
EXTRA: AN EXACT FIRST-ORDER ALGORITHM FOR

DECENTRALIZED CONSENSUS OPTIMIZATION∗

WEI SHI , QING LING , GANG WU , AND WOTAO YIN

Abstract. Recently, there have been growing interests in solving consensus optimization problems in

a multi-agent network. In this paper, we develop a decentralized algorithm for the consensus optimization

problem

minimize
x∈Rp

f̄(x) =
1

n

n∑
i=1

fi(x),

which is defined over a connected network of n agents, where each function fi is held privately by agent i and

encodes the agent’s data and objective. All the agents shall collaboratively find the minimizer while each

agent can only communicate with its neighbors. Such a computation scheme avoids a data fusion center or

long-distance communication and offers better load balance to the network.

This paper proposes a novel decentralized exact first-order algorithm (abbreviated as EXTRA) to solve

the consensus optimization problem. “Exact” means that it can converge to the exact solution. EXTRA can

use a fixed large step size, which is independent of the network size, and has synchronized iterations. The

local variable of every agent i converges uniformly and consensually to an exact minimizer of f̄ . In contrast,

the well-known decentralized gradient descent (DGD) method must use diminishing step sizes in order to

converge to an exact minimizer. EXTRA and DGD have the same choice of mixing matrices and similar

per-iteration complexity. EXTRA, however, uses the gradients of last two iterates, unlike DGD which uses

just that of last iterate.

EXTRA has the best known convergence rates among the existing first-order decentralized algorithms

for decentralized consensus optimization with convex Lipschitz–differentiable objectives. Specifically, if fi’s

are convex and have Lipschitz continuous gradients, EXTRA has an ergodic convergence rate O
(
1
k

)
in

terms of the first-order optimality residual. If f̄ is also (restricted) strongly convex, EXTRA converges to

an optimal solution at a linear rate O(C−k) for some constant C > 1.

Key words. Consensus optimization, decentralized optimization, gradient method, linear convergence

1. Introduction. This paper focuses on decentralized consensus optimization, a prob-

lem defined on a connected network and solved by n agents cooperatively

minimize
x∈Rp

f̄(x) =
1

n

n∑
i=1

fi(x), (1.1)

over a common variable x ∈ Rp, and for each agent i, fi : Rp → R is a convex function

privately known by the agent. We assume that fi’s are continuously differentiable and will

introduce a novel first-order algorithm to solve (1.1) in a decentralized manner. We stick to

the synchronous case in this paper, that is, all the agents carry out their iterations at the

same time intervals.

Problems of the form (1.1) that require decentralized computation are found widely

in various scientific and engineering areas including sensor network information processing,

∗This work is supported by Chinese Scholarship Council (CSC) grants 201306340046 and 2011634506,

NSFC grant 61004137, MOF/MIIT/MOST grant BB2100100015, and NSF grants DMS-0748839 and DMS-

1317602.

1

ar
X

iv
:1

40
4.

62
64

v4
 [

m
at

h.
O

C
]

 3
0

N
ov

 2
01

4

multiple-agent control and coordination, as well as distributed machine learning. Examples

and works include decentralized averaging [7,15,34], learning [9,22,26], estimation [1,2,16,18,

29], sparse optimization [19, 35], and low-rank matrix completion [20] problems. Functions

fi can take forms of least squares [7, 15, 34], regularized least squares [1, 2, 9, 18, 22], as

well as more general ones [26]. The solution x can represent, for example, the average

temperature of a room [7,34], frequency-domain occupancy of spectra [1,2], states of a smart

grid system [10, 16], sparse vectors [19, 35], and a matrix factor [20] and so on. In general,

decentralized optimization fits the scenarios in which the data is collected and/or stored in a

distributed network, a fusion center is either infeasible or not economical, and/or computing

is required to be performed in a decentralized and collaborative manner by multiple agents.

1.1. Related Methods. Existing first-order decentralized methods for solving (1.1)

include the (sub)gradient method [21, 25, 36], the (sub)gradient-push method [23, 24], the

fast (sub)gradient method [5,14], and the dual averaging method [8]. Compared to classical

centralized algorithms, decentralized algorithms encounter more restrictive assumptions and

typically worse convergence rates. Most of the above algorithms are analyzed under the

assumption of bounded (sub)gradients. Work [21] assumes bounded Hessian for strongly

convex functions. Recent work [36] relaxes such assumptions for decentralized gradient

descent. When (1.1) has additional constraints that force x in a bounded set, which also

leads to bounded (sub)gradients and Hessian, projected first-order algorithms are applicable

[27,37].

When using a fixed step size, these algorithms do not converge to a solution x∗ of

problem (1.1) but a point in its neighborhood no matter whether fi’s are differentiable or

not [36]. This motivates the use of certain diminishing step sizes in [5, 8, 14] to guarantee

convergence to x∗. The rates of convergence are generally weaker than their analogues in

centralized computation. For the general convex case and under the bounded (sub)gradient

(or Lipschitz–continuous objective) assumption, [5] shows that diminishing step sizes αk =
1√
k

lead to a convergence rate of O
(

ln k√
k

)
in terms of the running best of objective error,

and [8] shows that the dual averaging method has a rate of O
(

ln k√
k

)
in the ergodic sense

in terms of objective error. For the general convex case, under assumptions of fixed step

size and Lipschitz continuous, bounded gradient, [14] shows an outer–loop convergence rate

of O
(

1
k2

)
in terms of objective error, utilizing Nesterov’s acceleration, provided that the

inner loop performs substantial consensus computation, without which diminishing step

sizes αk = 1
k1/3 lead to a reduced rate of O

(
ln k
k

)
. The (sub)gradient-push method [23] can

be implemented in a dynamic digraph and, under the bounded (sub)gradient assumption

and diminishing step sizes αk = O
(

1√
k

)
, has a rate of O

(
ln k√
k

)
in the ergodic sense in terms

of objective error. A better rate of O
(

ln k
k

)
is proved for the (sub)gradient-push method

in [24] under the strong convexity and Lipschitz gradient assumptions, in terms of expected

objective error plus squared consensus residual.

Some of other related algorithms are as follows. For general convex functions and

assuming closed and bounded feasible sets, the decentralized asynchronous ADMM [32] is

2

proved to have a rate of O
(

1
k

)
in terms of expected objective error and feasibility violation.

The augmented Lagrangian based primal-dual methods have linear convergence under strong

convexity and Lipschitz gradient assumptions [4,30] or under the positive-definite bounded

Hessian assumption [12,13].

Our proposed algorithm is a synchronous gradient-based algorithm that has a rate of

O
(

1
k

)
for general convex objectives with Lipschitz differentials and has a linear rate once

the sum of, rather than individual, functions fi is also (restricted) strongly convex.

1.2. Notation. Throughout the paper, we let agent i hold a local copy of the global

variable x, which is denoted by x(i) ∈ Rp; its value at iteration k is denoted by xk(i). We

introduce an aggregate objective function of the local variables

f(x) ,
n∑
i=1

fi(x(i)),

where

x ,


— xT

(1) —

— xT
(2) —
...

— xT
(n) —

 ∈ Rn×p.

The gradient of f(x) is defined by

∇f(x) ,


— ∇Tf1(x(1)) —

— ∇Tf2(x(2)) —
...

— ∇Tfn(x(n)) —

 ∈ Rn×p.

Each row i of x and ∇f(x) is associated with agent i. We say that x is consensual if all

of its rows are identical, i.e., x(1) = · · · = x(n). The analysis and results of this paper hold

for all p ≥ 1. The reader can assume p = 1 for convenience (so x and ∇f become vectors)

without missing any major point.

Finally, for given matrix A and symmetric positive semidefinite matrix G, we define

the G-matrix norm ‖A‖G ,
√

trace(ATGA). The largest singular value of a matrix A

is denoted as σmax(A). The largest and smallest eigenvalues of a symmetric matrix B

are denoted as λmax(B) and λmin(B), respectively. The smallest nonzero eigenvalue of

a symmetric positive semidefinite matrix B 6= 0 is denoted as λ̃min(B), which is strictly

positive. For a matrix A ∈ Rm×n, null{A} , {x ∈ Rn
∣∣Ax = 0} is the null space of A and

span{A} , {y ∈ Rm
∣∣y = Ax,∀x ∈ Rn} is the linear span of all the columns of A.

1.3. Summary of Contributions. This paper introduces a novel gradient-based de-

centralized algorithm EXTRA, establishes its convergence conditions and rates, and presents

numerical results in comparison to decentralized gradient descent. EXTRA can use a fixed

3

step size independent of the network size and quickly converges to the solution to (1.1). It

has a rate of convergence O
(

1
k

)
in terms of best running violation to the first-order opti-

mality condition when f̄ is Lipschitz differentiable, and has a linear rate of convergence if

f̄ is also (restricted) strongly convex. Numerical simulations verify the theoretical results

and demonstrate its competitive performance.

1.4. Paper Organization. The rest of this paper is organized as follows. Section 2

develops and interprets EXTRA. Section 3 presents its convergence results. Then, Section

4 presents three sets of numerical results. Finally, Section 5 concludes this paper.

2. Algorithm Development. This section derives the proposed algorithm EXTRA.

We start by briefly reviewing decentralized gradient descent (DGD) and discussing the

dilemma that DGD converges slowly to an exact solution when it uses a sequence of di-

minishing step sizes, yet it converges faster using a fixed step size but stalls at an inaccurate

solution. We then obtain the update formula of EXTRA by taking the difference of two

formulas of the DGD update. Provided that the sequence generated by the new update

formula with a fixed step size converges to a point, we argue that the point is consensual

and optimal. Finally, we briefly discuss the choice of mixing matrices in EXTRA. Formal

convergence results and proofs are left to Section 3.

2.1. Review of Decentralized Gradient Descent and Its Limitation. DGD

carries out the following iteration

xk+1
(i) =

n∑
j=1

wijx
k
(j) − α

k∇fi(xk(i)), for agent i = 1, . . . , n. (2.1)

Recall that xk(i) ∈ Rp is the local copy of x held by agent i at iteration k, W = [wij] ∈ Rn×n

is a symmetric mixing matrix satisfying null{I −W} = span{1} and σmax(W − 1
n11

T) < 1,

and αk > 0 is a step size for iteration k. If two agents i and j are neither neighbors nor

identical, then wij = 0. This way, the computation of (2.1) involves only local and neighbor

information, and hence the iteration is decentralized.

Following our notation, we rewrite (2.1) for all the agents together as

xk+1 = Wxk − αk∇f(xk). (2.2)

With a fixed step size αk ≡ α, DGD has inexact convergence. For each agent i, xk(i) converges

to a point in the O(α)-neighborhood of a solution to (1.1), and these points for different

agents can be different. On the other hand, properly reducing αk enables exact convergence,

namely, that each xk(i) converges to the same exact solution. However, reducing αk causes

slower convergence, both in theory and in practice.

Paper [36] assumes that ∇fi’s are Lipschitz continuous, and studies DGD with a con-

stant αk ≡ α. Before the iterates reach the O(α)-neighborhood, the objective value reduces

at the rate O
(

1
k

)
, and this rate improves to linear if fi’s are also (restricted) strongly con-

vex. In comparison, paper [14] studies DGD with diminishing αk = 1
k1/3 and assumes that

4

∇fi’s are Lipschitz continuous and bounded. The objective convergence rate slows down

to O
(

1
k2/3

)
. Paper [5] studies DGD with diminishing αk = 1

k1/2 and assumes that fi’s are

Lipschitz continuous; a slower rate O
(

ln k√
k

)
is proved. A simple example of decentralized

least squares in Section 4.1 gives a rough comparison of these three schemes (and how they

compare to the proposed algorithm).

To see the cause of inexact convergence with a fixed step size, let x∞ be the limit of xk

(assuming the step size is small enough to ensure convergence). Taking the limit over k on

both sides of iteration (2.2) gives us

x∞ = Wx∞ − α∇f(x∞).

When α is fixed and nonzero, assuming the consensus of x∞ (namely, it has identical rows

x∞(i)) will mean x∞ = Wx∞, as a result of W1 = 1, and thus ∇f(x∞) = 0, which is

equivalent to ∇fi(x∞(i)) = 0, ∀i, i.e., the same point x∞(i) simultaneously minimizes fi for all

agents i. This is impossible in general and is different from our objective to find a point

that minimizes
∑n
i=1 fi.

2.2. Development of EXTRA. The next proposition provides simple conditions for

the consensus and optimality for problem (1.1).

Proposition 2.1. Assume null{I −W} = span{1}. If

x∗ ,


— x∗T(1) —

— x∗T(2) —
...

— x∗T(n) —

 (2.3)

satisfies conditions:

1. x∗ = Wx∗ (consensus),

2. 1T∇f(x∗) = 0 (optimality),

then x∗ = x∗(i), for any i, is a solution to the consensus optimization problem (1.1).

Proof. Since null{I −W} = span{1}, x is consensual if and only if condition 1 holds,

i.e., x∗ = Wx∗. Since x∗ is consensual, we have 1T∇f(x∗) =
∑n
i=1∇fi(x∗), so condition 2

means optimality.

Next, we construct the update formula of EXTRA, following which the iterate sequence

will converge to a point satisfying the two conditions in Proposition 2.1.

Consider the DGD update (2.2) written at iterations k + 1 and k as follows

xk+2 = Wxk+1 − α∇f(xk+1), (2.4)

xk+1 = W̃xk − α∇f(xk), (2.5)

where the former uses the mixing matrix W and the latter uses

W̃ =
I +W

2
.

5

The choice of W̃ will be generalized later. The update formula of EXTRA is simply their

difference, subtracting (2.5) from (2.4):

xk+2 − xk+1 = Wxk+1 − W̃xk − α∇f(xk+1) + α∇f(xk). (2.6)

Given xk and xk+1, the next iterate xk+2 is generated by (2.6).

Let us assume that {xk} converges for now and let x∗ = limk→∞ xk. Let us also assume

that ∇f is continuous. We first establish condition 1 of Proposition 2.1. Taking k → ∞ in

(2.6) gives us

x∗ − x∗ = (W − W̃)x∗ − α∇f(x∗) + α∇f(x∗), (2.7)

from which it follows that

Wx∗ − x∗ = 2(W − W̃)x∗ = 0. (2.8)

Therefore, x∗ is consensual.

Provided that 1T(W −W̃) = 0, we show that x∗ also satisfies condition 2 of Proposition

2.1. To see this, adding the first update x1 = Wx0 − α∇f(x0) to the subsequent updates

following the formulas of (x2 − x1), (x3 − x2), . . . , (xk+2 − xk+1) given by (2.6) and then

applying telescopic cancellation, we obtain

xk+2 = W̃xk+1 − α∇f(xk+1) +

k+1∑
t=0

(W − W̃)xt, (2.9)

or equivalently,

xk+2 = Wxk+1 − α∇f(xk+1) +

k∑
t=0

(W − W̃)xt. (2.10)

Taking k →∞, from x∗ = limk→∞ xk and x∗ = W̃x∗ = Wx∗, it follows that

α∇f(x∗) =

∞∑
t=0

(W − W̃)xt. (2.11)

Left-multiplying 1T on both sides of (2.11), in light of 1T(W − W̃) = 0, we obtain the

condition 2 of Proposition 2.1:

1T∇f(x∗) = 0. (2.12)

To summarize, provided that null{I −W} = span{1}, W̃ = I+W
2 , 1T(W−W̃) = 0, and

the continuity of ∇f , if a sequence following EXTRA (2.6) converges to a point x∗, then by

Proposition 2.1, x∗ is consensual and any of its identical row vectors solves problem (1.1).

6

2.3. The Algorithm EXTRA and its Assumptions. We present EXTRA — an

exact first-order algorithm for decentralized consensus optimization — in Algorithm 1.

Algorithm 1: EXTRA

Choose α > 0 and mixing matrices W ∈ Rn×n and W̃ ∈ Rn×n;

Pick any x0 ∈ Rn×p;
1. x1 ←Wx0 − α∇f(x0);

2. for k = 0, 1, · · · do
xk+2 ← (I +W)xk+1 − W̃xk − α

[
∇f(xk+1)−∇f(xk)

]
;

end for

Breaking to the individual agents, Step 1 of EXTRA performs updates

x1
(i) =

n∑
j=1

wijx
0
(j) − α∇fi(x

0
(i)), i = 1, . . . , n,

and Step 2 at each iteration k performs updates

xk+2
(i) = xk+1

(i) +

n∑
j=1

wijx
k+1
(j) −

n∑
j=1

w̃ijx
k
(j) − α

[
∇fi(xk+1

(i))−∇fi(xk(i))
]
, i = 1, . . . , n.

Each agent computes ∇fi(xk(i)) once for each k and uses it twice for xk+1
(i) and xk+2

(i) . For our

recommended choice of W̃ = (W + I)/2, each agent computes
∑n
j=1 wijx

k
(j) once as well.

Here we formally give the assumptions on the mixing matrices W and W̃ for EXTRA.

All of them will be used in the convergence analysis in the next section.

Assumption 1 (Mixing matrix). Consider a connected network G = {V, E} consisting

of a set of agents V = {1, 2, · · · , n} and a set of undirected edges E. The mixing matrices

W = [wij] ∈ Rn×n and W̃ = [w̃ij] ∈ Rn×n satisfy

1. (Decentralized property) If i 6= j and (i, j) 6∈ E, then wij = w̃ij = 0.

2. (Symmetry) W = WT, W̃ = W̃T.

3. (Null space property) null{W − W̃} = span{1}, null{I − W̃} ⊇ span{1}.
4. (Spectral property) W̃ � 0 and I+W

2 < W̃ <W .

We claim that Parts 2–4 of Assumption 1 imply null{I −W} = span{1} and the eigen-

values of W lie in (−1, 1], which are commonly assumed for DGD. Therefore, the additional

assumptions are merely on W̃ . In fact, EXTRA can use the same W used in DGD and

simply take W̃ = I+W
2 , which satisfies Part 4. It is also worth noting that the recent work

push-DGD [23] relaxes the symmetry condition, yet such relaxation for EXTRA is not trivial

and is our future work.

Proposition 2.2. Parts 2–4 of Assumption 1 imply null{I −W} = span{1} and that

the eigenvalues of W lie in (−1, 1].

Proof. From part 4, we have I+W
2 < W̃ � 0 and thus W � −I and λmin(W) > −1.

Also from part 4, we have I+W
2 < W and thus I � W , which means λmax(W) ≤ 1. Hence,

all eigenvalues of W (and those of W̃) lie in (−1, 1].

7

Now, we show null{I −W} = span{1}. Consider a nonzero vector v ∈ null{I −W},
which satisfies (I−W)v = 0 and thus vT (I−W)v = 0 and vTv = vTWv. From I+W

2 < W̃

(part 4), we get vTv = vT (I+W2)v ≥ vT W̃v, while from W̃ < W (part 4) we also get

vT W̃v ≥ vTWv = vTv. Therefore, we have vT W̃v = vTv or equivalently (W̃ − I)v = 0,

adding which to (I −W)v = 0 yields (W̃ −W)v = 0. In light of null{W − W̃} = span{1}
(part 3), we must have v ∈ span{1} and thus null{I −W} = span{1}.

2.4. Mixing Matrices. In EXTRA, the mixing matricesW and W̃ diffuse information

throughout the network.

The role of W is the similar as that in DGD [5, 31, 36] and average consensus [33]. It

has a few common choices, which can significantly affect performance.

(i) Symmetric doubly stochastic matrix [5, 31, 36]: W = WT, W1 = 1, and wij ≥ 0.

Special cases of such matrices include parts (ii) and (iii) below.

(ii) Laplacian-based constant edge weight matrix [28,33],

W = I − L

τ
,

where L is the Laplacian matrix of the graph G and τ > 1
2λmax(L) is a scaling

parameter. Denote deg(i) as the degree of agent i. When λmax(L) is not available,

τ = maxi∈V{deg(i)}+ ε for some small ε > 0, say ε = 1, can be used.

(iii) Metropolis constant edge weight matrix [3, 34],

wij =


1

max{deg(i),deg(j)}+ε , if (i, j) ∈ E ,
0, if (i, j) /∈ E and i 6= j,

1−
∑
k∈V

wik, if i = j,

for some small positive ε > 0.

(iv) Symmetric fastest distributed linear averaging (FDLA) matrix. It is a symmetric

W that achieves fastest information diffusion and can be obtained by a semidefinite

program [33].

It is worth noting that the optimal choice for average consensus, FDLA, no longer

appears optimal in decentralized consensus optimization, which is more general.

When W is chosen following any strategy above, W̃ = I+W
2 is found to be very efficient.

2.5. EXTRA as Corrected DGD. We rewrite (2.10) as

xk+1 = Wxk − α∇f(xk)︸ ︷︷ ︸
DGD

+

k−1∑
t=0

(W − W̃)xt︸ ︷︷ ︸
correction

, k = 0, 1, · · · .
(2.13)

An EXTRA update is, therefore, a DGD update with a cumulative correction term. In

subsection 2.1, we have argued that the DGD update cannot reach consensus asymptotically

unless α asymptotically vanishes. Since α∇f(xk) with a fixed α > 0 cannot vanish in general,

it must be corrected, or otherwise xk+1 −Wxk does not vanish, preventing xk from being

8

asymptotically consensual. Provided that (2.13) converges, the role of the cumulative term∑k−1
t=0 (W − W̃)xt is to neutralize −α∇f(xk) in (span{1})⊥, the subspace orthogonal to 1.

If a vector v obeys vT(W − W̃) = 0, then the convergence of (2.13) means the vanishing

of vT∇f(xk) in the limit. We need 1T∇f(xk) = 0 for consensus optimality. The correction

term in (2.13) is the simplest that we could find so far. In particular, the summation is

necessary since each individual term (W − W̃)xt is asymptotically vanishing. The terms

must work cumulatively.

3. Convergence Analysis. To establish convergence of EXTRA, this paper makes

two additional but common assumptions as follows. Unless otherwise stated, the results in

this section are given under Assumptions 1–3.

Assumption 2. (Convex objective with Lipschitz continuous gradient) Objec-

tive functions fi are proper closed convex and Lipschitz differentiable:

‖∇fi(xa)−∇fi(xb)‖2 ≤ Lfi‖xa − xb‖2, ∀xa, xb ∈ Rp,

where Lfi ≥ 0 are constant.

Following Assumption 2, function f(x) =
∑n
i=1 fi(x(i)) is proper closed convex, and ∇f

is Lipschitz continuous

‖∇f(xa)−∇f(xb)‖F ≤ Lf‖xa − xb‖F, ∀xa,xb ∈ Rn×p,

with constant Lf = maxi{Lfi}.
Assumption 3. (Solution existence) Problem (1.1) has a nonempty set of optimal

solutions: X ∗ 6= ∅.

3.1. Preliminaries. We first state a lemma that gives the first-order optimality con-

ditions of (1.1).

Lemma 3.1 (First-order optimality conditions). Given mixing matrices W and W̃ ,

define U = (W̃ − W)1/2 by letting U , V S1/2V T ∈ Rn×n where V SV T = W̃ − W is

the economical-form singular value decomposition. Then, under Assumptions 1–3, x∗ is

consensual and x∗(1) ≡ x∗(2) ≡ · · · ≡ x∗(n) is optimal to problem (1.1) if and only if there

exists q∗ = Up for some p ∈ Rn×p such that{
Uq∗ + α∇f(x∗) = 0, (3.1)

Ux∗ = 0. (3.2)

Proof. According to Assumption 1 and the definition of U , we have

null{U} = null{V T} = null{W̃ −W} = span{1}.

Hence from Proposition 2.1, condition 1, x∗ is consensual if and only if (3.2) holds.

Next, following Proposition 2.1, condition 2, x is optimal if and only if 1T∇f(x∗) = 0.

Since U is symmetric and UT1 = 0, (3.1) gives 1T∇f(x∗) = 0. Conversely, if 1T∇f(x∗) = 0,

9

then ∇f(x∗) ∈ span{U} follows from null{U} = (span{1})⊥ and thus α∇f(x∗) = −Uq for

some q. Let q∗ = ProjUq. Then, Uq∗ = Uq and (3.1) holds.

Let x∗ and q∗ satisfy the optimality conditions (3.1) and (3.2). Introduce auxiliary

sequence

qk =

k∑
t=0

Uxt

and for each k,

zk =

(
qk

xk

)
, z∗ =

(
q∗

x∗

)
, G =

(
I 0

0 W̃

)
. (3.3)

The next lemma establishes the relations among xk, qk, x∗, and q∗.

Lemma 3.2. In EXTRA, the quadruple sequence {xk,qk,x∗,q∗} obeys

(I +W − 2W̃)(xk+1 − x∗) + W̃ (xk+1 − xk)

= −U(qk+1 − q∗)− α[∇f(xk)−∇f(x∗)],
(3.4)

for any k = 0, 1, · · · .
Proof. Similar to how (2.9) is derived, summing EXTRA iterations 1 through k + 1

x1 = Wx0 − α∇f(x0),

x2 = (I +W)x1 − W̃x0 − α∇f(x1) + α∇f(x0),

· · · ,
xk+1 = (I +W)xk − W̃xk−1 − α∇f(xk) + α∇f(xk−1),

we get

xk+1 = W̃xk −
k∑
t=0

(W̃ −W)xt − α∇f(xk). (3.5)

Using qk+1 =
∑k+1
t=0 Uxt and the decomposition W̃ −W = U2, it follows from (3.5) that

(I +W − 2W̃)xk+1 + W̃ (xk+1 − xk) = −Uqk+1 − α∇f(xk). (3.6)

Since (I +W − 2W̃)1 = 0, we have

(I +W − 2W̃)x∗ = 0. (3.7)

Subtracting (3.7) from (3.6) and adding 0 = Uq∗ + α∇f(x∗) to (3.6), we obtain (3.4).

The convergence analysis is based on the recursion (3.4). Below we will show that xk

converges to a solution x∗ ∈ X ∗ and ‖zk+1 − zk‖2
W̃

converges to 0 at a rate of O
(

1
k

)
in

an ergodic sense. Further assuming (restricted) strong convexity, we obtain the Q-linear

convergence of ‖zk − z∗‖2G to 0, which implies the R-linear convergence of xk to x∗.

10

3.2. Convergence and Rate. Let us first interpret the step size condition

α <
2λmin(W̃)

Lf
, (3.8)

which is assumed by Theorem 3.3 below. First of all, let W satisfy Assumption 1. It is easy

to ensure λmin(W) ≥ 0 since otherwise, we can replace W by I+W
2 . In light of part 4 of

Assumption 1, if we let W̃ = I+W
2 , then we have λmin(W̃) ≥ 1

2 , which simplifies the bound

(3.8) to

α <
1

Lf
,

which is independent of any network property (size, diameter, etc.). Furthermore, if Lfi
(i = 1, . . . , n) are in the same order, the bound 1

Lf
has the same order as the bound

1/(1
n

∑n
i=1 Lfi), which is used in the (centralized) gradient descent method. In other words,

a fixed and rather large step size is permitted by EXTRA.

Theorem 3.3. Under Assumptions 1–3, if α satisfies 0 < α < 2λmin(W̃)
Lf

, then

‖zk − z∗‖2G − ‖zk+1 − z∗‖2G ≥ ζ‖zk − zk+1‖2G, k = 0, 1, . . . , (3.9)

where ζ = 1− αLf

2λmin(W̃)
. Furthermore, zk converges to an optimal z∗.

Proof. Following Assumption 2, ∇f is Lipschitz continuous and thus we have

2α
Lf
‖∇f(xk)−∇f(x∗)‖2F

≤ 2α〈xk − x∗,∇f(xk)−∇f(x∗)〉
= 2〈xk+1 − x∗, α[∇f(xk)−∇f(x∗)]〉+ 2α〈xk − xk+1,∇f(xk)−∇f(x∗)〉.

(3.10)

Substituting (3.4) from Lemma 3.2 for α[∇f(xk)−∇f(x∗)], it follows from (3.10) that

2α
Lf
‖∇f(xk)−∇f(x∗)‖2F

≤ 2〈xk+1 − x∗, U(q∗ − qk+1)〉+ 2〈xk+1 − x∗, W̃ (xk − xk+1)〉
−2‖xk+1 − x∗‖2

I+W−2W̃
+ 2α〈xk − xk+1,∇f(xk)−∇f(x∗)〉.

(3.11)

For the terms on the right-hand-side of (3.11), we have

2〈xk+1 − x∗, U(q∗ − qk+1)〉 = 2〈U(xk+1 − x∗),q∗ − qk+1〉
(∵ Ux∗ = 0) = 2〈Uxk+1,q∗ − qk+1〉

= 2〈qk+1 − qk,q∗ − qk+1〉,
(3.12)

2〈xk+1 − x∗, W̃ (xk − xk+1)〉 = 2〈xk+1 − xk, W̃ (x∗ − xk+1)〉, (3.13)

and

2α〈xk − xk+1,∇f(xk)−∇f(x∗)〉
≤ αLf

2 ‖x
k − xk+1‖2F + 2α

Lf
‖∇f(xk)−∇f(x∗)‖2F.

(3.14)

11

Plugging (3.12)–(3.14) into (3.11) and recalling the definitions of zk, z∗, and G, we have

2α
Lf
‖∇f(xk)−∇f(x∗)‖2F

≤ 2〈qk+1 − qk,q∗ − qk+1〉+ 2〈xk+1 − xk, W̃ (x∗ − xk+1)〉
−2‖xk+1 − x∗‖2

I+W−2W̃
+ αLf

2 ‖x
k − xk+1‖2F + 2α

Lf
‖∇f(xk)−∇f(x∗)‖2F,

(3.15)

that is

0 ≤ 2〈zk+1 − zk, G(z∗ − zk+1)〉 − 2‖xk+1 − x∗‖2
I+W−2W̃

+ αLf

2 ‖x
k − xk+1‖2F. (3.16)

Apply the basic equality 2〈zk+1−zk, G(z∗−zk+1)〉 = ‖zk−z∗‖2G−‖zk+1−z∗‖2G−‖zk−zk+1‖2G
to (3.16), we have

0 ≤ ‖zk − z∗‖2G − ‖zk+1 − z∗‖2G − ‖zk − zk+1‖2G
−2‖xk+1 − x∗‖2

I+W−2W̃
+ αLf

2 ‖x
k − xk+1‖2F.

(3.17)

Define

G′ =

(
I 0

0 W̃ − αLf

2 I

)
.

By Assumption 1, in particular, I + W − 2W̃ < 0, we have ‖xk+1 − x∗‖2
I+W−2W̃

≥ 0 and

thus

‖zk − z∗‖2G − ‖zk+1 − z∗‖2G ≥ ‖zk − zk+1‖G −
αLf

2
‖xk − xk+1‖2F = ‖zk − zk+1‖G′ .

Since α < 2λmin(W̃)
Lf

, we have G′ � 0 and

‖zk − zk+1‖2G′ ≥ ζ‖zk − zk+1‖2G, (3.18)

which gives (3.9).

It shows from (3.9) that for any optimal z∗, ‖zk − z∗‖2G is bounded and contractive,

so ‖zk − z∗‖2G is converging as ‖zk − zk+1‖2G → 0. The convergence of zk to a solution z∗

follows from the standard analysis for contraction methods; see, for example, Theorem 3

in [11].

To estimate the rate of convergence, we need the following result.

Proposition 3.4. If a sequence {ak} ⊂ R obeys: ak ≥ 0 and
∑∞
t=1 at < ∞, then we

have1: (i) limk→∞ ak = 0; (ii) 1
k

∑k
t=1 at = O

(
1
k

)
; (iii) mint≤k{at} = o

(
1
k

)
.

Proof. Part (i) is obvious. Let bk , 1
k

∑k
t=1 at. By the assumptions, kbk is uniformly

bounded and obeys

lim
k→∞

kbk <∞,

1Part (iii) is due to [6].

12

from which part (ii) follows. Since ck , min
t≤k
{at} is monotonically non-increasing, we have

kc2k = k × min
t≤2k
{at} ≤

2k∑
t=k+1

at.

This and the fact that limk→∞
∑2k
t=k+1 at → 0 give us ck = o

(
1
k

)
or part (iii).

Theorem 3.5. In the same setting of Theorem 3.3, the following rates hold:

(1) Running-average progress:

1

k

k∑
t=1

‖zt − zt+1‖2G = O

(
1

k

)
;

(2) Running-best progress:

min
t≤k

{
‖zt − zt+1‖2G

}
= o

(
1

k

)
;

(3) Running-average optimality residuals:

1

k

k∑
t=1

‖Uqt + α∇f(xt)‖2
W̃

= O

(
1

k

)
and

1

k

k∑
t=1

‖Uxt‖2F = O

(
1

k

)
;

(4) Running-best optimality residuals:

min
t≤k

{
‖Uqt + α∇f(xt)‖2

W̃

}
= o

(
1

k

)
and min

t≤k

{
‖Uxt‖2F

}
= o

(
1

k

)
;

Proof. Parts (1) and (2): Since the individual terms ‖zk − z∗‖2G converge to 0, we are

able to sum (3.9) in Theorem 3.3 over k = 0 through∞ and apply the telescopic cancellation,

i.e.,

∞∑
t=0
‖zt − zt+1‖2G = 1

δ

∞∑
t=0

(
‖zt − z∗‖2G − ‖zt+1 − z∗‖2G

)
=
‖z0−z∗‖2G

δ <∞. (3.19)

Then, the results follow from Proposition 3.4 immediately.

Parts (3) and (4): The progress ‖zk − zk+1‖2G can be interpreted as the residual to the

first-order optimality condition. In light of the first-order optimality conditions (3.1) and

(3.2) in Lemma 3.1, the optimality residuals are defined as ‖Uqk+α∇f(xk)‖2
W̃

and ‖Uxk‖2F.

Furthermore, ‖ 1
α1

T(Uqk + α∇f(xk))‖22 = ‖∇f1(xk(1)) + ...+∇fn(xk(n))‖
2
2 is the violation to

the first-order optimality of (1.1), while ‖Uxk‖2F is the violation of consensus. Below we

obtain the convergence rates of the optimality residuals.

Using the basic inequality ‖a+b‖2F ≥ 1
ρ‖a‖

2
F− 1

ρ−1‖b‖
2
F which holds for any ρ > 1 and

any matrices a and b of the same size, it follows that

‖zk − zk+1‖2G = ‖qk − qk+1‖2F + ‖xk − xk+1‖2
W̃

= ‖xk+1‖2
W̃−W + ‖(I − W̃)xk + Uqk + α∇f(xk)‖2

W̃

≥ ‖xk+1‖2
W̃−W + 1

ρ‖Uqk + α∇f(xk)‖2
W̃
− 1

ρ−1‖(I − W̃)xk‖2
W̃
.

(3.20)

13

Since W̃ −W and (I − W̃)W̃ (I − W̃) are symmetric and

null{W̃ −W} ⊆ null{(I − W̃)W̃ (I − W̃)},

there exists a bounded υ > 0 such that ‖(I − W̃)xk‖2
W̃

= ‖xk‖2
(I−W̃)W̃ (I−W̃)

≤ υ‖xk‖2
W̃−W .

It follows from (3.20) that

1
k

k∑
t=1
‖zt − zt+1‖2G + 1

k‖x
1‖2
W̃−W

≥ 1
k

k∑
t=1

(
‖xt+1‖2

W̃−W −
υ
ρ−1‖x

t‖2
W̃−W

)
+ 1

k‖x
1‖2
W̃−W

+ 1
k

k∑
t=1

1
ρ‖Uqt + α∇f(xt)‖2

W̃
(Set ρ > υ + 1)

= 1
k

k∑
t=1

(1− υ
ρ−1)‖Uxt‖2F + 1

k‖x
k+1‖2

W̃−W + 1
k

k∑
t=1

1
ρ‖Uqt + α∇f(xt)‖2

W̃
.

(3.21)

As part (1) shows that 1
k

∑k
t=1 ‖zt−zt+1‖2G = O

(
1
k

)
, we have 1

k

∑k
t=1 ‖Uqt+α∇f(xt)‖2

W̃
=

O
(

1
k

)
and 1

k

∑k
t=1 ‖Uxt‖2F = O

(
1
k

)
.

From (3.21) and (3.19), we see that both ‖Uqt+α∇f(xt)‖2
W̃

and ‖Uxt‖2F are summable.

Again, by Proposition 3.4, we have part (4), the o
(

1
k

)
rate of running best first-order

optimality residuals.

It is open whether ‖zk − zk+1‖2G is monotonic or not. If one can show its monotonicity,

then the convergence rates will hold for the last point in the running sequence.

3.3. Linear Convergence under Restricted Strong Convexity. In this subsec-

tion we prove that EXTRA with a proper step size reaches linear convergence if the original

objective f̄ is restricted strongly convex.

A convex function h : Rp → R is strongly convex if there exists µ > 0 such that

〈∇h(xa)−∇h(xb), xa − xb〉 ≥ µ‖xa − xb‖2, ∀xa, xb ∈ Rp.

h is restricted strongly convex 2 with respect to point x̃ if there exists µ > 0 such that

〈∇h(x)−∇h(x̃), x− x̃〉 ≥ µ‖x− x̃‖22, ∀x ∈ Rp.

For proof convenience, we introduce function

g(x) , f(x) +
1

4α
‖x‖2

W̃−W

and claim that f̄ is restricted strongly convex with respect to its solution x∗ if, and only if,

g is so with respect to x∗ = 1(x∗)T.

Proposition 3.6. Under Assumptions 1 and 2, the following two statements are equiv-

alent:

(i) The original objective f̄(x) = 1
n

∑n
i=1 fi(x) is restricted strongly convex with respect

to x∗;

2There are different definitions of restricted strong convexity. Ours is derived from [17].

14

(ii) The penalized function g(x) = f(x) + 1
4α‖x‖

2
W̃−W is restricted strongly convex with

respect to x∗.

In addition, the strong convexity constant of g is no less than that of f̄ .

See Appendix A for its proof.

Theorem 3.7. If g(x) , f(x) + 1
4α‖x‖

2
W̃−W is restricted strongly convex with respect

to x∗ with constant µg > 0, then with proper step size α <
2µgλmin(W̃)

Lf
2 , there exists δ > 0

such that the sequence {zk} generated by EXTRA satisfies

‖zk − z∗‖2G ≥ (1 + δ)‖zk+1 − z∗‖2G. (3.22)

That is, ‖zk − z∗‖2G converges to 0 at the Q-linear rate O
(
(1 + δ)−k

)
. Consequently, ‖xk −

x∗‖2
W̃

converges to 0 at the R-linear rate O
(
(1 + δ)−k

)
.

Proof. Toward a lower bound of ‖zk − z∗‖2G −‖zk+1 − z∗‖2G: From the definition of

g and its restricted strong convexity, we have

2αµg‖xk+1 − x∗‖2F ≤ 2α〈xk+1 − x∗,∇g(xk+1)−∇g(x∗)〉
= ‖xk+1 − x∗‖2

W̃−W + 2α〈xk+1 − x∗,∇f(xk+1)−∇f(xk)〉
+2〈xk+1 − x∗, α[∇f(xk)−∇f(x∗)]〉.

(3.23)

Using Lemma 3.2 for α[∇f(xk)−∇f(x∗)] in (3.23), we get

2αµg‖xk+1 − x∗‖2F
≤ ‖xk+1 − x∗‖2

W̃−W + 2α〈xk+1 − x∗,∇f(xk+1)−∇f(xk)〉 − 2‖xk+1 − x∗‖2
I+W−2W̃

+2〈xk+1 − x∗, U(q∗ − qk+1)〉+ 2〈xk+1 − x∗, W̃ (xk − xk+1)〉
= ‖xk+1 − x∗‖2

(W̃−W)−2(I+W−2W̃)
+ 2α〈xk+1 − x∗,∇f(xk+1)−∇f(xk)〉

+2〈xk+1 − x∗, U(q∗ − qk+1)〉+ 2〈xk+1 − x∗, W̃ (xk − xk+1)〉.
(3.24)

For the last three terms on the right-hand side of (3.24), we have from Young’s inequality

2α〈xk+1 − x∗,∇f(xk+1)−∇f(xk)〉
≤ αη‖xk+1 − x∗‖2F + α

η ‖∇f(x
k+1)−∇f(xk)‖2F

≤ αη‖xk+1 − x∗‖2F + αLf
2

η ‖x
k+1 − xk‖2F,

(3.25)

where η > 0 is a tunable parameter and

2〈xk+1 − x∗, U(q∗ − qk+1)〉 = 2〈qk+1 − qk,q∗ − qk+1〉, (3.26)

and

2〈xk+1 − x∗, W̃ (xk − xk+1)〉 = 2〈xk+1 − xk, W̃ (x∗ − xk+1)〉. (3.27)

Plugging (3.25)–(3.27) into (3.24) and recalling the definition of zk, z∗, and G, we obtain

2αµg‖xk+1 − x∗‖2F
≤ ‖xk+1 − x∗‖2

(W̃−W)−2(I+W−2W̃)
+ αη‖xk+1 − x∗‖2F

+αLf
2

η ‖x
k+1 − xk‖2F + 2〈zk+1 − zk, G(z∗ − zk+1)〉.

(3.28)

15

By 2〈zk+1 − zk, G(z∗ − zk+1) = ‖zk − z∗‖2G − ‖zk+1 − z∗‖2G − ‖zk − zk+1‖2G, (3.28) turns

into

‖zk − z∗‖2G − ‖zk+1 − z∗‖2G ≥ ‖xk+1 − x∗‖2
α(2µg−η)I−(W̃−W)+2(I+W−2W̃)

+‖zk − zk+1‖2G −
αLf

2

η ‖x
k − xk+1‖2F.

(3.29)

A critical inequality: In order to establish (3.22), in light of (3.29), it remains to show

‖xk+1 − x∗‖2
α(2µg−η)I−(W̃−W)+2(I+W−2W̃)

+ ‖zk − zk+1‖2G −
αLf

2

η ‖x
k − xk+1‖2F

≥ δ‖zk+1 − z∗‖2G.
(3.30)

With the terms of zk, z∗ in (3.30) expanded and from ‖xk+1−x∗‖2
W̃−W = ‖U(xk+1−x∗)‖2F =

‖Uxk+1‖2F = ‖qk+1 − qk‖2F, (3.30) is equivalent to

‖xk+1 − x∗‖2
α(2µg−η)I+2(I+W−2W̃)−δW̃ + ‖xk − xk+1‖2

W̃−αLf
2

η I
≥ δ‖qk+1 − q∗‖2F,

(3.31)

which is what remains to be shown below. That is, we must find a upper bound for ‖qk+1−
q∗‖2F in terms of ‖xk+1 − x∗‖2F and ‖xk − xk+1‖2F.

Establishing (3.31), Step 1: From Lemma 3.2 we have

‖U(qk+1 − q∗)‖2F
= ‖(I +W − 2W̃)(xk+1 − x∗) + W̃ (xk+1 − xk) + α[∇f(xk)−∇f(x∗)]‖2F
= ‖(I +W − 2W̃)(xk+1 − x∗) + α[∇f(xk+1)−∇f(x∗)]

+W̃ (xk+1 − xk) + α[∇f(xk)−∇f(xk+1)]‖2F.

(3.32)

From the inequality ‖a+ b+ c+ d‖2F ≤ θ
(

β
β−1‖a‖

2
F + β‖b‖2F

)
+ θ

θ−1

(
γ
γ−1‖c‖

2
F + γ‖d‖2F

)
,

which holds for any θ > 1, β > 1, γ > 1 and any matrices a, b, c, d of the same dimensions,

it follows that

‖qk+1 − q∗‖2
W̃−W

≤ θ
(

β
β−1‖x

k+1 − x∗‖2
(I+W−2W̃)2 + βα2‖∇f(xk+1)−∇f(x∗)‖2F

)
+ θ
θ−1

(
γ
γ−1‖x

k − xk+1‖2
W̃ 2 + γα2‖∇f(xk)−∇f(xk+1)‖2F

)
.

(3.33)

By Lemma 3.1 and the definition of qk, all the columns of q∗ and qk+1 lie in the column

space of W̃ −W . This together with the Lipschitz continuity of ∇f(x) turns (3.33) into

‖qk+1 − q∗‖2F
≤ θ

λ̃min(W̃−W)

(
βλmax((I+W−2W̃)2)

β−1 + βα2Lf
2
)
‖xk+1 − x∗‖2F

+ θ
(θ−1)λ̃min(W̃−W)

(
γλmax(W̃ 2)

γ−1 + γα2Lf
2
)
‖xk − xk+1‖2F,

(3.34)

where λ̃min(·) gives the smallest nonzero eigenvalue. To make a rather tight bound, we

choose γ = 1 + σmax(W̃)
αLf

and β = 1 + σmax(I+W−2W̃)
αLf

in (3.34) and obtain

‖qk+1 − q∗‖2F
≤ θ(σmax(I+W−2W̃)+αLf)2

λ̃min(W̃−W)
‖xk+1 − x∗‖2F + θ(σmax(W̃)+αLf)2

(θ−1)λ̃min(W̃−W)
‖xk − xk+1‖2F.

(3.35)

16

Establishing (3.31), Step 2: In order to establish (3.31), with (3.35), it only remains to

show

‖xk+1 − x∗‖2
α(2µg−η)I+2(I+W−2W̃)−δW̃ + ‖xk − xk+1‖2

W̃−αLf
2

η I

≥ δ
(
θ(σmax(I+W−2W̃)+αLf)2

λ̃min(W̃−W)
‖xk+1 − x∗‖2F + θ(σmax(W̃)+αLf)2

(θ−1)λ̃min(W̃−W)
‖xk − xk+1‖2F

)
.

(3.36)

To validate (3.36), we need α(2µg − η)I + 2(I +W − 2W̃)− δW̃ < δθ(σmax(I+W−2W̃)+αLf)2

λ̃min(W̃−W)
I,

W̃ − αLf
2

η I < δθ(σmax(W̃)+αLf)2

(θ−1)λ̃min(W̃−W)
I,

(3.37)

which holds as long as

δ ≤ min
{

α(2µg−η)λ̃min(W̃−W)

θ(σmax(I+W−2W̃)+αLf)2+λmax(W̃)λ̃min(W̃−W)
, (θ−1)(ηλmin(W̃)−αLf

2)λ̃min(W̃−W)

θη(σmax(W̃)+αLf)2

}
.

(3.38)

To ensure δ > 0, the following conditions are what we finally need:

η ∈ (0, 2µg) and α ∈
(

0, ηλmin(W̃)
Lf

2

)
, S. (3.39)

Obviously set S is nonempty. Therefore, with a proper step size α ∈ S, the sequences

‖zk − z∗‖2G is Q-linearly convergent to 0 at the rate O
(
(1 + δ)−k

)
. Since the definition of

G-norm implies ‖xk −x∗‖2
W̃
≤ ‖zk − z∗‖2G, ‖xk −x∗‖2

W̃
is R-linearly convergent to 0 at the

same rate.

Remark 1 (Strong convexity condition for linear convergence). The restricted strong

convexity assumption in Theorem 3.7 is imposed on g(x) = f(x)+ 1
4α‖x‖

2
W̃−W , not on f(x).

In other words, the linear convergence of EXTRA does not require all fi to be individually

(restricted) strongly convex.

Remark 2 (Acceleration by overshooting W̃). For conciseness, we used Assumption

1 for both Theorems 3.5 and 3.7. In fact, for Theorem 3.7, the condition I+W
2 < W̃ in

part 4 of Assumption 1 can be relaxed, thanks to µg in (3.37). Certain W̃ < I+W
2 , such as

W̃ = 1.5I+W
2.5 , can still give linear convergence. In fact, we observed that such an “overshot”

choice of W̃ can slightly accelerate the convergence of EXTRA.

Remark 3 (Step size optimization). We tried deriving an optimal step size and cor-

responding explicit linear convergence rate by optimizing certain quantities that appear in

the proof, but it becomes quite tricky and messy. For the special case W̃ = I+W
2 , by taking

η → µg, we get a satisfactory step size α→ µg(1+λmin(W))
4Lf

2 .

Remark 4 (Step size for ensuring linear convergence). Interestingly, the critical step

size, α <
2µgλmin(W̃)

Lf
2 = O

(
µg

Lf
2

)
, in (3.39) for ensuring the linear convergence, and the

parameter α = λ̃min(W̃−W)

2(1+ 1
γ2)(µf̄−2Lfγ)

= O
(
µg

Lf
2

)
in (A.7) for ensuring the restricted strong

convexity with O(µg) = O(µf̄), have the same order.

On the other hand, we numerically observed that a step size as large as O
(

1
Lf

)
still

leads to linear convergence, and EXTRA becomes faster with this larger step size. It remains

an open question to prove linear convergence under this larger step size.

17

3.4. Decentralized implementation. We shall explain how to perform EXTRA with

only local computation and neighbor communication. EXTRA’s formula is formed by∇f(x),

Wx and W̃x, and α. By definition ∇f(x) is local computation. Assumption 1 part 1 ensures

that Wx and W̃x can be computed with local and neighbor information. Following our

convergence theorems above, determining α requires the bounds on Lf and λmin(W̃), as well

as that of µg in the (restricted) strongly convex case. As we have argued at the beginning

of Subsection 3.2, it is easy to ensure λmin(W̃) ≥ 1
2 , so λmin(W̃) can be conservatively set

as 1
2 . To obtain Lf = maxi{Lfi}, a maximum consensus algorithm is needed. On the other

hand, it is tricky to determine µg or its lower bound µf̄ , except in the case that each fi is

(restricted) strongly convex, we can conservatively use mini{µfi}. When no bound µg is

available in the (restricted) strongly convex case, setting α according to the general convex

case (subsection 3.2) often still leads to linear convergence.

4. Numerical Experiments.

4.1. Decentralized Least Squares. Consider a decentralized sensing problem: each

agent i ∈ {1, · · · , n} holds its own measurement equation, y(i) = M(i)x + e(i), where y(i) ∈
Rmi and M(i) ∈ Rmi×p are measured data, x ∈ Rp is unknown signal, and e(i) ∈ Rmi is

unknown noise. The goal is to estimate x. We apply the least squares loss and try to solve

minimize
x

f̄(x) =
1

n

n∑
i=1

1

2
‖M(i)x− y(i)‖22.

The network in this experiment is randomly generated with connectivity ratio r = 0.5, where

r is defined as the number of edges divided by L(L−1)
2 , the number of all possible ones. We

set n = 10, mi = 1,∀i, p = 5. Data y(i) and M(i), as well as noise e(i), ∀i, are generated

following the standard normal distribution. We normalize the data so that Lf = 1. The

algorithm starts from x0
(i) = 0,∀i, and ‖x∗ − x0

(i)‖ = 300.

We use the same matrix W by strategy (iv) in Section 2.4 for both DGD and EXTRA.

For EXTRA, we simply use the aforementioned matrix W̃ = I+W
2 . We run DGD with a

fixed step size α, a diminishing one α
k1/3 [14], a diminishing one α0

k1/3 with hand-optimized

α0, a diminishing one α
k1/2 [5], and a diminishing one α0

k1/2 with hand-optimized α0, where

α is the theoretical critical step size given in [36]. We let EXTRA use the same fixed step

size α.

The numerical results are illustrated in Fig. 4.1. In this experiment, we observe that

both DGD with the fixed step size and EXTRA show similar linear convergence in the first

200 iterations. Then DGD with the fixed step size begins to slow down and eventually stall,

and EXTRA continues its progress.

18

1

10

2

3

45

6
7

8

9 0 500 1000 1500 2000 2500 3000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

k

R
e
s
id
u
a
l

DGD with fixed α

DGD with α
k
= α/k1/3

DGD with α
k
= 3α/k1/3

DGD with α
k
= α/k1/2

DGD with α
k
= 5α/k1/2

EXTRA with fixed α

Fig. 4.1. Plot of residuals
‖xk−x∗‖F
‖x0−x∗‖F

. Constant α = 0.5276 is the theoretical critical step size given

for DGD in [36]. For DGD with diminishing step sizes O(1/k1/3) and O(1/k1/2), we have hand-optimized

their initial step sizes as 3α and 5α, respectively.

4.2. Decentralized Robust Least Squares. Consider the same decentralized sens-

ing setting and network as in Section 4.1. In this experiment, we use the Huber loss, which

is known to be robust to outliers, and it allows us to observe both sublinear and linear

convergence. We call the problem as decentralized robust least squares:

minimize
x

f̄(x) =
1

n

n∑
i=1


mi∑
j=1

Hξ(M(i)jx− y(i)j)

 ,

where M(i)j is the j-th row of matrix M(i) and y(i)j is the j-th entry of vector y(i). The

Huber loss function Hξ is defined as

Hξ(a) =

{
1
2a

2, for |a| ≤ ξ, (`22 zone),

ξ(|a| − 1
2ξ), otherwise, (`1 zone).

We set ξ = 2. The optimal solution x∗ is artificially set in the `22 zone while x0
(i) is set in

the `1 zone at all agents i.

Except for new hand-optimized initial step sizes for DGD’s diminishing step sizes, all

other algorithmic parameters remain unchanged from the last test.

The numerical results are illustrated in Fig. 4.2. EXTRA has sublinear convergence for

the fist 1000 iterations and then begins linear convergence, as xk(i) for most i enter the `22
zone.

19

0 500 1000 1500 2000 2500 3000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

k

R
e
s
id
u
a
l

DGD with fixed α

DGD with α
k
= α/k1/3

DGD with α
k
= 10α/k1/3

DGD with α
k
= α/k1/2

DGD with α
k
= 20α/k1/2

EXTRA with fixed α

Fig. 4.2. Plot of residuals
‖xk−x∗‖F
‖x0−x∗‖F

. Constant α = 0.5276 is the theoretical critical step size given

for DGD in [36]. For DGD with diminishing step sizes O(1/k1/3) and O(1/k1/2), we have hand-optimized

their initial step sizes as 10α and 20α, respectively. The initial large step sizes have helped them (the red

and purple curves) realize faster convergence initially.

4.3. Decentralized Logistic Regression. Consider the decentralized logistic regres-

sion problem:

minimize
x

f̄(x) =
1

n

n∑
i=1

 1

mi

mi∑
j=1

ln
(
1 + exp

(
−(M(i)jx)y(i)j

)) ,

where every agent i holds its training date
(
M(i)j , y(i)j

)
∈ Rp × {−1,+1}, j = 1, · · · ,mi,

including explanatory/feature variables M(i)j and binary output/outcome y(i)j . To simplify

the notation, we set the last entry of every M(i)j to 1 thus the last entry of x will yield the

offset parameter of the logistic regression model.

We show a decentralized logistic regression problem solved by DGD and EXTRA over

a medium-scale network. The settings are as follows. The connected network is randomly

generated with n = 200 agents and connectivity ratio r = 0.2. Each agent holds 10 samples,

i.e., mi = 10,∀i. The agents shall collaboratively obtain p = 20 coefficients via logistic

regression. All the 2000 samples are randomly generated, and the reference (ground true)

logistic classifier x∗ is pre-computed with a centralized method. As it is easy to implement

in practice, we use the Metropolis constant edge weight matrix W , which is mentioned by

strategy (iii) in Section 2.4, with ε = 1, and we use W̃ = I+W
2 . The numerical results are

illustrated in Fig. 4.3. EXTRA outperforms DGD, showing linear and exact convergence

to the reference logistic classifier x∗.

20

0 2000 4000 6000 8000 10000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

k

R
e
si
d
u
a
l

DGD with fixed α

DGD with α
k
= α/k1/3

DGD with α
k
= 10α/k1/3

DGD with α
k
= α/k1/2

DGD with α
k
= 20α/k1/2

EXTRA with fixed α

Fig. 4.3. Plot of residuals
‖xk−x∗‖F
‖x0−x∗‖F

. Constant α = 0.0059 is the theoretical critical step size given

for DGD in [36]. For DGD with diminishing step sizes O(1/k1/3) and O(1/k1/2), we have hand-optimized

their initial step sizes as 10α and 20α, respectively.

5. Conclusion. As one of the fundamental method, gradient descent has been adapted

to decentralized optimization, giving rise to simple and elegant iterations. In this paper, we

attempted to address a dilemma or deficiency of the current decentralized gradient descent

method: to obtain an accurate solution, it works slowly as it must use a small step size

or iteratively diminish the step size; a large step size will lead to faster convergence to,

however, an inaccurate solution. Our solution is an exact first-order algorithm, EXTRA,

which uses a fixed large step size and quickly returns an accurate solution. The claim is

supported by both theoretical convergence and preliminary numerical results. On the other

hand, EXTRA is far from perfect, and more work is needed to adapt it to the asynchronous

and dynamic network settings. They are interesting open questions for future work.

Appendix A. Proof of Proposition 3.6.

Proof.

“(ii) ⇒ (i)”: By definition of restricted strong convexity, there exists µg > 0 so that for

any x,

µg‖x− x∗‖2F ≤ 〈∇g(x)−∇g(x∗),x− x∗〉
= 〈∇f(x)−∇f(x∗),x− x∗〉+ 1

2α‖x− x∗‖2
W̃−W .

(A.1)

For any x ∈ Rp, set x = 1xT , and from the above inequality, we get

µg‖x− x∗‖22 ≤ 1
n

n∑
i=1

〈∇fi(x)−∇fi(x∗), x− x∗〉

= 〈∇f̄(x)−∇f̄(x∗), x− x∗〉.
(A.2)

Therefore, f̄(x) is restricted strongly convex with a constant µf̄ , µg.

“(i) ⇒ (ii)”: For any x ∈ Rn×p, decompose

x = u + v

21

so that every column of u belongs to span{1} (i.e., u is consensual) while that of v belongs to

span{1}⊥. Such an orthogonal decomposition obviously satisfies ‖x‖2F = ‖u‖2F+‖v‖2F. Since

solution x∗ is consensual and thus 〈u−x∗,v〉 = 0, we also have ‖x−x∗‖2F = ‖u−x∗‖2F+‖v‖2F.

In addition, being consensual, u = 1uT for some u ∈ Rp. From the inequalities

〈∇f(u)−∇f(x∗),u− x∗〉 = n
1

n

n∑
i=1

〈∇fi(u)−∇fi(x∗), u− x∗〉

≥ nµf̄‖u− x∗‖22 = µf̄‖u− x∗‖2F,

〈∇f(x)−∇f(u),x− u〉 ≥ 0,

〈∇f(u)−∇f(x∗),x− u〉 ≥ −Lf‖u− x∗‖F‖v‖F,

〈∇f(x)−∇f(u),u− x∗〉 ≥ −Lf‖v‖F‖u− x∗‖F,

we get

〈∇f(x)−∇f(x∗),x− x∗〉
= 〈∇f(u)−∇f(x∗),u− x∗〉+ 〈∇f(x)−∇f(u),x− u〉

+〈∇f(u)−∇f(x∗),x− u〉+ 〈∇f(x)−∇f(u),u− x∗〉
≥ µf̄‖u− x∗‖2F − 2Lf‖u− x∗‖F‖v‖F.

(A.3)

In addition, from the fact that u − x∗ ∈ null{W̃ −W} and v ∈ span{W̃ −W}, it follows

that

1
2α‖x− x∗‖2

W̃−W = 1
2α‖v‖

2
W̃−W ≥

λ̃min(W̃−W)
2α ‖v‖2F, (A.4)

where λ̃min(·) gives the smallest nonzero eigenvalue of a positive semidefinite matrix.

Pick any γ > 0. When ‖v‖F ≤ γ‖u− x∗‖F, it follows that

〈∇g(x)−∇g(x∗),x− x∗〉
= 〈∇f(x)−∇f(x∗),x− x∗〉+ 1

2α‖x− x∗‖2
W̃−W

≥ µf̄‖u− x∗‖2F − 2Lf‖u− x∗‖F‖v‖F + λ̃min(W̃−W)
2α ‖v‖2F (by (A.3) and (A.4))

≥ (µf̄ − 2Lfγ)‖u− x∗‖2F + λ̃min(W̃−W)
2α ‖v‖2F

≥ min
{
µf̄ − 2Lfγ,

λ̃min(W̃−W)
2α

}
‖x− x∗‖2F.

(A.5)

When ‖v‖F ≥ γ‖u− x∗‖F, it follows that

〈∇g(x)−∇g(x∗),x− x∗〉
= 〈∇f(x)−∇f(x∗),x− x∗〉+ 1

2α‖x− x∗‖2
W̃−W

≥ 0 + λ̃min(W̃−W)
2α ‖v‖2F (applied convexity of f and (A.4))

≥ λ̃min(W̃−W)

2α(1+ 1
γ2)
‖v‖2F + λ̃min(W̃−W)

2α(1+ 1
γ2)
‖u− x∗‖2F

= λ̃min(W̃−W)

2α(1+ 1
γ2)
‖x− x∗‖2F.

(A.6)

Finally, in all conditions,

〈∇g(x)−∇g(x∗),x− x∗〉

≥ min

{
µf̄ − 2Lfγ,

λ̃min(W̃−W)

2α(1+ 1
γ2)

}
‖x− x∗‖2F , µg‖x− x∗‖2F.

(A.7)

22

By, for example, setting γ =
µf̄
4Lf

, we have µg > 0. Hence, function g is restricted strongly

convex for any α > 0 as long as function f̄ is restricted strongly convex.

In the direction of “(ii) ⇒ (i)”, we find µg < µf̄ , unlike the more pleasant µf̄ = µg in

the other direction. However, from (A.7), we have

sup
γ,α

µg = lim
γ→0+

µg

∣∣∣
α=

λ̃min(W̃−W)

2(1+ 1
γ2)(µ

f̄
−2Lf γ)

= µf̄ ,

which means that µg can be arbitrarily close to µf̄ as α goes to zero. On the other hand, just

to have O(µg) = O(µf̄), we can set γ = O
(
µf̄
Lf

)
and α = λ̃min(W̃−W)

2(1+ 1
γ2)(µf̄−2Lfγ)

= O
(
µf̄
Lf

2

)
=

O
(
µg

Lf
2

)
. This order of α coincides, in terms of order of magnitude, with the critical step

size for ensuring the linear convergence.

REFERENCES

[1] J. Bazerque and G. Giannakis, Distributed Spectrum Sensing for Cognitive Radio Networks by

Exploiting Sparsity, IEEE Transactions on Signal Processing, 58 (2010), pp. 1847–1862. 1

[2] J. Bazerque, G. Mateos, and G. Giannakis, Group-Lasso on Splines for Spectrum Cartography,

IEEE Transactions on Signal Processing, 59 (2011), pp. 4648–4663. 1

[3] S. Boyd, P. Diaconis, and L. Xiao, Fastest Mixing Markov Chain on a Graph, SIAM Review, 46

(2004), pp. 667–689. 2.4

[4] T. Chang, M. Hong, and X. Wang, Multi-Agent Distributed Optimization via Inexact Consensus

ADMM, arXiv preprint arXiv:1402.6065, (2014). 1.1

[5] I. Chen, Fast Distributed First-Order Methods, master’s thesis, Department of Electrical Engineering

and Computer Science, Massachusetts Institute of Technology, 2012. 1.1, 2.1, 2.4, 4.1

[6] D. Davis and W. Yin, Convergence Rates of Splitting Algorithms for Optimization. arXiv preprint

arXiv:1406.4834, 2014. 1

[7] A. Dimakis, S. Kar, M. R. J. Moura, and A. Scaglione, Gossip Algorithms for Distributed Signal

Processing, Proceedings of the IEEE, 98 (2010), pp. 1847–1864. 1

[8] J. Duchi, A. Agarwal, and M. Wainwright, Dual Averaging for Distributed Optimization: Con-

vergence Analysis and Network Scaling, IEEE Transactions on Automatic Control, 57 (2012),

pp. 592–606. 1.1

[9] P. Forero, A. Cano, and G. Giannakis, Consensus-Based Distributed Support Vector Machines,

Journal of Machine Learning Research, 59 (2010), pp. 1663–1707. 1

[10] L. Gan, U. Topcu, and S. Low, Optimal Decentralized Protocol for Electric Vehicle Charging, IEEE

Transactions on Power Systems, 28 (2013), pp. 940–951. 1

[11] B. He, A New Method for A Class of Linear Variational Inequalities, Mathematical Programming,

66 (1994), pp. 137–144. 3.2

[12] F. Iutzeler, P. Bianchi, P. Ciblat, and W. Hachem, Explicit Convergence Rate of a Distributed

Alternating Direction Method of Multipliers, arXiv preprint arXiv:1312.1085, (2013). 1.1

[13] D. Jakovetic, J. Moura, and J. Xavier, Linear Convergence Rate of Class of Distributed Augmented

Lagrangian Algorithms, arXiv preprint arXiv:1307.2482, (2013). 1.1

[14] D. Jakovetic, J. Xavier, and J. Moura, Fast Distributed Gradient Methods, IEEE Transactions on

Automatic Control, 59 (2014), pp. 1131–1146. 1.1, 2.1, 4.1

[15] B. Johansson, On Distributed Optimization in Networked Systems, PhD thesis, KTH, 2008. 1

[16] V. Kekatos and G. Giannakis, Distributed Robust Power System State Estimation, IEEE Transac-

tions on Power Systems, 28 (2013), pp. 1617–1626. 1

[17] M. Lai and W. Yin, Augmented `1 and Nuclear-Norm Models with a Globally Linearly Convergent

Algorithm, SIAM Journal on Imaging Sciences, 6 (2013), pp. 1059–1091. 2

23

[18] Q. Ling and Z. Tian, Decentralized Sparse Signal Recovery for Compressive Sleeping Wireless Sensor

Networks, IEEE Transactions on Signal Processing, 58 (2010), pp. 3816–3827. 1

[19] Q. Ling, Z. Wen, and W. Yin, Decentralized Jointly Sparse Recovery by Reweighted `q Minimization,

IEEE Transactions on Signal Processing, 61 (2013), pp. 1165–70. 1

[20] Q. Ling, Y. Xu, W. Yin, and Z. Wen, Decentralized Low-rank Matrix Completion, in Proceedings

of the 37th IEEE International Conference on Acoustics, Speech, and Signal Processing, 2012,

pp. 2925–2928. 1

[21] I. Matei and J. Baras, Performance Evaluation of the Consensus-Based Distributed Subgradient

Method under Random Communication Topologies, IEEE Journal of Selected Topics in Signal

Processing, 5 (2011), pp. 754–771. 1.1

[22] G. Mateos, J. Bazerque, and G. Giannakis, Distributed Sparse Linear Regression, IEEE Transac-

tions on Signal Processing, 58 (2010), pp. 5262–5276. 1

[23] A. Nedic and A. Olshevsky, Distributed Optimization over Time-Varying Directed Graphs, in The

52nd IEEE Annual Conference on Decision and Control, 2013, pp. 6855–6860. 1.1, 2.3

[24] , Stochastic Gradient-Push for Strongly Convex Functions on Time-Varying Directed Graphs,

arXiv preprint arXiv:1406.2075, (2014). 1.1

[25] A. Nedic and A. Ozdaglar, Distributed Subgradient Methods for Multi-agent Optimization, IEEE

Transactions on Automatic Control, 54 (2009), pp. 48–61. 1.1

[26] J. Predd, S. Kulkarni, and H. Poor, A Collaborative Training Algorithm for Distributed Learning,

IEEE Transactions on Information Theory, 55 (2009), pp. 1856–1871. 1

[27] S. Ram, A. Nedic, and V. Veeravalli, Distributed Stochastic Subgradient Projection Algorithms for

Convex Optimization, Journal of Optimization Theory and Applications, 147 (2010), pp. 516–545.

1.1

[28] A. Sayed, Diffusion Adaptation over Networks, arXiv preprint arXiv:1205.4220, (2012). 2.4

[29] I. Schizas, A. Ribeiro, and G. Giannakis, Consensus in Ad Hoc WSNs with Noisy Links–Part

I: Distributed Estimation of Deterministic Signals, IEEE Transactions on Signal Processing, 56

(2008), pp. 350–364. 1

[30] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, On the Linear Convergence of the ADMM in Decen-

tralized Consensus Optimization, IEEE Transactions on Signal Processing, 62 (2014), pp. 1750–

1761. 1.1

[31] J. Tsitsiklis, Problems in Decentralized Decision Making and Computation, PhD thesis, Department

of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 1984. 2.4

[32] E. Wei and A. Ozdaglar, On the O(1/k) Convergence of Asynchronous Distributed Alternating

Direction Method of Multipliers, arXiv preprint arXiv:1307.8254, (2013). 1.1

[33] L. Xiao and S. Boyd, Fast Linear Iterations for Distributed Averaging, Systems and Control Letters,

53 (2004), pp. 65–78. 2.4

[34] L. Xiao, S. Boyd, and S. Kim, Distributed Average Consensus with Least-mean-square Deviation,

Journal of Parallel and Distributed Computing, 67 (2007), pp. 33–46. 1, 2.4

[35] K. Yuan, Q. Ling, A. Ribeiro, and W. Yin, A Linearized Bregman Algorithm for Decentralized

Basis Pursuit, in Proceedings of the 21st European Signal Processing Conference, 2013, pp. 1–5.

1

[36] K. Yuan, Q. Ling, and W. Yin, On the Convergence of Decentralized Gradient Descent, arXiv

preprint arXiv:1310.7063, (2013). 1.1, 2.1, 2.4, 4.1, 4.1, 4.2, 4.3

[37] M. Zhu and S. Martinez, On Distributed Convex Optimization under Inequality and Equality Con-

straints, IEEE Transactions on Automatic Control, 57 (2012), pp. 151–164. 1.1

24

