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Abstract. We introduce a new geometric framework for the set of symmetric positive-definite
(SPD) matrices, aimed to characterize deformations of SPD matrices by individual scaling of eigen-
values and rotation of eigenvectors of the SPD matrices. To characterize the deformation, the
eigenvalue-eigenvector decomposition is used to find alternative representations of SPD matrices,
and to form a Riemannian manifold so that scaling and rotations of SPD matrices are captured by
geodesics on this manifold. The problems of non-unique eigen-decompositions and eigenvalue mul-
tiplicities are addressed by finding minimal-length geodesics, which gives rise to a distance and an
interpolation method for SPD matrices. Computational procedures to evaluate the minimal scaling–
rotation deformations and distances are provided for the most useful cases of 2 × 2 and 3 × 3 SPD
matrices. In the new geometric framework, minimal scaling–rotation curves interpolate eigenvalues
at constant logarithmic rate, and eigenvectors at constant angular rate. In the context of diffusion
tensor imaging, this results in better behavior of the trace, determinant and fractional anisotropy of
interpolated SPD matrices in typical cases.
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1. Introduction. The analysis of symmetric positive-definite (SPD) matrices
as data objects arises in many contexts. A prominent example is diffusion tensor
imaging (DTI), which is a widely-used technique that measures the diffusion of water
molecules in a biological object [4, 16, 2]. The diffusion of water is characterized by
a 3D tensor, which is a 3 × 3 SPD matrix. The SPD matrices also appear in other
contexts of tensor computing [24], tensor-based morphometry [18] and as covariance
matrices [30]. In recent years statistical analyses of SPD matrices have been received
great attention [34, 26, 28, 27, 22, 33, 23].

The main challenge in the analysis of SPD matrices is that the set of p × p
SPD matrices, Sym+(p), is a proper open subset of a real matrix space, so it is not a
vector space. This has led researchers to consider alternative geometric frameworks to
handle analytic and statistical tasks for SPD matrices. The most popular framework
is a Riemannian framework, where the set of SPD matrices is endowed with an affine-
invariant Riemannian metric [21, 24, 17, 11]. The Log-Euclidean metric, discussed in
[3], is also widely used, because of its simplicity. [10] lists these popular approaches
including the Cholesky decomposition-based approach of [31] and their own approach
which they call the Procrustes distance. [6] proposed a different Riemannian approach
for symmetric positive semidefinite matrices of fixed rank.

Although these approaches are powerful in generalizing statistics to SPD matrices,
they are not easy to interpret in terms of SPD matrix deformations. In particular, in
the context of DTI, tensor changes are naturally characterized by changes in diffusion
orientation and intensity, but the above frameworks do not provide such an inter-
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pretation. [25] proposed a scaling–rotation curve in Sym+(p), which is interpretable
as rotation of diffusion directions and scaling of the main modes of diffusivity. In
this paper we develop a novel framework to formally characterize scaling–rotation
deformations between SPD matrices and introduce a new distance, called here the
scaling–rotation distance, defined by the minimum amount of rotation and scaling
needed to deform one SPD matrix into another.

To this aim, an alternative representation of Sym+(p), obtained from the de-
composition of each SPD matrix into an eigenvalue matrix and eigenvector matrix,
is identified as a Riemannian manifold. This manifold, a generalized cylinder em-
bedded in a higher-dimensional matrix space, is easy to endow with a Riemannian
geometry. A careful analysis is provided to handle the case of equal eigenvalues and,
more generally, the non-uniqueness of the eigen-decomposition. We show that the
scaling–rotation curve corresponds to geodesics in the new geometry, and character-
ize the family of geodesics. A minimal deformation of SPD matrices in terms of the
smallest amount of scaling and rotation is then found by a minimal scaling–rotation
curve, through a minimal-length geodesic. Sufficient conditions for the uniqueness of
minimal curves are given.

The proposed framework not only provides a minimal deformation, but also yields
a distance between SPD matrices. This distance function is a semi-metric on Sym+(p)
and invariant to simultaneous rotation, scaling and inversion of SPD matrices. The
invariance to matrix inversion is particularly desirable in analysis of DTI data, where
both large and small diffusions are unlikely [3]. While these invariance properties are
also found in other frameworks [21, 24, 17, 11, 3], the proposed distance is directly
interpretable in terms of the relative scaling of eigenvalues and rotation angle between
eigenvector frames of two SPD matrices.

For Sym+(3), other authors [9, 32] have proposed dissimilarity-measures and in-
terpolation schemes based on the same general idea as ours, i.e., separating the scaling
and rotation of SPD matrices. Their deformations of SPD matrices can be similar to
ours in many cases, thus enjoying similar interpretability. But while [9, 32] mainly
focused on the p = 3 case, our work is more flexible by allowing unordered and equal
eigenvalues. We discuss the importance of this later in Section 3.

The proposed geometric framework for analysis of SPD matrices is viewed as an
important first step to develop statistical tools for SPD matrix data that will inherit
the interpretability and the advantageous regular behavior of the scaling–rotation
curve. Development of tools similar to those already existing for other geometric
framework, such as bi- or tri-linear interpolations [3], weighted geometric means and
spatial smoothing [21, 10, 7], principal geodesic analysis [11], regression and statistical
testing [34, 28, 27, 33], will also be needed in the new framework, but we do not address
them here. The proposed framework also has potential future applications beyond
diffusion tensor study such as high-dimensional factor models [12] and classification
among SPD matrices [15, 30]. Algorithms allowing fast computation or approximation
of the proposed distance may be needed, but we will leave this as a subject of future
work. The current paper focuses only on analyzing minimal scaling–rotation curves
and the distance defined by them.

The main advantage of the new geometric framework for SPD matrices is that
minimal scaling–rotation curves interpolate eigenvalues at constant logarithmic rate,
and eigenvectors at constant angular rate, with a minimal amount of scaling and
rotation. These are desirable characteristics in fiber-tracking in DTI [5]. Moreover,
scaling–rotation curves exhibit regular evolution of determinant, and in typical cases,
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of fractional anisotropy and mean diffusivity. Linear interpolation of two SPD matri-
ces by the usual vector operation is known to have a swelling effect: the determinants
of interpolated SPD matrices are larger than those of the two ends. This is physically
unrealistic in DTI [3]. The Riemannian frameworks in [21, 24, 3] do not suffer from
the swelling effect, which was in part the rationale to favor the more sophisticated
geometry. However, all of these exhibit a fattening effect: interpolated SPD matrices
are more isotropic than the two ends [8]. The Riemannian frameworks also produce
an unpleasant shrinking effect: the trace of interpolated SPD matrices are smaller
than those of the two ends [5]. The scaling–rotation framework, on the other hand,
does not suffer from the fattening effect and produces a smaller shrinking effect with
no shrinking at all in the case of pure rotations.

The rest of the paper is organized as follows. Scaling–rotation curves are formally
defined in Section 2. Section 3 is devoted to precisely characterizing minimal scaling–
rotation curves between two SPD matrices and the distance obtained accordingly. The
cylindrical representation of Sym+(p) is introduced to handle the non-uniqueness of
the eigen-decomposition and repeated eigenvalue cases. Section 4 provides details for
the computation of the distance and curves for the special but most commonly useful
cases of 2 × 2 and 3 × 3 SPD matrices. In Section 5, we highlight the advantageous
regular evolution of the scaling–rotation interpolations of SPD matrices. Technical
details including proofs of theorems are contained in Appendix.

2. Scaling–rotation curves in Sym+(p). An SPD matrix M ∈ Sym+(p) can
be identified with an ellipsoid in Rp (ellipse if p = 2). In particular, the surface
coordinates x ∈ Rp of the ellipsoid corresponding to M satisfy x′M−1x = 1. The
semi-principal axes of the ellipsoid are given by eigenvector and eigenvalue pairs of
M . Fig. 2.1 illustrates some SPD matrices in Sym+(3) as ellipsoids in R3. Any
deformation of the SPD matrix X to another SPD matrix can be achieved by the
combination of two operations:

1. individual scaling of the eigenvalues, or stretching (shrinking) the ellipsoid
along principal axes;

2. rotation of the eigenvectors, or rotation of the ellipsoid.
Denote an eigen-decomposition of X by X = UDU ′, where the columns of U ∈

SO(p) consist of orthogonal eigenvectors of X, and D ∈ Diag+(p) is the diagonal
matrix of positive eigenvalues that need not be ordered. Here, SO(p) denotes the
set of p× p real rotation matrices. To parameterize scaling and rotation, the matrix
exponential and logarithm, defined in Appendix A, are used. A continuous scaling of
the eigenvalues in D at a constant proportionality rate can be described by a curve
D(t) = exp(Lt)D in Diag+(p) for some L = diag(l1, . . . , lp) ∈ Diag(p), t ∈ R, where
Diag(p) is the set of all p × p real diagonal matrices. Since d

dtD(t) = LD(t), we call
L the scaling velocity. Each element li of L provides the scaling factor for the ith
coordinate di of D. A rotation of the eigenvectors in the ambient space at a constant
“angular rate” is described by a curve U(t) = exp(At)U in SO(p), where A ∈ so(p),
the set of antisymmetric matrices (the Lie algebra of SO(p)). Since d

dtU(t) = AU(t),
we call A the angular velocity. Incorporating the scaling and rotation together results
in the general scaling–rotation curve (introduced in [25]),

χ(t) = χ(t;U,D,A,L) = exp(At)UD exp(Lt)U ′ exp(A′t) ∈ Sym+(p), t ∈ R. (2.1)

The scaling–rotation curve characterizes deformations of X = χ(0) ∈ Sym+(p)
so that the ellipsoid corresponding to X is smoothly rotated, and each principal axis
stretched and shrunk, as a function of t. For p = 2, 3, the matrix A gives the axis
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Fig. 2.1. Scaling–rotation curves in Sym+(3): (top) pure rotation with rotation axis normal
to the screen, (middle) individual scaling along principal axes without any rotation, and (bottom)
simultaneous scaling and rotation. The rotation axis is shown as a black line segment. The ellipsoids
are colored by the direction of principal axes, to help visualize the effect of rotation.

and angle of rotation (cf. Appendix A). Fig. 2.1 illustrates discretized trajectories of
scaling–rotation curves in Sym+(3), visualized by the corresponding ellipsoids. These
curves in general do not coincide with straight lines or geodesics in other geometric
frameworks such as [31, 21, 24, 17, 11, 3, 10, 9, 32]. In section 3, we introduce
a Riemannian metric which reproduces these scaling–rotation curves as images of
geodesics.

Given two points X,Y ∈ Sym+(p), we will define the distance between them as
the length of a scaling–rotation curve χ(t) that joins X and Y . Thus it is of interest to
identify the parameters of the curve χ(t) that starts at X = χ(0) and meets Y = χ(1)
at t = 1. From eigen-decompositions of X and Y , X = UDU ′, Y = V ΛV ′, we could
equate χ(1) and V ΛV ′, and naively solve for eigenvector matrix and eigenvalue matrix
separately, leading to A = log(V U ′) ∈ so(p), L = log(D−1Λ) ∈ Diag(p). This solution
is generally correct, if the eigen-decompositions of X and Y are chosen carefully (see
Theorem 3.14). The difficulty is that there are many other scaling–rotation curves
that also join X and Y , due to the non-uniqueness of eigen-decomposition. Thus it
is required to consider a minimal scaling–rotation curve among all such curves.

3. Minimal scaling–rotation curves in Sym+(p) .

3.1. Decomposition of SPD matrices into scaling and rotation compo-
nents. An SPD matrix X can be eigen-decomposed into a matrix of eigenvectors
U ∈ SO(p) and a diagonal matrix D ∈ Diag+(p) of eigenvalues. In general, there are
many pairs (U,D) such that X = UDU ′. Denote the set of all pairs (U,D) by

(SO×Diag+)(p) = SO(p)×Diag+(p).

We use the following notations:
Definition 3.1. For all pairs (U,D) ∈ (SO×Diag+)(p) such that X = UDU ′,

(i) An eigen-decomposition (U,D) of X is called an (unobservable) version of
X in (SO×Diag+)(p);
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Sym+(p) (SO x Diag+)(p)

(U,D)

(U2,D)

(U3,D)

(U1,D)

(Uπ,Dπ)

X= UDU'
.....

Fig. 3.1. An SPD matrix X and its versions in (SO × Diag+)(p). The eigen-composition of
(U,D) is depicted as a many-to-one mapping from (SO×Diag+)(p) to Sym+(p).

(ii) X is the eigen-composition of (U,D), defined by a mapping c : (SO ×
Diag+)(p)→ Sym+(p), c(U,D) = UDU ′ = X.

The many-to-one mapping c from (SO×Diag+)(p) to Sym+(p) is surjective. (The
symbol c stands for composition.) Fig. 3.1 illustrates the relationship between an SPD
matrix and its many versions (eigen-decompositions). While Sym+(p) is an open cone,
the set (SO×Diag+)(p) can be understood as the boundary of a generalized cylinder,
i.e., (SO × Diag+)(p) forms a shape of cylinder whose cross-section is “spherical”
(SO(p)) and the centers of the cross section are on the positive orthant of Rp, i.e.,
Diag+(p). The set (SO×Diag+)(p) is a complete Riemannian manifold, as described
below in Section 3.2.

Note that considering (SO×Diag+)(p) as the set of all possible eigen-decompositions
is an important relaxation of the usual ordered eigenvalue assumption. We will see
in the subsequent sections that this is necessary to describe the desired family of
deformations. As an example, the scaling–rotation curve depicted at the middle row
of Fig. 2.1 is made possible by allowing unordered eigenvalues. Moreover, our man-
ifold (SO × Diag+)(p) has no boundaries, which not only allows us to handle equal
eigenvalues but also makes the applied Riemannian geometry simple.

We first discuss which elements of (SO×Diag+)(p) are the versions of any given
SPD matrix X.

Definition 3.2. Let Sp denote the symmetric group, i.e., the group of per-
mutations of the set {1, . . . , p}, for p ≥ 2. A permutation π ∈ Sp is a bijection
π : {1, . . . , p} → {1, . . . , p}. Let σp = {(ε1, . . . , εp) ∈ Rp : εi ∈ {±1}, 1 ≤ i ≤ p} and
σ+
p = {(ε1, . . . , εp) ∈ σp :

∏p
i=1 εi = 1}.

(i) For a permutation π ∈ Sp, its permutation matrix is the p × p matrix P 0
π

whose entries are all 0 except that in column i the entry π(i) equals 1. Moreover,

define Pπ = P 0
π if det(P 0

π ) = 1, Pπ =

[
−1 0′

0 Ip−1

]
P 0
π if det(P 0

π ) = −1.

(ii) For σ = (ε1, . . . , εp) ∈ σp, its associated sign-change matrix is the p × p
diagonal matrix Iσ whose ith diagonal element is εi. If σ ∈ σ+

p , we call Iσ an even
sign-change matrix.

(iii) For any D ∈ Diag(p), the stabilizer subgroup of D is GD = {R ∈ SO(p) :
RDR′ = D}.

For any σ ∈ σ+
p , π ∈ Sp, Pπ, Iσ ∈ SO(p). The number of different permutations

(or sign-changes) is p! (or 2p−1, respectively). These two types of matrices provide
operations for permutation and sign-changes in eigenvalue decomposition. In particu-
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lar, for U ∈ SO(p), a column-permuted U , by a permutation π ∈ Sp, is UP ′π ∈ SO(p),
and a sign-changed U , by σ ∈ σ+

p , is UIσ ∈ SO(p). For D = diag(d1, . . . , dp), define
π ·D = diag(dπ−1(1), . . . , dπ−1(p)) ∈ Diag(p) as a diagonal matrix whose elements are
permuted by π ∈ Sp. Dπ := PπDP

′
π is exactly the diagonal matrix π ·D. The same

is true if Pπ is replaced by IσPπ, for any σ ∈ σp. Finally, for any σ ∈ σ+
p , π ∈ Sp,

there exists σ0 ∈ σp such that Iσ0P 0
π = IσPπ.

Theorem 3.3. Every version of X = UDU ′ is of the form (U∗, D∗) = (URP ′π, Dπ),
for R ∈ GD, π ∈ Sp, and Dπ = PπDP

′
π. Moreover, if the eigenvalues of X are all

distinct, every R ∈ GD is an even sign-change matrix Iσ, σ ∈ σ+
p .

Remark 3.4. If the eigenvalues of X are all distinct, there are exactly p!2p−1

eigen-decompositions of X. In such a case, all versions of X can be explicitly obtained
by application of permutations and sign-changes to any version (U,D) of X.

Remark 3.5. If the eigenvalues of X are not all distinct, there are infinitely
many eigen-decompositions of X due to the arbitrary rotation R of eigenvectors. The
stabilizer group of D, GD, to which R belongs in Theorem 3.3, does not depend on
particular eigenvalues but only on which eigenvalues are equal. More precisely, forD =
diag(d1, . . . , dp) ∈ Diag+(p), let JD be the partition of coordinate indices {1, . . . , p}
determined by D, i.e., for which i and j are in the same block if and only if di = dj . A
block can consist of non-consecutive numbers. For a partition J = {J1, . . . , Jr} with
r blocks, let {W1, . . . ,Wr} = {RJ1 , . . . ,RJr} denote the corresponding subspaces of
Rp; x ∈ RJi if and only if the jth coordinate of x is 0 for all j /∈ Ji. The stabilizer
GD depends only on the partition JD. Define GJ ⊂ SO(p) by

GJ = {R ∈ SO(p) : RWi = Wi, 1 ≤ i ≤ r}. (3.1)

Then GD = GJD . As an illustration, let D = diag(1, 1, 2). Then JD = {{1, 2}, {3}}.
An example of R ∈ GD is a 3 × 3 block-diagonal matrix where the first 2 × 2 block
is any R1 ∈ SO(2) and the last diagonal element is r2 = 1. Intuitively, RDR′ with
this choice of R behaves as if the first 2 × 2 block of D, D1, is arbitrarily rotated.
Since D1 = I2, rotation makes no difference. Another example is given by setting
R1 ∈ O(2) with det(R1) = −1 and r2 = −1.

3.2. A Riemannian framework for scaling and rotation of SPD matri-
ces. The set of rotation matrices SO(p) is a p(p− 1)/2-dimensional smooth Rieman-
nian manifold equipped with the usual Riemannian inner product for the tangent space
[13, Ch. 18]. The set of positive diagonal matrices Diag+(p) is also a p-dimensional
smooth Riemannian manifold. The set (SO × Diag+)(p), being a direct product of
two smooth and complete manifolds, is a complete Riemannian manifold [29, 1]. We
state some geometric facts necessary to our discussion.

Lemma 3.6.

(i) (SO×Diag+)(p) is a differentiable manifold of dimension p+ p(p− 1)/2.
(ii) (SO×Diag+)(p) is the image of so(p)×Diag(p) under the exponential map

Exp((A,L)) = (exp(A), exp(L)), (A,L) ∈ so(p)×Diag(p).
(iii) The tangent space τ(I, I) to (SO × Diag+)(p) at the identity (I, I) can be

naturally identified as a copy of so(p)×Diag(p).
(iv) The tangent space τ(U,D) to (SO×Diag+)(p) at an arbitrary point (U,D)

can be naturally identified as the set τ(U,D) = {(AU,LD) : A ∈ so(p), L ∈ Diag(p)}.
Our choice of Riemannian inner product at (U,D) for two tangent vectors (A1U,L1D)
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and (A2U,L2D) is

〈(A1U,L1D), (A2U,L2D)〉(U,D) =
k

2
〈U ′A1U,U

′A2U〉+ 〈D−1L1D,D
−1L2D〉

=
k

2
trace(A1A

′
2) + trace(L1L2), k > 0, (3.2)

where 〈X,Y 〉 for X,Y ∈ GL(p) denotes the Frobenius inner product 〈X,Y 〉 =
trace(XY ′). [9] used a structure similar to (3.2), with the scaling factor k being
a function of D, to motivate their distance function. We use k = 1 for all of our
illustrations in this paper. The practical effect on using different values of k is dis-
cussed in the supplementary material. The practical effect on using different values
of k is discussed in Section 5.2. For any fixed k, we show that this choice of Rie-
mannian inner product leads to interpretable distances with invariance properties (cf.
Proposition 3.7 and Theorem 3.8).

The exponential map from a tangent space τ(U,D) to (SO×Diag+)(p) is Exp(U,D) :

τ(U,D)→ (SO×Diag+)(p),

Exp(U,D)((AU,LD)) = (U exp(U ′AU), D exp(D−1LD)) = (exp(A)U, exp(L)D).

The inverse of exponential map is Log(U,D) : (SO×Diag+)(p)→ τ(U,D),

Log(U,D)((V,Λ)) = (U log(U ′V ), D log(D−1Λ)) = (log(V U ′)U, log(ΛD−1)D).

A geodesic in (SO × Diag+)(p) starting at (U,D) with initial direction (AU,LD) ∈
τ(U,D) is parameterized as

γ(t) = γ(t;U,D,A,L) = Exp(U,D)((AUt, LDt)). (3.3)

The inner product (3.2) provides the geodesic distance function on (SO×Diag+)(p).
Specifically, the squared geodesic distance from (U,D) to (V,Λ) is

d2 ((U,D), (V,Λ)) = 〈(AU,LD), (AU,LD)〉(U,D) (3.4)

= kdSO(p)(U, V )2 + dD(D,Λ)2, k > 0,

whereA = log(V U ′) , L = log(ΛD−1), dSO(p)(U1, U2)2 = 1
2 ‖log(U2U

′
1)‖2F , dD(D1, D2)2 =∥∥log(D2D

−1
1 )
∥∥2

F
, and ‖ ‖F is the Frobenius norm.

The geodesic distance (3.4) is a metric, well-defined for any (U,D) and (V,Λ) ∈
(SO×Diag+)(p), and is the length of the minimal geodesic curve γ(t) that joins the
two points. Note that for any two points (U,D) and (V,Λ), there are infinitely many
geodesics that connect the two points, just like there are many ways of wrapping a
cylinder with a string. There is, however, a unique minimal-length geodesic curve
that connects (U,D) and (V,Λ) if V U ′ is not an involution [20]. (A rotation matrix R
is an involution if R 6= I and R2 = I.) For p = 2, 3, R is an involution if it consists of
a rotation through angle π, in which case there exactly two shortest-length geodesic
curves. If V U ′ is an involution, then V and U are said to be antipodal in SO(p),
and the matrix logarithm of V U ′ is not unique (there is no principal logarithm), but
as discussed in Appendix A log(V U ′) means any solution A of exp(A) = V U ′ whose
Frobenius norm is the smallest among all such A.

Proposition 3.7. The geodesic distance (3.4) on (SO × Diag+)(p) is invari-
ant under simultaneous left or right multiplication by orthogonal matrices, permuta-
tions and scaling: For any R1, R2 ∈ O(p), π ∈ Sp and S ∈ Diag+(p), and for any
(U,D), (V,Λ) ∈ (SO×Diag+)(p), d ((U,D), (V,Λ)) = d ((R1UR2, SDπ), (R1V R2, SΛπ)) .
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3.3. Scaling–rotation curves as images of geodesics. We can give a pre-
cise characterization of scaling–rotation curves using the Riemannian manifold (SO×
Diag+)(p). In particular, any geodesic in (SO × Diag+)(p) determines to a scaling–
rotation curve in Sym+(p). The geodesic (3.3) gives rise to the scaling–rotation
curve χ(t) = χ(t;U,D,A,L) ∈ Sym+(p) (2.1), by the eigen-composition c ◦ γ = χ.
On the other hand, a scaling–rotation curve χ corresponds to many geodesics in
(SO×Diag+)(p).

To characterize the family of geodesics corresponding to a single curve χ(t), the
following notations are used. For a partition J of the set {1, . . . , p}, GJ denotes the
Lie subgroup of SO(p) defined in (3.1). Let gJ denote the Lie algebra of GJ . Then,

gJ = {A ∈ so(p) : Aij = 0 for i 6∼ j} ⊂ so(p),

where i 6∼ j if i and j are in different blocks of J . For D ∈ Diag(p), recall from
Remark 3.5 that JD is the partition determined by eigenvalues of D, GD = GJD and
define gD = gJD . For D,L ∈ Diag(p), let JD,L be the common refinement of JD and
JL so that i and j are in the same block of JD,L if and only if di = dj and li = lj .
Define GD,L = GJD,L = GD ∩GL, and let gD,L = gJD,L = gD ∩gL be the Lie algebra
of GD,L. Finally, for B ∈ so(p), let adB : so(p)→ so(p) be the linear map defined by
adB(C) = [B,C] = BC − CB.

Theorem 3.8. Let (U,D,A,L) be the parameters of a scaling–rotation curve χ(t)
in Sym+(p). Let I be a positive-length interval containing 0. Then a geodesic γ : I →
(SO × Diag+)(p) is identified with χ, i.e., χ(t) = c(γ(t)), for all t ∈ I, if and only if
γ(t) = γ(t;URP ′π, Dπ, B, Lπ) for some π ∈ Sp, R ∈ GD,L, and B ∈ so(p) satisfying

both (i) B̃ − Ã ∈ gD,L, where B̃ = U ′BU and Ã = U ′AU , and (ii) (adB̃)j(Ã) ∈ gD,L
for all j ≥ 1.

Note that the conjugation Ã = U ′AU expresses the infinitesimal rotation param-
eter A in the coordinate system determined by U . If A in Theorem 3.8 is such that
Ã ∈ gD,L, then the conditions (i) and (ii) are equivalent to B̃ ∈ gD,L. If p = 2 or 3

and Ã 6∈ gD,L, then the condition is B̃ = Ã.
It is worth emphasizing a special case where there are only finitely many geodesics

corresponding to a scaling–rotation curve χ(t).
Corollary 3.9. Suppose, for some t, χ(t) = χ(t;U,D,A,L) is an SPD matrix

with distinct eigenvalues. Then χ corresponds to only finitely many (p!2p−1) geodesics
γ(t) = γ(t;UIσP

′
π, Dπ, A, Lπ), where π ∈ Sp and σ ∈ σ+

p .

3.4. Scaling–rotation distance between SPD matrices. In (SO×Diag+)(p),
consider the set of all elements whose eigen-composition is X:

EX = {(U,D) ∈ (SO×Diag+)(p) : X = UDU ′}.

Since the eigen-composition is a surjective mapping, the collection of these sets EX
partitions the manifold (SO × Diag+)(p). The set EX = c−1(X) is called the fiber
over X. Theorem 3.3 above characterizes all members of EX for any X.

It is natural to define a distance between X and Y ∈ Sym+(p) to be the length
of the shortest geodesic connecting EX and EY ⊂ (SO×Diag+)(p).

Definition 3.10. For X,Y ∈ Sym+(p), the scaling–rotation distance is defined
as

dSR(X,Y ) := inf
(U,D)∈EX ,
(V,Λ)∈EY

d((U,D), (V,Λ)), (3.5)
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where d(·, ·) is the geodesic distance function (3.4).

The geodesic distance d((U,D), (V,Λ)) measures the length of the shortest geodesic
segment connecting (U,D) and (V,Λ). Any geodesic, mapped to Sym+(p) by the
eigen-composition, is a scaling–rotation curve connecting X = UDU ′ and Y = V ΛV ′.
In this sense, the scaling–rotation distance dSR measures the minimum amount of
smooth deformation from X to Y (or vice versa) only by the rotation of eigenvectors
and individual scaling of eigenvalues.

Note that dSR on Sym+(p) is well-defined and the infimum is actually achieved,
as both EX and EY are non-empty and compact. It has desirable invariance properties,
and is a semi-metric on Sym+(p).

Theorem 3.11. For any X,Y ∈ Sym+(p), the scaling–rotation distance dSR is

(i) invariant under matrix inversion, i.e., dSR(X,Y ) = dSR(X−1, Y −1),
(ii) invariant under simultaneous uniform scaling and conjugation by a rotation

matrix, i.e., dSR(X,Y ) = dSR(sRXR′, sRY R′) for any s > 0, R ∈ SO(p),
(iii) a semi-metric on Sym+(p). That is, dSR(X,Y ) ≥ 0, dSR(X,Y ) = 0 if and

only if X = Y , and dSR(X,Y ) = dSR(Y,X).

Although dSR is not a metric on the entire set Sym+(p), it is a metric on an
important subset of Sym+(p).

Theorem 3.12. dSR is a metric on the set of SPD matrices whose eigenvalues
are all distinct.

3.5. Minimal scaling–rotation curves in Sym+(p). To evaluate the scaling–
rotation distance (3.5), it is necessary to find a shortest-length geodesic in (SO ×
Diag+)(p) between the fibers EX and EY . There are multiple geodesics connecting
two fibers, because each fiber contains at least p!2p−1 elements (Theorem 3.3), as
depicted in Fig. 3.2. We think of fibers EX arranged vertically in (SO × Diag+)(p)
with the mapping c (eigen-composition) as downward projection. It is clear that
there exists a geodesic that joins the two fibers with the minimal distance. We call
such a geodesic a minimal geodesic for the two fibers EX and EY . A necessary, but
generally not sufficient, condition for a geodesic to be minimal for EX and EY is that
it is perpendicular to EX and EY at its endpoints. A pair ((U,D), (V,Λ)) ∈ EX × EY
is called a minimal pair if (U,D) are (V,Λ) are connected by a minimal geodesic.
The distance dSR(X,Y ) is the length of any minimal geodesic segment connecting
the fibers EX and EY .

Definition 3.13. Let X,Y ∈ Sym+(p). A scaling–rotation curve χ : [0, 1] →
Sym+(p), as defined in (2.1), with χ(0) = X and χ(1) = Y, is called minimal if
χ = c ◦ γ for some minimal geodesic segment γ connecting EX and EY .

Theorem 3.14. Let X,Y ∈ Sym+(p). Let ((U,D), (V,Λ)) be a minimal pair for
X and Y , and let A = log(V U ′), L = log(D−1Λ). Then the scaling-rotation curve
χ(t;U,D,A,L), 0 ≤ t ≤ 1, is minimal.

The above theorem tells us that for any two points X,Y ∈ Sym+(p), a minimal
scaling–rotation curve is determined by a minimal pair of EX and EY . Procedures to
evaluate the parameters of the minimal rotation–scaling curve and to compute the
scaling–rotation distance are provided for the special cases p = 2, 3 in Section 4.

The minimal scaling–rotation curve may not be unique. The following theorem
gives sufficient conditions for uniqueness.

Theorem 3.15. Let ((U,D), (V,Λ)) be a minimal pair for EX and EY , and
let χo(t) = χ(t;U,D, log(V U ′), log(D−1Λ)) be the corresponding minimal scaling–
rotation curve.
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O(X)

O(Y)

 

O(Y)

O(X)

γ2

γ1

γ3
γ4

γ1

γ2

γ3

γ4

γ*

Fig. 3.2. (left) (SO × Diag+)(2) is drawn as a curved manifold. In this picture, the four
versions of X (and of Y ) are displayed vertically. For a fixed version (U3, D3) of X, there are four
geodesics γi joining (U3, D3) and the ith version of Y . A minimal geodesic (γ3 in this figure) has
the shortest length among these geodesics. (right) The fiber EX has infinitely many versions, shown
as a vertical dotted curve in (SO × Diag+)(2). There exist multiple minimal geodesics γi with the
shortest length, all of which meet the vertical fiber EX in the right angle. Here, γ∗ is an example of
a non-minimal geodesic, which does not meet EX orthogonally.

(i) If either all eigenvalues of D are distinct or Λ has only one distinct eigen-
value, and if (V,Λ) is the unique minimizer of d((U,D), (V0,Λ0)) among all
(V0,Λ0) ∈ EY , then all minimal geodesics between EX and EY are mapped by
c to the unique χo(t) in Sym+(p).

(ii) If there exists (V1,Λ1) ∈ EY such that (V1,Λ1) 6= (V,Λ) and the pair ((U,D), (V1,Λ1))
is also minimal, then χ1(t) = χ(t;U,D, log(V1U

′), log(D−1Λ1)) is also mini-
mal and χ1(t) 6= χo(t) for some t.

The following example shows a case with a unique minimal scaling–rotation curve,
and two cases exhibiting non-uniqueness.

Example. Consider X = diag(e, e−1) and Y = Rθ(2X)R′θ, where Rθ is the 2 × 2
rotation matrix by counterclockwise angle θ.

(i) If θ = π/3, then there exists a unique minimal scaling–rotation curve between
X,Y . This ideal case is depicted in Fig. 3.3, where among the four scaling–rotation
curves, the red curve χ4 is minimal as indicated by the length of the curves. In the
upper right panel, a version (I,X) of X, depicted as a diamond, and a version of Y
are joined by the red minimal geodesic segment.

(ii) Suppose θ = π/2. There are two minimal scaling–rotation curves, one by
uniform scaling and counterclockwise rotation, the other by the same uniform scaling
but by clockwise rotation.

(iii) Let X = diag(eε/2, e−ε/2) and Y = RθXR
′
θ. For 0 ≤ θ ≤ π/2,

dSR(X,Y ) = min

{
θ,

√
(
π

2
− θ)2 + 2ε2

}
=

{
θ, θ ≤ π

4 + 2ε2

π ,√
(π2 − θ)2 + 2ε2, otherwise.

If the rotation angle is less than 45 degrees or the SPD matrices are highly anisotropic
(large ε), then the minimal scaling–rotation is a pure rotation (leading to the distance
θ). On the other hand, if the matrices are close to be isotropic (eigenvalues ≈ 1),
the minimal scaling–rotation curve is given by simultaneous rotation and scaling. An

exceptional case arises when θ = π
4 + 2ε2

π < π
2 , where both curves are of the same

length, and there are two minimal scaling–rotation curves.
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Fig. 3.3. Two SPD matrices X (blue) and Y (green) in the cone of Sym+(2) (top left),
and their four versions in a flattened (SO × Diag+)(2) (top right). The eigen-composition of each
shortest geodesic connecting versions of X and Y is a scaling–rotation curve in Sym+(2). Different
colors represent four different such curves. The red scaling–rotation curve has the shortest geodesic
distance in (SO × Diag+)(2), and thus is minimal. Its trajectory is shown as the deformation of
ellipses in the bottom panel (from leftmost X to rightmost Y ).

4. Computation of the minimal scaling–rotation curve and scaling–
rotation distance. We provide computation procedures for the scaling–rotation
distance dSR(X,Y ) for X,Y ∈ Sym+(2) or Sym+(3). Theorems 4.1 and 4.3 be-
low provide the minimal pair(s), based on which the exact formulation of the minimal
scaling–rotation curve is evaluated in Theorem 3.14 above.

4.1. Scaling–rotation distance for 2× 2 SPD matrices. Let (d1, d2) be the
eigenvalues of X, (λ1, λ2) the eigenvalues of Y .

Theorem 4.1. Given any 2 × 2 SPD matrices X and Y , the distance (3.5) is
computed as follows.

(i) If d1 6= d2 and λ1 6= λ2, then there are exactly four versions of X, denoted
by (Ui, Di), i = 1, . . . , 4, and for any version (V,Λ) of Y ,

dSR(X,Y ) = min
i=1,...,4

d((Ui, Di), (V,Λ)). (4.1)

These versions are given by the permutation and sign changes.
(ii) If d1 = d2, then for any version (V,Λ) of Y , dSR(X,Y ) = d((V,D), (V,Λ)),

regardless of whether the eigenvalues of Y are distinct or not.
Therefore, the minimizer of (Uo, Do) of (4.1) and (V,Λ) are a minimal pair for

the case (i); (V,D), (V,Λ) are a minimal pair for the case (ii).

4.2. Scaling-rotation distance for 3×3 SPD matrices. LetX,Y ∈ Sym+(3).
Let (d1, d2, d3) be the eigenvalues of X, (λ1, λ2, λ3) the eigenvalues of Y , without any
given ordering. In order to separately analyze and catalogue all cases of eigenvalue
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multiplicities in Theorem 4.3 below, we will use the following details for the case where
an eigenvalue of X is of multiplicity 2.

For any version (U,D) with D = diag(d1, d1, d3), d1 = d2, all other versions of
X are of the form (UR1P

′
π, Dπ) for permutation π and rotation matrix R1 ∈ GD

(Theorem 3.3). We can take R1 = RIσ for some σ ∈ σ+
p and for some diagonal

rotation matrix R with +1 on the lower right hand corner. For fixed (U,D), (V,Λ),
σ ∈ σ+

p and π ∈ Sp, one can find a minimal rotation R̂σ,π satisfying

d((UR̂σ,πIσP
′
π, Dπ), (V,Λ)) ≤ d((URIσP

′
π, Dπ), (V,Λ)),

for all such R, as the following lemma states.

Lemma 4.2. Let Γ = IσP
′
πV
′U =

[
Γ11 Γ12

Γ21 γ22

]
, where Γ11 is the first 2 × 2 block

of Γ. The minimal rotation matrix R̂σ,π = R̂ is given by R̂ =

[
E2E

′
1 0

0 1

]
, where

E1ΛΓE
′
2 is the “semi-singular values” decomposition of Γ11. (In semi-singular values

decomposition, we require E1, E2 ∈ SO(2) and that the diagonal entries λ1 and λ2 of
ΛΓ satisfy λ1 ≥ |λ2| ≥ 0.)

Each choice of σ and π produces a minimally rotated version (Ûσ,π, Dπ) =

(UR̂σ,πIσP
′
π, Dπ). To provide a minimal pair as needed in Theorem 3.14, a combi-

natorial problem involving the 3!23−1 = 24 choices of (σ, π) needs to be solved, since
the version of X closest to (V,Λ) is found by comparing distances between (Ûσ,π, Dπ)
and (V,Λ). Fortunately, there are only six such minimally rotated versions corre-
sponding to six choices of (σ, π). In particular, we need only π1 : (1, 2, 3)→ (1, 2, 3),
π2 : (1, 2, 3) → (3, 1, 2), π3 : (1, 2, 3) → (1, 3, 2), and σ1 = (1, 1, 1), σ2 = (−1, 1,−1),
and R̂σj ,πi can be found for each (σj , πi), i = 1, 2, 3, j = 1, 2. The other pairs of
permutations and sign-changes do not need to be considered because each of them
will produce one of the six minimally rotated versions, with the same distance from
(V,Λ).

Theorem 4.3. Given any 3 × 3 SPD matrices X and Y , the distance (3.5) is
computed as follows.

(i) If the eigenvalues of X (and also of Y ) are all distinct, then there are exactly
twenty four versions of X, denoted by (Ui, Di), i = 1, . . . , 24, and for any
version (V,Λ) of Y , dSR(X,Y ) = mini=1,...,24 d((Ui, Di), (V,Λ)).

(ii) If d1 = d2 6= d3 and {λ1, λ2, λ3} are distinct, then for any version (V,Λ) of
Y and a version (U,D) of X satisfying D = diag(d1, d1, d3),

dSR(X,Y ) = min
i=1,2,3,j=1,2

d((Ûσj ,πi , Dπi), (V,Λ)),

where (Ûσj ,πi , Dπi), i = 1, 2, 3, j = 1, 2 are the six minimally rotated versions.
(iii) If d1 = d2 6= d3 and λ1 = λ2 6= λ3, choose D = diag(d1, d2, d3) and Λ =

diag(λ1, λ2, λ3). For any versions (U,D), (V,Λ) of X and Y ,

dSR(X,Y ) = min
i=1,2,3,j=1,2

d((URθijIσiP
′
πj , Dπj ), (V Rφij ,Λ)),

where Rθ = exp([a]×), a = (0, 0, θ)′ (cf. Appendix A), and (θij , φij) simulta-
neously maximizes G(θ, φ) = trace(URθIσiP

′
πjR

′
φV
′).

(iv) If d1 = d2 = d3, then for any version (V,Λ) of Y , dSR(X,Y ) = d((V,D), (V,Λ)),
regardless of whether the eigenvalues of Y are distinct or not.
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The minimizer (θij , φij) of G(θ, φ) in Theorem 4.3(iii) is found by a numerical
method. Specifically, given the mth iterates θ(m), φ(m), the (m+ 1)th iterate θ(m+1)

is the solution θ in Lemma 4.2, treating V Rφ(m) as V . We then find φ(m+1) similarly by
using Lemma 4.2, with the role of U and V switched. In our experiments, convergence
to the unique maximum was fast and reached by only a few iterations.

5. Scaling–rotation interpolation of SPD matrices. For X,Y ∈ Sym+(p),
a scaling–rotation interpolation from X to Y is defined as any minimal scaling–
rotation curve fSR(t) := χo(t), t ∈ [0, 1], such that fSR(0) = X, fSR(1) = Y .
By definition, every scaling–rotation curve χ(t;U,D,A,L), and hence every scaling–
rotation interpolation, has a log-constant scaling velocity L and constant angular
velocity A. The scalar trace(L) gives the (constant) speed at which log-determinant
evolves: log(detχ(t)) = log(det(D)) + trace(L)t. Analogously, we view the scalar
quantity ‖A‖F /

√
2 as a constant speed of rotation, and for all t ≥ 0 we define the

amount of rotation applied from time 0 to time t to be θt := t ‖A‖F /
√

2. For a
minimal pair ((U,D), (V,Λ)) of X and Y , and the corresponding scaling–rotation
interpolation fSR, we have

log(det fSR(t)) = (1− t) log(det(X)) + t log(det(Y )), (5.1)

and we define the amount of rotation applied by fSR from X to Y to be θ :=
‖log(V U ′)‖F /

√
2. For p = 2, 3, θ is equal to the angle of rotation.

5.1. An application to diffusion tensor computing. This work provides an
interpretative geometric framework in analysis of diffusion tensor magnetic resonance
images [16], where diffusion tensors are given by 3 × 3 SPD matrices. Interpolation
of tensors is important for fiber tracking, registration and spatial normalization of
diffusion tensor images [5, 8]. The scaling–rotation curve can be understood as a
deformation path from one diffusion tensor to another, and is nicely interpreted as
scaling of diffusion intensities and rotation of diffusion directions. This advantage
in interpretation has not been found in popular geometric frameworks such as [24,
11, 3, 10, 6]. The approaches in [5, 8, 9, 32] also explicitly use rotation of directions
and many scaling–rotation curves are very similar to the deformation paths given in
[9, 32]. We defer the discussion on the difference between our framework and those
in [9, 32] to Section 5.2.

As an example, consider interpolating from X = diag(15, 2, 1) to Y , whose eigen-
values are (100, 2, 1) and whose principal axes are different from those of X. The
first row of Fig. 5.1 presents the corresponding evolution ellipsoids by the scaling–
rotation interpolation fSR. This evolution is consistent with human perception when
deforming X to Y . As shown in the left two bottom panels of Fig. 5.1, the interpo-
lation exhibits the constant angular rate of rotation, and log-constant rate of change
of determinant.

By way of comparison, the Euclidean interpolation in row 2 is defined by fE(t) =
(1 − t)X + tY . The log-Euclidean and affine-invariant Riemannian interpolation in
rows 3 and 4 are defined by fLE(t) = exp((1 − t) log(X) + t log(Y )) and fAI(t) =

X
1
2 exp(t log(X−

1
2Y X−

1
2 ))X

1
2 , respectively; see [3]. For these interpolations, we de-

fine the rotation angle at time t by the angle of swing from the major axis at time 0
to that at time t. These rotation angles are not in general linear in t, as the bottom
left panel illustrates. The log-Euclidean fLE and affine-invariant interpolations fAI
are log-linear in determinant, and in fact (5.1) holds exactly for fLE and fAI . On the
other hand, the Euclidean interpolation is known to suffer from the swelling effect :



14 S. JUNG, A. SCHWARTZMAN AND D. GROISSER

Fig. 5.1. (Top) Interpolations of two 3×3 SPD matrices. Row 1: Scaling–rotation interpolation
by the minimal scaling–rotation curve. Row 2: (Euclidean) linear interpolation on coefficients.
Row 3: Log-Euclidean geodesic interpolation. Row 4: Affine-invariant Riemannian interpolation.
The pointy shape of ellipsoids on both ends is well-preserved in the scaling–rotation interpolation.
(Bottom) Evolution of rotation angle, determinant, FA and MD for these four interpolations. Only
the scaling–rotation interpolation provides a monotone pattern.

det(fE(t)) > max(det(X),det(Y )), for some t ∈ [0, 1] [3]. This is shown in the bottom
second panel of Fig. 5.1 for the same example. The other interpolations, fSR, fLE
and fAI do not suffer from the swelling effect.

Minimal scalingrotation curves not only provide regular evolution of rotation an-
gles and determinant, but also minimize the combined amount of scaling and rotation,
as in Definition 3.13. This results in a particularly desirable property: in many exam-
ples, the fractional anisotropy (FA) and mean diffusivity (MD) evolve monotonically.
FA measures a degree of anisotropy that is zero if all eigenvalues are equal, and ap-
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proaches 1 if one eigenvalue is held constant and the other two approach zero; see
[16]. MD is the average of eigenvalues MD(X) = trace(X)/3.

In the example of Fig. 5.1, FA(fSR(t)) increases monotonically. In contrast,
other interpolations of the highly anisotropic X and Y become less anisotropic. This
phenomenon may be called a fattening effect : interpolated SPD matrices are more
isotropic than the two ends [8]. Moreover, log-Euclidean and affine-invariant Rieman-
nian interpolations can suffer from a shrinking effect : the MD of interpolated SPD
matrices are smaller than those of the two ends [5], as shown in the bottom right
panel. In this example, the scaling–rotation interpolation does not suffer from fatten-
ing and shrinking effects. These adverse effects are less severe in fSR than in fLE or
fAI in most typical examples, as shown in the online supplementary material.

The advantageous regular evolution results from the rotational part of the in-
terpolation. To see this, consider, as in [5], a case where the interpolation by fSR
consists only of rotation (a precise example is shown in Figure 1 in the online supple-
mentary material). The scaling-rotation interpolation preserves the determinant, FA
and MD, while the other modes of interpolations exhibit irregular behavior in some of
the measurements. On the other hand, when fSR(t) is composed of pure scaling, then
fSR(t) = fLE(t) = fAI(t) for all t, and there is no guarantee that MD or FA grow
monotonically for neither curve. The equality of these three curves in this special case
is a consequence of the geometric scaling of eigenvalues in the scaling–rotation curve
(2.1), which in turn is a consequence of our use of the Riemannian inner product (3.2).

In summary, while the three most popular methods suffer from swelling, fattening,
or shrinking effects, the scaling–rotation interpolation provides good regular evolution
of all three summary statistics, and solely provides constant angular rate of rotation.
More examples illustrating these effects in various scenarios are given in the online
supplementary material.

5.2. Comparison to other rotation–scaling schemes. Geometric frame-
works for 3 × 3 SPD matrices that decouple rotation from scaling have also been
developed by [9, 32]. However, our framework differs in two major ways. First, we
allow unordered and equal eigenvalues in any dimension, while [9, 32] considered only
dimension 3 and only the case of distinct, ordered eigenvalues. In our framework,
every scaling–rotation curve corresponds to geodesics in a smooth manifold, which is
not possible if eigenvalues are ordered. This leads to a more flexible family of inter-
polations than those of [9, 32], as we illustrate in the online supplementary material.

Another difference lies in the choice of the metric for SO(3), and the weight k in
(3.2). While we use geodesic distance and interpolation determined by the standard
Riemannian metric on SO(3), [9] used a chordal distance and extrinsic interpolation.
As a consequence, the interpolation in [9] is close to, but not equal to, a special case
of minimal scaling–rotation curves, in particular when k in (3.2) is small. An example
illustrating this effect of k is given in Section 2 of the online supplementary material.

Appendix A. Parameterization of scaling and rotation.

The matrix exponential of a square matrix Y is exp(Y ) =
∑∞
j=0

Y j

j! . For a square

matrix X, if there exists a unique matrix Y of smallest norm such that X = exp(Y ),
then we call Y the principal logarithm of X, denoted log(X).

The exponential map from Diag(p) to Diag+(p), defined by the matrix expo-
nential, is bijective. Moreover, the element-wise exponential and logarithm for the
diagonal elements give the matrix exponential and logarithm for Diag(p) and Diag+(p)
[13, Ch.18].
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Rotation matrices can be parameterized by antisymmetric matrices since the ex-
ponential map from so(p) to SO(p) is onto. Contrary to the Diag+(p) case, the
matrix exponential is not one-to-one. The principal logarithm is defined on the set
{R ∈ SO(p) : R is not an involution}, a dense open subset of SO(p). For completeness,
when there exists no principal logarithm of R, we use the notation log(R) to denote
any solution A of exp(A) = R satisfying that ‖A‖F is the smallest among all such
choices of A.

This parameterization gives a physical interpretation of rotations. Specifically, in
the case of p = 3, a rotation matrix R = exp(A) ∈ SO(3) can be understood as a
linear operator rotating a vector in the real 3-space around an “axis” a = (a1, a2, a3)′

by angle θ = ‖a‖2 (in radians), where A ∈ so(3) is the cross-product matrix of a
defined by

A = [a]× =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 ∈ so(3).

Explicit formulas for the matrix exponential and logarithm are given in the following.

Lemma A.1 ([20, 13]).
(i) (Rodrigues’ formula) Any A ∈ so(3) equals [a]× for some axis a = θã ∈ R3,
‖ã‖ = 1. An explicit formula for the matrix exponential of A is exp(A) =
I + [ã]× sin(θ) + [ã]2×(1− cos(θ)).

(ii) For any R ∈ SO(3), there exists θ ∈ [0, π] satisfying 2 cos(θ) = trace(R) −
1, ‖log(R)‖F =

√
2|θ|. If θ < π, then R has the principal logarithm log(R) =

θ
2 sin(θ) (R−R′) if θ ∈ (0, π), 0 if θ = 0.

If there exists no principal logarithm of R, i.e., if θ = π, then we take log(R) to
be either of the two elements A ∈ so(3) satisfying exp(A) = R and ‖A‖F =

√
2π.

Appendix B. Additional lemmas and proofs.
Proof of Theorem 3.3. For any (U∗, D∗) ∈ (SO × Diag+)(p), there exists V ∈

SO(p) , L ∈ Diag+(p) such that U∗ = UV and D∗ = DL. Therefore, a version of
(U,D) can be written as (UV,DL) satisfying UV DLV ′U ′ = UDU ′, or equivalently,

V DLV ′ = D. (B.1)

The set of eigenvalues of V DLV ′ is {dili : i = 1, . . . , p}, which should be the same
as the eigenvalues of D. That is, dili = dj for some j. In other words, for some
permutation π, DL = Dπ. There are at most p! possible ways to achieve this.

Observe that there exists R ∈ SO(p) such that RP ′π = V , for any V and π. (B.1)
is then RP ′πDπPπR

′ = D, which becomes RDR′ = D since P ′πDπPπ = D.
The last statement of Theorem 3.3 can be seen from noting that R and D

commute, so the eigenvector matrix of R is I, with eigenvalues {eiθj , e−iθj , 1, j =
1, . . . , bp/2c} [14, Corollary 2.5.11]. However, all possible values of θj are either 0 or
π because R must be a real matrix. Therefore R is an even sign-change matrix.

Proof of Proposition 3.7. Since S commutes with other diagonal matrices,

d2 ((R1UR2, SDπ), (R1V R2, SΛπ))

=
k

2
‖log(R1UR2R

′
2V
′R′1)‖2F + trace(log2(SΛπD

−1
π S−1))

=
k

2
‖log(UV ′)‖2F + trace(log2(ΛD−1) = d2 ((U,D), (V,Λ)) .
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Proof of Theorem 3.8. We use the following lemmas.
Lemma B.1. For any D,L ∈ Diag(p), Tbad = {t ∈ R : JD exp(Lt) 6= JD,L} has at

most p(p− 1)/2 elements.
Proof. Let D = diag(d1, . . . , dp) and L = diag(l1, . . . , lp). For 1 ≤ i < j ≤ p, if

i ∼D,L j, i.e., di = dj and li = lj , then i ∼D exp(Lt) j (or di exp(lit) = dj exp(ljt)) for
all t and the indices i and j are in a same block of JD,L and JD exp(Lt) for all t. If
i 6∼D,L j, then i ∼D exp(Lt) j for at most one t. The result follows from the fact that
there are only p(p− 1)/2 pairs of i and j.

Lemma B.2. Let I ⊂ R be a positive-length interval containing 0. Let G ⊂ SO(p)
be a Lie subgroup of SO(p), and let g ⊂ so(p) denote the Lie algebra of G. Then for
any A,B ∈ so(p),

B −A ∈ g, (adB)j(A) ∈ g for all j ≥ 1 (B.2)

if and only if there exists a C∞ map g : I → G such that

exp(tB) = exp(tA)g(t) for all t ∈ I. (B.3)

Proof. Throughout the proof, the “prime” symbol denotes derivative, not trans-
pose. Suppose first (B.3) holds. For t ∈ I, define X(t) = g(t)−1g′(t) and Y (t) =
g(t)−1Ag(t). Since g′(t) ∈ Tg(t)G, X(t) = g(t)−1g′(t) ∈ TIG − g. Thus, X is a C∞

map I → g, and Y is a C∞ map I → so(p). Differentiating (B.3) gives

exp(tB)B = exp(tA)(Ag(t) + g′(t)) = exp(tA)g(t)(Y (t) +X(t)

= exp(tB)(Y (t) +X(t).

Therefore,

X(t) + Y (t) = B for all t ∈ I. (B.4)

A simple computation leads that

Y ′(t) = [Y (t), X(t)] = −[X(t), Y (t)]. (B.5)

From (B.4), we get

X ′(t) = −Y ′(t) = [X(t), Y (t)] = [X(t), B −X(t)] = [X(t), B], (B.6)

and consequently

X ′(t) = −adB(X(t)). (B.7)

Equation (B.7) is a constant-coefficient linear differential equation for a function
X : I → so(p). The general solution is therefore

X(t) = exp(−tadB)X(0). (B.8)

From general Lie group theory, we have, for W ∈ g, exp(adW ) = Adexp(W ), where
Adh : g→ g is conjugation by h. Thus X(t) can also be written as

X(t) = exp(−tB)X(0) exp(tB). (B.9)
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It is easy to check that (B.9) solves the ordinary differential equation (B.7) (or equiva-
lently, (B.6)). Now, since g(0) = I, Y (0) = A. Thus (B.4) implies that X(0) = B−A.
Since X(t) lies in the vector space g, so do the derivatives X(j)(0) of all orders j ≥ 0.
So B −A = X(0) ∈ g, X(j)(0) ∈ g for all j ≥ 1. So

B −A = X(0) ∈ g,

(adB)j(A) = −(adB)j(B −A) = ±X(j)(0) ∈ g for all j ≥ 1,

leading to the conditions (B.2).
Next, suppose (B.2) holds. Define C = B−A. Then (adB)j(C) = −(adB)j(A) ∈ g

for all j ≥ 1. Define X(t) = exp(−tadB)C; then for all t

X(t) = C +

∞∑
j=1

1

j!
(−tadB)j(C) ∈ g.

Note thatX is the unique solution of the initial value problemX ′(t) = −[B,X(t)], X(0) =
C. From (B.8)-(B.9), X(t) can be written as

X(t) = exp(−tB)C exp(tB) = B − exp(−tB)C exp(−tB).

It is a known fact that for a compact Lie group G and with Lie algebra g, and
any smooth X1 : R → g, the initial value problem g(t)−1g′(t) = X1(t), g(0) =
identity element of G, has a unique solution, that the solution is smooth, and that
the maximal time-domain of the solution is all of R. Since G ⊂ SO(p) is compact and
X is smooth, we have a smooth solution g : R→ G of the initial value problem

g(t)−1g′(t) = X(t), g(0) = I.

Define Y1(t) = g(t)−1Ag(t). Then, as computed earlier in (B.5), Y ′1(t) = [Y1(t), X(t)].
Define Y2(t) = exp(−tB)A exp(tB) = B −X(t). Then Y ′2(t) = −X ′(t) = [B,X(t)] =
[X(t) + Y2(t), X(t)] = [Y2(t), X(t)]. Note also that Y1(0) = A = Y2(0). Thus Y1, Y2

satisfy the same linear initial-value problem for a function Y : R → so(p), hence are
identically equal. Therefore X(t) + Y1(t) = X(t) + Y2(t) = B for all t.

Define h(t) = exp(tA)g(t) exp(−tB). Then

h′(t) = exp(tA)(Ag(t) + g′(t)− g(t)B) exp(−tB)

= exp(tA)g(t)(Y1(t) +X(t)−B) exp(−tB) ≡ 0,

so h(t) = h(0) = I for all t ∈ R. Therefore the function g satisfies (B.3).
We now provide a proof of Theorem 3.8. Let (V,Λ) ∈ (SO×Diag+)(p), B ∈ so(p),

N ∈ Diag(p), and γ = γ(V,Λ, B,N) : I → (SO×Diag+)(p).
Suppose first that χ(t) = c(γ(t)), for all t ∈ I. Theorem 3.3 indicates that for all

t ∈ I, there exist R(t) ∈ GD exp(Lt) and πt ∈ Sp such that

exp(tB)V = exp(tA)UR(t)P ′πt , (B.10)

exp(tN)Λ = exp(tLπt)Dπt . (B.11)

Setting t = 0, we have

V = UR(0)P ′π0
, Λ = Dπ0

. (B.12)
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From (B.11) and (B.12), we get tN + logDπ0
= tLπt + logDπt . Thus for i = 1, . . . , p

and all t ∈ I\{0},

ni = lt,i +
ct,i
t
, (B.13)

where ni, lt,i and ct,i are the ith diagonal entries of N , Lπt and log(DπtD
−1
π0

), respec-
tively. As t, πt and i range over their possible values, there are only finitely many
values of lt,i and ct,i. Therefore, unless ct,i = 0 for all i and t 6= 0, the right hand side
of (B.13) is unbounded as t→ 0, contradicting the constancy of ni. Thus,

Dπt = Dπ0 , Lπt = N = Lπ0 for all t ∈ I. (B.14)

Next, let Tbad = {t ∈ I : JD exp(Lt) 6= JD,L}, a finite set (cf. Lemma B.1). On
I\Tbad, the partition K determined by exp(tN)Λ = exp(tLπ0

)Dπ0
is constant, as is the

partition JD,L determined by D exp(Lt). Thus we can replace πt, for all t ∈ I\Tbad,
by a constant permutation π∞ that carries JD,L to K, without affecting the truth of
(B.10)-(B.11). With this replacement applied to (B.10), we have

exp(tB)V = exp(tB)UR(0)P ′π0
= exp(tA)UR(t)P ′π∞ , (B.15)

for t ∈ I\Tbad. Letting Ã = U ′AU , B̃ = U ′AU and P = P ′π∞Pπ0
, we rewrite (B.15)

as

exp(tB̃) = exp(tÃ)g(t), (B.16)

for all t ∈ I\Tbad, where g(t) = R(t)PR(0)′. Thus

R(t) = exp(−tÃ) exp(tB̃)R(0)P ′, t ∈ I\Tbad. (B.17)

The right hand side of (B.17) is continuous on I. Hence the left hand side of (B.17)
continuously extends to each tbad ∈ Tbad, replacing R(tbad) with limt→tbad R(t). With
this replacement for R(t), (B.16) is true for all t ∈ I, and the new functions t 7→ R(t)
and t 7→ g(t) are continuous on all of I. Evaluating (B.16) at t = 0, we get I = g(0) =
R(0)PR(0)′, implying that P = I.

Note that R(t) ∈ GJD,L for all t ∈ I\Tbad. Since GJD,L is a closed subset of
SO(p), continuity implies that R(t) ∈ GJD,L for all t ∈ Tbad as well. From (B.17), it
then follows that t 7→ R(t) is a C∞ function I → GJD,L . Therefore there exists a C∞

map g : I → GJD,L satisfying (B.16) for all t ∈ I. Then Lemma B.2 shows that the
asserted conditions for B are necessary.

For the sufficiency, Lemma B.2 shows that there exists a C∞ function g : I →
GJD,L satisfying (B.16). From this it is easy to check that, for R and π as in the
assumption, the eigen-composition of γ(URP ′π, Dπ, B, Lπ) is χ.

Proof of Corollary 3.9. Let t0 ∈ I be the such that eigenvalues of χ(t0) are
all distinct. Then JD,L = ∩t∈IJD exp(Lt) ⊂ JD exp(Lt0). Since JD exp(Lt0) has only
singleton blocks, so does JD,L. Then gD,L only consists of 0, and conditions (i)-(ii) in
Theorem 3.8 are simplified to B = A. Finally Theorem 3.3 shows that any R ∈ GD,L
is an even sign-change matrix.

Theorem 3.11 is easily obtained, and we omit the proof.
Proof of Theorem 3.12. By Theorem 3.11, it is enough to show the triangle in-

equality. Fix a version of Z, say (U,D). Since all eigenvalues of D are distinct,
there exists a unique minimizer (VX ,ΛX) ∈ EX such that d((VX ,ΛX), (U,D)) ≤
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d((V,Λ), (U,D)) for all (V,Λ) ∈ EX . Likewise, denote (VY ,ΛY ) ∈ EY the unique min-
imizer with respect to (U,D). Then dSR(X,Z) + dSR(Z, Y ) = d((VX ,ΛX), (U,D)) +
d((VY ,ΛY ), (U,D)). Since d is a metric, by the triangle inequality for ((SO×Diag+)(p), d),
d((VX ,ΛX), (U,D)) +d((VY ,ΛY ), (U,D)) ≥ d((VX ,ΛX), (VY ,ΛY )). The proof is con-
cluded by noting that dSR(X,Y ) ≤ d((VX ,ΛX), (VY ,ΛY )).

Proof of Theorem 3.15. The following lemma is used in the proof.
Lemma B.3. If ((U,D), (V,Λ)) is minimal for EX and EY , then for any R ∈ GD,Λ

and π ∈ Sp, the shortest-length geodesics connecting

(URP ′π, Dπ) and (V RP ′π,Λπ) (B.18)

are also minimal. (These minimal pairs are said to be equivalent to each other.)
Proof of Lemma B.3. The result is obtained by two facts. (URP ′π, Dπ) is a

version of X = UDU ′ and (V RP ′π,Λπ) is a version of Y = V ΛV ′; By the invariance
of d (Proposition 3.7), we have d((URP ′π, Dπ), (V RP ′π,Λπ)) = d((U,D), (V,Λ)).

To prove (i) of Theorem 3.15, suppose ((U1, D1), (V1,Λ1)) is another minimal
pair. Then there exist R ∈ GD, π ∈ Sp such that U1 = URP ′π, D1 = Dπ. By
Proposition 3.7,

d((U1, D1), (V1,Λ1)) = d((URP ′π, Dπ), (V1,Λ1))

= d((UR,D), (V1P
′
π−1 ,Λ1,π−1)), where Λ1,π−1 = (Λ1)π−1 ,

= d((U,D), (V1P
′
π−1R,Λ1,π−1)).

The conditions of D and Λ lead that GD ⊂ GΛπ for all π ∈ Sp, which in turn
leads R ∈ GΛ1,π−1 . Since (V1P

′
π−1R,Λ1,π−1) ∈ EY , the uniqueness assumption gives

V1 = V RPπ and Λ1 = Λπ. Thus by Lemma B.3, all minimal pairs are equivalent
to each other. Moreover, the scaling–rotation curve corresponding to the shortest-
length geodesic between the minimal pair (U1, D1) and (V1,Λ1) is the same as χo(t)
(Theorem 3.8). Thus χo is unique.

For (ii), let γ0(t) = γ(t;U,D,A,L) and γ1(t) = γ(t;U,D,B,L1) be the two
minimal geodesics, where A = log(V U ′), L = log(D−1Λ), B = log(V1U

′) and L1 =
log(D−1Λ1). The length-minimizing property of minimal geodesics implies that both
d
dtγ0(t)|t=0 and d

dtγ1(t)|t=0 are perpendicular to T(U,D)EX . Note that

T(U,D)EX = {(UC, 0) ∈ Sym(p)×Diag(p) : C ∈ gD}.

Since left and right translations by (U,D) and (R, I) are isometry of (SO×Diag+)(p),
we have (T(U,D)EX)⊥ = U(gD)⊥ ⊕ Diag(p), where U(gD)⊥ = {UW : W ∈ (gD)⊥ ⊂
TISO(p) = so(p)}.

Let Ã = U ′AU , B̃ = U ′BU . Since d
dtγ0(t)|t=0 = (UÃ,DL) and d

dtγ1(t)|t=0 =

(UB̃,DL1), it follows that Ã, B̃ ∈ (gD)⊥ and thus B̃ − Ã ∈ (gD)⊥.
Let χ0 = c ◦ γ0, χ1 = c ◦ γ1, and assume χ0 = χ1. By the necessary condition

(i) in Theorem 3.8, we have B̃ − Ã ∈ gD. Hence B̃ − Ã = 0, implying B = A and
V1 = V . Then “χ0 = χ1” implies L1 = L as well, a contradiction.

Proof of Theorem 4.1. (i) By definition (3.5), dSR(X,Y ) = mink,j d((Uk, Dk), (Vj ,Λj)),
for k, j = 1, 2, 3, 4. Suppose, without loss of generality, (V,Λ) = (V1,Λ1). For any
choice of j = 1, 2, 3, 4, there exist π ∈ Sp and σ ∈ σ+

p such that (VjIσPπ, (Λj)π) =
(V1,Λ1). Moreover, for any k, one can choose some i so that (UkIσPπ, (Dk)π) =
(Ui, Di). Therefore, with a help of Proposition 3.7, for any k, j, there exist π, Iσ, and
i satisfying

d((Uk, Dk), (Vj ,Λj)) = d((UkIσPπ, (Dk)π), (VjIσPπ, (Λj)π)) = d((Ui, Di), (V1,Λ1)).
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Thus it is enough to fix a version of Y and compare the distances given by four
versions of X.

(ii) It is clear from the proof of (i) and by Proposition 3.7 that we can fix a version
of Y first. Since the eigenvalues of D are identical to, say, d1, (U, d1I2) is a version of
X for any U ∈ SO(2). Thus choosing U = V leads to the smallest distance between
U, V ∈ SO(2).

Proof of Lemma 4.2. Note that a matrix R that rotates the first two columns of

U when post-multiplied is R =

[
R11 0
0 1

]
, R11 ∈ SO(2). Using Lemma A.1(ii), we

have

argmin
R

d((URIσP
′
π, Dπ), (V,Λ)) = argmin

R
‖log(URIσP

′
πV
′)‖F

= argmin
R
‖log(URIσP

′
πV
′)‖F = argmax

R
trace(URIσP

′
πV
′)

= argmax
R

trace(IσP
′
πV
′UR) = argmax

R11

trace(

[
Γ11 Γ12

Γ21 γ22

] [
R11 0
0 1

]
)

= argmax
R11

trace(Γ11R11) + γ22.

Since R11 ∈ SO(2), the singular values of R11 are unity. The result is obtained by an
application of the fact from [19] that for any square matrices A and B with vectors
of singular values σA and σB in non-increasing order, |trace(A′B)| ≤ σ′AσB .

Proof of Theorem 4.3. A proof of (i),(ii) and (iv) can be obtained by a simple
extension of the proof of Theorem 4.1. For (iii), note that all versions of X and
Y are (URθIσkP

′
πl
, Dπl) and (V RφIσaP

′
πb
,Λπb). Following the lines of the proof of

Theorem 4.1(i), by choosing Iσa = Pπb = I, it is enough to compare (URθIσiP
′
πj , Dπj )

and (V Rφ,Λ). Moreover, the presence of rotation matrix Rθ allows us to restrict the
choice of Iσ and π to only six pairs. For a fixed (i, j), (i = 1, 2, 3, j = 1, 2),

min
θ,φ

d((URθIσiP
′
πj , Dπj , (V Rφ,Λ)) = min

θ,φ

∥∥∥log(URθIσiP
′
πjR

′
φV
′)
∥∥∥
F

= max
θ,φ

trace(URθIσiP
′
πjR

′
φV
′), (B.19)

by Lemma A.1(ii).
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Supplemental Materials: Scaling-rotation distance and
interpolation of symmetric positive-definite matrices

Appendix C. Examples of SPD matrix interpolations.
In connection with Section 5 of the main article, we provide visual examples of

the scaling–rotation interpolation fSR between 3 × 3 SPD matrices, compared with
other interpolations: Euclidean (fE), log-Euclidean (fLE), affine-invariant Rieman-
nian (fAI) and the interpolation used in [9], which we will refer to as the scaling–
quaternion interpolation (fSQ). [9] considered only the set

Sym+
∗ (3) = {(U,D) ∈ (SO×Diag+)(3) : d1 > d2 > d3, D = diag(d1, d2, d3)}.

The purpose of these additional examples is to illustrate the advantageous regular
evolution of rotation angle, determinant, fractional anisotropy and trace along the
interpolation path.

We show interpolations from X to Y , for five different pairs (X,Y ).
1. Pure rotation in fSR. Fig. S1.
2. Pure scaling in fSR. Fig. S2.
3. A moderate mix of rotation and scaling. Fig. S3.
4. A moderate mix of rotation and scaling, but with trace(X) = trace(Y ) (so,

MD(X) = MD(Y )). Fig. S4.
5. Departure from isotropy. Fig. S5.

In all figures, the top five rows show various interpolations of the given 3 × 3
SPD matrices: Row 1–fSR, row 2–fE , row 3–fLE , row 4–fAI and row 5–fSQ. The
ellipsoids are colored by the direction of the first principal axis (red: left–right, green:
up–down, blue: in–out), which varies smoothly with t for fSR and fSQ. For the
other interpolations in rows 2–4, the first principal axis always corresponds to the
largest eigenvalue, and may not vary smoothly (cf. Fig. 2). The bottom panel shows
the evolution of rotation angle, determinant, fractional anisotropy (FA) and mean
diffusivity (MD) for the five modes of interpolations. MD measures overall diffusion
intensity in a tensor X = V ΛV ′ as the average of the eigenvalues MD(X) = λ̄ =
trace(Λ)/3 = (λ1 + λ2 + λ3)/3. FA measures a degree of anisotropy of the tensor X,
and is defined by

FA(X) =

√
3

2

√
(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2√

λ2
1 + λ2

2 + λ2
3

.

The rotation angle θt at time t is measured by θt = cos−1
(

1
2 (trace(U(t)U(0)′)− 1)

)
for fSR and fSQ (where the eigenvector frame U(t) is given explicitly), and by
θt = cos−1(|u1(t)′u1(0)|), where u1(t) is the eigenvector of fE(t) (or fLE(t), fAI(t))
corresponding to the largest eigenvalue, for fE(t) (or fLE(t), fAI(t), respectively). In
all the examples in this section, we have chosen the scaling factor k = 1 in the scaling–
rotation distance and interpolation (see eq. (3.4) in the main article); in Section 2,
we illustrate the effect of changing k. The coordinate axes in the examples are chosen
so that the axis of rotation a = (−0.5272,−0.6871, 0.5)′ is normal to the screen.

Case 1: Pure rotation.

X = diag(15, 5, 1),

Y = R(
π

3
a)diag(15, 5, 1)R(

π

3
a)′,
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Fig. S1. Case 1. Pure rotation in fSR.

where R(θa) is the 3×3 rotation matrix with axis a and rotation angle θ (in radians);
see Appendix Lemma A.1 (i).

The scaling–rotation interpolation in the top row of Fig. S1 provides a constant
pattern: constant rotational speed, determinant, fractional anisotropy, and mean dif-
fusivity.

Case 2: Pure scaling.

X = diag(15, 5, 1),

Y = diag(7, 12, 8).

It is evident in Fig. 2 that fSR ≡ fLE ≡ fAI . The colors of fLE and fAI are
sharply changed from red to green, because the change of the principal axis corre-
sponding to the largest eigenvalue is not smooth. On the other hand, the princi-
pal axes of fSR do not change (since the interpolation is by pure scaling). Since



SCALING–ROTATION OF SPD MATRICES 3

Fig. S2. Case 2. Pure scaling in fSR.

fSR ≡ fLE ≡ fAI , the interpolation by fSR is only as good as the interpolations by
fLE . This is an example where these three interpolations all suffer from fattening
and shrinking effects. On the other hand, in this example it is not possible for fSQ
to interpolate only by scaling (because if so, the path would leave Sym+

∗ (3)). The
interpolation by fSQ thus involves the rotation of axes by π/2. While in this example
fSQ is the only interpolation that does not suffer from the fattening and shrinking
effects, for small enough scaling factor k the scaling–rotation curve fSR for this pair
(X,Y ) involves rotation, and does not exhibit fattening or shrinking. We elaborate
on the choice of k later in Section 2 of this online supplement.

Case 3: A moderate mix of rotation and scaling.

X = diag(15, 5, 1),

Y = R(
π

3
a)diag(9, 12, 8)R(

π

3
a)′.
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Fig. S3. Case 3. A moderate mix of rotation and scaling in fSR.

The scaling–rotation interpolation in Fig. S3 provides a monotone pattern for
rotation angle, determinant, FA and MD.
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Fig. S4. Case 4. A moderate mix of rotation and scaling.

Case 4: A moderate mix of rotation and scaling, but with MD(X) = MD(Y ).

X = R(
π

6
a)diag(1, 15, 4)R(

π

6
a)′,

Y = R(−π
6

a)diag(2, 10, 8)R(−π
6

a)′.

In Fig. S4, fSR does not exhibit monotone evolution of MD, but the shrinking effect
is less than in both fLE and fAI , i.e. MD(fSR(t)) is greater than both MD(fLE(t))
and MD(fAI(t)) for all t ∈ (0, 1).



6 S. JUNG, A. SCHWARTZMAN AND D. GROISSER

Fig. S5. Case 5: Departure from isotropy.

Case 5: Departure from isotropy.

X = diag(4, 4, 4) = 4I3,

Y = R(
π

3
a)diag(11, 11, 6)R(

π

3
a)′.

The scaling–rotation interpolation fSR is of a pure scaling and thus fSR ≡ fLE ≡
fAI in this example. In the bottom left panel, we omit the rotation angles of fE , fLE
and fAI , since the principal axes are not uniquely defined. The color-flips in fE , fLE
and fAI (shown in rows 2–4) are an artifact of our having made arbitrary choices of
the principal axes. The scaling–quaternion interpolation (fSQ) for equal-eigenvalue
cases was not defined in [9]. For this example, we chose the eigenvector matrix of X to
be the same as any given eigenvector matrix of Y , and defined fSQ(t) = (4I3)1−tΛt,
where Λ = diag(11, 11, 6).
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Appendix D. Effect of the scaling factor k. In connection with Section 5.2
of the main article, different choices of the scaling factor k in the geodesic distance
function

d2 ((U,D), (V,Λ)) = kdSO(p)(U, V )2 + dD(D,Λ)2, k > 0, (3.4)

lead to different scaling–rotation distances dSR(X,Y ) and different scaling–rotation
interpolation between X,Y ∈ Sym+(p). Large values of k tend to prevent the inter-
polation from including rotation. For smaller values of k, the interpolation tends to
include rotation.

We illustrate the effect of k on the interpolations and their determinant, FA and
MD. Consider interpolating between X = diag(15, 5, 1) and Y = diag(7, 12, 8) (the
same matrices used in Case 2 and Fig. S2 of Section 1 of this supplementary material).
The scaling–rotation distance dSR(X,Y ) is an increasing and continuous function of
k > 0, with discontinuities in the derivative appearing at approximately k = 0.22 and
k = 0.46. The corresponding minimal scaling–rotation curves χ(k) are different for
different intervals to which the value of k belongs. These are (0, 0.22), (0.22, 0.46), and
(0.46,∞) approximately; in Fig. S6, we chose k = 1, 0.4, 0.1 as representatives of these
three intervals. For large k (k = 1 in Fig. S6), the scaling–rotation curve χ(k) involves
only scaling and coincides with affine-invariant and log-Euclidean interpolations (see
rows 1 and 2 of Fig. S6). For smaller values of k (k = 0.4 or k = 0.1 in Fig. S6), the
scaling–rotation curve χ(k) is a mix of rotation and scaling. In this example, to the
naked eye χ(0.1) appears virtually identical to the scaling-quaternion interpolation,
as shown in rows 4 and 5 of Fig. S6. (However, the two interpolations are only
approximately the same; they are not identical.)

Appendix E. Advantageous use of unordered eigenvalues. In connec-
tion with Section 5.2 of the main article, we provide an example where allowing
unordered eigenvalues results in more desirable interpolations between SPD matrices.
The method proposed by [9] also measures distance between SPD matrices by decom-
posing into rotations and scalings, but deals only with the case of distinct-and-ordered
eigenvalues.

We compare distances and interpolations obtained by our scaling–rotation method
and by the method of [9] between two SPD matrices whose corresponding ellipsoids
are nearly oblate (i.e. for each ellipsoid, the two longest principal axes are nearly
equal). The two SPD matrices we interpolate between are (Xε, Yε), where

Xε = diag(10 + ε, 10− ε, 1),

Yε = R(ε
π

4
e1)diag(10− ε, 10 + ε, 1)R(ε

π

4
e1)′ (5.1)

for e1 = (1, 0, 0)′ and ε ≥ 0. For ε = 0, Xε = Yε. For small but non-zero ε, the
scaling–rotation distance and interpolation are computed from the unordered set of
eigenvalues in (5.1), with minimal amount of rotation (επ4 in radians) and scalings
log( 10+ε

10−ε ). This leads to a continuous transition to zero distance as ε→ 0. See Fig. S7
for a graph of dSR(Xε, Yε).

In contrast, assuming strictly ordered eigenvalues results in more rotation than
in the unordered case. In particular, by forcing the eigenvalues to be ordered, Xε is
compared with

Yε = R(ε
π

4
e1)R(

π

2
e3)XεR(

π

2
e3)′R(ε

π

4
e1)′, e3 = (0, 0, 1)′,
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Fig. S6. Examples of minimal scaling–rotation curves with the same endpoints but for different
choices of k. For endpoints we use the same matrices used in Fig. 2 earlier in this supplement. Here,
the log-Euclidean and affine-invariant interpolations are identical to each other. In this example
they also coincide with the k = 1 scaling-rotation curve, although this is not true in general. The
scaling-quaternion interpolation is by [9].

resulting in the excessive rotation by π/2 even when Xε is arbitrarily close to Yε. This
phenomenon is illustrated in Fig. S7.

One can devise a distance measure for Xε = UεDεU
′
ε, Yε = VεΛεV

′
ε with a factor

k = k(Dε,Λε) for (3.4) satisfying

lim
ε→0

k(Dε,Λε) = 0, (5.2)

so that the distance between Xε and Yε tends to zero as ε goes to zero. The factor
function k suggested by Collard et al. does not have this property in this example.
Even if such a function k satisfying (5.2) is used, an unwanted rotation in the interpo-
lation remains when eigenvalues are strictly ordered. In Fig. S8, we see that although
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Fig. S7. Distances between Xε and Yε, for 0 < ε < 2; see (5.1). The scaling–rotation
distance (for both choices of k = 1, 0.1) is continuous on Sym+(3), while for the distance dC on
Sym+

∗ (3) proposed in Collard et al., dC(Xε, Yε) does not converge to zero as ε → 0. Note that
X0 = Y0 /∈ Sym+

∗ (3).

Fig. S8. Interpolations between Xε and Yε for ε = 0.01 (see (5.1)). Scaling–rotation inter-
polation in the first row shows almost negligible rotation, while scaling–quaternion interpolation by
Collard et al. in the second row exhibits a large amount of rotation, illustrated by the changes in
colors and by the swing of the red axis.

the initial and final ellipsoids are nearly identical to each other, the interpolation by
Collard et al. exhibits a large amount of rotation, where our interpolation does not.
Thus, in this example our interpolation may be viewed as more economical.


