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A MEASURE-THEORETIC VARIATIONAL BAYESIAN
ALGORITHM FOR LARGE DIMENSIONAL PROBLEMS.

A. FRAYSSE AND T. RODET∗

Abstract. In this paper we provide an algorithm allowing to solve the variational Bayesian
issue as a functional optimization problem. The main contribution of this paper is to transpose a
classical iterative algorithm of optimization in the metric space of probability densities involved in
the Bayesian methodology. The main advantage of this methodology is that it allows to address large
dimensional inverse problems by unsupervised algorithms. The interest of our algorithm is enhanced
by its application to large dimensional linear inverse problems involving sparse objects. Finally,
we provide simulation results. First we show the good numerical performances of our method by
comparing it with classical ones on a small tomographic problem. On a second time we treat a large
dimensional dictionary learning problem and compare our method with a wavelet based one.

keywords: ill-posed inverse problems, variational bayesian methodol-
ogy, sparse signal reconstruction, infinite dimensional convex optimization

1. Introduction. The recent development of information technologies has in-
creased the expansion of inverse problems for very large dimensional datasets. Indeed
whereas the 90’s decade have seen the introduction of image reconstruction problems,
the current main interest is on 3D sequences (3D + T), thus on large dimensional sets
of data. There is therefore a significant growth in the number of measurements in the
involved problems. One has frequently to treat the reconstruction of more than one
million data. At the same time, the signal processing techniques have helped to over-
come the limitations of measuring instruments as they supplied the design of systems
involving indirect measures. These new equipments introduced in exchange novel sig-
nal processing challenges, such as super resolution deconvolution, source separation
or tomographic reconstruction. All these problems are ill posed, the only information
contained in the data and in the model of acquisition are not sufficient to obtain a
good estimation of the unknown objects.

To solve these ill-posed problems, we introduce an a priori information on the
data. The Bayesian approach appearing in this paper consists in a modelisation of
source of information as probability density functions [7, 19, 12]. This approach allows
the development of unsupervised methods, such that the parameters of probability
distributions (mean, variance, etc. ..), also called hyperparameters, are adjusted
automatically. These hyperparameters can tune the trade-off between information
coming from data (likelihood) and a priori information. We call these methods ”fully
Bayesian” as they consist in a construction of a posterior distribution from the like-
lihood and from the prior information thanks to the Bayes rule. In general, this
posterior distribution is known up to a constant of proportionality K. In order to
determine an estimation of the unknown object, the posterior law is summed up by a
point: generally, the maximum a posteriori (MAP) or the posterior mean (PM) are
chosen. The maximization of the posterior law leads to an non convex optimization
issue. In the posterior mean case, we must calculate an integral. When the constant
K is unknown, we cannot determine analytically this solution. Therefore, a classical
way to determine this posterior mean is to perform an empirical mean of sample under
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the posterior law thanks to stochastic Markov Chain Monte Carlos (MCMC) [30, 31].
In the MCMC principle a Markov chain is generated which converges asymptotically
to a sample of the desired distribution. After a sufficient time, the so called burning
time, one retains only the samples of the Markov chain close to the posterior distribu-
tion. There are two main types of MCMC methods, algorithms of Metropolis-Hastings
and Gibbs sampler [31]. However for large dimensional problems involving compli-
cated covariance matrix, MCMC methods fail to give an acceptable approximation.
Furthermore these methods need a long time solely to explore the space of possibilities.

Therefore D. MacKay, inspired by statistical physics works, introduced the varia-
tional Bayesian inference as an alternative method to MCMC, see [20]. This methodol-
ogy was ever since involved in computer science such as in [14] and in signal processing,
for different applications such as: source separation using ICA [21, 6], Mixture Mod-
els estimation [24], hyperspectral imaging reduction [3], deconvolution [4, 2] recursive
methods [35, 36]. More recently a sparse bayesian methodology using variational ap-
proach of Laplace prior was developed by Seeger [33, 34]. The main outline of this
variational Bayesian methodology is to approximate the posterior distribution by a
separable law. This last one is the closest to the posterior distribution in terms of
Kullback-Leiber divergence. Thanks to this method, the initial inverse problem ap-
pears as a convex optimization problem in a function space. Classical variational
approaches give then an analytical approximation of the posterior. However, this so-
lution has no explicit forms. For large dimensional problems this turn out to be an
important drawback.

The goal of this paper is thus to construct an iterative algorithm able to provide
in a reduced computation time a close approximation of the solution of this varia-
tional problem. The main principle is to adapt a classical optimization algorithm, the
gradient descent method, [27], to the space of probability distributions.

The second contribution consists in the application of the mentioned methodol-
ogy to inverse problems corresponding to linear Gaussian white noise model. This
model can be applied for instance for deconvolution, super-resolution, tomography, or
source separation. Concerning the prior distribution, we put the emphasize on sparse
information.

The sparse prior information is classically introduced by heavy-tailed distribu-
tions. These distributions can be for instance Laplace [40], Bernoulli Gaussian law
[29, 10, 18], mixtures of Gaussian [37, 11], Cauchy distribution, or α-stable distribu-
tions. Recently, the Gaussian Scale Mixture class was introduced in [38] as a model of
wavelet coefficients of natural images. This class of probability densities generalizes
the ones previously mentioned. The main advantages of Gaussian Scale Mixture is
that they can be easily written as Gaussian distribution, conditioned by an hidden
variable. In our context, we modelize our sparsity information thanks to the family
of Gaussian Scale Vector Mixture distribution introduced in [13]. In this case, such
as Chantas et al. in [4], we define an extended problem where hidden variables have
also to be estimated.

This article is divided as follows. In Section 2 we present the optimization algo-
rithm in probability density space involved in the paper whereas Section 3 presents
our algorithm, based on its application to the classical variational Bayesian approach.
Thus, in Section 4 we apply our new method for inverse problems with a Gaussian
likelihood and a prior in the Gaussian Scale Vector Mixture (GSVM) family and
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present our supervised and unsupervised algorithms. In section 5, we present simula-
tion results, first on a tomographic example where the a priori information promotes
pulses or solutions extremely sparse and secondly on an identification problem in a
very large dictionary learning context. Finally, Section 6 concludes the paper.

2. Optimization algorithm in measures space. The present section is de-
voted to the construction of a gradient based algorithm adapted to the probability
measures space.

In this part, we assume that we stand in the measurable space (RN ,B(RN )),
where B(RN ) is the σ-field of Borel sets of RN . Our purpose is to construct an iter-
ative algorithm able to provide a close approximation of the solution of the Bayesian
variational method. We will see in the following that this can be seen as a maximiza-
tion problem of a concave functional in a probability measures space.

Concerning the probability density functions, there are several possible represen-
tations of such objects. The first one is to consider that this space is a subset of
L1(RN ), that is the subset of positive integrable functions with a total mass equal to
one. As L1(RN ) is a Banach space, classical algorithms still holds. However, one has
to pay a particular attention to the fact that the positivity of the functions together
with the fixed total mass imposes additional constraints. We will see in the following
why this point of view is not adapted to Bayesian variational methodology. Another
point of view, see [22], is to consider this set as a subset of the space of signed Radon
measuresM(RN ), that is measures that can be written µ = µ+ − µ−, endowed with
the norm of total variation. Once again this is a Banach space. The classical gradient
descent can also be adapted in this framework, as done in [23]. However in [23], the
measure obtained at each iteration is no longer a density, and cannot converge to a
solution to our optimization problem.

In the following we consider as an important constraint the fact that the optimal
density function is separable. Hence we rather stand in M̃(RN ) =

⊗N
i=1M(R) the

cartesian product of spaces of signed measures defined on R endowed with norm
defined by

∀µ ∈ M̃, ‖µ‖TV =
N∑
i=1

sup
A∈B(R)

∫
A

dµ+(xi) +

∫
A

dµ−(xi). (2.1)

Note that when µ is a density measure, i.e. dµ(x) = q(x)dL(x) = q(x)dx, L
standing for the Lebesgue measure, its total variation norm coincides with the L1

norm of its density function q.

Furthermore, a probability density is considered as an element of the closed convex
set Ω, defined by

Ω = {µ ∈ M̃; dµ(x) =

N∏
i=1

qi(xi)dxi, where qi ∈ L1(R) is a function such that qi ≥ 0 a.e. and

∫
R
dµi(x) = 1}.

(2.2)
Note that this set can also be written as the cartesian product of the Ωi where

Ωi = {µi ∈M(R); dµi(x) = qi(xi)dxi, where qi ∈ L1(R) is a function such that qi ≥ 0 a.e. and

∫
R
dµi(x) = 1}.
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Our purpose is, given a concave differentiable functional F : M̃ → R, to determine
an algorithm which approximates a probability measure µopt solution of

µopt = argmax
µ∈Ω

F (µ). (2.3)

This problem can be seen as a constrained convex optimization problem in the
infinite dimensional Banach space (M̃, ‖.‖TV ).

In this framework, most results of optimization are based on the dual space, which
is the space of continuous functions which go to zero at infinity, see for instance [16, 5].
In the present paper we consider a gradient-like descent algorithm on the density mea-
sures space.

Let us introduce some notations from [22]. Let F : M̃ → R. As M̃ is a Banach

space, one can compute the Fréchet derivative of F at µ ∈ M̃ as the bounded linear
functional dFq(.) : M̃ → R satisfying

F (µ+ ν)− F (µ)− dFµ(ν) = o(‖ν‖), when ‖ν‖ → 0.

In the following we will also consider the Gateaux derivative of a function:

∀ν ∈ M̃, ∂Fq(ν) = lim
t→0

F (q + tν)− F (q)
t

.

In some cases, see [22], one can find a continuous bounded function df such that

∀ν ∈ M̃, ∂Fµ(ν) =

∫
RN

df(µ,x)dν(x). (2.4)

Consider an auxiliary concave functional G : M̃ → R. An important property
appearing in the following is that the Fréchet differential of G is L-Lipschitz on Ω, i.e.

∀(µ1, µ2) ∈ Ω2, ν ∈ M̃ | dGµ1(ν)− dGµ2(ν)| ≤ L‖ν‖‖µ1 − µ2‖. (2.5)

The Lipschitz differential condition of G together with its concavity implies that,
see [26] for instance,

∀(µ1, µ2) ∈ M̃, 0 ≥ G(µ1)−G(µ2)− dGµ2(µ1 − µ2) ≥ −L‖µ1 − µ2‖2. (2.6)

Furthermore we say that a function F is twice differentiable at µ ∈ M̃, for every
µ ∈ M̃, if

∀(ν1, ν2) ∈ M̃2, d2Fµ(ν1, ν2) = lim
t→0

dFµ+tν1(ν2)− dFµ(ν2)

t
.

If it exists, d2F is a bilinear application from M̃ × M̃ to R. If F is a concave
functional, this second-order derivative must satisfy for every µ ∈ M̃,

∀ν ∈ M̃, d2Fµ(ν, ν) ≤ 0. (2.7)

Our purpose is to construct an iterative algorithm providing a density at each
iteration and approximating the solution of (2.3) for a certain class of functions F .
The key principle of our method is given by the Radon-Nikodym theorem, see [32] for
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instance. Let k ≥ 0 be an integer and assume that µk ∈ M̃ is a probability measure
absolutly continuous respectively to the Lebesgue measure. We thus construct µk+1 ∈
M̃ as a measure absolutely continuous with respect to µk. In this case, the Radon-
Nikodym theorem ensures that this measure should be written as

dµk+1(x) = hk(x)dµ
k(x), (2.8)

where hk ∈ L1(µk) is a positive function. Our aim is thus to construct a function
hk ∈ L1(µk) such that F (µk+1) ≥ F (µk). Following the classical scheme given by the
gradient descent method, hk is given as a function of the Frechet derivative of F at
µk and, according to our structure, as

hk(x) = Kk(α) exp(αkdf(µ
k,x)), (2.9)

where df is defined by (2.4) whereas αk > 0 is the algorithm step-size at iteration
k and Kk(α) is the normalization constant such that

∫
RN dµk+1(x) = 1. We also

impose the convention that hk(x) =∞ when exp(αkdf(µ
k,x)) is not integrable. One

can see that as soon as µ0 = q0dx is a positive density, so is each µk. We thus can
consider in the following that dµk = qkdx. This choice of h is motivated by the pos-
itive, integrable assumption together with, as mentioned earlier, its coherence with
the structure of the gradient descent method. This descent algorithm is defined as
the “exponentiated gradient” descent in [17]. Since [17] it has been widely studied
in the context of machine learning even in the Bayesian framework, see [9] for instance.

The optimization algorithm involved in this paper is the following:

Algorithm 1 Exponentiated Gradient algorithm

1: Initialize( µ0 ∈ Ω)
2: repeat
3: Compute df(µk,x)
4: Compute αk = argmaxαKk(α) exp(αdf(µ

k, .))µk

5: Compute µk+1 = Kk(αk) exp(αkdf(µ
k, .))µk

6: until Convergence

In order to determine the convergence properties of this exponentiated gradient
method in our context, let us define the hypotheses that we impose on the functional
F .

Definition 2.1. Let F : M̃ → R be a concave functional. We say that F satisfies
hypothesis (H) if:

(i) F can be written as F = G+H(.) where G is a concave L-Lipschitz Fréchet-
differentiable functional whereas H corresponds to −KL(.||L) that is the Kullback-
Leibler divergence from a measure to the Lebesgue measure.

(ii) F is twice differentiable in the sense of Gateaux and its first order derivative
satisfies Equation (2.4).

(iii) lim‖µ‖→∞ F (µ) = −∞.
Remark 1. The two points (ii), (iii) of the definition of hypothesis (H) just

ensure that the optimal stepsize αk defined in our algorithm indeed exists. Con-
cerning hypothesis (i), it can be replaced by the more restrictive hypothesis that F
is L-Lipschitz Fréchet differentiable. Note that our purpose is to construct density
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measures, the term H(µ) also corresponds in this case to the entropy of the density
function.

Let us now state the convergence result.
Theorem 2.2. Let F be a concave functional satisfying hypothesis (H) of Def-

inition 2.1. Let αk be the optimal stepsize of Algorithm 1, for every k ≥ 0. Then
the sequence (µk)k≥0 of elements of M̃ given by µk+1 = Kk(α) exp(αkdf(µ

k, .))µk

converges to a maximizer of F on Ω.
The proof of this theorem involves two main steps. In a first step we prove that

the sequence (F (µk))k∈N is an increasing sequence. This allows in a second time to
infer the convergence of the sequence (µk)k≥0 to a solution of (2.3).

Let k > 0 be fixed and µk be given. For every α ≥ 0 we define µα as the measure
defined for all x ∈ RN by dµα(x) = Kk(α) exp(αdf(µ,x))dµ

k(x) := hα(µ
k,x)dµk(x).

We define furthermore gk(α) := F (µα). Thus gk is a function from R+ to R twice
differentiable and αopt is an optimal step-size if gk(αopt) = max gk(α), i.e.

αopt = argmax
α

gk(α). (2.10)

The fact that F (µ)→ −∞ when ‖µ‖ → ∞ ensures that we can find an αopt, not
necessarily unique, such that

∀α > 0, F (µα) ≤ F (µαopt). (2.11)

Let α > 0 be given and consider the decomposition given by Point (i) of Definition
2.1. Thanks to Equation (2.6) one has

G(µα) ≥ G(µk) + dGµk(µα − µk)− L‖µα − µk‖2. (2.12)

Furthermore, as µα = hα(µ
k, .)µk and µk is a probability measure one can notice

that

−L‖µα − µk‖2TV = −L‖hα − 1‖2L1(µk) ≥ −L‖hα − 1‖2L2(µk). (2.13)

Furthermore,

H(µα) = H(hαµk) = H(µk)−
∫
RN

ln(hα(µ
k,x))dµα(x)−

∫
RN

ln

(
dµk

dL

)
(hα(µ

k,x)−1)dµk(x).

Following the development made in [8] for simple functions, the Gateaux deriva-
tive at qk of the entropy in direction h ∈ L1 is given by

∂Hqk(h) = −
∫
(ln(qk(x)) + 1)h(x)d(x),

as soon as qk + h is always positive. A similar approach in M̃ ensures that

∂Hµk(µα − µk) =

∫
RN

(− ln

(
dµk

dL

)
− 1)(hα(µ

k,x)− 1)dµk(x),

as µk + (µα − µk) is obviously positive.
This entails
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H(µα) ≥ H(µk)−
∫
RN

ln(hα(µ
k,x))dµα(x) + ∂Hqk(q

α − qk). (2.14)

Finally, from (2.12), (2.13) and (2.14) one has

F (µα)−F (µk) ≥ dFµk(µα−µk)−L‖hα(µk, .)−1‖2L2(µk)−
∫
RN

(αdf(µk,x)+lnKk(α))dµ
α(x).

(2.15)
Finally, F (µα)− F (µk) is positive if the right side of Equation (2.15) is positive.
Lemma 2.3. Let F be a functional satisfying Hypothesis (H). Let also (µk)k∈N

be the sequence provided by Algorithm 1. Then

∃α0 > 0, ∀α ∈ (0, α0) F (µα)− F (µk) ≥ 0. (2.16)

The proof of this lemma is quite technical and reported to Appendix 7.1.

Lemma 2.3 ensures that for α > 0 small enough, F (µα) ≥ F (µk). As we choose
µk+1 = µαopt , where αopt is defined by (2.10), we obviously have F (µk+1) ≥ F (µk).

Finally the sequence (F (µk))k∈N is increasing and upper bounded in R, thus con-
vergent. Moreover, it thus also satisfies that F (µk+1)− F (µk)→ 0.

In order to conclude we have to show that (µk)k∈N indeed converges to the max-

imum of F on Ω. But, for every k ≥ 0, µk ∈ Ω, which is bounded in M̃ and thus in
M(RN ). Furthermore, this last one is the dual of C0, the space of continuous functions
that tend to zero at infinity, which is a separable Banach space. The Banach-Alaoglu
Theorem thus holds, see [32] for instance, and ensures that there exists µlim ∈ M̃
and a subsequence (µkn)n∈N such that for every continuous function that goes to zero
at infinity f , ∫

f(x)µkn(dx)→
∫
f(x)µlim(dx).

i.e. when k →∞, we have µkn ⇀∗ µlim ∈ Ω.
Lemma 2.4. Let (µk)k∈N be the sequence of probability measures generated by

Algorithm 1. There exists a subsequence (µkn)n∈N such that µkn ⇀∗ µopt where µopt

is given by (2.3).
Proof.
From Lemma 2.3 we know that there exists α0 > 0 such that

F (µk+1) = gk(αopt) ≥ gk(α), ∀α ∈ (0, α0).

However the analytic form of αopt is not attainable in practice. We thus approximate
it by a calculable αsubopt, not necessarily smaller than α0. In order to determine this
αsubopt we can notice that thanks to the Taylor-Young formula, for α small enough

gk(α) = gk(0) + αg′k(0) +
α2

2
g′′k (0) + α2ε(α) := ϕk(α) + α2ε(α), (2.17)

where ε(α)→ 0 when α→ 0.
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Let us determine the derivatives of g. For this purpose, we have to determine

the derivative of the function g̃′ : α 7→ hα(µ
k, .). As hα(µ

k,x) = Kk(α)e
αdf(qk,x), its

derivative is given by

∀x ∈ RN , g̃′(α)(dx) = K ′
k(α)e

αdf(qk,x) + df(qk,x)Kk(α)e
αdf(qk,x).

As α is supposed to be close to zero, one can assume that it is not greater than
one which allows to use the dominated convergence Theorem and gives

K ′
k(α) = −

∫
df(qk,x)Kk(α)e

αdf(qk,x)dµk(x)∫
eαdf(qk,x)dµk(x)2

= −Kk(α)

∫
df(qk,x)dµα(x).

Finally one obtains that

∀x ∈ RN , g̃′(α)(dx) = dµα(x)

(
df(µk,x)−

∫
RN

df(µk,y)dµα(y)

)
. (2.18)

Thus

g′k(α) = dFµα(dµα) =

∫
RN

df(µα,x)

(
df(µk,x)−

∫
RN

df(µk,y)µα(dy)

)
dµα(x),

and

g′k(0) = dFµk(g̃′(0)) =

∫
RN

df(µk,x)

(
df(µk,x)−

∫
RN

df(µk,y)µk(dy)

)
dµk(x)

=

∫
RN

df(µk,x)2µk(dx)−
(∫

RN

df(µk,y)dµk(y)

)2

(2.19)

The critical point of ϕk(α) is αsubopt = − g′
k(0)

g′′
k (θ) , as soon as g′′k (0) 6= 0, which gives

in (2.17):

gk(αsubopt) = gk(0)−
g′k(0)

2

2g′′k (0)
+ α2ε(α), (2.20)

and by construction of F (µk+1),

F (µk+1) ≥ gk(αsubopt) = gk(0)−
g′k(0)

2

2g′′k (0)
+ α2ε(α) = F (µk)− g′k(0)

2

2g′′k (0)
+ α2ε(α).

As F (µk+1)−F (µk)→ 0, obviously lim
k→∞

g′
k(0)

2

2g′′
k (0) = 0. Let us consider the converg-

ing subsequence (kn)n∈N and denote by (αkn)n∈N the sequence defined by ∀n ∈ N,
αkn = αsubopt. Hence, −

g′
kn

(0)2

g′′
kn

(0) = g′kn
(0)αkn → 0. As dF is continuous, the sequence

(gkn(0))n∈N is convergent and either αkn → 0 or g′kn
(0) → 0. Let us assume that

αkn → 0 and that g′kn
(0) → l 6= 0. Let β > 0 be given. As αkn → 0 we have, for n

large enough that

gkn(
αkn

β
)− gkn(0) =

αkn

β
g′kn

(0) +
α2
kn

2β2
g′′kn

(0) + α2
kn
ε(αkn)

=
αkn

β
g′kn

(0)

(
1− 1

2β

)
+ α2

kn
ε(αkn).
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Hence,

gkn(
αkn

β )− gkn(0)

αkn
/β

= g′kn
(0)

(
1− 1

2β

)
+ αknε(αkn), (2.21)

and when n tends to infinity, αkn tends to zero, and taking limits in (2.21) one obtains

l = l

(
1− 1

2β

)
,

which is impossible as soon as β 6= 1
2 . Hence, g

′
kn
(0)→ 0 when n→∞.

Furthermore,

g′k(0) =

∫
RN

df(µk,x)2µk(dx)−
(∫

RN

df(µk,y)µk(dy)

)2

.

Hence, for n large enough,

‖df(µkn , .)‖L2(µkn ) − ‖df(µkn , .)‖L1(µkn ) → 0,

and thus df(µkn , .) converges to a constant λ, independent of x ∈ RN .
Let ν be any element of Ω. Applying the Main Value Theorem to the real valued

function f(θ) = F (θµlim + (1− θ)ν) we see that

F (ν) = F (µlim) + dFµlim(ν − µlim) +
1

2
d2Fµ̃(ν − µlim, ν − µlim),

where µ̃ = θ0ν + (1− θ0)µlim and θ0 ∈ (0, 1) is fixed.
As dFµlim(ν − µk) = 0, and from concavity of F we have

F (ν) ≤ F (µlim) ∀ν ∈ Ω,

which means that F (µlim) is a maximum of F over Ω.

In the present part we have presented an algorithm adapted to the space of prob-
ability measures. Our main interest is its application in the context of variational
Bayesian methodology. For the sake of completeness, let us remind this methodology
introduced in [20].

3. Our Variational Bayesian Algorithm. For the sake of simplicity, in the
following, we will only work with density functions q instead of measures µ. We also
denote by y ∈ RM theM dimensional vector containing the data information whereas
w ∈ RN represents the vector to be estimated, which is considered as a realization of a
random vector W . We also denote by p the prior probability density function (p.d.f.)
of W . The Bayes rule entails that this prior distribution is closely related to the
posterior one, p(w|y), up to a normalization constant. However, even in simple cases
this posterior may not be separable. Hence, in the variational Bayesian framework,
we approximate this posterior distribution by a separable probability density

q(w) =
∏
i

qi(wi). (3.1)
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Taking separable laws obviously simplify the problem even if it introduces some
approximation errors.

Therefore, we want to determine a separable probability density function q close
of the true posterior, in the sense defined by the Kullback-Leibler divergence, see [35]
for instance. The optimal approximating density q is given by

∀i ∈ {1, . . . , N}, qi(wi) = Ki
k exp

(
< ln p(y,w) >∏

j 6=i qj

)
, (3.2)

whereKi
k is the normalization constant and< ln p(y,w) >∏

j 6=i qj
=
∫
RN−1 ln p(y,w)

∏
j 6=i qj(wj)

comes from Eq. (3.1).

Although this solution is obtained analytically, Equation (3.2) clearly does not
have an explicit form. In order to have implementable methods a first step is to
consider conjugate priors. Hence the optimization turns out to an update of the
distribution parameters. However even for conjugate priors, this solution is hardly
tractable in practice, and is thus approximated thanks to iterative fixed points meth-
ods. In Equation (3.2), the calculus of qi imposes the knowledge of all qj for j different
from i, this optimization is either performed alternatively or by group of coordinate.
In both cases, the computation complexity can be important.

For large dimensional problems these methods are not tractable in practice. Our
purpose is thus to solve the functional optimization problem given by the Bayesian
variational method in an efficient way thanks to the algorithm defined in Section 2.

3.1. Variational Bayesian Exponentiated Gradient Algorithm. In this
section we define an iterative method which allows to compute efficiently at each iter-
ation each qi independently of the others in order to decrease the computational cost
of one iteration.

A first step in this part is to rewrite the minimization problem as a convex op-
timization problem independent of the posterior distribution to be approximated.
Instead of minimizing the Kullback-Leibler divergence, we thus remark, as in [6], that

ln p(y) = ln
p(y,w)

p(w|y)
, (3.3)

where w is the vector of hidden variables and parameters.

As the log-likelihood ln p(y) in (3.3) does not depends on w one can write

ln p(y) = F(q(w)) +KL[q(w)||p(w|y))].

In this case,

F(q(w)) =

∫
RN

q(w) ln(
p(y,w)

q(w)
)dw, (3.4)

is the negative free energy. Thus minimizing the Kullback-Leibler divergence is obvi-
ously equivalent to maximize this negative free entropy.
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Therefore in the following we will consider the problem of maximizing

F(q(w)) =

∫
RN

ln p(y,w)q(w)dw −
∫
RN

ln(q(w))q(w)dw

= 〈ln p(y,w)〉q(w) +H(q(w)),

(3.5)

where

〈ln p(y,w)〉q(w) =

∫
ln(p(y,w))q(w)dw

represents the mean of ln p(y,w) under the distribution q(w) whereas

H(q(w)) = −
∫
RN

ln(q(w))q(w)dw,

is the entropy of q. The main advantage of this approach is that the objective func-
tional does not depend on the true posterior anymore but only on the joint distribution
p(y,w), which is more easily tractable.

One can also notice that the problem of finding

qopt = argmax
q p.d.f.

F(q) (3.6)

is equivalent to the problem of finding

µopt = argmax
µ∈Ω

F (µ). (3.7)

Where the functional F is defined by ∀µ ∈ Ω, F (µ) = F(q). Furthermore the
corresponding function F satisfies hypothesis (H). Hence we can apply Theorem 2.2
in this context.

Remark 2. As mentioned earlier, a classical method in our context is to consider
each density function q as a L1(RN ) function and to apply classical algorithms. In
the present framework, taking the non-negativity and the total mass assumptions into
account, the algorithm involved is given by the projected gradient method which gives:

∀w ∈ RN qk+1(w) = PΘ(q
k(w) + ρkdf(qk,w)), (3.8)

where PΘ is the projector operator on the subspace Θ = {f ∈ L1(RN ); f(w) ≥
0 and ‖f‖L1 = 1}.

However, this algorithm requires that df(qk,w) ∈ L1(RN ) which is not the case
in general.

Hence, we apply the algorithm introduced in Section 2 to the Variational Bayesian
framework of Section 3. We consider

F(q(w)) = 〈ln p(y,w)〉q(w) +H(w).

In this case, the Fréchet differential of F (µ) = F(q) at µ ∈ Ω separable is given
by dFµ(ν) =

∑
i

∫
RN dif(qi, xi)νi(dx) where

∀i ∈ {1, . . . , N}, ∀w ∈ RN , dif(q, wi) = 〈ln p(y,w)〉∏
j 6=i qj

− ln qi(wi)− 1.
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Let k ≥ 0 be given and qk be constructed. Following the scheme defined by
Algorithm 1 and Equation (2.9), at the following iteration we consider qα given, for
α > 0, by

∀w ∈ RN , qα(w) = Kkq
k exp

[
αkdf(q

k,w)
]

(3.9)

= K̃kq
k(w)

∏
i

exp
(
< ln p(y,w) >∏

j 6=i q
k
j (wj)

)
qki (wi)

αk

= K̃kq
k(w)

(∏
i

qri (wi)

qki (wi)

)αk

(3.10)

where K̃k is the normalization constant and qr is an intermediate measure given by

∀i ∈ {1, . . . , N}, qri (wi) = exp
(
< ln p(y,w) >∏

j 6=i q
k
j (wj)

)
The main challenge is to determine the optimal value of α > 0. This optimal value

should satisfy g′k(αopt) = 0. However, this quantity is hardly tractable in practice.
Therefore, we consider instead the suboptimal value given by

αsubopt = −
g′k(0)

g′′k (0)
, (3.11)

when g′′k (0) 6= 0. This leads to the main algorithm of this paper.

Algorithm 2 Variational Bayesian Exponentiated Gradient Like Algorithm

1: Initialize( q0 ∈ Ω)
2: repeat
3: function Iteration( Compute qk+1 = Kkq

k exp
[
αkdf(q

k,w)
]
)

4: Compute qri (wi) = exp
(
< ln p(y,w) >∏

j 6=i q
k
j (wj)

)
for every i = 1, . . . , N

5: Compute αsubopt = − g′(0)
g′′(0)

6: Compute qαsubopt(w) = qk(w)
(

qr(w)
qk(w)

)αsubopt

.

7: Take qk+1 = qαsubopt .
8: end function
9: until Convergence

4. Application to linear inverse problems.

4.1. Statement of the problem. The following of this paper presents the
application of Algorithm 2 to linear inverse ill-posed problems. More precisely we
consider its implementation for Bayesian study of heavy-tailed information. The
model of observations chosen in the following is given by

y = Hx+ b, (4.1)

where y ∈ RM is the vector of observations given as a linear function of the unknowns
vector x ∈ RN to be estimated. Here, b ∈ RM is the noise vector whereas H is a
matrix in MN×M . We also suppose that x is a realization of a random vector X.

12



In the following we stand in a white noise model which induces that the noise is
supposed to be an iid Gaussian vector N (0, σ2

b I). We can deduct easily the likelihood

p(y|x) = (2πσ2
b )

−M/2 exp

[
−‖y −Hx‖2

2σ2
b

]
. (4.2)

Concerning the prior distribution we choose to take sparsity into account by consid-
ering X distributed following a separable heavy tailed distribution. The most general
case is given by Gaussian Vector Scale Mixture (GVSM) defined in [13]. In this case,
for i = 1, . . . , N , we suppose that Xi ∼ Ui/

√
Zi where U ∼ N (0, σ2

sI), Z =
∏
Zi

is a positive random vector of independent positive coordinates and U and Z are
independents. As a consequence the density of X is given in an integral form as

∀i ∈ {1, . . . , N}, p(xi) =

∫
R

√
zi

(2π)1/2σs
e
− zix

2
i

2σ2
s φzi(zi)dzi.

Note that in the definition, for the sake of simplicity, we consider Z as a precision
parameter and not as a dilatation one. Gaussian Vector Scale Mixture form a large
class of nongaussian random variables recently developed as a model of wavelet coef-
ficients of natural images, see [38]. The main interest of this model is, by solving an
extended problem due to the presence of a hidden random vector Z, to allow the use
of Bayesian hierarchic approaches.

The Gaussian Scale Mixture family offers a large class of random variables in-
cluding Gaussian mixing, when Z ∼ ZI a discrete random vector or Student laws if
all Zi are Gamma random variables. With different hypothesis on the distribution of
Z one can also define Generalized Gaussian distributions or α-stable ones, see [38].
Indeed GSM offer a simple representation of a large class of nongaussian probability
distributions, which justify the increasing interest on this model.

In our context, we choose to consider Z as a independent Gamma random vector,
i.e. for i = 1, . . . , N , we have Zi ∼ G(ãi, b̃i) and

∀i ∈ {1, . . . , N}, p(xi) =
b̃ãi
i

Γ(ãi)

∫
R

√
zi

(2π)1/2σs
e
− zix

2
i

2σ2
s zãi−1

i e−zib̃idzi. (4.3)

For ãi = b̃i = ν
2 , the p.d.f. of X corresponds to a Student-t distribution, as in the

model used in [4]. This model of Z ensures that X satisfies the conjugate priors
condition.

One can easily check that when the prior information is given by (4.3), Equation
(4.2) gives the following posterior distribution

p(x,z|y) ∝ σ−M
b exp

[
−‖y −Hx‖2

2σ2
b

] N∏
i=1

√
zi
σs

exp

[
−zix

2
i

2σ2
s

]
b̃ãi
i z

ãi−1
i e−zib̃i

Γ(ãi)
. (4.4)

Considering that we do not know the involved constants and that the mixing
matrix H is high dimensional, this posterior distribution cannot be evaluated directly.

4.2. Numerical implementation. The aim of variational Bayesian methodol-
ogy and therefore of our method in the context established in part 4 is the approxima-
tion of the posterior p.d.f given by (4.4) by a separable one q(x, z) =

∏
i qi(xi)

∏
j q̃j(zj).
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As we have chosen conjugate prior for X and Z, the optimum approximating distri-
bution of X is known to belong to a Gaussian family, whereas the p.d.f. of Z belongs
to a Gamma one.

qk(x) =
∏
i

N (mk(i),σ
2
k(i))

q̃k(z) =
∏
j

G(ak(j), bk(j))

Hence at the initialization stage, we consider

q0(x) = N (m0,Diag(σ2
0))

q̃0(z) =
∏
j

G(a0(j), b0(j))

where Diag(v) is a diagonal matrix with v on its diagonal, and σ2
0 ∈ RN is the vector

of initial variances.
Our minimization problem can be analyzed following the alternate iterative scheme:

q̃k+1(z) = argmax
q̃(z)

F
(
qk(x)q̃(z)

)
qk+1(x) = argmax

q(x)

F
(
q(x)q̃k+1(z)

)
4.2.1. Approximation of q̃. One can see in Equation (4.4) that the condi-

tional posterior p(z|x,y) is separable. In this case the classical Bayesian variational
approach is efficient enough to be implemented directly. Actually for i = 1, . . . , N ,
q̃k+1
i (zi) does not depend on other coordinates. Hence all the zi can be computed
simultaneously, knowing only q(x). Thanks to the classical Bayesian variational ap-
proach [20] described in Section 3, we deduce q̃k+1 thanks to Equation (3.2) and
Equation (4.4), for every i = 1, . . . , N

q̃k+1
i (zi) = exp

(
< ln p(y,x, z) >∏

j 6=i q̃
k
j (zj)q

k(x)

)
(4.5)

∝ exp

(ãi −
1

2
) ln(zi)−

∫
(
x2i zi
2σ2

s

+ zib̃i)
∏
l

qkl (xl)
∏
j 6=i

q̃kj (zj)dxdz


∝ exp

(
(ãi −

1

2
) ln(zi)− zib̃i −

∫
x2i zi
2σ2

s

qki (xi)dxi

)
∝ exp

(
(ãi −

1

2
) ln(zi)− zib̃i −

(σ2
k(i) +m2

k(i))zi
2σ2

s

)
∝ zãi− 1

2
i exp

(
−zi
[
b̃i +

(σ2
k(i) +m2

k(i))

2σ2
s

])
(4.6)

This entails that q̃k+1
i (zi) corresponds to a Gamma p.d.f. of parameters:

∀i ∈ {1, . . . , N}, ak+1(i) = ãi +
1

2
, (4.7)

bk+1(i) =
m2

k(i) + σ2
k(i)

2σ2
s

+ b̃i. (4.8)
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4.2.2. Approximation of q by Algorithm 2. Let us assume that we start with
a Gaussian p.d.f. q0(x) with meanm0 and covariance matrix Diag(σ2

0). At each itera-
tion we determine the approximation of qk(x) thanks to our method. At each iteration

k+1, we define an auxiliary measure qr(x) by qri (xi) = exp
(
〈ln p(y,x, z)〉∏

j 6=i q
k
j (xj)qk+1(z)

)
.

Hence ∀i ∈ {1, . . . , N},

qri (xi) = exp
(
< ln p(y,x, z) >∏

j 6=i q
k
j (xj)q̃k+1(z)

)
(4.9)

∝ exp

−∫ (‖y −Hx‖2

2σ2
b

+
x2i zi
2σ2

s

)∏
j 6=i

qkj (xj)q̃
k+1(z)dxdz


∝ exp

−∫ (xTHTHx− 2xTHTy

2σ2
b

+
x2i zi
2σ2

s

)∏
j 6=i

qkj (xj)q̃
k+1(zi)dxdzi


∝ exp

[
− 1

2σ2
b

(
x2idiag(H

TH)i − 2xi(H
Ty)i + 2xi(H

THmk)i

−2xidiag(HTH))imk(i)
)
+

x2iak+1(i)

2σ2
sbk+1(i)

]
(4.10)

where diag(A) is the vector composed by the diagonal entries of A. Note that qr(x)
corresponds, up to the normalization term, to a Gaussian distribution with mean mr

and variance σ2
r, where, for every i = 1, . . . , N ,

σ2
r(i) =

(
diag(HTH)i

σ2
b

+
ak+1(i)

bk+1(i)σ2
s

)−1

(4.11)

and

mr(i) = σ2
r(i)×

(
HTy − (HTH − diag(HTH))mk

σ2
b

)
i

(4.12)

Therefore, by Equation (3.10), we have for every i = 1, . . . , N ,

qαi (xi) = Kkq
k
i (xi)

(
qri (xi)

qki (xi)

)α

=

√
σ2

k(i)

σ2
r(i)

α

Kk exp

[
− (xi −mk(i))

2

2σ2
k(i)

]
exp

[
−αx

2
i (σ

2
k(i)− σ2

r(i))

2σ2
r(i)σ

2
k(i)

]
× exp

[
−α−2xi(mr(i)σ

2
k(i)−mk(i)σ

2
r(i)) +mr(i)

2σ2
k(i)−mk(i)

2σ2
r(i)

2σ2
r(i)σ

2
k(i)

]

=

√
σ2

k(i)

σ2
r(i)

α

Kk exp

[
−1

2

(
x2i

σ2
r(i) + α(σ2

k(i)− σ2
r(i))

σ2
r(i)σ

2
k(i)

)]
× exp

[
−1

2

(
−2xi

mk(i)σ
2
r(i) + α(mr(i)σ

2
k(i)−mk(i)σ

2
r(i))

σ2
r(i)σ

2
k(i)

+ t(α)

)]

where qα is defined in Section 5.1.1, and t(α) = α
mr(i)

2σ2
k(i)−mk(i)

2σ2
r(i)

2σ2
r(i)σ

2
k(i)

is a

constant. Finally, qαi (x) is still a Gaussian p.d.f. with parameters mα and Diag(σ2
α)
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satisfying:

σ2
α(i) =

σ2
r(i)σ

2
k(i)

σ2
r(i) + α(σ2

k(i)− σ2
r(i))

(4.13)

mα(i) =
mk(i)σ

2
r(i) + α(mr(i)σ

2
k(i)−mk(i)σ

2
r(i))

σ2
r(i) + α(σ2

k(i)− σ2
r(i))

. (4.14)

In order to construct qk+1 we choose in the previous equation α = αsubopt defined
in Equation (3.11).

Finally, we obtain the following algorithm.

Algorithm 3 Supervised Sparse Reconstruction algorithm (SSR)

1: Initialize(q0, q̃0)
2: repeat
3: function Estimate q̃k+1(z)(qk(x))
4: update ak+1 by Equation (4.7)
5: update bk+1 by Equation (4.8)
6: end function
7: function Estimate qk+1(x)(q̃k+1(z))
8: compute qr(x)← (mr,σ

2
r) by Equation (4.12) and Equation (4.11)

9: compute αsubopt

10: compute qα(x)← (mα,σ
2
α) by Equation (4.14) and Equation (4.13)

11: end function
12: until Convergence

4.3. Unsupervised algorithm. The algorithm described in the previous part
is not a fully Bayesian one as it still depends on some parameters, namely the param-
eters induced by the model (4.1) and (4.3). We see in the following how this method
can be extended to an unsupervised one by estimating these parameters. The param-
eters of the underlying Gamma random variable are not estimated in the following as
they define the sharpness of the prior distribution. We thus only estimate the variance
parameter of this prior together with the trade off between the prior and the noise.

The main interest of the variational Bayesian approach introduced by D. MacKay
[20] and involved in this paper is its flexibility. That is an unsupervised algorithm can
be easily deduced from the method proposed in Section 4.2, by considering that the pa-
rameters are realizations of a random variable with a given Jeffrey’s prior distribution.

In order to simplify the different expressions, we introduce in the following the
notations γb = 1/σ2

b and γs = 1/σ2
s . Hence, γb and γs are the precision parameters

of the noise and of the prior distribution. From now on they are also assumed to be
random variable with Gamma prior of parameters (ãb, b̃b) resp. (ãs, b̃s). As we do
not have information on these precision parameters γb and γs, this prior is obtained
by fixing (ãb = 0, b̃b = 0) resp. (ãs = 0, b̃s = 0).

With these assumptions, the posterior distribution from Equation (4.4) can be
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written as

p(x, z, γb, γs|y) ∝ γ
M
2

b exp

[
−γb‖y −Hx‖2

2

]
γ

N
2
s

∏
i

√
zi exp

[
−γszix

2
i

2

]
b̃ãi
i z

ãi−1
i e−zib̃i

Γ(ãi)

×
b̃ãb

b γ
ãb−1
b e−γbb̃b

Γ(ãb)

b̃ãs
s γ

ãs−1
s e−γsb̃s

Γ(ãs)
.

(4.15)

As in the previous section, the conditional posterior p(z, γb, γs|x,y) is separable
and can be approximated thanks to the classical variational Bayesian approach. Once
again only the distribution of X needs the use of Algorithm 2. Here the alternate
optimization scheme to carry out is:

q̃k+1(z) = argmax
q̃(z)

F
(
qk(x)q̃(z)qkb (γb)q

k
s (γs)

)
qk+1(x) = argmax

q(x)

F
(
q(x)q̃k+1(z)qkb (γb)q

k
s (γs)

)
qk+1
b (γb) = argmax

q(γb)

F
(
qk+1(x)q̃k+1(z)qb(γb)q

k
s (γs)

)
qk+1
s (γs) = argmax

q(γs)

F
(
qk+1(x)q̃k+1(z)qk+1

b (γb)qs(γs)
)

4.3.1. Optimization of the approximate p.d.f. qb. Concerning the random
vectors Z and X, the updating process follows the same scheme than the supervised
case, see Section 4.2, and are not recalled here. The main differences reside in the
update of the parameters distributions.

As the distributions of γb and γs are supposed to be Gamma, which is coherent
with the conjugate priors hypothesis, at each iteration we just adapt the parameters.
Hence we initialize our algorithm by considering that

q0b (γb) = G(a0b , b0b)

At iteration k + 1 we consider the maximum of the free energy from Equation (3.2)
which gives

qk+1
b (γb) ∝ exp

[
< ln Pr(x,y,z, γb, γs) >∏

j qk+1
j (xj)

∏
j q̃k+1

j (zj)qks (γs)

]
∝ exp

[
< (

M

2
+ ãb − 1) ln(γb)− γb(

‖y −Hx‖2

2
+ b̃b) >∏

j qk+1
j (xj)

]
∝ exp

[
(
M

2
+ ãb − 1) ln(γb)

−γb
(1
2
‖y −Hmk+1‖2 +

1

2

N∑
i=1

diag
(
HtH

)
i
σ2

k+1(i) + b̃b

)]
So qk+1

b (γb) is a Gamma p.d.f. of parameters:

ak+1
b =

M

2
+ ãb (4.16)

bk+1
b =

1

2
‖y −Hmk+1‖2 +

1

2

N∑
i=1

diag
(
HtH

)
i
σ2

k+1(i) + b̃b (4.17)
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4.3.2. Optimization of the approximate p.d.f. qs. As for γb, the approxi-
mation of qs is performed in the family of Gamma distributions. Hence at the initial-
ization step we assume that

q0s(γs) = G(a0s, b0s)

and at iteration k + 1, thanks again to Equation (3.2) we obtain

qk+1
s (γs) ∝ exp

[
< ln Pr(x,y,z, γb, γs|I) >∏

j qk+1
j (xj)

∏
j q̃k+1

j (zj)q
k+1
b (γb)

]
∝ exp

[
< (

N

2
+ ãs − 1) ln(γs)− γs(

1

2

N∑
i=1

zix
2
i + b̃s) >∏

j qk+1
j (xj)q̃

k+1
j (zj)

]

∝ exp

[
< (

N

2
+ ãs − 1) ln(γs)− γs(

1

2

N∑
i=1

ak+1(i)

bk+1(i)
(m2

k+1(i) + σ2
k+1(i)) + b̃s)

]

So qk+1
s (γs) is a Gamma p.d.f. and its parameters are deduced by identification.

ak+1
s =

N

2
+ ãs (4.18)

bk+1
s =

1

2

N∑
i=1

ak+1(i)

bk+1(i)
(m2

k+1(i) + σ2
k+1(i)) + b̃s (4.19)

Finally the algorithm performed can be summed up as follows.

Algorithm 4 UnSupervised Sparse Reconstruction algorithm (USSR)

1: Initialize(q0, q̃0, q0b , q
0
s)

2: repeat
3: function Estimate q̃k+1(z)(qk(x), qkb (γb), q

k
s (γs))

4: update ak+1 using Equation (4.7)
5: update bk+1 using Equation (4.8)
6: end function
7: function Estimate qk+1(x)(q̃k+1(z), qkb (γb), q

k
s (γs))

8: compute qr(x)← (mr,σ
2
r) using Equation (4.12) and Equation (4.11)

9: compute αsubopt

10: compute qα(x)← (mα,σ
2
α) using Equation (4.14) and Equation (4.13)

11: end function
12: function Estimate qk+1

b (γb)(q̃
k+1(z), qk+1(x))

13: update ak+1
b using Equation (4.16)

14: update bk+1
b using Equation (4.17)

15: end function
16: function Estimate qk+1

s (γs)(q̃
k+1(z), qk+1(x))

17: update ak+1
s using Equation (4.18)

18: update bk+1
s using Equation (4.19)

19: end function
20: until Convergence

5. Simulations. This section is devoted to numerical validations of the method
proposed in this paper. For the sake of completeness we will treat two cases. The
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first one is given by a noisy tomographic problem in a small dimensional case. This
example allows a comparison of our method with classical reconstruction ones. In a
second example, we will see a component identification problem in a large dimensional
dataset. This second case ensures that the method proposed in this paper is valid for
large dimensional cases.

The first inverse problem considered is given by a tomographic example. The goal
is to enhance the accuracy and the effectiveness of our approach, by comparison with
classical ones, such as classical Variational Bayesian methods or Monte Carlos Markov
Chain (MCMC) methods. From the limitations of these concurrent approaches, we
choose to consider only a small dimensional inverse problem (4096 unknowns), and
thus to invert the Radon transform of a small sparse image (64× 64 pixels).

The second experimental result is devoted to a relatively large inverse problem
(≈ 300000 unknowns). In this case, the problem is to identify different components in
a dictionary learning process. This problem is performed in a very noisy environment,
such as the signal to noise ratio can take negative values. This signal processing
problem can appear for instance in astrophysical context (detection of gravitational
waves [28]) or in radar imaging [39, 1].

In both cases the sparsity information is introduced by an iid Student’t prior.
This prior is a particular case of GSM. In the following we fix ãi =

ν
2 and b̃i =

ν
2 in

Equation (4.4).

5.1. Tomographic example. For the sake of completeness, a short description
of the comparative approaches is given, enhancing the main differences between them.
In a second part, we describe the phantom together with the simulation parameters
and the results.

5.1.1. Algorithms descriptions.

Filtered Back Projection (FBP). Filtered Back Projection is the classical ap-
proach to invert the Radon transform [25, 15]. This algorithm is obtained by sampling
the continuous inversion formula. Each line of the sinogram (see Fig. 5.1) is filtered
with a ramp filter. The filtered data are backprojected. The discrete version of the
backprojection operator is given by Ht.

Monte Carlos Markov Chain. The MCMCmethod contains a large class of Bayesian
algorithms [31]. In the following we consider the Gibbs algorithm for its efficiency
when the size of the problem increases. The principle is to obtain samples of the
posterior law given by Equation (4.4) by an alternate sampling with conditional laws.
The algorithm is as follows:

(i) zk sampled with p(z|y,xk−1)
(ii) xk sampled with p(x|y, zk)
(iii) go to i) until convergence of the Markov chain.

As the conditional law p(z|y,xk−1) is a separable Gamma distribution, the com-
putation of the sample zk is easy. Furthermore p(x|y, zk) is a correlated Gaussian
distribution with a covariance matrix Rk = M t

kMk = [ 1
σ2
b
HtH + 1

σ2
s
Diag(zk)]−1 and

a mean mk = 1
σ2
b
RkH

ty. The sampling under this correlated distribution is per-

formed by sampling a vector of centered iid Gaussian random variables with variance
1. Afterward this vector is multiplied by the correlation matrix Mk and added to
mk.
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Remark 3. At each sampling iteration the covariance matrix of size N ×N have
to be inverted.

Classical Bayesian Variational approach. This method was already described in
Section 3. In the alternate gradient descent algorithm, one can chose the degree
of separability of the approximative distribution. In the following we consider two
cases. In the first case, the so called VBBloc, we consider that the separation of the
approximating law is only between x and z. This leads to consider the approximating
distribution as:

q(x, z) = q(x)q̃(z)

and

q(x) = N (m,R)

q̃(z) = G(a, b)

Thus, with Equation (3.2), we obtain ∀i ∈ {1, . . . , N} the following updating equa-
tions:

a(i) =
ν

2
+

1

2
,

bk+1(i) =
ν

2
+

m2
k(i) + diag(Rk)(i)

2σ2
s

Rk+1 =

(
1

σ2
s

Diag(a/bk+1) +
1

σ2
b

HtH

)−1

mk+1 =
1

σ2
b

Rk+1H
ty.

Remark 4. At each step, the updating of the covariance matrix requires the in-
version of a N × N matrix, but the convergence rate is better than for the MCMC
approach. To overcome the limit given by a matrix inversion in the classical varia-
tional Bayesian framework, we can construct an approximative distribution separable
on x. Hence, we estimate a vector of variance instead of the matrix of covariance.
This approach is called VBComp in the following.

q(x,z) = Πiqi(xi)q̃(z)

In this case Equation (3.2) give the following updating equations, ∀i ∈ {1, . . . , N}:

a(i) =
ν

2
+

1

2
,

bk+1(i) =
ν

2
+

m2
k(i) + σ2

k(i)

2σ2
s

And, for every i ∈ {1, . . . , N}:

σ2
k+1(i) =

(
1

σ2
s

a(i)/bk+1(i) +
1

σ2
b

(HtH)(i,i)

)−1

mk+1(i) =
σ2

k+1(i)

σ2
b

(Hty(i)− (d(i)− (HtH)(i,i)mk(i)))

d = HtHmk

Remark 5. For each pixel xi, the corresponding value of d = HtHmk must be
determined.
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Coordinate (28,28) (25,28) (28,25) (40,28) (32,38) (48,48) (8,52)
Value 1 1 1 0.5 0.7 0.8 0.6

Table 5.1
Peaks definition in the phantom

5.1.2. Simulation configuration. The test image is given by a sparse phan-
tom, composed of 7 peaks on a grid 64× 64 (see Tab. 5.1 and Fig. 5.2(a)). We have
simulated data in a parallel beam geometry. These projections are collected from 32
angles θ, uniformly spaced over [0, 180[. Each projection is composed of 95 detector
cells. We add a white Gaussian noise (iid) with standard deviation equal to 0.3 (see
Fig. 5.1). Data have thus a relatively bad signal to noise ratio and the number of un-
knowns is larger than the number of data, which leads to an ill-posed inverse problem.

s10 20 30 40 50 60 9070 800

θ

45

90

180

135

Fig. 5.1. Data collected : sinogram composed of 32 angles and 95 detector cells.

5.1.3. Results and discussion. In this section, we expose the inversion of a to-
mographic problem with the approaches described earlier. All the iterative approaches
are initialized with a zero mean and a variance equal to one, and the hyperparam-
eters σ2

b , σ
2
s and ν are respectively fixed to 1, 0.05 and 0.1. The original image and

its different reconstructions are summed up on Fig. 5.2. A comparison of Fig. 5.2
(b) with 5.2 (c), 5.2 (d) and 5.2 (e) clearly shows that the analytical inversion of the
Radon transform performed by Filtered Back Projection (FBP) is less robust to noise
than Bayesian approaches. Asymptotically, in Bayesian cases, theoretical results are
favorable to the MCMC approach, as it does not need any approximation. In prac-
tice, the number of samples is too small to fit with the asymptotic results of MCMC
methods, which explains the bad reconstruction observed in Fig. 5.2(c). Finally, the
Supervised Sparse Reconstruction (SSR) (see Fig. 5.2(f)) has the same reconstruction
quality than the classical variational Bayesian approaches (see VBBloc Fig. 5.2(d)
and VBComp Fig. 5.2(e)). However when we compare the execution time (see Tab.
5.2), we see that our approach is 10 time faster than the VBBloc approach, 40 time
faster than the VBComp approach and 370 faster than the MCMC approach for this
small inverse problem. Moreover this ratio increases with the size of the problem
as both MCMC and classical variational Bayesian need the inversion of a covariance
matrix at each iteration, which is not the case for our algorithm.

5.1.4. Hyperparameters estimation. As seen in the section 4.2, our approach
is defined in a fully Bayesian framework. We thus estimate the values of hyperparam-
eters in introducing a non informative Jeffrey’s prior, as described in Part 4.3. We
estimate thus the trade off between the likelihood and the prior through the estimation
of σ2

b and σ2
s . Hence, we apply the algorithm UnSupervised Sparse Reconstruction

(USSR) (see Algorithm 4) in our tomographic dataset. As for the previous simulation,
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(a) (b) (c)

(d) (e) (f)

Fig. 5.2. Images are presented with the same inversed grayscale: (a) true image of 7 peaks,
(b) FBP with ramp filter, (c) MCMC Gibbs approach, (d) classical variational Bayesian (VBBloc)
with bloc optimization, (e) classical variational Bayesian (VBComp) with component optimization,
(f) SSR approach.

Table 5.2
Comparison of the different approaches: computing time (second) and quality of estimation ( snr).

Method FBP VBBloc VBComp VBGrad (SSR) MCMC Gibbs
CPU time (s) 0.05 586.20 1759.1 44.41 37079.50
Nb of iterate 1 15 8(×4096) 500 1000

snr -2.04 5.87 5.76 6.00 -0.60

the initial values of the mean are fixed to zero and the variance are fixed to one. For
the hyperparameters σ2

b and σ2
s the initial values are respectively fixed to 1 and 0.05

to begin with a prior information more important than the likelihood.

The results are summed up in Fig. 5.3. We observe that the hyperparameters
estimation intensifies the sparsity of the reconstructed image together with the snr,
as it goes from 6.00 db in the previous case to 10.06 db. Estimating the true hyperpa-
rameters is in this case more relevant than arbitrarily chosen parameters. We observe
on Fig. 5.3 (c) that the background is equal to zero even if some additional peaks
appear in the reconstructed image

Finally we see on Fig. 5.3, (d) and (e), the behavior of the estimation of the
hyperparameters respectively to the number of iterations. This plot is in a logarithm
scale due to the dynamic of the fluctuations. We observe that for σ2

b this estimation
converges to the true value (dashed line). For σ2

s we do not known the true value, but
one can notice that this estimation converges also to some given value.
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Fig. 5.3. Results with hyperparameters estimation: (a) True image, (b) reconstructed image
with SSR algorithm (hyperparameters are fixed), (c) reconstructed image with USSR (image and
hyperparameters are estimated jointly), (d) logarithm of σ2

b during the iterations the dashed line
correspond to the true value, (e) logarithm of σ2

s during the iterations

5.2. Component identification (denoising). As enhanced by the previous
simulation, our method can be more efficient than classical ones on relatively small
problem (4096 unknowns). But its main advantage is that it allows to address larger
problems (≈ 300000 unknowns in the present case). In the present part, our purpose
is to treat an identification problem on a dictionary decomposition. More precisely,
we identify many chirps function ψk(t) in a linear mixture. This identification issue
appears for instance in astrophysics, in order to detect gravitational waves [28] or in
radar imaging [39, 1]. Unfortunately, this mixture is corrupted by noise and spurious
signal. To identify each chirps in the mixture and to remove the effect of the spurious
signal, we develop a dictionary learning approach. To build our dictionary we make
the following assumptions : all chirps have the same duration TChirp, the chirps rate
ζ is digitalized on very few values (eight in the present case), the spurious signal can
be represented on very few coefficients of Discrete Fourier Transform and the noise
is white and Gaussian. However, we do not make any assumption on the variance of
the noise or on the number of chirp functions in the mixture.

In the following section, we present the formalism of the dictionary learning ap-
proach. After that, we expose the simulation condition. Then, we illustrate the
efficiency of our approach with three numerical experiments. In the first one, we con-
sider a nominal case to study the quality of estimation. After what, we study a limit
case with a very high level of noise (snr at -5 db), in order to illustrate the robustness
of our approach with regard to noise. In the last experiment, we study the behavior
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of the reconstruction quality when the number of chirp functions or the noise level
increase.

5.2.1. Dictionary decomposition. In this section the signal considered, de-
noted by s(t), is obtained by the following dictionary decomposition.

s(t) =

Nfreq∑
i=1

(ui + jvi)φi(t) +

Ntrans∑
l=1

Nrate∑
k=1

cl,kψk(t− l∆t), (5.1)

where

φi(t) = exp [2jπfit] ,

corresponds to a pure frequency fi with j
2 = −1 whereas

ψk(t) = cos(2π(f0t+
1

2
t2ζk))Π0,TChirp

(t)

corresponds to the chirps components. Here, f0 is the starting frequency (at time t =
0), ζk is the chirp rate, that is the increasing rate of the frequency, Π(t) is a gate func-
tion, TChirp is the duration of the chirp, ∆t is the shift between two chirps functions
and tl = l∆t is the first time where the ψk(t−l∆t) is not null. We merge all the dictio-
nary’s coefficients in a single vector x = (u1, . . . , uNfreq, v1, . . . , vNfreq, c1,1, . . . , cNtrans,Nrate)

t.
Where Nfreq is the number of pure frequency functions contained on the dictionary
whereas Ntrans is the number of chirp shifts and Nrate is the number of chirp rate.
Moreover, we store sampled version of functions φi and ψl,k into a matrix H. Hence,
the sampled version of Equation (5.1) is given by

s = Hx, (5.2)

where s = (s(t0), . . . , s(tN ))t.

The measurement of the signal s is also corrupted by an iid Gaussian noise b with
a variance σ2

b , such that the observations are given by

y = s+ b = Hx+ b. (5.3)

In the following, the dictionary is composed of chirp functions with only 8 different
chirp rates (Nrate = 8). The frequency f0 is equal to 5 000 hz, the chirp rates ζk are
uniformly spaced between 6 000 and 20 000 hz, the shift parameters ∆t is fixed up to
a sampling period (Te = 1/Fe). Finally, the duration of the chirp (TChirp) is equal to
the half time of the measurements (Tmes).

Remark 6. Our dictionary is redundant as the number of coefficients is 4.5
times greater than the number of observations. Thus, the component identification is
an ill-posed problem.

5.2.2. Common simulation conditions. Simulated data are composed by the
sum of NCos cosine functions with different frequencies and NChirp chirp functions
taken in our dictionary. The simulated data are sampled at a frequency Fe = 44khz,
and they are composed of N = 216 points, thus the duration of measurement Tmes is
equal to 1.5 second.
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Table 5.3
Parameters of the different components

type of function Amplitude frequency (hz) rate (hz) first time (s)
cosine 1 5169.7 - -
cosine 0.8 4834 - -
Chirp 1.4 - 8000 0.2
Chirp 1.4 - 10000 0.25
Chirp 1.0 - 16000 0.22
Chirp 1.0 - 20000 0.5
Chirp 1.2 - 10000 0.4
Chirp 1.0 - 18000 0.41
Chirp 1.0 - 20000 0.6
Chirp 1.4 - 8000 0.3
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Fig. 5.4. Data in different fields: (a) time, (b) frequency, (c) time-frequency

5.2.3. First result. The simulated data are composed of two cosine functions
and eight chirp functions, the parameters of all this functions are given in Tab. 5.3.
Once again simulated data have a relatively bad snr, at 5.68 db in this case. They
are plotted in Fig. 5.4 (a), whereas their Fourier transform are given in Fig. 5.4
(b) and their time-frequency transform, computed with a STFT (Short Time Fourier
Transform) are on Fig. 5.4(c). We can see in the time frequency representation that
there are overlaps between the different components making the identification harder.

Moreover this inverse problem is treated with the unsupervised approach given by
Algorithm 4. Our algorithm was launched with the shape parameter of the Student’t
equals to ν = 0.01 in order to introduce a very sparse prior. The initialization
parameters are:

• The mean of q0(x), m0 = 0,
• the variance of q0(x), σ2

0 = 1,
• the mean of q0b (γb), is equal to 10−5,
• the mean of q0s(γs), is equal to 105.

After 400 iterations (316 s), the algorithm (USSR) converges to a stable solu-
tion. It gives parameters of different approximated laws. We consider here that the
estimation x̂ is obtained by taking the posterior mean for the coefficients (see Fig.
5.5).

Fig. 5.5 (a) represents the real part of the Fourier coefficients (the vector u is
the Equation (5.1)). We recognize the Fourier transform of the two cosine functions.
Moreover, when we compare Fig. 5.5 (a) with the Fourier transform of the data, Fig.
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5.4 (b), we observe that the algorithm USSR selected only the sparse components of
the Fourier transform. We plot on Figs 5.5 (b-i) the chirp coefficients cl,k for eight
chirp rates (6000 until 20000) with respect to the first time tl where the chirp does
not vanishes. In these figures the estimated values are plotted with a line and the
true value of non null coefficients are marked by a cross. All chirp coefficients have
been reconstructed in the right place, and their amplitudes are very close to the real
ones.

Estimation ŝ of s is performed thanks to the estimation of the coefficients x̂ and
Equation (5.2). The snr of ŝ is equal to 22.6 db. It is a very good result knowing
that the snr of data y is equal to 5.68 db.
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Fig. 5.5. Dictionary decomposition: true values of coefficients are marked by a cross

5.2.4. Limit case. This section illustrates the performance of the algorithm
USSR when the signal s is hidden by the noise, the snr of data being equal to -5 db
(see Fig. 5.6 (a)). We generate a signal composed of four chirps Equation (5.1) which
parameters are summed up in Tab. 5.4.

The estimation of coefficients is performed using our USSR algorithm with the
same initialization as in the previous case. After 400 iterations we obtain the co-
efficients illustrated on Fig. 5.6, (c) and (d). The reconstructed coefficients are
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Table 5.4
Parameters of the different components

type of function Amplitude Chirp rate (hz) first time (s)
Chirp 0.9526 16000 0.1530
Chirp 1.1606 16000 0.1945
Chirp 0.7369 18000 0.2000
Chirp 1.1724 18000 0.1865

represented by a line and the true values of the coefficients are marked by a cross.
We observe that all coefficients are in the right place and that the peaks amplitudes
are systematically underestimated, but the estimated values are relatively close to the
true ones. Fig. 5.6 (b) points out the estimator ŝ. We see that the shape of the signal
is close to the true one, and that when the signal is missing, between 1 and 1,45 s,
the level of the residual noise is relatively low.

Table 5.5
Signal to Noise Ratio ( snr) in db

data USSR approach best Wiener filter best wavelet soft threshold
-5.0 15.05 1.1941 1.8677

In Tab. 5.5 we compare the reconstructed signal ŝ with the reconstruction ob-
tained with two classical denoising approaches, namely the Wiener filter and the soft
wavelet shrinkage, with the four vanishing moments symmlet. In these two meth-
ods, we furthermore have to tune a parameter which is the correlation power for the
Wiener filter and the threshold for the soft wavelet shrinkage. Hence we choose the
value of this hyperparameter which minimizes the Signal to Noise Ratio (snr). Unlike
in the USSR approach, we thus have to we know the true signal in order to tune this
parameter. Furthermore, our approach increases hugely the snr (20 db), thus the
noise level is divided by 100 whereas the classical methods reduce the noise only by a
factor 4 or 5. This example enhances the efficiency of the dictionary decomposition
in the denoising context.

5.2.5. Behavior of our method versus level of noise and number of com-
ponents. In this part, we perform the study of the robustness of the USSR algorithm
regarding Signal to Noise Ratio. This simulation allows a better understanding of the
reconstruction properties of our method.

Simulations. In the following we consider simulated data with 6 different snr
(−5,−2, 1, 2, 5, 10) and with low (4) and high (16) number of components. For each
snr and each number of components, we simulate 30 set of data, the components of
the signal being randomly chosen between 1 and 9. If the number is equal to 1, we
consider a cosine function with a frequency fi is uniformly taken between 0 and the
sampling frequency (Fe= 44 khz), and an amplitude randomly chosen between 0.6
and 1.4. If the number is equal to 2 resp. 3, . . . , 9, we simulate a chirp function with
a chirp rate ζk equal to 6000 resp. 8000, . . . , 20000. The first time of the chirp tl is
uniformly taken between 0.1 and 0.6 second, and as previously, the amplitude cl,k is
randomly chosen between 0.6 and 1.4.

Reconstruction. We reconstruct this 360 sets of data by the algorithm USSR
taking the same configuration and the same initialization as in previous cases.
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Fig. 5.6. Limit case: (a) data and true signal, (b) reconstructed signal

The results are summed up on Fig 5.7 (a-d). Each point of the plot is computed
by averaging the result of 30 reconstructions. In Fig 5.7 (a), resp. (b), we plot the true
positive proportion, resp. false positive proportion, of the significant reconstructed
coefficients1. At first sight we see that there are no false positive with our approach.
Indeed, as the approach is unsupervised with a sparsity prior, the coefficients with low
energy are considered as noise. Moreover we can reconstruct 16 components without
lost when the snr is greater or equal to 5 db and resp. 4 components when the snr
is greater to 1 db. Fig. 5.7 shows that the reconstruction is more difficult when the
number of components increases.

Fig. 5.7 (c) is obtained by calculating the snr of the reconstructed signal ŝ. We
observe a quite linear behavior. For 4 components the gain is of 17 db whereas for
16 components we gain 11.5 db. Finally, Fig. 5.7 (d) exposes the quadratic error of
the peaks amplitude. There are here two cases. When all the components are found
this error is linear (see Fig. 5.7 (d) the bottom curve when snr> 1) but it increases
more rapidly when some components are not found (see Fig. 5.7 (d) the bottom curve
when snr< 1).

6. Conclusion. In this paper, we have defined an iterative algorithm based on
the descent gradient principle and adapted to the context of variational Bayesian
methods. The main interest of this algorithm is that it converges faster than the
classical Bayesian methods and allows an use on large dimensional datasets. We have
furthermore give its implementation in the case of white noise model when the prior
information enhances some sparse behavior. A small tomographic application allows
us to compare our method with classical ones. We see that even in small cases, our
algorithm can be faster than classical ones. A second simulation part, corresponding

1the significant coefficients are obtained by applying a threshold equal to 0.2 on the coefficients
vector. This threshold is equal to the third of the minimum value of the true non zero coefficients.
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Fig. 5.7. Study of Robustness versus noise, each point of the curve being is calculated by
averaging 30 reconstructions with components randomly chosen: (a) True positive proportion of the
significant reconstructed coefficients, (b) False positive proportion of the significant reconstructed
coefficients, (c) snr of the estimated signal ŝ, (d) Quadratic error of the peaks amplitude

to a dictionary identification allows to understand the behavior of our method for large
dimensional problems. Once again this method has good reconstruction properties in
this case.

7. Annexe.

7.1. Proof of Lemma 2.3. In order to ensure that for small values of α, we
have F (µα) > F (µk), we show that the right part of Equation (2.15) is positive.

Let the notations be given by Section 2.
First, one can notice that

dFµk(µα − µk) =

∫
RN

df(µk,x)(hα(x)− 1)dµk(x)

=
1

α

∫
RN

(αdf(µk,x) + lnKk(α))(hα(x)− 1)dµ(x)−
∫
RN

lnKk(α)

α
(hα(x)− 1)dµk(x)

=
1

α

∫
RN

(αdf(µk,x) + lnKk(α))(hα(x)− 1)dµk(x),

as lnKk(α)
α is constant and

∫
RN (hα(x)− 1)dµ(x) = 0.

For the second term one has

−
∫
RN

ln(hα(µ
k,x))dµα(x) = −

∫
RN

(αdf(µk,x)+lnKk(α))hαdµ
k(x) = −α

∫
RN

df(µk,x)hαdµ
k(x)−lnKk(α).

29



But Jensen’s inequality ensures that

lnKk(α) ≤ −α
∫
RN

df(qk,x)dµk(x). (7.1)

Which leads to

−
∫
RN

ln(hα(µ
k,x))dµα(x) ≥ −α

∫
RN

df(µk,x)(hα(x)− 1)dµk(x) (7.2)

Finally,

dFµk(µα − µk)− L‖hα − 1‖2L2(µk) −
∫
RN

(αdf(µk,x) + lnKk(α))dµ
α(x)

≥
∫
RN

(
(αdf(µk,x) + lnKk(α))(

1

α
− 1)− L(hα(x)− 1)

)
(hα(x)− 1)dµk(x)

=

∫
{x:αdf(µk,x)+lnKk(α)≥0}

(
(αdf(µk,x) + lnKk(α))(

1

α
− 1)− L(hα(x)− 1)

)
(hα(x)− 1)dµk(x)

+

∫
{x:αdf(µk,x)+lnKk(α)<0}

(
(αdf(µk,x) + lnKk(α))(

1

α
− 1)− L(hα(x)− 1)

)
(hα(x)− 1)dµk(x)

(7.3)

Let us consider each integrals appearing in Eq. (7.3) separately. First, let us
notice that if αdf(µk,x) + lnKk(α) < 0 then so is hα − 1. Furthermore, for every
α > 0 and x ∈ RN , we have hα−1 ≥ αdf(µk,x)+ lnKk(α). Hence if x ∈ RN is such
that αdf(µk,x) + lnKk(α) < 0 then(
(αdf(µk,x) + lnKk(α))(

1

α
− 1)− L(hα(x)− 1)

)
(hα(x)−1) ≥ (hα(x)−1)2

(
1

α
− 1− L

)
,

which is positive as soon as α ≤ 1
1+L .

Consider now that x ∈ RN is such that αdf(µk,x) + lnKk(α) ≥ 0. The Mean
Value Theorem applied to the function exponential ensures that one can find, for
every x and α a θ ∈ (0, αdf(µk,x) + lnKk(α)) such that

hα(µ
k,x) = eαdf(µ

k,x)+lnKk(α) = 1 + (αdf(µk,x) + lnKk(α))e
θ.

This entails that(
(αdf(µk,x) + lnKk(α))(

1

α
− 1)− L(hα(x)− 1)

)
= (αdf(µk,x)+lnKk(α))(

1

α
−1−Leθ).

Furthermore, Jensen’s inequality ensures that

0 ≤ αdf(µk,x) + lnKk(α) ≤ α
(
df(µk,x)−

∫
RN

df(µk,x)dµk(x)

)
.

Thus

df(µk,x)−
∫
RN

df(µk,x)dµk(x) ≥ 0.
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And

1 ≤ eθ ≤ hα(µk,x) ≤ eα(df(µ
k,x)−

∫
RN df(µk,x)dµk(x)),

which leads to

1

α
− 1− Leα(df(µ

k,x)−
∫
RN df(µk,x)dµk(x)) ≤ 1

α
− 1− Leθ ≤ 1

α
− 1− L.

Concerning the left part of the previous equation one can notice that the function of
α defined here is such that there exists a value α0 > 0 such that for every α ≤ α0,

1

α
− 1− Leα(df(µ

k,x)−
∫
RN df(µk,x)dµk(x)) ≥ 0.

Finally one has that there exists α0 ≥ 0 such that

∀α ≤ α0 dFµk(µα−µk)−L‖hα− 1‖2L2(µk)−
∫
RN

(αdf(µk,x)+ lnKk(α))dµ
α(x) ≥ 0.

(7.4)

7.2. Optimization of the parameter α. In order to obtain the optimal value
of α > 0, we have to optimize

gk(α) = F (qα) =

∫
RN

∫
RN

ln p(x,y, z)qα(x)q̃k(z)dxdz−
∫
RN

∫
RN

ln(qα(x)q̃k(z))qα(x)q̃k(z)dxdz.

Let us compute F (qα). To achieve this, we first notice that

ln p(x,y, z) = C̃−xTHTHx− 2xTHTy + yTy

2σ2
b

+
∑
i

1

2
ln(zi/σ

2
s)−

zix
2
i

2σ2
s

+(ãi−1) ln(zi)−zib̃i,

where C̃ is a positive constant. Thus

∫
RN

∫
RN

ln p(x,y, z)qα(x)q̃k(z)dxdz = C̃ −
∫
RN

∫
RN

xTHTHx− 2xTHTy

2σ2
b

∏
qαj (xj)q̃

k(z)dxdz

+
∑
i

∫
R

1

2
ln(zi/σ

2
s)q̃

k
i (zi)dzi +

∑
i

∫
R

(
(ãi − 1) ln(zi)− zib̃i

)
q̃k(zi)dzi

−
∑
i

∫
R2

zix
2
i

2σs
q̃ki (zi)dxidzi

We have thus five terms:
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•

A = −
∫
RN×RN

xTHTHx

2σ2
b

∏
j

qαj (xj)q̃
k(z)dxdz

= − 1

2σ2
b

∫
RN

xTHTHx

2σ2
b

∏
j

qij
α(xj)dx

= − 1

2σ2
b

∫
RN

N∑
l=1

N∑
p=1

xlxphlp
∏
j

qαj (xj)dx

= − 1

2σ2
b

∫
RN

N∑
l=1

N∑
p 6=l

xlxphlp
∏
j

qαj (xj)dx−
1

2σ2
b

∫
RN

N∑
p=1

x2phpp
∏
j

qαj (xj)dx

= − 1

2σ2
b

 N∑
l=1

N∑
p 6=l

mα(l)mα(p)hlp +

N∑
p=1

hpp(σ
2
α(p) +m2

α(p))


= −1

2

(
mT

α

HTH

σ2
b

mα +

N∑
p=1

hppσ
2
α(p)

)

Where (hlp)1≤l≤N,1≤p≤N are the coefficients of HTH.
•

B =

∫
RN×RN

xTHTy

σ2
b

∏
qαi (xi)q̃

k(z)dxdz

= mT
α

HTy

σ2
b

.

•

C =
∑
i

∫
R

1

2
ln(zi)q̃

k(zi)dzi +
∑
i

∫
R

(
(ãi − 1) ln(zi)dzi

=
N∑
i=1

∫
R
(ãi −

1

2
) ln(zi)q̃

k(zi)dzi.

•

D = −
∑
i

1

2
ln(σ2

s) +

∫
R
zib̃iq̃

k(zi)dzi = −
N∑
i=1

b̃i
a(i)

bk(i)
− N

2
ln(σ2

s).

•

E = −
∑
i

∫
R2

zix
2
i

2σ2
s

qαi (xi)q̃
k(zi)dxidzi

= −
∑
i

∫
R

x2i
2σ2

s

qαi (xi)dxi

∫
R
ziq̃

k(zi)dzi

= − a(i)

2bk(i)σ2
s

∫
R
x2i q

α
i (xi)dxi

= −
∑
i

a(i)(σ2
α(i) +m2

α(i))

2bk(i)σ2
s

.
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Furthermore, concerning the entropy we have

H(X,Z) =
N∑
i=1

H(qα(xi)) +
N∑
i=1

H(q̃k(zi)).

And,

H(qα(xi)) =
1

2
(1 + ln(2πσ2

α(i))),

H(q̃k(zi)) = −
∫
R
(a(i)− 1) ln(zi)q̃

k(zi)dzi + Const.

From Equation (4.7) we have a(i) = ãi +
1
2 and

C+
N∑
i=1

H(q̃k(zi)) =
N∑
i=1

N∑
i=1

∫
R
(ãi−

1

2
) ln(zi)q̃

k(zi)dzi−
∫
R
(ãi+

1

2
−1) ln(zi)q̃k(zi)dzi+Const = Const

Finally, the negative free entropy is

F (qα) = A+B +D + E +
∑
i

H(xi) + Const, (7.5)

Let us determine the critical values of gk(α) = F (qα) and their signs.
As one can see, the derivative of gk(α) is closely related to the derivatives of σ2

α(i)
and mα(i) which, for i = 1, . . . , N , are given by

dσ2
α(i)

dα
=
−σ2

k(i)σ
2
r(i)(σ

2
k(i)− σ2

r(i))

(σ2
r(i) + α(σ2

k(i)− σ2
r(i)))

2
, (7.6)

whereas

dmα(i)

dα
=

σ2
r(i)σ

2
k(i)(mr(i)−mk(i))

(σ2
r(i) + α(σ2

k(i)− σ2
r(i)))

2
. (7.7)

And the second order derivatives are

d2σ2
α(i)

dα2
=

2σ2
k(i)σ

2
r(i)(σ

2
k(i)− σ2

r(i))
2

(σ2
r(i) + α(σ2

k(i)− σ2
r(i)))

3
(7.8)

and,

d2mα(i)

dα2
=

2σ2
r(i)σ

2
k(i)(mr(i)−mk(i))(σ

2
r(i)− σ2

k(i))

(σ2
r(i) + α(σ2

k(i)− σ2
r(i)))

3
. (7.9)

This entails that the first order derivative of g satisfies

g′(α) =
N∑
i=1

− 1

σ2
b

N∑
p=1

dmα(i)

dα
mα(p)hip

− hii
2σ2

b

dσ2
α(i)

dα
+

dmα(i)

dα

(
HTy

σ2
b

)
i

− a(i)

2bk(i)σ2
s

dσ2
α(i)

dα
− a(i)mα(i)

bk(i)σ2
s

dmα(i)

dα
+

dσ2
α(i)/dα

4πσ2
α(i)

(7.10)

33



Whereas,

g′′(α) =
N∑
i=1

− 1

σ2
b

N∑
p=1

(
d2mα(i)

dα2
mα(p) +

dmα(i)

dα

dmα(p)

dα

)
hip −

hii
2σ2

b

d2σ2
α(i)

dα2
+

d2mα(i)

dα2

(
HTy

σ2
b

)
i

− a(i)

2bk(i)σ2
s

d2σ2
α(i)

dα2
− a(i)mα(i)

bk(i)σ2
s

d2mα(i)

dα2
− a(i)

bk(i)σ2
s

(
dmα(i)

dα

)2

+
d2σ2

α(i)/dα
2σ2

α(i)− dσ2
α(i)/dα

4π(σ2
α(i))

2

(7.11)

In this case, the approximated critical value of F is given by α such that

αsubopt = −
dF (qα)

dα

∣∣∣
α=0

d2F (qα)
dα2

∣∣∣
α=0

.

Finally, we consider αsubopt = − g′(0)
g′′(0) , where

g′(0) = −
(
dmα

dα

∣∣∣∣
α=0

)T (
HTHmk −HTy

σ2
b

)
−

N∑
i=1

dmα(i)

dα

∣∣∣∣
α=0

a(i)mk(i)

bk(i)σ2
s

+
1

2

N∑
i=1

σ2
k(i)

σ2
r(i)

(σ2
r(i)− σ2

k(i))

(
−hii
σ2
b

− a(i)

bk(i)σ2
s

+
1

2πσ2
k(i)

)]
.

(7.12)

g′(0) =
N∑
i=1

− 1

σ2
b

N∑
p=1

σ2
k(i)

σ2
r(i)

(mr(i)−mk(i))m0(p)hip −
hii
2σ2

b

σ2
k(i)

σ2
r(i)

(σ2
r(i)− σ2

k(i))

+
σ2

k(i)

σ2
r(i)

(mr(i)−mk(i))

(
HTy

σ2
b

)
i

− aki b
k
i

2σ2
s

σ2
k(i)

σ2
r(i)

(σ2
r(i)− σ2

k(i))−
σ2

k(i)

σ2
r(i)

(mr(i)−mk(i))
m0(i)

σ2
s

+
σ2

r(i)− σ2
k(i)

4πσ2
r(i)

=

N∑
i=1

σ2
k(i)

σ2
r(i)

[
(mr(i)−mk(i))

(
− (HTHmk −HTy)i

σ2
b

− mk(i)

σ2
s

)
+ (σ2

r(i)− σ2
k(i))

(
− hii
2σ2

b

− aki b
k
i

2σ2
s

+
1

4πσ2
k(i)

)]
= −

(
dmα

dα

∣∣∣∣
α=0

)T (
HTHmk −HTy

σ2
b

+
mk

σ2
s

)
+

1

2

N∑
i=1

σ2
k(i)

σ2
r(i)

(σ2
r(i)− σ2

k(i))

(
−hii
σ2
b

− aki b
k
i

σ2
s

+
1

2πσ2
k(i)

)]
.

(7.13)
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And,

g′′(0) = −
(
d2mα

dα2

∣∣∣∣
α=0

)T (
HTHmk −HTy

σ2
b

)
−

N∑
i=1

d2mα(i)

dα2

∣∣∣∣
α=0

a(i)mk(i)

bk(i)σ2
s

−
(
dmα

dα

∣∣∣∣
α=0

)T (
HTH

σ2
b

− Diag(a)(Diag(b))−1

σ2
s

)
dmα

dα

∣∣∣∣
α=0

+

N∑
i=1

σ2
k(i)

(σ2
r(i))

2
(σ2

r(i)− σ2
k(i))

2

(
−hii
σ2
b

− a(i)

bk(i)σ2
s

+
1

2πσ2
k(i)

)
−

N∑
i=1

σ2
k(i)

σ2
r(i)

σ2
r(i)− σ2

k(i)

4πσ2
k(i)

.

(7.14)
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