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STOCHASTIC PERRON’S METHOD FOR THE PROBABILITY OF LIFETIME

RUIN PROBLEM UNDER TRANSACTION COSTS

ERHAN BAYRAKTAR AND YUCHONG ZHANG

Abstract. We apply stochastic Perron’s method to a singular control problem where an individual

targets at a given consumption rate, invests in a risky financial market in which trading is subject

to proportional transaction costs, and seeks to minimize her probability of lifetime ruin. Without

relying on the dynamic programming principle (DPP), we characterize the value function as the

unique viscosity solution of an associated Hamilton-Jacobi-Bellman (HJB) variational inequality.

We also provide a complete proof of the comparison principle which is the main assumption of

stochastic Perron’s method.

1. Introduction

Stochastic Perron’s method is introduced in [1], [3] and [2] as a way to show the value function

of a stochastic control problem is the unique viscosity solution of the associated Hamilton-Jacobi-

Bellman (HJB) equation, without having to first go through the proof of the dynamic programming

principle (DPP) which is usually very long and complicated, and often incomplete. It is a direct

verification approach in that it first constructs a solution to the HJB equation, and then verifies such

a solution is the value function. But unlike the classical verification, it does not require regularity;

uniqueness acts as a substitute for verification. The basic idea is to define, for each specific problem,

a suitable family of stochastic supersolutions V+ (resp. stochastic subsolutions V−) which is stable

under minimum (resp. maximum), and whose members bound the value function from above

(resp. below). So the value function is enveloped from above by v+ = infv∈V+ v and from below

by v− = supv∈V− v. The key step is to show v+ is a viscosity subsolution and v− is a viscosity

supersolution by a Perron-type argument. A comparison principle then closes the gap.

Stochastic Perron’s method has been applied to linear problems [1], Dynkin games [3], HJB

equations for regular control problems [2], (regular) exit time problems [12] and zero-sum differential

games [14]. This paper adapts the method to another type of problems: singular control problems.

In particular, we focus on the specific problem of how individuals should invest their wealth in

a risky financial market to minimize the probability of lifetime ruin, when buying and selling

of the risky asset incur proportional transaction costs. This problem can also be treated as an

exit time problem, but with singular controls. In the frictionless case, the probability of lifetime

ruin problem was analyzed by Young [16], and later studied in more complicated settings such as

Key words and phrases. Stochastic Perron’s method, singular control, probability of lifetime ruin, transaction

costs, viscosity solutions, comparison principle.
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borrowing constraints [4], stochastic consumption [5] and drift uncertainty [6]. So the goal of the

paper is two-fold. First, it exemplifies how stochastic Perron’s method can be applied to singular

control problems, which has not been covered in the literature. Second, it serves as the first step

towards a rigorous analysis of the probability of lifetime ruin problem under transaction costs. The

techniques in this paper can be applied in a similar way to other optimal investment problems under

transaction costs, as long as there is a comparison principle. For consumption-investment problems,

uniqueness is proved in [10] under certain conditions (also see [15, Theorem 1] and Section 4.3 of

[11]).

The main idea of the proof is in line with [2] and [12], but there are some nontrivial modifications.

Similar to [8] and [13], our HJB equation takes the form of a variational inequality with three

components, one for each of the three different regions: no-transaction, sell, and buy. This makes

the proof of the interior viscosity subsolution property of the upper stochastic envelope v+ more

demanding: we have to argue by contradiction in three cases separately. Variational inequalities

also appear in [3] and the authors are able to rule out some of the cases by assuming the existence of

a stochastic supersolution (resp. subsolution) less than or equal to the upper obstacle (resp. greater

than or equal to the lower obstacle). But the same idea does not work for gradient constraints.

Another challenge posed by the singular control is that the state process can jump outside the

small neighborhood in which local estimates obtained from the viscosity solution property are valid.

This issue arises in the proof of the interior viscosity supersolution property of the lower stochastic

envelope v−, and we overcome it by splitting the jump into two steps: first to an intermediate point

on the boundary of the neighborhood and then to its original destination.

In proving the viscosity semi-solution property of v±, boundary property is usually harder to

show than interior property. In fact, most of the work in [12] is devoted to proving the boundary

viscosity semi-solution property of v±. In our case, we avoid this hassle by constructing explicitly a

stochastic supersolution and a stochastic subsolution both of which satisfy the boundary condition.

The boundary viscosity semi-solution property then becomes a trivial consequence of the definition

of v±. This is very similar to classical Perron’s method in which one has to first come up with a

pair of viscosity semi-solutions satisfying the boundary condition (see Theorem 4.1 and Example

4.6 of [7]). However, we point out that the construction of such stochastic semi-solutions depends

on the specific problem at hand and may not always be possible.

Previous works on stochastic Perron’s method focus on methodology and take comparison prin-

ciple (which is crucial for stochastic Perron’s method to work) as an assumption. Here we provide,

in addition to stochastic Perron’s method, a complete proof of the comparison principle for our

specific singular control problem. The proof relies on the existence of a strict classical subsolution

satisfying certain growth condition, an idea we borrowed from [10].

The rest of the paper is organized as follows. In Section 2, we set up the problem, derive the HJB

equation and some bounds on the value function, and state the main theorem. In Section 3, we

introduce the notion of stochastic supersolution and show the infimum of stochastic supersolutions

is a viscosity subsolution. In Section 4, we introduce the notion of stochastic subsolution and show
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the supremum of stochastic subsolutions is a viscosity supersolution. Finally, in Section 5 we prove

a comparison principle and finish the proof of the main theorem.

2. Problem formulation

Let (Ω,F ,P) be a probability space supporting a Brownian motion W = (Wt)t≥0 and an in-

dependent Poisson process N = (Nt)t≥0 with rate β. Let τd be the first time that the Poisson

process jumps, modeling the death time of the individual. τd is exponentially distributed with rate

β, known as the hazard rate in this context. Denote by F := {Ft}t≥0 the completion of the natural

filtration of the Brownian motion and G := {Gt}t≥0 the completion of the filtration generated by

W and the process 1{t≥τd}. Assume both F and G have been made right continuous; that is, they

satisfy the usual condition.

The financial market consists of a risk-free money market with interest rate r > 0 and a risky

asset (a stock) whose price Pt follows a geometric Brownian motion with drift α > r and volatility

σ > 0. Transferring assets between the money market and the stock market incur proportional

transaction costs specified by two parameters λ, µ ∈ (0, 1). One can think of the stock as having

ask price Pt/(1 − λ) and bid price (1 − µ)Pt. Same as [13], we describe the investment policy

of the individual by a pair (B,S) of right-continuous with left limits (RCLL), non-negative, non-

decreasing and G-adapted processes, where B records the cumulative amount of money withdrawn

from the money market for the purpose of buying stock, and S records the cumulative sales of

stock for the purpose of investment in the money market. We set (B0−, S0−) = 0, i.e. there is no

investment history at time zero. Due to transaction costs, it is never optimal to buy and sell at

the same time. So we limit ourselves to strategies (B,S) such that for all t, △Bt := Bt −Bt− and

△St := St−St− are not both strictly positive. Denote by A0 the set of all such pairs (B,S). Apart

from investment, the individual also consumes at a constant rate c > 0.

Denote by Xt and Yt the total dollar amount invested in the money market and the stock at

time t, respectively. Let L(x, y) := x + (1 − µ)y+ − 1
1−λy

− be the liquidation function. For each

a ∈ R, define

Sa := {(x, y) ∈ R2 : L(x, y) > a} = {(x, y) ∈ R2 : x+
y

1− λ
> a, x+ (1− µ)y > a}.

Given initial endowment (x, y) and a pair of control (B,S) ∈ A0, the pre-death investment position

of the individual evolve according to the stochastic differential equations (SDE)

dXt = (rXt − c)dt− dBt + (1− µ)dSt, X0− = x, (2.1)

dYt = αYtdt+ σYtdWt + (1− λ)dBt − dSt, Y0− = y. (2.2)

Here we allow an immediate transaction at time zero so that (X0, Y0) may differ from (x, y). Denote

the solution by (Xx,y,B,S , Y x,y,B,S). Let

τx,y,B,S
b := inf{t ≥ 0 : (Xx,y,B,S , Y x,y,B,S) /∈ Sb}
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be the ruin time. The individual aims at minimizing the probability that ruin happens before

death. The value function of this control problem is defined as

ψ(x, y) := inf
(B,S)∈A0

P(τx,y,B,S
b < τd). (2.3)

Clearly, ψ is [0, 1]-valued, and ψ(x, y) = 1 if (x, y) /∈ Sb. Same as in the frictionless case, when

L(x, y) ≥ c/r, the individual can sustain her consumption by immediately putting all her money in

the money market and consuming the interest. We shall assume b < c/r, otherwise the problem is

trivial.1 We have ψ(x, y) = 0 for (x, y) ∈ Sc/r. In other words, Sc/r is a “safe region”. The (open)

state space for this control problem is S := Sb\Sc/r, and the boundary consists of two parts: the

ruin level ∂Sb and the safe level ∂Sc/r.

For ϕ ∈ C2(S), define

Lϕ := βϕ− (rx− c)ϕx − αyϕy −
1

2
σ2y2ϕyy .

The HJB equation for the frictional lifetime ruin problem is

max {Lu,−(1− µ)ux + uy, ux − (1− λ)uy} = 0, (x, y) ∈ S, (2.4)

with boundary conditions

u(x, y) = 1 if (x, y) ∈ ∂Sb, u(x, y) = 0 if (x, y) ∈ ∂Sc/r. (2.5)

2.1. Upper and lower bounds on the value function. Let

ψ(x, y) :=

(
c− rL(x, y)

c− rb

)β
r

, (x, y) ∈ S. (2.6)

ψ is the probability of ruin if the agent immediately liquidate her stock position and makes no

further transaction throughout her lifetime. It is an upper bound for the value function since such

a strategy may not be optimal. It is easy to see that ψ satisfies the boundary conditions (2.5).

For k ∈ [1− µ, 1
1−λ ], let

ψk(x, y) :=





(
c−r(x+ky)

c−rb

)d
, b ≤ x+ ky ≤ c/r,

0, x+ ky > c/r.
(2.7)

where

d =
1

2r

[
(r + β +R) +

√
(r + β +R)2 − 4rβ

]
> 1, R =

1

2

(
α− r

σ

)2

. (2.8)

That is, ψk(x, y) is the minimum frictionless probability of ruin when the initial wealth is x + ky

(the frictionless ruin probability is derived in [16]). ψk bounds the frictional value function from

below because each k corresponds to a stock price inside the bid-ask spread, and trading at a more

favorable frictionless price obviously leads to smaller ruin probability. For a rigorous proof, one can

refer to Remark 4.2 and Lemma 4.2. Since the value function ψ is bounded from below by ψk for

1If b ≥ c/r, then ψ(x, y) is either 0 or 1, depending on whether (x, y) belongs to Sb or not.
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each k, it is bounded from below by their supremum:

ψ(x, y) := sup
k∈[1−µ, 1

1−λ
]

ψk(x, y) = ψ1−µ(x, y) ∨ ψ 1

1−λ
(x, y) =

(
c− rL(x, y)

c− rb

)d

. (2.9)

Since ψk is continuous in k, the above supremum remains unchanged if we replace [1− µ, 1
1−λ ] by

(1− µ, 1
1−λ) ∩Q. Clearly, ψ satisfies the boundary conditions (2.5).

The following lemma summarizes the results.

Lemma 2.1. For (x, y) ∈ S,

(
c− rL(x, y)

c− rb

)d

≤ ψ(x, y) ≤

(
c− rL(x, y)

c− rb

)β
r

,

where d is defined in (2.8).

Remark 2.1. It can be shown that ψ is a viscosity supersolution and ψ is a viscosity subsolution

of (2.4). With a comparison principle which we will prove in Section 5, one can use (classical)

Perron’s method introduced by Ishii [9] (also described in [7]) to get the existence of a viscosity

solution to (2.4), (2.5). But such a solution cannot be compared with the value function unless one

can prove regularity which is necessary for the classical verification theorem. Instead, we will use

stochastic Perron’s method which amounts to verification without smoothness.

2.2. Random initial condition and admissible controls. For convenience in later discussion,

we introduce a “coffin state” ∆. Let S ∪∆ be the one point compactification of S. Throughout

this paper, all closures are taken in R2. For any R2-valued vector z, we use the convention that

∆+ z = ∆. Set (Xt, Yt) := ∆ for all t ≥ τd. For any function u defined on S, define its extension

to S ∪ {∆} by assigning u(∆) = 0.

A pair (τ, ξ) is called a random initial condition for (2.1), (2.2) if τ is a G-stopping time taking

values in [0, τd], ξ = (ξ0, ξ1) is a Gτ -measurable random vector taking values in S ∪{∆}, and ξ = ∆

if and only if τ = τd. Denote by (Xτ,ξ,B,S, Y τ,ξ,B,S) the solution of (2.1) and (2.2) with random

initial condition (τ, ξ) in the sense that (Xτ−, Yτ−) = ξ. The exit time of (Xτ,ξ,B,S, Y τ,ξ,B,S) from

S is defined by

στ,ξ,B,S := inf{t ≥ τ : (Xτ,ξ,B,S
t , Y τ,ξ,B,S

t ) /∈ S}.

Note that στ,ξ,B,S ≤ τd <∞ since (Xτ,ξ,B,S
τd , Y τ,ξ,B,S

τd ) = ∆ /∈ S.

We also restrict ourselves to a subset of controls. Observe that when buying stocks, we move

northwest along the vector (−1, 1 − λ); when selling stocks, we move southeast along the vector

(1 − µ,−1). It is not hard to see by picture that starting in S, one can never jump to Sc/r by

a transaction. On the other hand, it is never optimal to jump across ∂Sb from S because such a

jump immediately leads to ruin. If we are on ∂Sc/r (resp. ∂Sb), jumping to its right is impossible

and jumping to its left is not optimal (resp. does not prevent ruin from happening). Therefore,

we may focus on those controls under which the controlled process exits S via its boundary or the

coffin state. The formal definition of admissibility is given below.
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Definition 2.1. Let (τ, ξ) be a random initial condition. A control pair (B,S) ∈ A0 is called

(τ, ξ)−admissible if

(Xτ,ξ,B,S
στ,ξ,B,S , Y

τ,ξ,B,S
στ,ξ,B,S ) ∈ ∂S ∪ {∆}.

Denote the set of (τ, ξ)−admissible controls by A (τ, ξ).

We have (B,S) ≡ 0 ∈ A (τ, ξ) for any random initial condition (τ, ξ). When τ = 0 and ξ = (x, y),

we shall omit the τ -dependence in the superscripts of the controlled process and relevant stopping

times, and write A (τ, ξ) = A (x, y). As we have argued, working with admissible controls does not

change the optimal probability, i.e.

ψ(x, y) = inf
(B,S)∈A (x,y)

P(τx,y,B,S
b < τd).

The following constructions of admissible controls will be used a few times in Section 3. We list

them here for future reference.

Lemma 2.2.

(i) If (Bi, Si), i = 1, 2 are (τ, ξ)-admissible and A is any Gτ -measurable set, then

(Bt, St) := 1{t≥τ}

[(
B1

t −B1
τ−, S

1
t − S1

τ−

)
1A +

(
B2

t −B2
τ−, S

2
t − S2

τ−

)
1Ac

]

is also (τ, ξ)-admissible.

(ii) Let (B1, S1) be a (τ, ξ)-admissible control, τ1 ∈ [τ, στ,ξ,B
1,S1

] be a G-stopping time, and

ξ1 := (Xτ,ξ,B1,S1

τ1 , Y τ,ξ,B1,S1

τ1 ). Then (τ1, ξ1) is a random initial condition. Furthermore, let

(B2, S2) be a (τ1, ξ1)-admissible control. Then

(Bt, St) := 1{t<τ1}(B
1
t , S

1
t ) + 1{t≥τ1}(B

2
t −B2

τ1− +B1
τ1 , S

2
t − S2

τ1− + S1
τ1)

is a (τ, ξ)-admissible control.

Proof. (i) (B,S) is G-adapted by the definition of stopping time and stopping time filtration, and

the G-adaptedness of (Bi, Si), i = 1, 2. It is nonnegative because (Bi, Si), i = 1, 2 are non-

decreasing. Monotonicity, RCLL property and that △B and △S are not both strictly positive also

follow from the assumption that (Bi, Si) ∈ A0, i = 1, 2. So (B,S) ∈ A0. By pathwise uniqueness

of the solution to (2.1), (2.2), we have

(Xτ,ξ,B,S
t , Y τ,ξ,B,S

t ) = 1A(X
τ,ξ,B1,S1

t , Y τ,ξ,B1,S1

t ) + 1Ac(Xτ,ξ,B2,S2

t , Y τ,ξ,B2,S2

t ), t ≥ τ.

It follows that

στ,ξ,B,S = 1Aσ
τ,ξ,B1,S1

+ 1Acστ,ξ,B
2,S2

,

and thus

(Xτ,ξ,B,S
στ,ξ,B,S , Y

τ,ξ,B,S
στ,ξ,B,S ) = 1A(X

τ,ξ,B1,S1

στ,ξ,B1 ,S1 , Y
τ,ξ,B1,S1

στ,ξ,B1,S1 ) + 1Ac(Xτ,ξ,B2,S2

στ,ξ,B2,S2 , Y
τ,ξ,B2,S2

στ,ξ,B2 ,S2 ) ∈ ∂S ∪ {∆}

by the (τ, ξ)-admissibility of (Bi, Si), i = 1, 2.

(ii) Clearly, τ1 is a G-stopping time taking values in [τ, τd] and ξ1 is Gτ1 -measurable. Since

τ1 ≤ στ,ξ,B
1,S1

, the (τ, ξ)-admissibility of (B1, S1) implies ξ1 ∈ S ∪ {∆}. Moreover, ξ1 = ∆ if and
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only if τ1 = τd. So (τ1, ξ1) is a valid random initial condition. It is routine to check (B,S) ∈ A0.

To show (B,S) ∈ A (τ, ξ), observe that

(Xτ,ξ,B,S
t , Y τ,ξ,B,S

t ) =




(Xτ,ξ,B1,S1

t , Y τ,ξ,B1,S1

t ), τ ≤ t < τ1,

(Xτ1,ξ1,B2,S2

t , Y τ1,ξ1,B2,S2

t ), t ≥ τ1.

This, together with τ1 ≤ στ,ξ,B
1,S1

, imply στ,ξ,B,S = στ1,ξ1,B
2,S2

≥ τ1. Since (B2, S2) ∈ A (τ1, ξ1),

we have

(Xτ,ξ,B,S
στ,ξ,B,S , Y

τ,ξ,B,S
στ,ξ,B,S ) = (Xτ1,ξ1,B2,S2

στ1,ξ1,B
2,S2 , Y

τ1,ξ1,B2,S2

στ1,ξ1,B
2,S2 ) ∈ ∂S ∪ {∆}.

�

2.3. Main result.

Theorem 2.1. The value function ψ is the unique (continuous) viscosity solution to the HJB

equation (2.4) satisfying the boundary condition (2.5).

The proof of Theorem 2.1 is deferred to the end of Section 5.

3. Stochastic supersolution

Definition 3.1. A bounded u.s.c. function v on S is called a stochastic supersolution of (2.4),

(2.5) if

(SP1) v ≥ 1 on ∂Sb, v ≥ 0 on ∂Sc/r;

(SP2) for any random initial condition (τ, ξ), there exists (B,S) ∈ A (τ, ξ) such that

E[v(Xτ,ξ,B,S
ρ , Y τ,ξ,B,S

ρ )|Gτ ] ≤ v(ξ)

for all G-stopping time ρ ∈ [τ, στ,ξ,B,S], where v is understood to be its extension to S∪{∆}.

Denote the set of stochastic supersolutions by V+.

Remark 3.1. V+ 6= ∅ since the constant 1 ∈ V+. There is a more useful stochastic supersolution:

the upper bound function ψ defined in (2.6), which satisfies (SP1) with equality. (See Lemma 3.1.)

The existence of such a stochastic supersolution automatically guarantees the the upper stochastic

envelope (which will be introduced shortly) satisfies the boundary condition (2.5).

Remark 3.2. Any stochastic supersolution v dominates the value function ψ on S. To see this,

first note that v ≥ ψ on ∂S by (SP1). Then for any (x, y) ∈ S, take τ = 0 and ξ = (x, y). Let

(B,S) ∈ A (x, y) be given by (SP2) for v. Let ρ = σx,y,B,S. To simplify notation, we write τb for

τx,y,B,S
b and τs for τx,y,B,S

s := inf{t ≥ 0 : (Xx,y,B,S
t , Y x,y,B,S

t ) ∈ Sc/r}. We have

v(x, y) ≥ E
[
v(Xx,y,B,S

ρ , Y x,y,B,S
ρ )

]
≥ E

[
1
{(Xx,y,B,S

ρ ,Y x,y,B,S
ρ )∈∂Sb}

]
= P (τb < τd ∧ τs) .

where the first inequality holds by (SP2) and the second inequality holds by (SP1). Now, let

(B′
t, S

′
t) = (Bt, St)1{t<τs} + ((Xx,y,B,S

τs − c/r)+ +Bτs , (Y
x,y,B,S
τs )+ + Sτs)1{t≥τs}.
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That is, (B′, S′) follows (B,S) before hitting the safe region, and at the moment when the safe

region is hit (by diffusion), immediately liquidate all stock position and do no more transaction

afterwards. This ensures that once the safe region is reached, death will definitely happen before

ruin. It is easy to check (B′, S′) ∈ A0 and P(τb < τd ∧ τs) = P(τx,y,B
′,S′

b < τd). We therefore have

v(x, y) ≥ P(τx,y,B
′,S′

b < τd) ≥ ψ(x, y).

Lemma 3.1. ψ ∈ V+.

Proof. We only show (SP2). Let (τ, ξ) be any random initial condition. Define

(Bt, St) := 1{t≥τ}

(
(ξ1)−

1− λ
, (ξ1)+

)
.

Intuitively, what (B,S) does is to immediately liquidate the stock position at time τ and do no

more transaction afterwards. It can be checked that (Xτ,ξ,B,S
στ,ξ,B,S , Y

τ,ξ,B,S
στ,ξ,B,S ) ∈ {(b, 0), (c/r, 0),∆}, thus

(B,S) ∈ A (τ, ξ). We have (Xτ,ξ,B,S
τ , Y τ,ξ,B,S

τ ) = 1{τ<τd}(L(ξ), 0)+1{τ=τd}∆ and Y τ,ξ,B,S
t = 0 for all

t ∈ [τ, τd). Let ρ ∈ [τ, στ,ξ,B,S] be any G-stopping time. Let f(x) := ψ(x, 0) ∈ C[b, c/r]∩C2[b, c/r).

With slight abuse of notation, we also write Xτ,ξ,B,S
t = ∆ when t = τd, and set f(∆) = 0. Apply

Itô’s formula to f(Xτ,ξ,B,S), we get

f(Xτ,ξ,B,S
ρ )− f(Xτ,ξ,B,S

τ ) =

∫ ρ

τ
f ′(Xτ,ξ,B,S

t )(rXτ,ξ,B,S
t − c)dt+

∫ ρ

τ

(
f(∆)− f(Xτ,ξ,B,S

t− )
)
dNt

=

∫ ρ

τ

[
f ′(x)(rx− c)− βf(x)

] ∣∣
x=Xτ,ξ,B,S

t
dt+

∫ ρ

τ
−f(Xτ,ξ,B,S

t− )d(Nt − βt)

=

∫ ρ

τ
−f(Xτ,ξ,B,S

t− )d(Nt − βt),

where we used the explicit formula of f to kill the drift. Taking conditional expectation yields

E[f(Xτ,ξ,B,S
ρ )|Gτ ] = f(Xτ,ξ,B,S

τ ).

It follows that

E[ψ(Xτ,ξ,B,S
ρ , Y τ,ξ,B,S

ρ )|Gτ ] = E[1{ρ<τd}ψ(X
τ,ξ,B,S
ρ , 0)|Gτ ] = E[1{ρ<τd}f(X

τ,ξ,B,S
ρ )|Gτ ]

= E[f(Xτ,ξ,B,S
ρ )|Gτ ] = f(Xτ,ξ,B,S

τ ) = 1{τ<τd}f(L(ξ))

= 1{τ<τd}ψ(L(ξ), 0) = 1{τ<τd}ψ(ξ) = ψ(ξ).

In the second last equality, we used ψ(x, y) = ψ(L(x, y), 0) for (x, y) ∈ S. �

Lemma 3.2. Let v1, v2 ∈ V+. Then v1 ∧ v2 ∈ V+.

Proof. The minimum of bounded u.s.c. functions is still bounded and u.s.c.. (SP1) is clearly

satisfied. For (SP2), let (Bi, Si) ∈ A (τ, ξ), i = 1, 2 be the admissible control corresponding to vi

and the random initial condition (τ, ξ). Put A := {v1(ξ) ≤ v2(ξ)} ∈ Gτ . The control

(Bt, St) := 1{t≥τ}

[(
B1

t −B1
τ−, S

1
t − S1

τ−

)
1A +

(
B2

t −B2
τ−, S

2
t − S2

τ−

)
1Ac

]
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serves the purpose. (τ, ξ)-admissible follows from Lemma 2.2.i, and the remaining proof is very

similar to that of [12, Lemma 1] except that the process Z is replaced by v(X,Y ) and the direction

of inequalities are reversed. So we omit the details. �

Proposition 3.1. The upper stochastic envelope

v+(x, y) := inf
v∈V+

v(x, y)

is a viscosity subsolution of (2.4) satisfying v+ ≤ 1 on ∂Sb and v+ ≤ 0 on ∂Sc/r.

Proof. The boundary inequalities are satisfied because v+ ≤ ψ by Lemma 3.1.2 To show interior

viscosity subsolution property, let (x0, y0) ∈ S and ϕ ∈ C2(S) be a test function such that v+ − ϕ

attains a strict local maximum of zero at (x0, y0). We need to show

max {Lϕ,−(1− µ)ϕx + ϕy, ϕx − (1− λ)ϕy} (x0, y0) ≤ 0.

Assume on the contrary that

max {Lϕ,−(1− µ)ϕx + ϕy, ϕx − (1− λ)ϕy} (x0, y0) > 0.

There are three cases to consider: (i) Lϕ(x0, y0) > 0, (ii) −(1− µ)ϕx(x0, y0) + ϕy(x0, y0) > 0, and

(iii) ϕx(x0, y0)− (1− λ)ϕy(x0, y0) > 0. We will show that each case leads to a contradiction.

Case (i). Lϕ(x0, y0) > 0. We can find, by continuity, a small closed ball Bǫ(x0, y0) ⊆ S such

that

Lϕ > 0 on Bǫ(x0, y0).

Since v+ − ϕ is u.s.c. and Bǫ(x0, y0)\Bǫ/2(x0, y0) is compact, there exists a δ > 0 such that

v+ − ϕ ≤ −δ on Bǫ(x0, y0)\Bǫ/2(x0, y0).

By [1, Proposition 4.1] and Lemma 3.2, v+ can be approximated from above by a non-increasing

sequence of stochastic supersolutions vn. By [3, Lemma 2.4], there exists a large enough N such

that v := vN satisfies

v − ϕ ≤ −
δ

2
on Bǫ(x0, y0)\Bǫ/2(x0, y0).

Choose η ∈ (0, δ/2) small so that ϕη := ϕ− η satisfies

Lϕη > 0 on Bǫ(x0, y0). (3.1)

We also have

v ≤ ϕ−
δ

2
< ϕ− η = ϕη on Bǫ(x0, y0)\Bǫ/2(x0, y0), (3.2)

and

ϕη(x0, y0) = ϕ(x0, y0)− η = v+(x0, y0)− η < v+(x0, y0). (3.3)

Define

vη :=




v ∧ ϕη on Bǫ(x0, y0),

v on Bǫ(x0, y0)
c
.

2In fact, equalities hold for v+ on the boundary; the reverse inequalities come from the simple fact that (SP1) is
preserved under pointwise infimum.
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If we can show vη ∈ V+, then (3.3) will lead to a contradiction to the (pointwise) minimality of v+.

Clearly, vη is u.s.c. since the minimum of u.s.c. functions is u.s.c. and vη = v outside Bǫ/2(x0, y0).

Boundedness is also easy. (SP1) is satisfied because vη = v on ∂S. The remaining proof of case (i)

is devoted to the verification of (SP2), i.e. the supermartingale property.

Let (τ, ξ) be any random initial condition and (B0, S0) be the (τ, ξ)-admissible control in (SP2)

for the stochastic supersolution v. Let

A := {ξ ∈ Bǫ/2(x0, y0)} ∩ {ϕη(ξ) < v(ξ)} ∈ Gτ .

Define a new control

(B1
t , S

1
t ) := 1Ac∩{t≥τ}(B

0
t −B0

τ−, S
0
t − S0

τ−).

(B1, S1) follows (B0, S0) starting from time τ when the position ξ satisfies vη(ξ) = v(ξ), i.e. when

it is optimal to use the control corresponding to v. By Lemma 2.2.i, (B1, S1) ∈ A (τ, ξ). Let

τ1 := inf{t ∈ [τ, στ,ξ,B
1,S1

] : (Xτ,ξ,B1,S1

t , Y τ,ξ,B1,S1

t ) /∈ Bǫ/2(x0, y0)}

be the exit time of the ball Bǫ/2(x0, y0) and

ξ1 := (Xτ,ξ,B1,S1

τ1 , Y τ,ξ,B1,S1

τ1 ) ∈ Gτ1

be the exit position. Since Xτ,ξ,B1,S1

and Y τ,ξ,B1,S1

are RCLL, we have ξ1 /∈ Bǫ/2(x0, y0).
3 By

Lemma 2.2.ii, (τ1, ξ1) is a valid random initial condition. Let (B2, S2) be the (τ1, ξ1)-admissible

control in (SP2) for v. Set

(Bt, St) := (B1
t , S

1
t )1{t<τ1} + (B2

t −B2
τ1− +B1

τ1 , S
2
t − S2

τ1− + S1
τ1)1{t≥τ1}.

Note that we allow “double transactions” at time τ1, first by (△B1
τ1 ,△S

1
τ1), then by (△B2

τ1 ,△S
2
τ1).

Lemma 2.2.ii also implies (B,S) ∈ A (τ, ξ). We now check the supermatingale property (SP2) for

vη with control (B,S).

Let ρ be any G-stopping time taking values in [τ, στ,ξ,B,S]. In the event A, (B1, S1) = 0 so that

(Xτ,ξ,B1,S1

, Y τ,ξ,B1,S1

) exits Bǫ/2(x0, y0) either by diffusion or by death, giving ξ1 ∈ ∂Bǫ/2(x0, y0)∪

{∆}. The control (B,S) is inactive before time τ1 and equals (△B2
τ1 ,△S

2
τ1) at τ1. By Itô’s formula,

we have in the event A

ϕη(Xτ,ξ,B,S
ρ∧τ1 , Y τ,ξ,B,S

ρ∧τ1 )− ϕη(Xτ,ξ,B,S
τ , Y τ,ξ,B,S

τ )

=

∫ ρ∧τ1

τ
−Lϕη(Xτ,ξ,B,S

t , Y τ,ξ,B,S
t )dt+

∫ ρ∧τ1

τ
(ϕη)′(Xτ,ξ,B,S

t , Y τ,ξ,B,S
t )σY τ,ξ,B,S

t dWt

+

∫ ρ∧τ1

τ

[
ϕη(∆)− ϕη(Xτ,ξ,B,S

t− , Y τ,ξ,B,S
t− )

]
d(Nt − βt) + 1{ρ≥τ1} [ϕ

η(ξ1 +△ξ)− ϕη(ξ1)] ,

where

△ξ := (−1, 1 − λ)△B2
τ1 + (1− µ,−1)△S2

τ1 .

3If ξ /∈ Bǫ/2(x0, y0), it is possible for the process to immediately jump back to Bǫ/2(x0, y0) at time τ . In this case,

although we start outside the ball, τ1 6= τ because (Xτ,ξ,B1 ,S1

t , Y τ,ξ,B1,S1

t ) gives the post-jump position at time t
which is inside the ball at t = τ , and will stay inside the ball for some positive amount of time by the right continuity
of its paths.
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Since (Xτ,ξ,B,S
t , Y τ,ξ,B,S

t ) ∈ Bǫ/2(x0, y0) for τ ≤ t < τ1 on A, and Lϕη > 0 in Bǫ/2(x0, y0) by

(3.1), the dt-integral is non-positive. The integrals with respect to the Brownian motion and the

compensated Poisson process vanish by taking Gτ -conditional expectation. We therefore obtain

E[1Aϕ
η(Xτ,ξ,B,S

ρ∧τ1 , Y τ,ξ,B,S
ρ∧τ1 )− 1A∩{ρ≥τ1}(ϕ

η(ξ1 +△ξ)− ϕη(ξ1))|Gτ ]

≤ 1Aϕ
η(Xτ,ξ,B,S

τ , Y τ,ξ,B,S
τ ) = 1A∩{τ<τd}ϕ

η(ξ) + 1A∩{τ=τd}ϕ
η(∆)

= 1Aϕ
η(ξ) ≤ 1Av

η(ξ).

In the last equality, we used ξ = ∆ if τ = τd. Notice that

1Aϕ
η(Xτ,ξ,B,S

ρ∧τ1 , Y τ,ξ,B,S
ρ∧τ1 )− 1A∩{ρ≥τ1}(ϕ

η(ξ1 +△ξ)− ϕη(ξ1))

= 1A∩{ρ<τ1}ϕ
η(Xτ,ξ,B,S

ρ , Y τ,ξ,B,S
ρ ) + 1A∩{ρ≥τ1}ϕ

η(ξ1 +△ξ)− 1A∩{ρ≥τ1}(ϕ
η(ξ1 +△ξ)− ϕη(ξ1))

= 1A∩{ρ<τ1}ϕ
η(Xτ,ξ,B,S

ρ , Y τ,ξ,B,S
ρ ) + 1A∩{ρ≥τ1}ϕ

η(ξ1).

So

E[1A∩{ρ<τ1}ϕ
η(Xτ,ξ,B,S

ρ , Y τ,ξ,B,S
ρ ) + 1A∩{ρ≥τ1}ϕ

η(ξ1)|Gτ ] ≤ 1Av
η(ξ).

We have argued that ξ1 ∈ ∂Bǫ/2(x0, y0) ∪ {∆} on A. By (3.2) and the definition of vη, we know

vη ≤ ϕη in Bǫ(x0, y0). This allows us to replace ϕη by vη in the above inequality and get

E[1A∩{ρ<τ1}v
η(Xτ,ξ,B,S

ρ , Y τ,ξ,B,S
ρ ) + 1A∩{ρ≥τ1}v

η(ξ1)|Gτ ] ≤ 1Av
η(ξ). (3.4)

By “optimality” of (B0, S0) (and thus (B1, S1) on Ac) for v with random initial condition (τ, ξ),

we have

E[1Acv(Xτ,ξ,B1,S1

ρ∧τ1 , Y τ,ξ,B1,S1

ρ∧τ1 )|Gτ ] ≤ 1Acv(ξ).

Since vη ≤ v everywhere, we can replace v by vη on the left hand side in the above inequality.

On Ac, either ξ /∈ Bǫ/2(x0, y0), or ξ ∈ Bǫ/2(x0, y0) and v(ξ) ≤ ϕη(ξ). In both cases, v(ξ) = vη(ξ)

since vη = v outside the ball Bǫ/2(x0, y0). So we can also replace v by vη on the right hand side.

Splitting the set Ac on the left hand side according to the relation between ρ and τ1, and using the

definition of (B,S), we have

E[1Ac∩{ρ<τ1}v
η(Xτ,ξ,B,S

ρ , Y τ,ξ,B,S
ρ ) + 1Ac∩{ρ≥τ1}v

η(ξ1)|Gτ ] ≤ 1Acvη(ξ). (3.5)

Combining (3.4) and (3.5) gives us

E[1{ρ<τ1}v
η(Xτ,ξ,B,S

ρ , Y τ,ξ,B,S
ρ ) + 1{ρ≥τ1}v

η(ξ1)|Gτ ] ≤ vη(ξ). (3.6)

By “optimality” of (B2, S2) for v with random initial condition (τ1, ξ1), we have (by applying

the supermartingale property to the stopping time ρ ∨ τ1)

E[1{ρ≥τ1}v(X
τ1,ξ1,B2,S2

ρ , Y τ1,ξ1,B2,S2

ρ )|Gτ1 ] ≤ 1{ρ≥τ1}v(ξ1).

Same as before, we can replace all v’s by vη in the above inequality because vη ≤ v everywhere,

v = vη outside Bǫ/2(x0, y0) and ξ1, being the exit position, is outside Bǫ/2(x0, y0). So

E[1{ρ≥τ1}v
η(Xτ,ξ,B,S

ρ , Y τ,ξ,B,S
ρ )|Gτ1 ] = E[1{ρ≥τ1}v

η(Xτ1,ξ1,B2,S2

ρ , Y τ1,ξ1,B2,S2

ρ )|Gτ1 ] ≤ 1{ρ≥τ1}v
η(ξ1).
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Taking Gτ -condition expectation and using tower property yields

E[1{ρ≥τ1}v
η(Xτ,ξ,B,S

ρ , Y τ,ξ,B,S
ρ )− 1{ρ≥τ1}v

η(ξ1)|Gτ ] ≤ 0. (3.7)

Finally, we add (3.6) and (3.7) to get

E[vη(Xτ,ξ,B,S
ρ , Y τ,ξ,B,S

ρ )|Gτ ] ≤ vη(ξ).

This completes the proof of (SP2) and hence of case (i).

Case (ii). −(1−µ)ϕx(x0, y0)+ϕy(x0, y0) > 0. The proof is in most part similar to that of case

(i). So we shall be brief on the similar parts. Same as in case (i), we can find ǫ, η > 0 and v ∈ V+

such that ϕη := ϕ− η satisfies

− (1− µ)ϕη
x + ϕη

y > 0 on Bǫ(x0, y0), (3.8)

v ≤ ϕη on Bǫ(x0, y0)\Bǫ/2(x0, y0),

ϕη(x0, y0) < v+(x0, y0).

Define

vη :=




v ∧ ϕη on Bǫ(x0, y0),

v on Bǫ(x0, y0)
c
.

It suffices to show vη ∈ V+. And the only nontrivial part is to check vη satisfies (SP2).

Let (τ, ξ) be any random initial condition and (B0, S0) be a (τ, ξ)-admissible control in (SP2)

for the stochastic supersolution v. Let

A := {ξ ∈ Bǫ/2(x0, y0)} ∩ {ϕη(ξ) < v(ξ)} ∈ Gτ .

Observe that (3.8) implies for any (x, y) ∈ Bǫ(x0, y0) and h > 0 small such that (x+(1−µ)h, y−h) ∈

Bǫ(x0, y0), we have

ϕη(x+ (1− µ)h, y − h)− ϕη(x, y) = h[(1− µ)ϕη
x − ϕη

y](x+ (1− µ)h′, y − h′) < 0 (3.9)

for some h′ ∈ (0, h) by Mean Value Theorem. This suggests selling stocks is optimal on the set A.

Given a point (x, y) ∈ Bǫ/2(x0, y0), denote by s(x, y) = (s0(x, y), s1(x, y)) the intersection of the

ray {(x + (1 − µ)h, y − h) : h ≥ 0} and ∂Bǫ/2(x0, y0), i.e. the unique point on ∂Bǫ/2(x0, y0) that

can be reached by a sell. Define a new control

(B1
t , S

1
t ) := 1A∩{t≥τ}(0, ξ

1 − s
1(ξ)) + 1Ac∩{t≥τ}(B

0
t −B0

τ−, S
0
t − S0

τ−).

(B1, S1) says starting at time τ , if we are in A, we immediately jump to ∂Bǫ/2(x0, y0) by a sell and

do nothing afterwards; if we are in Ac, we follow (B0, S0). A slight variation of Lemma 2.2.i shows

(B1, S1) is (τ, ξ)-admissible. Let

τ1 := inf{t ∈ [τ, στ,ξ,B
1,S1

] : (Xτ,ξ,B1,S1

t , Y τ,ξ,B1,S1

t ) /∈ Bǫ/2(x0, y0)}

be the exit time of the ball Bǫ/2(x0, y0) and

ξ1 := (Xτ,ξ,B1,S1

τ1 , Y τ,ξ,B1,S1

τ1 ) ∈ Gτ1



13

be the exit position. As in case (i), ξ1 /∈ Bǫ/2(x0, y0) and (τ1, ξ1) is a valid random initial condition.

Also notice that on A, τ1 = τ and ξ1 = s(ξ) if τ < τd. Let (B
2, S2) be a (τ1, ξ1)-admissible control

in (SP2) for v. Set

(Bt, St) := (B1
t , S

1
t )1{t<τ1} + (B2

t −B2
τ1− +B1

τ1 , S
2
t − S2

τ1− + S1
τ1)1{t≥τ1}.

(B,S) ∈ A (τ, ξ) by Lemma 2.2.ii. It remains to check (SP2) for vη with control (B,S).

Let ρ be any G-stopping time taking values in [τ, στ,ξ,B,S ]. In the event A (recall that τ1 = τ),

when τ < τd, (3.9) implies ϕη(ξ1) = ϕη(s(ξ)) < ϕη(ξ); when τ = τd, ϕ
η(ξ1) = ϕη(ξ) = ϕη(∆) = 0.

So

1Av
η(ξ1) ≤ 1Aϕ

η(ξ1) < 1Aϕ
η(ξ) = 1Av

η(ξ). (3.10)

In the event Ac, we use that (B0, S0) is “optimal” for v to obtain

E[1Ac∩{ρ<τ1}v
η(Xτ,ξ,B1,S1

ρ , Y τ,ξ,B1,S1

ρ ) + 1Ac∩{ρ≥τ1}v
η(ξ1)|Gτ ]

= E[1Acvη(Xτ,ξ,B1,S1

ρ∧τ1 , Y τ,ξ,B1,S1

ρ∧τ1 )|Gτ ] ≤ E[1Acv(Xτ,ξ,B1,S1

ρ∧τ1 , Y τ,ξ,B1,S1

ρ∧τ1 )|Gτ ]

= E[1Acv(Xτ,ξ,B0,S0

ρ∧τ1 , Y τ,ξ,B0,S0

ρ∧τ1 )|Gτ ] ≤ 1Acv(ξ) = 1Acvη(ξ).

(3.11)

Combining (3.10) and (3.11), and using that (B,S) equals (B1, S1) on [τ, τ1), we get

E[1{ρ<τ1}v
η(Xτ,ξ,B,S

ρ , Y τ,ξ,B,S
ρ ) + 1{ρ≥τ1}v

η(ξ1)|Gτ ] ≤ vη(ξ). (3.12)

By “optimality” of (B2, S2) for v with random initial condition (τ1, ξ1), we have

E[1{ρ≥τ1}v
η(Xτ,ξ,B,S

ρ , Y τ,ξ,B,S
ρ )|Gτ1 ] = E[1{ρ≥τ1}v

η(Xτ1,ξ1,B2,S2

ρ , Y τ1,ξ1,B2,S2

ρ )|Gτ1 ]

≤ E[1{ρ≥τ1}v(X
τ1,ξ1,B2,S2

ρ , Y τ1,ξ1,B2,S2

ρ )|Gτ1 ]

≤ 1{ρ≥τ1}v(ξ1) = 1{ρ≥τ1}v
η(ξ1).

Taking Gτ -condition expectation yields

E[1{ρ≥τ1}v
η(Xτ,ξ,B,S

ρ , Y τ,ξ,B,S
ρ )− 1{ρ≥τ1}v

η(ξ1)|Gτ ] ≤ 0. (3.13)

Finally, we add (3.12) and (3.13) to get

E[vη(Xτ,ξ,B,S
ρ , Y τ,ξ,B,S

ρ )|Gτ ] ≤ vη(ξ).

This completes the proof of case (ii).

Case (iii). ϕx(x0, y0)− (1− λ)ϕy(x0, y0) > 0. This case is symmetric to case (ii). Buying stock

is optimal in a neighborhood of (x0, y0). We define the set A and the “optimal” (τ, ξ)-admissible

control in the same way as in case (ii) except one modification: in the definition of (B1, S1),

(0, ξ1 − s
1(ξ)) is replaced by (ξ0 − b

0(ξ), 0), where for (x, y) ∈ Bǫ/2(x, y), b(x, y) is defined to be

the intersection of the ray {x− h, y + (1− λ)h : h ≥ 0} and ∂Bǫ/2(x0, y0), i.e. the unique point on

∂Bǫ/2(x0, y0) that can be reached by a buy. The rest of the argument is almost the same. �
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4. Stochastic subsolution

Definition 4.1. A bounded l.s.c. function v on S is called a stochastic subsolution of (2.4), (2.5)

if

(SB1) v ≤ 1 on ∂Sb, v ≤ 0 on ∂Sc/r;

(SB2) for any random initial condition (τ, ξ), control pair (B,S) ∈ A (τ, ξ) and G-stopping time

ρ ∈ [τ, στ,ξ,B,S],

E[v(Xτ,ξ,B,S
ρ , Y τ,ξ,B,S

ρ )|Gτ ] ≥ v(ξ),

where v is understood to be its extension to S ∪ {∆}.

Denote the set of stochastic subsolutions by V−.

Remark 4.1. V− 6= ∅ since the constant 0 ∈ V−. Similar to the stochastic supersolution case, there

is also a member of V− which satisfies (SB1) with equalities, namely, the lower bound function ψ

defined in (2.9). (See Lemma 4.2.)

Remark 4.2. Any stochastic subsolution v is dominated by the value function ψ on S. Indeed,

on ∂S, we clearly have v ≤ ψ by (SP1). For (x, y) ∈ S, take τ = 0, ξ = (x, y), (B,S) be any

(x, y)-admissible control, and ρ = σx,y,B,S. We have by (SB2) and (SB1) that

v(x, y) ≤ E[v(Xx,y,B,S
ρ , Y x,y,B,S

ρ )] ≤ E

[
1
{ρ=τx,y,B,S

b }

]

= P(τx,y,B,S
b < τd ∧ τ

x,y,B,S
s ) ≤ P(τx,y,B,S

b < τd).

Since this holds for any (B,S) ∈ A (x, y), taking infimum yields

v(x, y) ≤ inf
(B,S)∈A (x,y)

P(τx,y,B,S
b < τd) = ψ(x, y).

Lemma 4.1. Let v1, v2 ∈ V−. Then v1 ∨ v2 ∈ V−.

Proof. The maximum of bounded l.s.c. functions is still bounded and l.s.c.. (SB1) is clearly stable

under maximum. For (SB2), simply notice that

E[(v1 ∨ v2)(X
τ,ξ,B,S
ρ , Y τ,ξ,B,S

ρ )|Gτ ] ≥ E[vi(X
τ,ξ,B,S
ρ , Y τ,ξ,B,S

ρ )|Gτ ] ≥ vi(ξ), i = 1, 2.

So

E[(v1 ∨ v2)(X
τ,ξ,B,S
ρ , Y τ,ξ,B,S

ρ )|Gτ ] ≥ (v1 ∨ v2)(ξ).

�

Remark 4.3. The above proof can be easily generalized to the countable case. In particular, the

supremum of a countable family of stochastic subsolutions is bounded from above because every sto-

chastic subsolution is dominated by the value function. In fact, it also generalizes to the uncountable

case by [1, Proposition 4.1] which says the supremum of an uncountable family of l.s.c. functions

equals the supremum over some countable subfamily.

Lemma 4.2. ψ ∈ V−.
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Proof. Recall that ψ can be written as the supremum of all ψk’s with k ∈ (1 − µ, 1
1−λ) ∩ Q where

ψk is defined in (2.7). To show ψ ∈ V−, it suffices to show ψk ∈ V− for k ∈ (1− µ, 1
1−λ) by Lemma

4.1 and the remark after it. To see (SB2) holds for ψk, let (τ, ξ) be any random initial condition,

(B,S) be any (τ, ξ)-admissible control and ρ ∈ [τ, στ,ξ,B,S ] be any G-stopping time. For brevity,

we shall omit the superscripts (τ, ξ,B, S) in all controlled processes and relevant stopping times in

the rest of this proof. For functions defined on [b,∞), we extend them to [b,∞)∪{∆} by assigning

zero to the function value at ∆. Define a new process

Zt :=




Xt + kYt, t < τd,

∆, t ≥ τd.

Observe that Zt ∈ [b,∞) ∪ {∆} for all t ∈ [τ, ρ]. We also have

dZt = (rZt + (α− r)kYt − c)dt+ σkYtdWt + [k(1 − λ)− 1]dBt + (1− µ− k)dSt, t < τd.

Since 1− µ < k < 1
1−λ , the dB and dS terms are non-positive. So for t ≥ τ , Zt is bounded above

by the process Z̃t defined by

dZ̃t = (rZ̃t + (α− r)kYt − c)dt+ σkYtdWt, Z̃τ = ξ0 + kξ1 for t < τd,

and Z̃t = ∆ for t ≥ τd. Z̃t is the wealth process if the amount invested in the (frictionless) stock

market is kYt. Let f(x) := ψk(x, 0) ∈ C1[b, c/r] ∩ C2[b, c/r). We have ψk(x, y) = f(x+ ky). Since

f is decreasing in [b,∞), we deduce

E[ψk(Xρ, Yρ)|Gτ ] = E[1{ρ<τd}f(Zρ)|Gτ ] ≥ E[1{ρ<τd}f(Z̃ρ)|Gτ ] = E[f(Z̃ρ)|Gτ ]. (4.1)

In the event A := {Z̃τ ∈ [c/r,∞) ∪ {∆}} ∈ Gτ , we have f(Z̃ρ) ≥ 0 = f(Z̃τ ). In the event

Ac := {Z̃τ ∈ [b, c/r)}, we let ν := inf{t ≥ 0 : Z̃ρ ∈ [c/r,∞)}, and use f is non-negative in [b,∞)

and zero in [c/r,∞) to get f(Z̃ρ) ≥ f(Z̃ρ∧ν). We therefore have

E[f(Z̃ρ)|Gτ ] ≥ E[1Af(Z̃τ ) + 1Acf(Z̃ρ∧ν)|Gτ ]. (4.2)

In the event Ac, we use Itô’s formula to obtain

f(Z̃ρ∧ν) = f(Z̃τ ) +

∫ ρ∧ν

τ

{
f ′(Z̃t)[rZ̃t + (α− r)kYt − c] +

1

2
f ′′(Z̃t)σ

2(kYt)
2 − βf(Z̃t)

}
dt

+

∫ ρ∧ν

τ
f ′(Z̃t)σkYtdWt +

∫ ρ∧ν

τ
[f(∆)− f(Z̃t−)]d(Nt − βt).

Notice that f is the frictionless value function which satisfies the HJB equation

βf(x) = inf
π

{
1

2
f ′′(x)π2 + (α− r)f ′(x)π + (rx− c)f ′(x)

}

in [b, c/r). It follows that the drift term is non-negative. For t ∈ [τ, ρ∧ ν], the process Z̃t ∈ [b, c/r].

So Zt ∈ [b, c/r] and the process (Xt, Yt) stays inside the bounded set {(x, y) ∈ S : x+ ky ≤ c/r}.

Here it is crucial that k ∈ (1 − µ, 1
1−λ ) for Yt to be bounded. The integrals with respect to the

martingales Wt and Nt − βt then vanish upon taking Gτ -conditional expectation. This leads to

E[1Acf(Z̃ρ∧ν)|Gτ ] ≥ E[1Acf(Z̃τ )|Gτ ]. (4.3)



16 ERHAN BAYRAKTAR AND YUCHONG ZHANG

Putting (4.1), (4.2) and (4.3) together, we get

E[ψk(Xρ, Yρ)|Gτ ] ≥ f(Z̃τ ) = 1{τ<τd}f(ξ
0 + kξ1) = 1{τ<τd}ψk(ξ) = ψk(ξ)

which is the desired submartingale property. �

Proposition 4.1. The lower stochastic envelope

v−(x, y) := sup
v∈V−

v(x, y)

is a viscosity supersolution of (2.4) satisfying v− ≥ 1 on ∂Sb and v− ≥ 0 on ∂Sc/r.

Proof. The boundary inequalities are satisfied because v− ≥ ψ by Lemma 4.2.4 To show interior

viscosity supersolution property, let (x0, y0) ∈ S and ϕ ∈ C2(S) be a test function such that v−−ϕ

attains a strict minimum of zero at (x0, y0). We need to show

max {Lϕ,−(1− µ)ϕx + ϕy, ϕx − (1− λ)ϕy} (x0, y0) ≥ 0.

Assume on the contrary that

max {Lϕ,−(1− µ)ϕx + ϕy, ϕx − (1− λ)ϕy} (x0, y0) < 0.

Similar to the proof of Proposition 3.1, we can find 0 < ǫ < 1, η > 0 and v ∈ V− such that

ϕη := ϕ+ η satisfies

max
{
Lϕη,−(1− µ)ϕη

x + ϕη
y, ϕ

η
x − (1− λ)ϕη

y

}
< 0 on Bǫ(x0, y0), (4.4)

ϕη ≤ v on Bǫ(x0, y0)\Bǫ/2(x0, y0), (4.5)

and

ϕη(x0, y0) > v−(x0, y0).

The technique for constructing the lifting function ϕη is classical and similar to the stochastic

supersolution case. So we skip the details. Define

vη :=




v ∨ ϕη on Bǫ(x0, y0),

v on Bǫ(x0, y0)
c
.

It suffices to show vη ∈ V−. And the only nontrivial part is to check vη satisfies (SB2).

Let (τ, ξ) be any random initial condition, (B,S) be any (τ, ξ)-admissible control and ρ ∈

[τ, στ,ξ,B,S ] be any G-stopping time. Let

A := {ξ ∈ Bǫ/2(x0, y0)} ∩ {ϕη(ξ) > v(ξ)} ∈ Gτ .

Let

τ1 := inf{t ∈ [τ, στ,ξ,B,S ] : (Xτ,ξ,B,S
t , Y τ,ξ,B,S

t ) /∈ Bǫ/2(x0, y0)}

and

ξ1 := (Xτ,ξ,B,S
τ1 , Y τ,ξ,B,S

τ1 ) ∈ Gτ1 .

4In fact, equalities hold for v− on the boundary; the reverse inequalities holds because (SB1) is preserved under
pointwise maximum.
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In the event A, because of a possible jump transaction at time τ1, ξ1 may not be on ∂Bǫ/2(x0, y0)∪

{∆}. This will bring some problem since (4.4) is only valid locally. To overcome this issue, we define

an intermediate position ξ′1 as follows: let ξ1− := (Xτ,ξ,B,S
τ1− , Y τ,ξ,B,S

τ1− ). We have ξ1− ∈ Bǫ/2(x0, y0)

on A. Define

ξ′1 := 1A∩{τ1<τd}

(
1{△Bτ1>0}b(ξ1−) + 1{△Sτ1>0}s(ξ1−)

)
+ 1Ac∪{τ1=τd}ξ1 ∈ Gτ1 ,

where b, s are the functions introduced in cases (ii) and (iii) of the proof of Proposition 3.1. On

A ∩ {τ1 < τd}, ξ
′
1 is the intersection of ∂Bǫ/2(x0, y0) and the line segment connecting ξ1− and ξ1.

Also define (B1, S1) by

(△B1
τ1 ,△S

1
τ1) :=1A∩{τ1<τd}

(
1{△Bτ1>0}(ξ

0
1− − b

0(ξ1−), 0) + 1{△Sτ1>0}(0, ξ
1
1− − s

1(ξ1−))
)

+ 1Ac∪{τ1=τd}(△Bτ1 ,△Sτ1)

and

(B1
t , S

1
t ) := 1{t<τ1}(Bt, St) + 1{t≥τ1}

[
(Bτ1−, Sτ1−) + (△B1

τ1 ,△S
1
τ1)
]
.

That is, (B1, S1) agrees with (B,S) before time τ1, but at time τ1, the corresponding controlled

process only jumps to ξ′1 instead of ξ1. We have (B1, S1) ∈ A0 and (Xτ,ξ,B1,S1

t , Y τ,ξ,B1,S1

t ) ∈

Bǫ/2(x0, y0)∪{∆} for all t ∈ [τ, τ1] on A. Apply generalized Itô’s formula to the RCLL semimartin-

gale ϕη(Xτ,ξ,B1,S1

, Y τ,ξ,B1,S1

) on A, we get

ϕη(Xτ,ξ,B1,S1

ρ∧τ1 , Y τ,ξ,B1,S1

ρ∧τ1 ) = ϕη(Xτ,ξ,B1,S1

τ , Y τ,ξ,B1,S1

τ ) +

∫ ρ∧τ1

τ
−Lϕη(Xτ,ξ,B1,S1

t , Y τ,ξ,B1,S1

t )dt

+

∫ ρ∧τ1

τ
(ϕη)′(Xτ,ξ,B1,S1

t , Y τ,ξ,B1,S1

t )σY τ,ξ,B1,S1

t dWt

+

∫ ρ∧τ1

τ
[−ϕη

x + (1− λ)ϕη
y ](X

τ,ξ,B1,S1

t , Y τ,ξ,B1,S1

t )dBc
t

+

∫ ρ∧τ1

τ
[(1− µ)ϕη

x − ϕη
y ](X

τ,ξ,B1,S1

t , Y τ,ξ,B1,S1

t )dSc
t

+

∫ ρ∧τ1

τ
[ϕη(∆)− ϕη(Xτ,ξ,B1,S1

t− , Y τ,ξ,B1,S1

t− )]d(Nt − βt)

+
∑

τ≤t≤ρ∧τ1
t<τd

ϕη(Xτ,ξ,B1,S1

t , Y τ,ξ,B1,S1

t )− ϕη(Xτ,ξ,B1,S1

t− , Y τ,ξ,B1,S1

t− )

where Bc, Sc denote the continuous part of B,S. By (4.4), the dt, dBc and dSc integrals are non-

negative. The dW integral and the integral with respect to the compensated Poisson process vanish

if we take Gτ -conditional expectation. We now analyze the last term which represents contribution

from jump transactions. Similar to case (ii) of the proof of Proposition 3.1 (see (3.9)), we can use

(4.4) and Mean Value Theorem to deduce

ϕη(x− h, y + (1− λ)h) ≥ ϕη(x, y),

and

ϕη(x+ (1− µ)h′, y − h′) ≥ ϕη(x, y).
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for all (x, y) ∈ Bǫ(x0, y0) and h, h
′ > 0 such that (x−h, y+(1−λ)h), (x+(1−µ)h′, y−h′) ∈ Bǫ(x0, y0).

It follows that on the set A and for t ∈ [τ, τ1]\{τd}, if △B
1
t > 0, then

ϕη(Xτ,ξ,B1,S1

t , Y τ,ξ,B1,S1

t ) = ϕη(Xτ,ξ,B1,S1

t− −△B1
t , Y

τ,ξ,B1,S1

t− + (1− λ)△B1
t )

≥ ϕη(Xτ,ξ,B1,S1

t− , Y τ,ξ,B1,S1

t− ).

If △S1
t > 0, then

ϕη(Xτ,ξ,B1,S1

t , Y τ,ξ,B1,S1

t ) = ϕη(Xτ,ξ,B1,S1

t− + (1− µ)△S1
t , Y

τ,ξ,B1,S1

t− −△S1
t )

≥ ϕη(Xτ,ξ,B1,S1

t− , Y τ,ξ,B1,S1

t− ).

Since △B1
t and △S1

t are not positive at the same time (see the definition of A0), each summand

in the last term is non-negative. Putting everything together, we obtain by taking Gτ -conditional

expectation of the expression given by Itô’s formula that

E[1Aϕ
η(Xτ,ξ,B1,S1

ρ∧τ1 , Y τ,ξ,B1,S1

ρ∧τ1 )|Gτ ] ≥ 1Aϕ
η(Xτ,ξ,B1,S1

τ , Y τ,ξ,B1,S1

τ ).

Again, we use that ϕη is non-decreasing if we move northwest along the vector (−1, 1 − λ) and

southeast along the vector (1− µ,−1) inside the ball Bǫ(x0, y0) to bound the right hand side from

below by

1A∩{τ<τd}ϕ
η(ξ) + 1A∩{τ=τd}ϕ

η(∆) = 1Aϕ
η(ξ) = 1Av

η(ξ).

For the left hand side, we use vη ≥ ϕη in Bǫ(x0, y0) and that (B1, S1) = (B,S) before τ1 to obtain

1Aϕ
η(Xτ,ξ,B1,S1

ρ∧τ1 , Y τ,ξ,B1,S1

ρ∧τ1 ) ≤ 1Av
η(Xτ,ξ,B1,S1

ρ∧τ1 , Y τ,ξ,B1,S1

ρ∧τ1 )

= 1A∩{ρ<τ1}v
η(Xτ,ξ,B,S

ρ , Y τ,ξ,B,S
ρ ) + 1A∩{ρ≥τ1}v

η(ξ′1).

Hence

E[1A∩{ρ<τ1}v
η(Xτ,ξ,B,S

ρ , Y τ,ξ,B,S
ρ ) + 1A∩{ρ≥τ1}v

η(ξ′1)|Gτ ] ≥ 1Av
η(ξ). (4.6)

Define

(B2
t , S

2
t ) := 1{t≥τ1}[(Bτ1 , Sτ1)− (B1

τ1 , S
1
τ1)].

Starting with the random initial condition (τ1, ξ
′
1), (B

2, S2) immediately brings the state process

from ξ′1 back to ξ1 and stays inactive afterwards. It is easy to see that (Xτ1,ξ′1,B
2,S2

, Y τ1,ξ′1,B
2,S2

)

either exit S at time τ1 with exit position ξ1, or at a later time when the control is inactive so that

the exit is caused by diffusion or death. In both cases, the exit position belongs to ∂S ∪ {∆}. So

(B2, S2) ∈ A (τ1, ξ
′
1). Using the submartingale property of v(Xτ1,ξ′1,B

2,S2

, Y τ1,ξ′1,B
2,S2

), we have

vη(ξ1) = v(ξ1) = E[v(X
τ1,ξ′1,B

2,S2

τ1 , Y
τ1,ξ′1,B

2,S2

τ1 )|Gτ1 ] ≥ v(ξ′1) = vη(ξ′1),

where the first and the last equalities hold because ξ1, ξ
′
1 /∈ Bǫ/2(x0, y0). (4.6) then implies

E[1A∩{ρ<τ1}v
η(Xτ,ξ,B,S

ρ , Y τ,ξ,B,S
ρ ) + 1A∩{ρ≥τ1}v

η(ξ1)|Gτ ] ≥ 1Av
η(ξ). (4.7)

On the set Ac, we use the submartingale property (SB2) of v(Xτ,ξ,B,S , Y τ,ξ,B,S) to get

E[1Acvη(Xτ,ξ,B,S
ρ∧τ1 , Y τ,ξ,B,S

ρ∧τ1 )|Gτ ] ≥ E[1Acv(Xτ,ξ,B,S
ρ∧τ1 , Y τ,ξ,B,S

ρ∧τ1 )|Gτ ] ≥ 1Acv(ξ) = 1Acvη(ξ),
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or

E[1Ac∩{ρ<τ1}v
η(Xτ,ξ,B,S

ρ , Y τ,ξ,B,S
ρ ) + 1Ac∩{ρ≥τ1}v

η(ξ1)|Gτ ] ≥ 1Acvη(ξ). (4.8)

Adding (4.7) and (4.8) yields

E[1{ρ<τ1}v
η(Xτ,ξ,B,S

ρ , Y τ,ξ,B,S
ρ ) + 1{ρ≥τ1}v

η(ξ1)|Gτ ] ≥ vη(ξ). (4.9)

Let

(B3
t , S

3
t ) := (Bt, St)− 1{t≥τ1}(△Bτ1 ,△Sτ1)

be the same control as (B,S), but with any jump transaction at time τ1 removed. We have

(Xτ,ξ,B,S
t , Y τ,ξ,B,S

t ) = (Xτ1,ξ1,B3,S3

t , Y τ1,ξ1,B3,S3

t ) ∀ t ≥ τ1. (4.10)

The reason for introducing another control is because our random initial condition allows a jump

at initial time. Since ξ1 already includes the possible jump transactions specified by (B,S) at time

τ1, we want to avoid doing the same transaction again when using (τ1, ξ1) as the new random initial

condition. That is, (B3, S3) is defined to make (4.10) hold. To see (B3, S3) ∈ A (τ1, ξ1), first notice

that στ,ξ,B,S ≥ τ1 by the definition of τ1. (4.10) then implies στ1,ξ1,B
3,S3

= στ,ξ,B,S. Thus,

(Xτ1,ξ1,B3,S3

στ1,ξ1,B
3,S3 , Y

τ1,ξ1,B3,S3

στ1,ξ1,B
3,S3 ) = (Xτ,ξ,B,S

στ,ξ,B,S , Y
τ,ξ,B,S
στ,ξ,B,S ) ∈ ∂S ∪ {∆}

by the (τ, ξ)-admissibility of (B,S). The submartingale property (SB2) of v(Xτ1,ξ1,B3,S3

, Y τ1,ξ1,B3,S3

)

(applied to the stopping time ρ ∨ τ1) implies

E[1{ρ≥τ1}v
η(Xτ,ξ,B,S

ρ , Y τ,ξ,B,S
ρ )|Gτ1 ] = E[1{ρ≥τ1}v

η(Xτ1,ξ1,B3,S3

ρ , Y τ1,ξ1,B3,S3

ρ )|Gτ1 ]

≥ E[1{ρ≥τ1}v(X
τ1,ξ1,B3,S3

ρ , Y τ1,ξ1,B3,S3

ρ )|Gτ1 ]

≥ 1{ρ≥τ1}v(ξ1) = 1{ρ≥τ1}v
η(ξ1)

Taking Gτ -conditional expectation, we get

E[1{ρ≥τ1}v
η(Xτ,ξ,B,S

ρ , Y τ,ξ,B,S
ρ )|Gτ ] ≥ E[1{ρ≥τ1}v

η(ξ1)|Gτ ]. (4.11)

Adding (4.9) and (4.11), we get

E[vη(Xτ,ξ,B,S
ρ , Y τ,ξ,B,S

ρ )|Gτ ] ≥ vη(ξ).

This completes the verification of (SB2) for vη , and hence of the viscosity supersolution property

of v−. �

5. Comparison Principle

A comparison principle can be established following the idea of [10]. The key is to show the exis-

tence of a strict subsolution which is then added to the penalty term when applying the technique

of doubling of variables. We give a proof here for the sake of completeness.

Lemma 5.1. There exists a strict subsolution ℓ of (2.4) satisfying

(1) ℓ ∈ C2(S) and ℓ < 0;
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(2) ℓ(x, y) → −∞ as ‖(x, y)‖ → ∞ in S.5

Proof. Let h(z) := − (z−b+1)p

p with 0 < p < 1. We have h < 0, h′ < 0 and h′′ > 0 in (b − 1,∞).

Let 1 − µ < k < 1
1−λ and define ℓ(x, y) := h(x + ky). ℓ is well-defined since x + ky ≥ b for all

(x, y) ∈ S. Condition (1) is trivially satisfied. To see condition (2) holds, observe that for each

a > b, {(x, y) ∈ S : x+ ky ≤ a} is a bounded subset of R2. Therefore if ‖(x, y)‖ → ∞ in S, then

we must have x + ky → ∞. It follows that ℓ(x, y) = h(x + ky) → −∞. It remains to show ℓ is a

strict subsolution of (2.4) under a suitable choice of p.

Let (x, y) ∈ S. By our choice of k and that h′ < 0, we readily obtain

−(1− µ)ℓx + ℓy = [−(1− µ) + k]h′(x+ ky) < 0

and

ℓx − (1− λ)ℓy = [1− k(1− λ)]h′(x+ ky) < 0.

Let us now compute Lℓ(x, y).

Lℓ(x, y) = βℓ(x, y)− (rx− c)ℓx(x, y)− αyℓy(x, y)−
1

2
σ2y2ℓyy(x, y)

= βh(x+ ky)− (rx− c+ αky)h′(x+ ky)−
1

2
σ2y2k2h′′(x+ ky).

By definition of the solvency region S, we have

x+ (1− µ)y <
c

r
if y > 0, and x+

y

1− λ
<
c

r
if y < 0,

which implies

rx− c+ αky ≤
r|y|

1− λ
+ αk|y| =

(
r

1− λ
+ αk

)
|y| := θ|y|.

Using h′(x+ ky) < 0 and h′′(x+ ky) > 0, we deduce

Lℓ(x, y) ≤ βh(x+ ky)− θ|y|h′(x+ ky)−
1

2
σ2y2k2h′′(x+ ky)

= −
1

2

[
σ2y2k2h′′(x+ ky) + 2θ|y|h′(x+ ky) +

θ2(h′(x+ ky))2

σ2k2h′′(x+ ky)

]

+ βh(x+ ky) +
1

2

θ2(h′(x+ ky))2

σ2k2h′′(x+ ky)

≤

(
β +

1

2

θ2

σ2k2
(h′)2

hh′′
(x+ ky)

)
h(x+ ky)

=

(
β −

1

2

θ2

σ2k2
p

1− p

)
h(x+ ky).

Choose p small such that β > 1
2

θ2

σ2k2
p

1−p . We then have by negativity of h that Lℓ(x, y) < 0. �

Proposition 5.1. Let u, v be u.s.c. viscosity subsolution and l.s.c. viscosity supersolution of (2.4),

respectively. Suppose u, v are bounded and u ≤ v on ∂S, then u ≤ v in S.

5The function ℓ is referred to as a Lyapunov function in [10].
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Proof. Assume to the contrary that δ := u(x0, y0) − v(x0, y0) > 0 for some (x0, y0) ∈ S. Let ℓ be

the strict classical subsolution given by Lemma 5.1. Let ǫ be a small positive constant satisfying

δ + 2ǫℓ(x0, y0) > 0. For each θ > 0, define

Φθ(x, y, x
′, y′) :=u(x, y)− v(x′, y′)−

θ

2
(|x− x′|2 + |y − y′|2) + ǫℓ(x, y) + ǫℓ(x′, y′).

Since u(x, y)−v(x′, y′) is u.s.c. and bounded, and ℓ(x, y) → −∞ as ‖(x, y)‖ → ∞ in S, there exists

(xθ, yθ), (x
′
θ, y

′
θ) lying in a compact subset of S such that

sup
(x,y),(x′,y′)∈S

Φθ(x, y, x
′, y′) = Φθ(xθ, yθ, x

′
θ, y

′
θ).

Compactness allows us to extract a sequence θn → ∞ such that (xn, yn, x
′
n, y

′
n) := (xθn , yθn , x

′
θn
, y′θn)

→ (x̂, ŷ, x̂′, ŷ′) as n→ ∞. Clearly, we have

Φθn(xn, yn, x
′
n, y

′
n) ≥ sup

(x,y)∈S

Φ0(x, y, x, y) ≥ δ + 2ǫℓ(x0, y0) > 0. (5.1)

It follows that

θn
2
(|xn − x′n|

2 + |yn − y′n|
2) ≤u(xn, yn)− v(x′n, y

′
n) + ǫℓ(xn, yn) + ǫℓ(x′n, y

′
n)− sup

(x,y)∈S

Φ0(x, y, x, y).

Since the right hand side is bounded from above and θn → ∞, we must have |xn−x
′
n|

2+|yn−y
′
n|

2 →

0, hence (x̂, ŷ) = (x̂′, ŷ′). This further implies by u.s.c. of u− v that

0 ≤ lim sup
n

θn
2
(|xn − x′n|

2 + |yn − y′n|
2) ≤ Φ0(x̂, ŷ, x̂, ŷ)− sup

(x,y)∈S

Φ0(x, y, x, y) ≤ 0.

So we conclude

lim
n
θn(|xn − x′n|

2 + |yn − y′n|
2) = 0, (5.2)

and

lim
n

Φθn(xn, yn, x
′
n, y

′
n) = Φ0(x̂, ŷ, x̂, ŷ) = sup

(x,y)∈S

Φ0(x, y, x, y) > 0. (5.3)

Now, since u ≤ v on ∂S and ℓ ≤ 0, we have Φ0(x, y, x, y) ≤ 0 for (x, y) ∈ ∂S. In view of (5.3),

we have (x̂, ŷ) ∈ S. So (xn, yn), (x
′
n, y

′
n) ∈ S for n sufficiently large. By Crandall-Ishii’s lemma, we

can find matrices An, Bn ∈ S2 such that
(
θn(xn − x′n), θn(yn − y′n), An

)
∈ J̄2,+

S

(
u(xn, yn) + ǫℓ(xn, yn)

)
, (5.4)

(
θn(xn − x′n), θn(yn − y′n), Bn

)
∈ J̄2,−

S

(
v(x′n, y

′
n)− ǫℓ(x′n, y

′
n)
)
, (5.5)

and (
An 0

0 −Bn

)
≤ 3θn

(
I −I

−I I

)
.

where J̄2,+
S and J̄2,−

S denote the closure of the second order superjet and subjet, respectively. By

Lemma 4.2.7 of [11], we have

(yn)
2An,22 − (y′n)

2Bn,22 ≤ 3θn|yn − y′n|
2. (5.6)
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Since ℓ is a C2(S) functions, we can rewrite (5.4) and (5.5) as

(pn,Xn) ∈ J̄2,+
S u(xn, yn), (qn, Yn) ∈ J̄

2,−
S v(x′n, y

′
n)

where

pn := θn(xn − x′n, yn − y′n)− ǫDℓ(xn, yn), Xn := An − ǫD2ℓ(xn, yn),

qn := θn(xn − x′n, yn − y′n) + ǫDℓ(x′n, y
′
n), Yn := Bn + ǫD2ℓ(x′n, y

′
n).

By the semijets definition of viscosity solution, we have

max

{
βu(xn, yn)− (rxn− c)pn,1−αynpn,2−

1

2
σ2y2nXn,22,−(1−µ)pn,1+pn,2, pn,1− (1−λ)pn,2

}
≤ 0

and

max

{
βv(x′n, y

′
n)−(rx′n−c)qn,1−αy

′
nqn,2−

1

2
σ2(y′n)

2Yn,22,−(1−µ)qn,1+qn,2, qn,1−(1−λ)qn,2

}
≥ 0.

We consider three cases.

Case 1. −(1− µ)qn,1 + qn,2 ≥ 0 for infinitely many n’s. In this case,

0 ≥ −(1− µ)pn,1 + pn,2 − [−(1− µ)qn,1 + qn,2]

= −ǫ[−(1− µ)ℓx(xn, yn) + ℓy(xn, yn)]− ǫ[−(1− µ)ℓx(x
′
n, y

′
n) + ℓy(x

′
n, y

′
n)].

Letting n→ ∞ yields

0 ≥ −2ǫ[−(1− µ)ℓx(x̂, ŷ) + ℓy(x̂, ŷ)],

or

−(1− µ)ℓx(x̂, ŷ) + ℓy(x̂, ŷ) ≥ 0.

This is a contradiction to the strict subsolution property of ℓ in the sell region.

Case 2. qn,1 − (1 − λ)qn,2 ≥ 0 for infinitely many n’s. Similar to case 1, this leads to ℓx(x̂, ŷ)−

(1− λ)ℓy(x̂, ŷ) ≥ 0, contradicting the strict subsolution property of ℓ in the buy region.
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Case 3. For n sufficiently large, βv(x′n, y
′
n)− (rx′n− c)qn,1 −αy′nqn,2−

1
2σ

2(y′n)
2Yn,22 ≥ 0. In this

case,

0 ≤ βv(x′n, y
′
n)− (rx′n − c)qn,1 − αy′nqn,2 −

1

2
σ2(y′n)

2Yn,22

−

[
βu(xn, yn)− (rxn − c)pn,1 − αynpn,2 −

1

2
σ2y2nXn,22

]

= −β
[
u(xn, yn)− v(x′n, y

′
n)
]
+ ǫ(Lℓ− βℓ)(xn, yn) + ǫ(Lℓ− βℓ)(x′n, y

′
n)

+ rθn(xn − x′n)
2 + αθn(yn − y′n)

2 +
1

2
σ2
[
y2nAn,22 − (y′n)

2Bn,22

]

≤ −β
[
u(xn, yn)− v(x′n, y

′
n) + ǫℓ(xn, yn) + ǫℓ(x′n, y

′
n)
]

+

(
r + α+

3

2
σ2
)
θn(|xn − x′n|

2 + |yn − y′n|
2)

= −βΦθn(xn, yn, x
′
n, y

′
n) +

(
r + α+

3

2
σ2 −

β

2

)
θn(|xn − x′n|

2 + |yn − y′n|
2)

≤ −β(δ − 2ǫℓ(x0, y0)) +

(
r + α+

3

2
σ2 −

β

2

)
θn(|xn − x′n|

2 + |yn − y′n|
2).

In the third step, we used the subsolution property of ℓ and (5.6). In the fourth step, we used the

definition of Φθ. In the last step, we used (5.1). Letting n → ∞ and using (5.2), we arrive at the

contradiction 0 ≤ −β(δ − 2ǫℓ(x0, y0)) < 0. The proof is complete. �

Proof of Theorem 2.1. By Remarks 3.2 and 4.2, we have v− ≤ ψ ≤ v+. By Propositions 3.1 and

4.1, we know v+ is a viscosity subsolution and v− is a viscosity supersolution of (2.4). Moreover,

v+ ≤ v− on ∂S. It is also clear that v+ is u.s.c. and v− is l.s.c.. Comparison principle (Proposition

5.1) then implies v+ ≤ v−. Therefore, v+ = v− = ψ is a continuous viscosity solution to the

Dirichlet problem (2.4), (2.5). Uniqueness also follows from the comparison principle. �
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