature be used if possible. An approach
adopted here that achieves these objectives is to convert the implicitly defined surface
Γ into the graph of an implicitly defined height function. Using such a characteri-
zation of the domain, the quadrature scheme can proceed in a natural way: by (i)
performing an integration in the axis corresponding to the height direction, together
with (ii) an integration in the tangential direction. Part (i) can be accomplished with
standard Gaussian quadrature schemes, while part (ii) can itself be described as an
integral over an implicitly defined region, in one fewer spatial dimensions, whose as-
sociated integrand evaluates part (i). This suggests using a recursive scheme in which
the number of spatial dimensions is reduced one at a time. By identifying and treating
separately the regions in which the resulting integrands are smooth, high-order ac-
curacy can be achieved throughout the dimension-reduction process. Meanwhile, the
geometry of the interface is inferred through the evaluation of the implicitly defined
height functions, which, in turn, can be performed via one-dimensional root finding.

To illustrate, suppose that φ : Rd → R is a sufficiently smooth level set func-
tion defining a volume Ω = {x : φ(x) < 0} and a smooth codimension-one sur-
face Γ = {x : φ(x) = 0}, and let U = (xL1 , x

U
1) × · · · × (xLd , x

U
d) ⊂ R

d be a given
hyperrectangle. Suppose further that we can find a coordinate direction, ei say,1

such that |∂xiφ| is bounded away from zero on U .2 Then the implicit function
theorem of multivariable calculus guarantees the existence of a “height function”
h = h(x1, . . . , xi−1, xi+1, . . . , xd) which represents the surface Γ ∩ U as a graph of h
such that

(3.1) φ
(
x1, . . . , xi−1, h(x1, . . . , xi−1, xi+1, . . . , xd), xi+1, . . . , xd

)
= 0.

For brevity, define x̃ = (x1, . . . , xi−1, xi+1, . . . , xd) and denote by x̃ + yei the point
(x1, . . . , xi−1, y, xi+1, . . . , xd). Based on the sign of ∂xiφ, which by assumption does
not change throughout U , the region Ω is either above or below the graph xi = h(x̃);
see Figure 1. The location of the interface can also be determined in terms of the sign
of φ when it is restricted to the upper and lower faces. Define ψL, ψU : Rd−1 → R, by

ψL(x̃) = φ(x̃+ xLi ei), ψU (x̃) = φ(x̃ + xUi ei),

to be the restriction of φ to the lower and upper faces. Then with the aim of evalu-
ating the volume integral

∫
Ω∩U f and surface integral

∫
Γ∩U g, we have the following

scenarios:

1ei denotes the standard basis vector in the direction of the ith coordinate.
2If Γ ∩ U �= ∅ and U is sufficiently small, finding such a direction is always possible for a well-

defined level set function, i.e., when |∇φ| is bounded away from zero on Γ.

D
ow

nl
oa

de
d

08
/0

5/
17

 to
 1

28
.3

.3
.2

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A998 R. I. SAYE

• Volume integral. If ∂xiφ > 0 in U , then Ω is beneath the graph of h (see
Figure 1(a)). The volume integral

∫
Ω∩U f can then be rewritten as

(3.2)

∫
Ω∩U

f dx =

∫
V1∩V2

f̃(x̃) dx̃,

where the implicitly defined domain in one fewer spatial dimensions is defined
by V1 ∩ V2, where

V1 = {x̃ : ψL(x̃) < 0}, V2 = {x̃ : ψU (x̃) < 0} ∪ {x̃ : ψU (x̃) > 0},

while the new integrand is defined by f̃(x̃) :=
∫
I(x̃) f(x̃+ yei) dy, where

I(x̃) := {y ∈ (xLi , x
U
i) : φ(x̃+ yei) < 0}.

We note two important aspects. First, the definition of V1 depends only on
ψL, while V2 depends only on ψU . Second, we have made a careful choice in
the definition of V2 to exclude the zero level set of ψU . This is because the
functional f̃ is not always a smooth function on the closure of V1 ∩ V2 due
to I(x̃) not being a smooth function of x̃: referring to Figure 1, we observe
that I(x̃) is constrained by the height function for x̃ ∈ {ψL < 0}∩ {ψU > 0},
while for x̃ ∈ {ψU < 0} it is constrained only by the hyperrectangle extent.
However, by excluding the zero level set of ψU from V2, it follows that f̃ is
smooth on each connected component of V1∩V2. In order to yield a high-order
accurate quadrature scheme, the strategy therefore is to treat each component
separately and apply the quadrature algorithm to each connected component
of V1 ∩ V2.

If, on the other hand, ∂xiφ < 0 in U , then Ω is above the graph of h (see
Figure 1(b)). A similar result also holds in this case:

(3.3)

∫
Ω∩U

f dx =

∫
V1∩V2

f̃(x̃) dx̃,

where f̃ is defined as earlier, but this time the implicitly defined domain in
one fewer dimensions is defined via

V1 = {x̃ : ψL(x̃) < 0} ∪ {x̃ : ψL(x̃) > 0}, V2 = {x̃ : ψU (x̃) < 0}.

Here the zero level set of ψ1 has been excluded from V1 so that we may assume
that f̃ is smooth on each connected component of V1 ∩ V2.

• Surface integral. A similar dimension-reduction method applies to the case
of the surface integral

∫
Γ∩U g. However, one must correctly account for the

curvature of the surface. The surface area element on the graph of h is√
1 + |∇x̃h|2 dx̃; by utilizing (3.1), we can avoid calculating the derivatives

of h by noting that
√
1 + |∇x̃h|2 = |∇φ|/|∂xiφ| evaluated on Γ. It follows

that

(3.4)

∫
Γ∩U

g dS =

∫
V1∩V2

g
|∇φ|
|∂xiφ|

∣∣∣∣
x̃+h(x̃)ei

dx̃,

D
ow

nl
oa

de
d

08
/0

5/
17

 to
 1

28
.3

.3
.2

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

QUADRATURE METHODS FOR IMPLICITLY DEFINED DOMAINS A999

where V1 and V2 depend on the sign of ∂xiφ as follows:

V1 =

{
{x̃ : ψL(x̃) < 0} if ∂xiφ > 0 in U ,
{x̃ : ψL(x̃) > 0} if ∂xiφ < 0 in U ,

V2 =

{
{x̃ : ψU (x̃) > 0} if ∂xiφ > 0 in U ,
{x̃ : ψU (x̃) < 0} if ∂xiφ < 0 in U .

Observe that in all of the above cases, by means of an implicitly defined height func-
tion, the integrals over Ω ∩ U or Γ ∩ U can be converted into a volumetric integral in
one fewer dimensions, as in (3.2), (3.3), and (3.4). The domain of this new integral
is determined implicitly by conditions on the sign of φ when restricted to the lower
and upper faces of U . Meanwhile, evaluation of I(x̃) and the height function can be
accomplished by means of one-dimensional root finding on φ, as discussed shortly.

Consider applying this procedure recursively. Each recursive call leads to a new
integration problem with a new implicitly defined domain and integrand, and each
of these will require finding a suitable “height function direction” to work with. The
new implicitly defined domains (similar to V1 and V2 above), each of which is confined
to lower-dimensional versions of U , are determined by sign conditions of the level set
function restricted to a particular lower and upper hyperplane (similar to ψL and
ψU above). We construct these dimension-reduced problems by manipulating a set
of multiple level set functions, each of which will ultimately be the restriction of the
original level set function φ to a particular face, edge, etc., of U . For example, at the
top level of recursion, the set consists of just φ; after one level, the new set consists
of ψL and ψU ; after two levels, each of these may again split into two. In general, as
the number of spatial dimensions is reduced, the recursive approach may lead to an
increasing number of functions and associated sign conditions. However, as discussed
shortly, this list can often be efficiently “pruned” so that typically just one or two
functions persist.

We now make these ideas more concrete by fully developing the numerical quadra-
ture algorithm, one step at a time. An outline for the remainder of this section is as
follows:

• In order to find a height function direction and deem it suitable, i.e., to ensure
monotonicity, it is necessary to determine whether particular derivatives of φ
are uniform in sign. This is special case of the more general problem of placing
bounds on the attainable values of a given function in a given hyperrectangle,
and section 3.1 discusses how this can be achieved.

• Section 3.2 formulates the general, dimension-independent, recursive algo-
rithm for implicitly defined domains defined by a set of multiple level set
functions for both volume and surface integrals. The algorithm proceeds by
first “pruning” the set as a preprocessing step, which may allow the use of a
tensor product Gaussian quadrature scheme in the case that the domain of
integration is the entire hyperrectangle. It is then discussed how a suitable
height function direction can be chosen, and if this is not possible, the need for
a subdivision process. The recursive call is then established by constructing
a new set of functions and sign conditions together with a new integrand.

• The one-dimensional base case is treated in section 3.3.
• Lastly, section 3.4 provides a concise description of the algorithms in pseudo-
code, together with a brief discussion on related implementation choices.

D
ow

nl
oa

de
d

08
/0

5/
17

 to
 1

28
.3

.3
.2

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1000 R. I. SAYE

3.1. Bounds evaluation. A key mechanism in the operation of the quadrature
algorithm is the ability to place bounds on the range of attainable values of a given
function in a given hyperrectangle U . Specifically, given a smooth function3 ψ : U →
R, we seek to calculate lower and upper bounds c and C such that

c ≤ inf
x∈U

ψ(x) ≤ sup
x∈U

ψ(x) ≤ C.

As will be seen later, the general desire is for these bounds to be as tight as possible,
increasing in accuracy as the size of U shrinks. Depending on the particular form of
ψ, various possibilities exist for calculating such bounds. For example, one possibility
is to expand ψ about some fixed point in U via a Taylor series and then bound each
of the resulting terms. In the appendix, we outline an approach which was found
to be very convenient in this work; the technique is similar to automatic differenti-
ation and interval arithmetic and can be combined with template programming to
automatically compute a first-order Taylor series with bounded remainder of typical
functions implemented by a computer program. In particular, the method allows
one to automatically evaluate bounds using the same piece of code that evaluates
x
→ ψ(x).

3.2. General dimension-reduction approach. To describe the general algo-
rithm applicable to any spatial dimension d, we mainly consider the case of the volume
integral; the surface integral requires minor adjustments that are mostly deferred to
section 3.4. We also assume in this section that d > 1.

In the most general setting, suppose we are given a hyperrectangle4 U = (xL1 , x
U
1)×

· · · × (xLd , x
U
d) ⊂ R

d and a collection of n functions5 ψi : U → R, i = 1, . . . , n, with
an associated set of conditions si on the signs of ψi which determine a domain of
integration V as follows: for each of these functions, define

(3.5) Vi =

⎧⎪⎨
⎪⎩
{x ∈ U : ψi(x) > 0} if si = +1,

{x ∈ U : ψi(x) < 0} if si = −1,

{x ∈ U : ψi(x) > 0} ∪ {x ∈ U : ψi(x) < 0} if si = 0

and define the overall domain of integration as V =
⋂n

i=1 Vi. The goal is to find
a quadrature scheme for

∫
V
f . For example, the original volume integral

∫
Ω∩U f

would be evaluated with the input n = 1, ψ1 ≡ φ, and s1 = −1. In other cases,
the ψi functions will be restrictions of φ to particular faces/edges/etc. of the original
hyperrectangle U . To compute

∫
V
f , we use recursion on the dimension d by following

the idea of implicitly finding height functions, one coordinate direction at a time.
The general approach consists of the following steps: (i) pruning the list of functions,
(ii) applying a tensor product integral if possible, (iii) determining a height function
coordinate direction, and (iv) formulating the recursive call, as follows.

3.2.1. Pruning. In the first step, we attempt to simplify the definition of V by
removing all those functions ψi in the list that we can prove are uniformly positive or

3Typically ψ will be the original level set function φ or one of its derivatives, restricted to the
original hyperrectangle U or to one of its faces, edges, etc. Moreover, in practice, ψ will usually be a
polynomial or a smooth composition of analytic functions like sin, exp, etc.

4In this section, the hyperrectangle U will either be the original hyperrectangle U or represent
lower-dimensional restrictions of U .

5In practice, it is typically the case that n is one or two—possibly a few more when the geometry
of the problem is complex.

D
ow

nl
oa

de
d

08
/0

5/
17

 to
 1

28
.3

.3
.2

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

QUADRATURE METHODS FOR IMPLICITLY DEFINED DOMAINS A1001

negative on U . This preprocessing step, which “prunes” the list of functions, improves
the overall efficiency of the recursive algorithm without affecting its accuracy. To
accomplish this, for each i we use bounds evaluation as discussed in section 3.1 to
calculate lower and upper bounds c and C such that

c ≤ inf
x∈U

ψi(x) ≤ sup
x∈U

ψi(x) ≤ C.

If c > 0 and si ≥ 0, then we can remove ψi from the list since it is uniformly positive
on U and so Vi = U . Similarly, if C < 0 and si ≤ 0, then ψi is uniformly negative
and can also be removed from the list. On the other hand, if si = +1 and C < 0, or
if si = −1 and c > 0, then Vi = ∅. In this latter case, V = ∅, i.e., the domain of
integration is empty, in which case the quadrature scheme to evaluate

∫
V f is empty

and the algorithm immediately terminates.

3.2.2. Tensor product integral. It may be the case that the previous pruning
step leaves an empty list of functions, i.e., n = 0. This will occur when the bounds
evaluation determines that the domain of integration is the entire hyperrectangle U .
If this is the case, a simple tensor product Gaussian quadrature scheme can be used:

∫
V

f dx =

∫
U

f dx ≈
q∑

i1=1

· · ·
q∑

id=1

wi1 · · ·widf(xi1 , . . . , xid),

where q is the order of the Gaussian quadrature method and wi and xi are the corre-
sponding quadrature weights and points suitably transformed to the hyperrectangle
U . After evaluating the quadrature rule, the algorithm returns the result and the
recursion terminates.

3.2.3. Determine a height function coordinate direction. If it could not
be determined via bounds evaluation that the domain of integration is empty or all
of U , we employ height functions as motivated by the introduction of section 3. This
consists of two steps: (i) proposing a height coordinate direction, and (ii) ensuring
that the direction is a suitable one.

(i) A simple method for choosing a height function direction can be used, which
is to use the component of ∇ψ1(xc) with largest absolute value where xc is
the center of U :

k = argmax
i=1,...,d

|∂xiψ1(xc)|.

(ii) The direction is deemed suitable if two conditions hold for all of the ψi func-
tions: (a) |∂xk

ψi| > 0 in U for all i, and (b) |∇ψi|/|∂xk
ψi| < C for all i for

some fixed parameter C. Condition (a) guarantees the existence of the height
function as well as monotonicity of ψi in the direction ek. Condition (b) con-
cerns the curved-surface Jacobian factor that explicitly arises in the surface
integral (3.4) and implicitly arises in the volume integrals (3.2) and (3.3) (as
derivatives of the integrands). Since Gaussian quadrature will be used to
evaluate these integrals, ideally this ratio (relating to how “steep” the height
function is) should be as smooth as possible throughout U . To measure the
degree of smoothness, in this work we have used a simple heuristic, which
is to require that the ratio is bounded above by a user-defined constant; in
particular we have used C ≈ 4. Other methods for measuring the degree of
smoothness of the Jacobian factor are also possible.

D
ow

nl
oa

de
d

08
/0

5/
17

 to
 1

28
.3

.3
.2

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1002 R. I. SAYE

Fig. 2. (left) A sphere embedded in three dimensions partially intersects a cube on one of its
faces. (middle) Restricted to the face, the original interface is circular. (right) The subdivision
process, which recursively divides rectangles into halves, eventually results in the shown subdivision.
Some pieces are empty and are either discarded by the pruning process (section 3.2.1) or treated
with a tensor product integral; on the other pieces there exists a suitable direction to form a height
function.

In practice, to determine whether conditions (a) and (b) hold, we evaluate
bounds on the range of attainable values of the derivatives of ψi in U . This can
be accomplished with the same techniques for evaluating a first-order Taylor
series with bounded remainder outlined in section 3.1 and the appendix where,
in this case, they are applied to the expression for evaluating the gradient of
ψi. Conditions (a) and (b) can then be checked by using these bounds, e.g.,
by evaluating max |∇ψi|/min |∂xk

ψi|.
In the vast majority of cases, the above procedure will successfully find a suitable
height function direction. Geometrically, this corresponds to the property that a
well-resolved surface Γ can be locally well approximated by a hyperplane. However,
this may not always be the case. An example is as follows: Consider a spherical
surface Γ (embedded in three dimensions) and a small three-dimensional cube U par-
tially intersecting Γ on one of its faces—see Figure 2 (left). The dimension-reduction
algorithm first chooses a height direction orthogonal to this face, thereby reducing
the volume integral into a two-dimensional integral on the face. However, the original
surface when restricted to this face is circular (Figure 2 (middle)). There is no coor-
dinate direction on this face for which the circular interface could be described as a
graph of a height function: neither ∂xφ nor ∂yφ have uniform sign across the entire
face. To resolve this situation, we use a simple subdivision strategy: if the above pro-
cedure did not successfully find a height direction, the hyperrectangle U is subdivided
into two halves and the quadrature algorithm is re-executed separately on each half,
summing up the results. Such a subdivision strategy essentially refines U until the
interface (restricted to the face) can be made to look locally flat, as required by the
implicit function theorem. In this example of a spherical interface intersecting with
the face of a cube, the result of the subdivision strategy is shown in Figure 2 (right).
In practice, the number of subdivisions required by this process is almost always very
few. Nevertheless, we limit the number of subdivisions so as to ensure the recursive
algorithm terminates, as discussed in section 3.4 and further scrutinized in our results
in section 4.3.

In summary, the above procedure chooses a height function direction and checks
to see if it is suitable. If indeed it is, the algorithm proceeds to the next step; otherwise
the hyperrectangle U is divided into two halves and a quadrature scheme is evaluated
on each half and the results summed.

3.2.4. Dimension reduction. Given a height function direction ek, the volume
integral

∫
V
f is then converted into a volume integral in one fewer dimensions. Recall

that each ψi describes an implicitly defined domain in U via a condition on its sign

D
ow

nl
oa

de
d

08
/0

5/
17

 to
 1

28
.3

.3
.2

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

QUADRATURE METHODS FOR IMPLICITLY DEFINED DOMAINS A1003

si, as in (3.5). The overall domain of integration is the intersection of all the Vi,
i.e., all given functions must satisfy their respective sign conditions. As motivated by
the introduction of section 3, since ψi is monotone in the direction ek, the domain
Vi can be equivalently characterized as the region above or below a height function
(locating the zero level set of ψi in U), together with conditions on the sign of ψi

when restricted to the lower and upper faces of U . To be more precise, define the new
hyperrectangle Ũ = (xL1 , x

U
1)×· · ·×(xLk−1, x

U
k−1)×(xLk+1, x

U
k+1)×· · ·×(xLd , x

U
d) ⊂ R

d−1

and ψL
i : Ũ → R and ψU

i : Ũ → R by

ψL
i (x) := ψ(x+ xLk ek), ψU

i (x) := ψ(x + xUk ek).

Here we have used the notation where, given a point x ∈ R
d−1, the expression x+yek

denotes the point in R
d given by (x1, . . . , xk−1, y, xk, . . . , xd−1). The sign condi-

tions on the lower and upper faces are encoded in the two functions sgnL(m, s, S) :=
sgn(m, s, S,−1) and sgnU (m, s, S) := sgn(m, s, S,+1), where

sgn(m, s, S, σ) =

{
σm if m = σs or S is true,

0 otherwise.

Here, m is the sign of ∂xk
ψi in U , s is the sign condition si corresponding to ψi, and S

is a boolean flag which indicates whether a surface integral or volume integral is being
performed. Using these two functions, the new domain of integration in one fewer
dimensions, inside the new hyperrectangle Ũ , is specified by simultaneously requiring
that ψL

i satisfy the sign condition sgnL(sign(∂xk
ψi), si, S) on Ũ and ψU

i satisfy the
sign condition sgnU (sign(∂xk

ψi), si, S) on Ũ . We denote this domain of integration as
Ṽi and define the overall new domain as Ṽ =

⋂
i Ṽi.

The dimension-reduction algorithm is completed with the specification of the
new integrand functional. In the case of the volume integral, the integrand is a one-
dimensional integral along the height function coordinate direction, similar to (3.2)
and (3.3), except that the domain of the one-dimensional integral should consist of
that part of (xLk , x

U
k) for which the sign conditions on all ψi functions hold. To be

precise, define

Ii(x) :=

{
{y ∈ (xLk , x

U
k) : siψi(x+ yek) > 0} if si = ±1,

{y ∈ (xLk , x
U
k) : ψi(x+ yek) = 0} if si = 0,

and I(x) :=
⋂n

i=1 Ii(x). Then by construction it follows that

(3.6)

∫
V

f =

∫
Ṽ

(∫
I(x)

f(x+ yek) dy

)
dx.

A new integrand functional which approximates the value of x
→ ∫
I(x)

f(x+yek) dy is

defined by using Gaussian quadrature on each of the connected components of I. For
a fixed x, this involves calculating the roots of ψi along the coordinate direction ek.
Define the following operator that returns all roots of a continuous function λ : R → R

in the interval (x1, x2):

roots(λ, x1, x2) := {x ∈ R : x1 < x < x2 and λ(x) = 0}.
This operator is used to find which components of the interval (xLk , x

U
k) simultaneously

satisfy all the sign conditions on ψi, as follows. Let

R = {xLk , xUk } ∪
n⋃

i=1

roots(y
→ ψi(x+ yek), x
L
k , x

U
k)

D
ow

nl
oa

de
d

08
/0

5/
17

 to
 1

28
.3

.3
.2

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1004 R. I. SAYE

and sort R into ascending order such that R =
⋃�

i=1{ri} with r1 ≤ · · · ≤ r�. We
keep those subintervals (rj , rj+1) for which siψi ≥ 0 for all i and apply Gaussian
quadrature to each of these. For a given x, the end result is an approximation to
the value of the functional x
→ ∫

I(x) f(x + yek) dy which is used by the quadrature

scheme (via the recursive algorithm) on Ṽ .
In the case of the surface integral, there will be only one ψi function, and the

integrand in (3.4) is simply a point evaluation of f on the original surface Γ, scaled
by a Jacobian factor relating to the curvature of the surface. In this case, we also
use root finding to determine the value of the height function. The details are left to
section 3.4.

In summary, the above procedure constructs two new functions, ψL
i and ψU

i , for
each i, with associated sign conditions sLi and sUi , which define a new domain Ṽ on
a hyperrectangle Ũ corresponding to the original hyperrectangle U with dimension
k removed. The original integral is then rewritten as an integral over Ṽ with a new
integrand; this integrand involves one-dimensional root finding on the ψi functions
in the coordinate direction ek. Since Ṽ is defined by a new set of ψi functions with
associated sign conditions on Ũ , the same algorithm can be used to evaluate the new
integral over Ṽ . Thus we use recursion on the dimension d, eventually leading to the
base case with d = 1. The base case executes a Gaussian quadrature scheme in one
dimension, and this in turn evaluates the above constructed integrand functional at
discrete points. This process travels back up through the tree of recursion, evaluating
integrands by adding one more spatial dimension at a time, and eventually terminates
by evaluating the original user-supplied integrand.

3.3. One-dimensional base case. In d = 1 dimensions, we are given n func-
tions ψi : R → R, i = 1, . . . , n, with sign conditions si that determine a domain
of integration V =

⋂n
i=1 Vi, where Vi is defined by (3.5) and U = (xL1 , x

U
1) is a

one-dimensional interval. The goal is to find
∫
V
f dx. We accomplish this by using

Gaussian quadrature on each connected component of V . To find the connected com-
ponents, we perform one-dimensional root finding on each of the functions ψi to find
all their roots in the interval U , thereby partitioning the interval into subintervals.
Gaussian quadrature is then applied to each individual subinterval that belongs to V .

3.4. Implementation. In this section we summarize the quadrature algorithm
as pseudocode and discuss some implementation choices. We begin with the specifica-
tion of the integrand functionals. Algorithm 1 shows the case for the volume integral,
in which the integrand functional is a one-dimensional integral over a given height
function coordinate direction; Algorithm 2 shows the case for the surface integral, in
which the integrand functional is evaluation of the original integrand f on the surface
Γ, scaled by the curved-surface Jacobian factor. A few remarks are in order:

• Recall that roots(λ, x1, x2) returns all the roots of a one-dimensional con-
tinuous function λ : R → R in the interval (x1, x2). Clearly, this operator
must be approximated in a numerical setting, with a variety of possible im-
plementations. For example, if the original level set function φ : Rd → R is a
polynomial of degree two, then the restriction of φ to any coordinate axis is
a quadratic polynomial for which one could use the numerically stable vari-
ant of the quadratic formula. Throughout this work, we have used a hybrid
of Newton’s method and the bisection method, similar to that described in
[21]. The method attempts to use Newton’s method and reverts to bisection
whenever Newton’s method fails to converge quickly enough. In order to use

D
ow

nl
oa

de
d

08
/0

5/
17

 to
 1

28
.3

.3
.2

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

QUADRATURE METHODS FOR IMPLICITLY DEFINED DOMAINS A1005

Algorithm 1. Integrand evaluation. Given ψi : Rd → R and si, i = 1, . . . , n, a
height direction k, an interval (x1, x2), a point x ∈ R

d−1, a function f : Rd → R, and
the order of Gaussian quadrature, q, evaluate F(x; f, {(ψi, si)}ni=1, (x1, x2), q).

1: Calculate the set of roots and union with the interval endpoints:

R = {x1, x2} ∪
n⋃

i=1

roots(y �→ ψi(x+ yek), x1, x2).

2: Sort R into ascending order such that R =
⋃�

i=1{ri} and r1 ≤ · · · ≤ r�.
3: Set I = 0.
4: for j = 1 to �− 1 do
5: Define L = rj+1 − rj and xc = x+ 1

2
(rj + rj+1)ek.

6: if siψi(xc) ≥ 0 for all i then
7: Update I := I + L

∑q
i=1 wq,if(x+ (rj + Lxq,i)ek).

8: return I .

Algorithm 2. Surface integrand evaluation. Given φ : Rd → R, a height direction
k, an interval (x1, x2), a point x ∈ R

d−1, and a function f : R
d → R, evaluate

Fsurf(x; f, φ, (x1, x2)).

1: Calculate the roots of φ in the interval: R = roots(y �→ φ(x+ yek), x1, x2).
2: assert(|R| ≤ 1).
3: if |R| = 1 then
4: Let R = {r}.
5: return f(x+ rek)|∇φ(x+ rek)|/|∂xkφ(x+ rek)|.
6: else
7: return 0.

such a hybrid, we need to know that the bracket being employed does in-
deed bracket a single root of λ. Fortunately, for all but the base case of the
dimension-reduction recursive algorithm, we require that each ψi function be
monotone in the height function coordinate direction, and so there is always
at most one root. In the base case with d = 1 (see section 3.3), we did not
require monotonicity of ψi : R → R. In this particular case, in our implemen-
tation we used the same bounding techniques used in pruning to divide, if
necessary, the interval (x1, x2) into subintervals for which the hybrid method
can be applied. In all of our tests cases, the hybridized Newton’s method
performed well and essentially always yielded rapid convergence to the roots.

• In Algorithm 1, {wq,i}qi=1 and {xq,i}qi=1 denote the weights and nodes of the
Gaussian quadrature scheme of order q corresponding to the unit interval
[0, 1]. For example, for q = 3,

w3,1 = 5
18 , x3,1 = 1

2

(
1−√3/5

)
,

w3,2 = 4
9 , x3,2 = 1

2 ,

w3,3 = 5
18 , x3,3 = 1

2

(
1 +

√
3/5
)
.

• In Algorithm 2, on line 2, it is asserted that there is at most one root of the
height function. This is because Fsurf is only ever evaluated with a function
(in fact, the original level set function φ) which is monotone in the direction
ek over the associated line segment.

D
ow

nl
oa

de
d

08
/0

5/
17

 to
 1

28
.3

.3
.2

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1006 R. I. SAYE

Algorithm 3. Evaluate I(f ; {(ψi, si)}ni=1, U, S, q). Given ψi : R
d → R and si,

i = 1, . . . , n, a hyperrectangle U = (xL1 , x
U
1)× · · · × (xLd , x

U
d), a function f : Rd → R,

a boolean flag S, and the order of Gaussian quadrature, q, approximate the surface
integral

∫
Γ∩U f (if S is true) or the volume integral

∫
V f (if S is false).

1: assert(S is false or else d > 1, n = 1, and ψ1 ≡ φ).
2: if d = 1 then return F(0; f, {(ψi, si)}ni=1, (x

L
1 , x

U
1), q).

3: Define xc ∈ R
d to be the center of U , i.e., xc,i =

1
2
(xL

i + xU
i).

4: for i = n downto 1 do
5: Evaluate bounds on the value of ψi on U such that supx∈U

∣∣ψi(x)− ψi(xc)
∣∣ ≤ δ.

6: if |ψi(xc)| ≥ δ then
7: if siψi(xc) ≥ 0 then
8: Remove ψi from the list and decrement n by one.
9: else

10: The domain of integration is empty; return 0.

11: if n = 0 then
12: Apply a tensor-product Gaussian quadrature scheme:

13: return I = |U |
q∑

i1,...,id=1

wq,i1 · · ·wq,idf

(d∑
j=1

(
xL
j + (xU

j − xL
j)xq,ij

)
ej

)
.

14: Set k = argmaxj |∂xjψ1(xc)| and initialize ψ̃ = ∅.
15: for i = 1 to n do
16: Evaluate g := ∇ψi(xc).
17: Determine bounds δ ∈ R

d such that supx∈U

∣∣∂xjψ(x)− gj
∣∣ ≤ δj for each j.

18: if |gk| > δk and
(∑d

j=1(gj + δj)
2
)
/(gk − δk)

2 < 20 then

19: Define ψL
i : Rd−1 → R and ψU

i : Rd−1 → R by

ψL
i (x) := ψ(x+ xL

k ek), ψU
i (x) := ψ(x+ xU

k ek).

20: Evaluate signs: sLi = sgnL(sign(gk), si, S), s
U
i = sgnU (sign(gk), si, S).

21: Add to the collection: ψ̃ := ψ̃ ∪ {(ψL
i , s

L
i), (ψ

U
i , s

U
i)}.

22: else
23: The height function direction ek is not suitable for ψi. If already subdivided too

many times, revert to a low-order method (see discussion). Otherwise split U
into two halves along its largest extent argmaxj(x

U
j −xL

j) such that U = U1 ∪U2

and return I(f ; {(ψi, si)}ni=1, U1, S, q) + I(f ; {(ψi, si)}ni=1, U2, S, q).

24: Define a new integrand f̃ : Rd−1 → R by

f̃(x) :=

{
F(x; f, {(ψi, si)}ni=1, (x

L
k , x

U
k), q) if S is false,

Fsurf(x; f, ψ1, (x
L
k , x

U
k)) if S is true.

25: return I(f̃ ; ψ̃, (xL
1 , x

U
1)× · · · × (xL

k−1, x
U
k−1)× (xL

k+1, x
U
k+1)× · · · × (xL

d , x
U
d), false, q

)
.

The main recursive algorithm using dimension reduction is presented in Algorithm 3.
Several remarks are in order:

• To find a quadrature scheme for the volume integral, the algorithm is ex-
ecuted by calling

∫
Ω∩U f ≈ I(f ; (φ,−1),U , false, q). To find a quadrature

scheme for the surface integral, the algorithm is executed by calling
∫
Γ∩U g ≈I(g; (φ, 0),U , true, q).

• In the case of the surface integral, the flag S is true only at the topmost
level—the surface integral is immediately converted to a volume integral on
one of the faces of U via a height function. Thus on line 1 of Algorithm 3, we

D
ow

nl
oa

de
d

08
/0

5/
17

 to
 1

28
.3

.3
.2

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

QUADRATURE METHODS FOR IMPLICITLY DEFINED DOMAINS A1007

make the assertion that either S is false, or else we have not yet performed
any dimension reduction.

• On line 18, the numerical value of 20 implements the C ≈ 4 parameter dis-
cussed in section 3.2.3 regarding bounding the Jacobian factor. It was de-
termined empirically to provide a good balance between high accuracy and
excessive subdivision.

• Line 23 is concerned with the subdivision algorithm in the case that a suitable
height function direction was not found by the algorithm. We discussed in
section 3.2.3 the necessity for subdivision, wherein the simple strategy of
dividing U into two equal halves was used. It follows that the subdivision
process may occur recursively. Although rare, it is possible for the process
to never terminate; an example is shown in section 4.3. In such cases, we
must terminate the recursion and revert to a low-order method. To do this,
Algorithm 3 can be slightly modified to keep track of the number of “levels”
or depth of recursion, and in the case that this exceeds a fixed number, 16
say, we apply the following scheme:

I(f ; {(ψi, si)}ni=1, U, S, q) =

{
|U |f(xc) if S is false and siψi(xc) ≥ 0 for all i,

0 otherwise.

In other words, in the case of the volume integral, if at the center xc of U
all the sign conditions of every ψi function are satisfied, then the algorithm
returns the value of the integrand at the center scaled by the volume of
U , and zero in all other cases. Clearly, this is not necessarily an accurate
approximation to

∫
Ω∩U

f or
∫
Γ∩U

f . However, if this low-order method is
executed, then it should be the case that U is already “small.” Section 4.3
further discusses and analyzes the error incurred when such a situation arises.

• Although the presentation of Algorithm 3 is in a somewhat abstract form,
particularly with regard to the construction and use of the ψi functions, in
an actual implementation one can make use of the fact that each ψi function
is simply the original level set function φ with one or more of the coordinate
values “frozen” at xLk or xUk . Thus, instead of having to define and manipulate
new ψi functions, one may instead record which coordinate values have been
frozen and make use of this when calculating bounds on function values, root
finding, quadrature points, etc.

• We also note that the pruning process generally means only one or two func-
tions persist through the dimension-reduction process. For example, it is
often the case that a level set function restricted to one of the lower or upper
faces will be uniformly positive or negative.

• Lastly, we note that a few minor modifications of Algorithms 1, 2, and 3
would allow the overall quadrature scheme constructed by the method to
be recorded. The quadrature scheme could thus be used multiple times on
different integrands. In the case of the volume integral, the algorithm yields
a quadrature scheme of the form

∫
Ω∩U f ≈∑n

i=1 wif(xi), where the weights

wi ∈ R are positive and the points xi ∈ R
d all lie in Ω ∩ U . Thus,

∑
i wi

provides an approximation to the volume of Ω∩U . In the case of the surface
integral,

∫
Γ∩U g ≈ ∑n

i=1 wig(xi), where the weights wi are positive and the
points xi lie on Γ∩U ; the sum∑i wi provides an approximation to the surface
area of Γ ∩ U .

D
ow

nl
oa

de
d

08
/0

5/
17

 to
 1

28
.3

.3
.2

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1008 R. I. SAYE

Fig. 3. Some examples illustrating the quadrature schemes constructed by the algorithm (based
on a Gaussian quadrature scheme of order q = 4) for the surface integral on the interface (left
column) and volume integrals for the two regions on either side of the interface (middle and right
columns). The weights are colored according to a scale that is normalized for each particular case:
pale indicates a low-valued weight and dark blue indicates a high-valued weight (see online version
for color).

Figure 3 illustrates the output of the quadrature algorithm with some two- and three-
dimensional examples. In each case the computed quadrature scheme is shown for
the interface and the two regions on either side of the interface, based on a Gaussian
quadrature order of q = 4. One can see how the geometry of the interface determines
the choice of height function direction and how the connected components of the
resulting implicitly defined domains Vi affect the resulting quadrature scheme.

4. Convergence tests. In this section, we perform convergence studies to assess
the accuracy of the quadrature algorithm. In general, for sufficiently smooth problems
the algorithm has the same order of accuracy as a Gaussian quadrature scheme of or-
der q. As such, very high convergence rates can be obtained, but it is often the case
that these are unobservable due to the limited accuracy imposed by finite precision
floating point arithmetic. For example, using double precision, convergence rates of
ten or higher are difficult to observe since errors, even on relatively coarse grids, are
on the order of machine epsilon. In the following, we aim to nevertheless demonstrate
high-order convergence rates. To do so, in some of the following calculations we have
made use of the QD library [2], which provides quadruple-double floating point arith-
metic routines, having approximately 62 digits of accuracy. It should be made clear,

D
ow

nl
oa

de
d

08
/0

5/
17

 to
 1

28
.3

.3
.2

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

QUADRATURE METHODS FOR IMPLICITLY DEFINED DOMAINS A1009

however, that using high-precision arithmetic is not a requirement of the presented
quadrature algorithms—it is only being used to demonstrate high-order convergence
rates.

4.1. Surface area and volume. A simple but important test is to confirm
that the surface area and volume of an implicitly defined region can be accurately
computed. Here we consider an ellipse in two dimensions and an ellipsoid in three
dimensions:

• The ellipse has semimajor axis 1, semiminor axis 1
2 , and is defined by the

zero level set of φ(x, y) = x2 + 4y2 − 1 on the domain (−1.1, 1.1)2. The area
of the ellipse is V = π

2 and the length of its perimeter is A = 4E(
√
3/4) =

4.844224 . . ., where E(·) is the complete elliptic integral of the second kind.
• The ellipsoid has semiprincipal axes 1, 1

2 , and
1
3 and is defined by the zero

level set of φ(x, y, z) = x2 + 4y2 + 9z2 − 1 on the domain (−1.1, 1.1)3. The
volume of the ellipsoid is V = 2π

9 and its surface area A is

A = 2π
3

(
1
3 +

√
2E(

√
θ) + 1

4
√
2
F
(
θ,
√

5
8

))
= 4.40080956466497 . . . ,

where θ = sin−1(
√
8/9) and F is the incomplete elliptic integral of the first

kind.
The domain is discretized with a uniform Cartesian grid of n×n cells (in two dimen-
sions) or n × n × n cells (in three dimensions) such that h = 2.2/n. The quadrature
method is then applied to each cell of the Cartesian grid and the results summed to
define the following approximations Aq,h and Vq,h to the surface area and volume:∫

Γ

1 ≈ Aq,h :=
∑
i

I(1; (φ, 0), Ui, true, q),

∫
Ω

1 ≈ Vq,h :=
∑
i

I(1; (φ,−1), Ui, false, q),

where the summation is over all grid cells Ui. Figure 4 plots the absolute error in
surface area and volume, i.e., |A − Aq,h| and |V − Vq,h|, for the two-dimensional
and three-dimensional cases, for a selection of different Gaussian quadrature orders
q = 1, 2, 6, and 10. A line with slope 2q is also drawn for each case, showing that
the convergence rate of the scheme is approximately 2q. Since the convergence rate
measured between two successive grids is not always consistent (due to the effects of
grid alignment), we define an average convergence rate which measures convergence
over several grid sizes. Specifically, we define the rate as the slope of the line resulting
from simple linear regression on the log-log plot of the errors. Table 1 shows the
measured convergence rates for the calculation of surface area and volume of the
ellipse and ellipsoid, for q = 1, 2, . . . , 10, using the same range of n as shown in
Figure 4. The results show that the approximate convergence rate is at least 2q for
all q.

To provide an approximate indication of the computational cost of the algorithm,
Table 2 measures the time in microseconds needed to construct and evaluate the
quadrature scheme,6 per grid cell, averaged over all cells Ui such that Ui ∩ Γ = ∅.
Although the number of quadrature points per cell is O(qd) (in the case of the volume
integral) or O(qd−1) (in the case of the surface integral), the timings in Table 2

6These timing tests used standard double precision floating point arithmetic.

D
ow

nl
oa

de
d

08
/0

5/
17

 to
 1

28
.3

.3
.2

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1010 R. I. SAYE

Fig. 4. Error in the computed area and volume of the ellipse and ellipsoid test problems in
section 4.1 as a function of grid size n for four different values of q. The case q = 1 is denoted in
the graphs with +; × denotes q = 2; • denotes q = 6; and � denotes q = 10. In each case, a line
with slope 2q is drawn in order to illustrate the approximate rate of convergence.

Table 1

Measured convergence rates for the test problems in section 4.1 for different choices of q.

Test problem
Order q

1 2 3 4 5 6 7 8 9 10

Ellipse area 2.0 4.2 6.4 8.5 10.7 12.8 14.9 17.0 19.1 21.2

Ellipse perimeter 2.1 4.3 6.4 8.6 10.7 12.8 15.0 17.1 19.1 21.2

Ellipsoid volume 2.0 4.0 6.0 8.1 10.1 12.1 14.1 16.1 18.1 20.0

Ellipsoid surface area 2.0 4.0 6.1 8.1 10.1 12.2 14.1 16.1 18.1 20.0

Table 2

Average time per grid cell (in microseconds) needed to construct and evaluate the quadrature
schemes for the test problems in section 4.1, where the average is taken over all cells intersecting Γ.
Experimental results obtained on an Intel Core i7 3.5GHz desktop machine (single core), based on
a 8192 × 8192 grid in two dimensions (2D) and a 256 × 256 × 256 grid in three dimensions (3D).

Test problem, μs per cell
Order q

1 2 3 4 5 6 7 8 9 10

2D boundary integral 1.1 1.2 1.3 1.5 1.6 1.7 1.8 1.9 2.1 2.2

2D area integral 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.4 3.9 4.1

3D surface integral 1.8 2.6 3.8 5.3 7.2 9.4 12 15 18 22

3D volume integral 2.0 3.7 6.0 9.1 13 18 24 31 40 48D
ow

nl
oa

de
d

08
/0

5/
17

 to
 1

28
.3

.3
.2

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

QUADRATURE METHODS FOR IMPLICITLY DEFINED DOMAINS A1011

Fig. 5. A nonclosed surface defined by the zero level set of φ in (4.1), confined to the indicated
rectangular box and used in the convergence tests of section 4.2.

do not directly follow this scaling in q. This is because the cost of the algorithm
is shared between different aspects: evaluating bounds on the attainable values of φ
or its gradient (typically O(1) cost per cell); one-dimensional root finding (typically
O(qd−1)); and evaluating the integrand or recording the quadrature nodes and weights
(O(qd) or O(qd−1) for volume or surface integrals, respectively). Generally speaking,
the dominant component observed in our experiments is root finding, which typically
contributed to at least half the overall time (with a larger percentage for larger q).
Hence, if it is possible to reuse a precomputed quadrature scheme, then doing so
would likely give a nontrivial improvement in efficiency, rather than recomputing the
quadrature scheme. This assumes, however, that the cost of evaluating the integrand
is small; if instead the integrand is very costly to evaluate, then this aspect may
dominate the overall cost of applying the quadrature method.

4.2. Nonpolynomial functions on a nonclosed surface. The next conver-
gence test verifies that the quadrature scheme retains high-order convergence rates
when applied to nonpolynomial integrand and level set functions on a nonclosed sur-
face. A three-dimensional level set function is defined by

(4.1) φ(x, y, z) = cosx sin y + cos y sin z + cos z sinx

on the domain (−L,L)× (−L,L)× (−L/2, L/2), where L = 4.25. Figure 5 illustrates
the interface defined by the zero level set of φ. The integrand function f is defined by

f(x, y, z) = ln
(

1
L2 (x

2 + y2 + z2) + 3
8

)
.

Similar to before, we study convergence by discretizing the domain with a uniform
Cartesian grid of n× n× n/2 cells and compute the following approximations to the
surface and volume integral:∫

Γ

f ≈ Isq,h :=
∑
i

I(f ; (φ, 0), Ui, true, q),

∫
Ω

f ≈ Ivq,h :=
∑
i

I(f ; (φ,−1), Ui, false, q).

Since the exact answers
∫
Γ
f and

∫
Ω
f are unknown, a reference solution is computed

by using the same quadrature algorithm on a fine 1024×1024×512 three-dimensional

D
ow

nl
oa

de
d

08
/0

5/
17

 to
 1

28
.3

.3
.2

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1012 R. I. SAYE

Fig. 6. Error in the computed surface integral and volume integral of the test problem in section
4.2 as a function of grid size n for four different values of q. The case q = 1 is denoted in the graphs
with +; × denotes q = 2; • denotes q = 6; and � denotes q = 10. In each case, a line with slope 2q
is drawn in order to illustrate the approximate rate of convergence.

Table 3

Measured convergence rates for the test problems in section 4.2 for different choices of q.

Test problem
Order q

1 2 3 4 5 6 7 8 9 10

Volume integral
∫
Ω f 2.0 3.9 7.2 8.7 10.6 11.5 14.5 16.4 18.8 20.9

Surface integral
∫
Γ
f 2.0 4.0 6.8 9.4 10.8 12.5 14.3 16.2 18.0 19.8

grid with q = 10; convergence tests indicate7 that

∫
Γ

f = 6.897665194490618059924850963768989519102402631696+ ε1,∫
Ω

f = 6.261923761662944764662591994149333275702846237971+ ε2,

where |εi| < 10−48. For a selection of different Gaussian quadrature orders, q = 1, 2, 6,
and 10, Figure 6 plots the absolute error corresponding to the computed surface
integral and volume integrals as a function of the grid size n. As in the previous
test problem, we can see that the approximate convergence rate is 2q. Using the
same range of grid sizes, Table 3 shows the measured convergence rates for all orders
q = 1, . . . , 10, confirming that convergence rates of approximately 2q is obtained for
all q.

4.3. Additional convergence tests and analysis. The supplementary mate-
rial of this paper contains additional convergence tests which examine the quadrature
scheme in different scenarios:

• Approximation of the level set function: In many applications of implicit
interface methods, the level set function is known only at the grid points of a
computational grid/mesh (see, e.g., [25, 18, 22, 23, 24]), and therefore must be
interpolated in order to apply the quadrature scheme on each mesh element.
The supplementary examples show how the overall order of accuracy for the

7The first handful of significant digits were also confirmed by using a low-order method based on
discrete delta functions and discrete Heaviside functions.

D
ow

nl
oa

de
d

08
/0

5/
17

 to
 1

28
.3

.3
.2

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

QUADRATURE METHODS FOR IMPLICITLY DEFINED DOMAINS A1013

quadrature scheme depends not only on q, but also on the accuracy of the
interpolation scheme and regularity of the interface.

• Detecting and resolving subcell/subgrid features : An important consideration
in connection with high-order implicit interface methods, which are often ca-
pable of resolving and maintaining subgrid features in an interface, is whether
the quadrature algorithm also detects such features. The supplementary ex-
ample demonstrates that the subdivision strategy automatically detects and
accurately resolves subgrid features, such as a closed surface entirely con-
tained inside a single grid cell.

• Termination of subdivision strategy: Although rare, it may be possible for
the simple subdivision strategy to never terminate. This situation arises
when the level set function becomes degenerate in a grid cell or on one of
its faces or edges, and in such cases, the subdivision must be terminated.
The supplementary example analyzes this aspect further and examines what
errors are incurred in reverting to a low-order method when the subdivision
is terminated.

5. Application to a high-order embedded boundary discontinuous Ga-
lerkin method. In this section we demonstrate the merits of high-order accuracy by
applying the quadrature algorithm to an embedded boundary discontinuous Galerkin
method [13] for solving partial differential equations on implicitly defined domains.
Similar to “cut-cell”-type methods, the framework avoids the need to generate body-
conforming meshes for curved geometry; instead, a simple Cartesian reference grid
can be used to automatically generate a finite element mesh. In particular, the ap-
proach presented in [13], briefly described here, provides bounds on the conditioning
and convergence properties when applied to elliptic PDEs; as such it avoids the ill-
conditioning problems which commonly arise with “tiny” cut-cells.

Let φ : Rd → R be a level set function which implicitly defines a domain Ω =
{x : φ(x) < 0} with boundary Γ = {x : φ(x) = 0}. Let U be a rectangular domain
which encloses all of Ω, and define a Cartesian grid such that U =

⋃
i Ui, where Ui

are rectangular cells. Each cell can be classified as either empty (those which fall
entirely outside Ω), partial (those which contain Γ), or full (those falling entirely
within Ω); see Figure 7 (left). In the embedded boundary method of [13], partial
cells which are deemed “small” are combined with nearby cells to form some of the
elements of a discontinuous Galerkin finite element method. Many possibilities exist
for deciding whether a cell is small; here we use a simple rule which states that a cell
is small if its volume intersecting Ω is less than 20% of its total volume. Small cells
are merged with a neighboring cell according to the following scheme: Of the cells
sharing a face with the small cell, the cell which has the largest volume intersecting Ω is
used. The result of this process is a mesh composed of standard rectangular elements,
elements with curved boundaries, and elements which have been merged with small
cells. Figure 7 (right) shows a two-dimensional example. Note that throughout this
process, neither Ω nor its boundary Γ is explicitly constructed; instead the geometry
of the curved elements will factor into the weak formulation of the finite element
method via quadrature.

Here we use this approach, together with the presented quadrature algorithm,
to demonstrate high-order convergence in solving Poisson’s equation on a three-
dimensional implicitly defined domain. The chosen domain Ω is a torus defined by
the level set function φ(x, y, z) = (x2 + y2 + z2 + R2 − r2)2 − 4R2(x2 + y2), where
R = 0.5, r = 0.3, and we solve Poisson’s equation with Neumann boundary condi-

D
ow

nl
oa

de
d

08
/0

5/
17

 to
 1

28
.3

.3
.2

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1014 R. I. SAYE

Fig. 7. (left) The cells of a Cartesian grid enclosing a curved domain are classified according to
whether they are entirely outside the domain (“empty,” white), entirely within the domain (“full,”
light gray), or else are denoted as “partial.” Partial cells are classified according to whether they
have a small intersection with the domain (“small,” blue) or a large intersection with the domain
(dark gray). (right) Small cells are merged with neighboring cells to form extended curved elements
(dark gray), large cells become curved elements cut by the domain boundary (blue), while all other
cells are standard reference elements (light gray).

tions:

−Δu = f in Ω,
∂u
∂n = g on Γ,(5.1) ∫
Ω
u = C,

where C is a constant enforcing an integral condition on u to yield uniqueness of
the solution. A Cartesian grid with n × n × n cells on the rectangular domain U =
(−0.8(1− 1

n), 0.8(1+
1
n))

3 is used to generate a mesh according to the above procedure.
It follows that most of the elements will be rectangular with width h ≈ 1.6/n. Define
K to be the set of elements of the resulting mesh, and let EI and EN denote the set of
internal faces and boundary faces, respectively. Let Qp(K) denote the space of tensor
products of polynomials of degree p on the element K; for example, Q3 is the space
of tricubic polynomials, each one uniquely specified by 64 coefficients. Let Vh be the
corresponding space of discontinuous piecewise polynomials on the mesh:

Vh =
{
u ∈ L2(Ω) : u|K ∈ Qp(K) for all K ∈ K}.

To solve (5.1), a symmetric interior penalty method [1, 7] is used, resulting in the
following problem statement: Find uh ∈ Vh such that a(uh, vh) = l(vh) for all vh ∈ Vh,
where the bilinear form a(·, ·) is given by

a(uh, vh) =
∑
K∈K

(∇uh,∇vh)K−
∑
E∈EI

({{∇uh}}, [[vh]])E+([[uh]], {{∇vh}})E+τ([[uh]], [[vh]])E
and where the linear functional l(·) is defined by

l(vh) =
∑
K∈K

(f, vh)K +
∑

E∈EN

(g, vh)E .

Here, (·, ·)K and (·, ·)E denote the standard L2 inner products on element K and face
E, while {{·}} and [[·]] denote the average and jump operators across an internal face
E, defined by

{{u}} = 1
2 (u1 + u2), [[u]] = u1n1 + u2n2,

D
ow

nl
oa

de
d

08
/0

5/
17

 to
 1

28
.3

.3
.2

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

QUADRATURE METHODS FOR IMPLICITLY DEFINED DOMAINS A1015

Fig. 8. Discrete solution of a Poisson problem (5.1) inside a torus, computed using the em-
bedded boundary discontinuous Galerkin method described in section 5 with order p = 3 elements
on a mesh generated by a relatively coarse 16 × 16 × 16 Cartesian grid. Depicted on the left is the
corresponding mesh: standard Cartesian grid cell-based elements are shaded gray, extended elements
green, and unextended curved elements blue. In the figures, the torus domain has been cut in half
in order to reveal the interior.

where n1 and n2 are the exterior pointing unit normal vectors of elements K1 and K2

which share the face, with ui = u|Ki . Lastly, τ > 0 is a stabilization penalty parameter
associated with the interior penalty method that is required to ensure well-posedness
in the discrete formulation, and typically scales according to8 O((p+ 1)2/h).

We will be brief on implementation details. Evaluation of the bilinear form a(·, ·)
and linear functional l(·) requires the computation of inner products of polynomials on
both elements and faces. In the case where the element is a standard rectangular ele-
ment, standard quadrature rules can be used that are exact for polynomial integrands
(see, e.g., [10]). In the case of a curved element or face, we use the high-order quadra-
ture algorithm developed in this paper. In particular, we must compute the integrals
(·, ·)K and (·, ·)E with enough accuracy to account for the curved geometry of the
element. As is typical when Jacobian factors are involved (in this case they arise from
the curved boundary Γ), this requires the use of a higher-order quadrature method
than one would otherwise need on a standard rectangular element. In other words, the
value of q used in the quadrature algorithm will necessarily be larger than p. Finally,
the weak formulation problem statement—find uh ∈ Vh such that a(uh, vh) = l(vh)
for all vh ∈ Vh—leads to a symmetric positive semidefinite linear system for which we
have used a simple block-Jacobi preconditioned conjugate gradient method to solve.

We now demonstrate the approach by numerically solving the Poisson prob-
lem in (5.1) with data f , g, and C generated by the exact solution u(x, y, z) =
cos 2x cos 2y cos 2z. Figure 8 shows the computed solution and its error on a mesh
generated by a 16 × 16 × 16 Cartesian grid with p = 3. To study the order of accu-
racy, we perform a series of tests using grids of size n = 16, 32, 64, 128 with degree
p = 1, 2, 3, 4 elements and measure the L2 norm of the error, (

∫
Ω
(uh−u)2)1/2. Table 4

contains the results and also indicates which value of q was used in the quadrature
algorithm; these values were chosen empirically as being the smallest possible such
that consistent convergence behavior was obtained. The results in Table 4 show that
the convergence rate for this embedded boundary discontinuous Galerkin scheme is
approximately p+ 1. This builds upon the work of [13], which provides a theoretical
analysis for achieving optimal order accuracy as observed here. An analysis of the role
of the quadrature algorithm (such as the parameter q) in regards to the finer details

8In the following numerical results, we have used τ = Cp/h, where Cp = 8, 18, 32, and 200 for
p = 1, 2, 3, and 4, respectively.

D
ow

nl
oa

de
d

08
/0

5/
17

 to
 1

28
.3

.3
.2

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1016 R. I. SAYE

Table 4

L2 norm of the error of the discrete solution of the Poisson problem (5.1), computed using order
p elements on a mesh generated by an n× n× n grid; associated convergence rates are indicated in
boldface.

n p = 1, q = 2 p = 2, q = 5 p = 3, q = 6 p = 4, q = 8

16 1.07× 10−3 – 2.97× 10−5 – 7.02× 10−7 – 5.21 × 10−8 –

32 2.14× 10−4 2.2 1.91× 10−6 3.8 2.24× 10−8 4.7 3.85× 10−10 6.8

64 5.10× 10−5 2.0 2.03× 10−7 3.2 1.10× 10−9 4.2 1.04× 10−11 5.1

128 1.24× 10−5 2.0 2.12× 10−8 3.2 5.73× 10−11 4.2 2.53× 10−13 5.3

of the accuracy of the numerical solution as well as to the spectral properties of the
resulting linear system, etc., is the subject of ongoing work.

6. Concluding remarks. The presented algorithm for computing high-order
quadrature schemes on implicitly defined surfaces and volumes is based on represent-
ing the curved geometry as a graph of an implicitly defined height function. Once
a suitable height function direction is determined, both types of integration can be
rewritten as an integral over an implicitly defined domain in one fewer spatial di-
mensions. This leads to a recursive algorithm requiring three main tools: (i) the
ability to place bounds on the values attainable by a function inside a given hyper-
rectangle; (ii) one-dimensional root finding to find the value of the height function
at a specific location; and (iii) a one-dimensional numerical quadrature scheme. For
(i), the appendix presents a convenient technique based on automatic differentiation
which can be used with template programming and operator overloading techniques,
though other methods are certainly possible. For (ii), we used a hybrid of the bisec-
tion method and Newton’s method which was found to work well in practice. For (iii),
we used standard Gaussian quadrature methods. Combined, the overall quadrature
scheme yields high-order convergence rates: letting q denote the order of the Gaus-
sian quadrature, the algorithm finds a quadrature scheme with approximatelyO(qd−1)
many nodes per cell in the case of the surface integral, approximately O(qd) nodes
per cell in the case of the volume integral, and, for a sufficiently smooth problem,
yields a convergence rate of approximately 2q.

Several possibilities exist for more sophisticated implementations of the algorithm.
The criteria for defining a suitable height function direction could be made more
rigorous: our criterion was that the Jacobian factor (characterizing how steep the
height function is) must be bounded by a constant. Instead, a criterion based on
the smoothness of this factor could be used. We discussed in the development of
the algorithm the necessity of subdivision, e.g., in the case that a spherical interface
partially crosses a face of a cube, resulting in a circular interface contained entirely
within a face. The subdivision strategy which we used was based on the simple method
of dividing the hyperrectangle in half along its largest extent. More sophisticated
subdivision strategies could be developed that take into account the geometry of the
functions ψi with the goal of finding a suitable height function direction more quickly.
Lastly, in the rare cases that subdivision must be terminated, we used a simple low-
order method involving a single point evaluation; other methods could also be used.

Finally, we make some comments about the possibility of extending this approach
to different elemental shapes, particularly simplices. Throughout this paper we as-
sumed that U was a hyperrectangle; this fits in naturally with the dimension-reduction
algorithm since once a height function direction is found, that coordinate axis can be

D
ow

nl
oa

de
d

08
/0

5/
17

 to
 1

28
.3

.3
.2

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

QUADRATURE METHODS FOR IMPLICITLY DEFINED DOMAINS A1017

removed, leaving a new hyperrectangle on which to perform an integration. Although
not presented in this work, the algorithm has also been extended to the case that
U is a triangle in two dimensions. The modifications are relatively simple: instead
of the height function being constrained by two parallel edges of a box, it is now
constrained by two nonparallel edges of the triangle. High-order convergence rates of
2q were also obtained for triangles. However, the three-dimensional case for which
U is a tetrahedron is more subtle. The reason is that the geometry of the interface
restricted to the “upper” face (once a height direction is found) is often considerably
different from the geometry on the “lower” face. This in turn makes it difficult to
find a height function direction which is suitable for both faces simultaneously. If not
suitably addressed, the end result is that an unreasonable number of subdivisions may
become necessary. Nevertheless, simplices (particularly reference simplices described
by the polytope u, v, w, . . . ≥ 0, u+ v +w + · · · ≤ 1) do indeed fit into the concept of
dimension reduction, since once a coordinate direction is removed, the new object is
a simplex in one fewer dimensions. Extending the presented quadrature algorithm to
the case of general simplices is the subject of ongoing work.

Appendix. Bounds evaluation via automatic computation of first-order
Taylor series with bounded remainder. An important requirement of the quadra-
ture algorithm is the ability to place bounds on the attainable values of a function in
a given hyperrectangle U . This was used to assist in finding a suitable height function
direction (section 3.2.3) and in the pruning step (section 3.2.1) to remove unnecessary
ψi functions. It also allows subgrid features to be properly identified and resolved.
Here we briefly describe a technique, similar to “automatic differentiation,” that can
be combined with operator overloading programming methods to automatically cal-
culate a first-order Taylor series with bounded remainder term of typical functions
implemented by a computer program.

Let U = (xL1 , x
U
1)× · · · × (xLd , x

U
d) be a hyperrectangle that remains fixed through-

out a specific Taylor series computation; we imagine U to be “small” in size. Define
δ ∈ R

d to be the half-width of U , i.e., δi =
1
2 (x

U
i − xLi) for i = 1, . . . , d, and define

xc to be the midpoint of U , i.e., xc,i =
1
2 (x

L
i + xUi). A first-order Taylor series with

bounded remainder term for a function f : Rd → R centered at the midpoint point
xc in the hyperrectangle U is denoted by the expression f = (α, β, ε) for α, ε ∈ R and
β ∈ R

d and has the following property:

f(xc + y) = α+ β · y + r(y) for all y ∈ R
d such that |yi| ≤ δi, i = 1, . . . , d,

where r(y) is a remainder term which satisfies r(y) = o(|y|) and has the bound
|r(y)| ≤ ε for all |y| ≤ δ. In particular, if f = (α, β, ε), then f(xc) = α and ∇f(xc) =
β. We hereafter refer to such an expression for the first-order Taylor series with
bounded remainder as a linearization. As examples, a linearization for a constant-
valued function is simply (C, 0, 0), while the function (x, y, z)
→ x has the linearization
(xc,1, (1, 0, 0), 0). Operations involving one or more such linearizations can be defined
in the natural way. For example,

• addition by a constant C ∈ R yields (α, β, ε) + C = (α+ C, β, ε);
• multiplication by a constant C ∈ R yields (α, β, ε)× C = (Cα,Cβ, |C|ε);
• addition gives (α1, β1, ε1) + (α2, β2, ε2) = (α1 + α2, β1 + β2, ε1 + ε2);
• multiplication of two linearizations is somewhat more involved and leads to

(α1, β1, ε1)×(α2, β2, ε2) = (α1α2, α1β2+α2β1, 12+(|α1|+1)ε2+(|α2|+2)ε1+ε1ε2),
where i =

∑d
j=1 |βi,j |δj = |βi| · δ;

D
ow

nl
oa

de
d

08
/0

5/
17

 to
 1

28
.3

.3
.2

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1018 R. I. SAYE

• division of two linearizations is more complicated and is omitted; it can be
derived with the help of a Taylor series with remainder for the function x
→
1

1−x .

Linearizations of function compositions can also be derived: for a C2 function f :
R → R taking a linearization as its argument, a Taylor series calculation yields

f
(
(α, β, ε)

)
= (f(α), f ′(α)β, |f ′(α)|ε + 1

2C(+ ε)2),

where = |β| · δ and C ≥ sup|τ |<�+ε |f ′′(α+ τ)|. For example,

sin
(
(α, β, ε)

)
= (sin(α), cos(α)β, | cos(α)|ε + 1

2 (+ ε)2).

After evaluating a function (such as ψi or ∇ψi) defined by a chain of the above
operations, the final result is a single linearization of that function. The values at-
tainable by the function in the hyperrectangle can then be easily computed: we have
for f = (α, β, ε),

sup
x∈U

|f(x)− f(xc)| = sup
x∈U

|f(xc) + β · (x− xc) + r(x − xc)− f(xc)| ≤ |β| · δ + ε.

It follows that the accuracy of the bounds obtained with the above arithmetic is a
function of the size of the hyperrectangle U . In particular, for a linearization arising
from a composition of smooth functions, it is typically the case that ε = O(|δ|2).
One can verify that each of the above operations (addition, multiplication, function
composition, etc.) individually preserves this order of accuracy. The second-order
accuracy provided by this approach is sufficient for the quadrature algorithm presented
in this paper, e.g., to effectively prune and detect when a function is monotone.

REFERENCES

[1] D. N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM
J. Numer. Anal., 19 (1982), pp. 742–760.

[2] D. H. Bailey, Y. Hida, X. S. Li, B. Thompson, K. Jeyabalan, and A. Kaiser, QD Library,
http://crd.lbl.gov/∼dhbailey/mpdist/, 2014.

[3] J. U. Brackbill, D. B. Kothe, and C. Zemach, A continuum method for modeling surface
tension, J. Comput. Phys., 100 (1992), pp. 335–354.

[4] S. L. Chan and E. O. Purisima, A new tetrahedral tesselation scheme for isosurface genera-
tion, Comput. Graphics, 22 (1998), pp. 83–90.

[5] K. W. Cheng and T.-P. Fries, Higher-order XFEM for curved strong and weak discontinu-
ities, Internat. J. Numer. Methods Engrg., 82 (2010), pp. 564–590.

[6] M. Discacciati, A. Quarteroni, and S. Quinodoz, Numerical approximation of internal
discontinuity interface problems, SIAM J. Sci. Comput., 35 (2013), pp. A2341–A2369.

[7] J. Douglas and T. Dupont, Interior penalty procedures for elliptic and parabolic Galerkin
methods, in Computing Methods in Applied Sciences, R. Glowinski and J. L. Lions, eds.,
Lecture Notes in Phys. 58, Springer, Berlin, Heidelberg, 1976, pp. 207–216.

[8] B. Engquist, A.-K. Tornberg, and R. Tsai, Discretization of Dirac delta functions in level
set methods, J. Comput. Phys., 207 (2005), pp. 28–51.

[9] A. Guéziec and R. Hummel, Exploiting triangulated surface extraction using tetrahedral de-
composition, IEEE Trans. Visualization Comput. Graphics, 1 (1995), pp. 328–342.

[10] J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms,
Analysis, and Applications, Texts Appl. Math. 54, Springer, New York, 2008.

[11] D. J. Holdych, D. R. Noble, and R. B. Secor, Quadrature rules for triangular and tetrahe-
dral elements with generalized functions, Internat. J. Numer. Methods Engrg., 73 (2008),
pp. 1310–1327.

[12] J.-S. Huh and J. A. Sethian, Exact subgrid interface correction schemes for elliptic interface
problems, Proc. Natl. Acad. Sci. USA, 105 (2008), pp. 9874–9879.

D
ow

nl
oa

de
d

08
/0

5/
17

 to
 1

28
.3

.3
.2

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://crd.lbl.gov/~dhbailey/mpdist/

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

QUADRATURE METHODS FOR IMPLICITLY DEFINED DOMAINS A1019

[13] A. Johansson and M. G. Larson, A high order discontinuous Galerkin Nitsche method for
elliptic problems with fictitious boundary, Numer. Math., 123 (2013), pp. 607–628.

[14] W. E. Lorensen and H. E. Cline, Marching cubes: A high resolution 3d surface construction
algorithm, Comput. Graphics, 21 (1987), pp. 163–169.

[15] C. Min and F. Gibou, Geometric integration over irregular domains with application to level-
set methods, J. Comput. Phys., 226 (2007), pp. 1432–1443.

[16] C. Min and F. Gibou, Robust second-order accurate discretizations of the multi-dimensional
Heaviside and Dirac delta functions, J. Comput. Phys., 227 (2008), pp. 9686–9695.

[17] B. Müller, F. Kummer, and M. Oberlack, Highly accurate surface and volume integration
on implicit domains by means of moment-fitting, Internat. J. Numer. Methods Engrg., 96
(2013), pp. 512–528.

[18] S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Appl. Math.
Sci., Springer, New York, 2003.

[19] S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms
based on Hamilton-Jacobi formulations, J. Comput. Phys., 79 (1988), pp. 12–49.

[20] B. A. Payne and A. W. Toga, Surface mapping brain function on 3d models, IEEE Comput.
Graphics Appl., 10 (1990), pp. 33–41.

[21] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Plannery, Numerical Recipes:
The Art of Scientific Computing, 3rd ed., Cambridge University Press, Cambridge, UK,
2007.

[22] R. I. Saye, High-order methods for computing distances to implicitly defined surfaces, Comm.
Appl. Math. Comput. Sci., 9 (2014), pp. 107–141.

[23] R. I. Saye and J. A. Sethian, The Voronoi Implicit Interface Method for computing multi-
phase physics, Proc. Natl. Acad. Sci. USA, 108 (2011), pp. 19498–19503.

[24] R. I. Saye and J. A. Sethian, Analysis and applications of the Voronoi Implicit Interface
Method, J. Comput. Phys., 231 (2012), pp. 6051–6085.

[25] J. A. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Geom-
etry, Fluid Mechanics, Computer Vision, and Materials Sciences, Cambridge University
Press, Cambridge, UK, 1999.

[26] J. A. Sethian and P. Smereka, Level set methods for fluid interfaces, Ann. Rev. Fluid Mech.,
35 (2003), pp. 341–372.

[27] P. Smereka, The numerical approximation of a delta function with application to level set
methods, J. Comput. Phys., 211 (2006), pp. 77–90.

[28] M. Sussman, P. Smereka, and S. Osher, A level set approach for computing solutions to
incompressible two-phase flow, J. Comput. Phys., 114 (1994), pp. 146–159.

[29] A.-K. Tornberg and B. Engquist, Numerical approximations of singular source terms in
differential equations, J. Comput. Phys., 200 (2004), pp. 462–488.

[30] J. D. Towers, Two methods for discretizing a delta function supported on a level set, J.
Comput. Phys., 220 (2007), pp. 915–931.

[31] G. Ventura, On the elimination of quadrature subcells for discontinuous functions in the
extended finite-element method, Internat. J. Numer. Methods Engrg., 66 (2006), pp. 761–
795.

[32] X. Wen, High order numerical quadratures to one dimensional delta function integrals, SIAM
J. Sci. Comput., 30 (2008), pp. 1825–1846.

[33] X. Wen, High order numerical methods to two dimensional delta function integrals in level set
methods, J. Comput. Phys., 228 (2009), pp. 4273–4290.

[34] X. Wen, High order numerical methods to three dimensional delta function integrals in level
set methods, SIAM J. Sci. Comput., 32 (2010), pp. 1288–1309.

[35] S. Zahedi and A.-K. Tornberg, Delta function approximations in level set methods by dis-
tance function extension, J. Comput. Phys., 229 (2010), pp. 2199–2219.

D
ow

nl
oa

de
d

08
/0

5/
17

 to
 1

28
.3

.3
.2

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

