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Abstract

We study the metric s-t path Traveling Salesman Problem (TSP).
[An, Kleinberg, and Shmoys, STOC 2012] improved on the long stand-
ing 5

3 -approximation factor and presented an algorithm that achieves

an approximation factor of 1+
√
5

2 ≈ 1.61803. Later [Sebő, IPCO 2013]
further improved the approximation factor to 8

5 . We present a simple,
self-contained analysis that unifies both results; our main contribution
is a unified correction vector. Additionally, we compare two different
linear programming (LP) relaxations of the s-t path TSP, namely, the
path version of the Held-Karp LP relaxation for TSP and a weaker LP
relaxation, and we show that both LPs have the same (fractional) op-
timal value. Also, we show that the minimum cost of integral solutions
of the two LPs are within a factor of 3

2 of each other. Furthermore, we
prove that a half-integral solution of the stronger LP-relaxation of cost
c can be rounded to an integral solution of cost at most 3

2c. Finally,
we give an instance that presents obstructions to two natural methods
that aim for an approximation factor of 3

2 .

1 Introduction

The metric Traveling Salesman Problem (TSP) is a celebrated problem in
Combinatorial Optimization, see [Sch03, Chapter 58], [BB08]. One impor-
tant variant of TSP is the (metric) s-t path TSP. Let G be a complete
graph G with nonnegative metric edge costs c, i.e., c satisfies the triangle
inequality. Given two fixed vertices s, t in G, the s-t path TSP is to find a
minimum-cost Hamiltonian path from s to t in G.

Hoogeveen [Hoo91] gave an s-t path TSP variant of Christofides’ ap-
proximation algorithm for the TSP [Chr76], and obtained an approximation
factor of 5

3 . There was no improvement in this approximation factor for
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over two decades until An, Kleinberg, and Shmoys [AKS12] improved the

approximation factor to 1+
√
5

2 ≈ 1.61803. One of the key new contributions
of [AKS12] is to design and analyse a randomized version of Christofides’
algorithm. The analysis introduced the notion of a correction vector for the
s-t path TSP. Most recently, Sebő [Seb13] further improved the analysis and
obtained a better approximation factor of 8

5 . [Seb13] introduced a correc-
tion vector different from that of [AKS12], and this is one reason why the
analysis in [Seb13] gives a better approximation factor. Informally speak-
ing, a better correction vector provides a better approximation factor. In
this paper, we give a unified presentation of the results from both [AKS12]
and [Seb13] by introducing a new correction vector that we call the uni-
fied correction vector. Our correction vector is simple and it leads to short
derivations of the approximation factors of both [AKS12] and [Seb13]. The
difference between our correction vector and the previous ones is that it as-
signs the value one to the minimum-cost edge in each so-called τ -narrow cut,
whereas the correction vectors used in [AKS12] and [Seb13] are fractional
on each τ -narrow cut. We mention that Vygen’s [Vyg12] comprehensive
recent survey discusses the common points of the analysis of [AKS12] and
[Seb13], and the survey sketches short proofs of both approximation factors;
however, [Vyg12] uses the same correction vectors as [AKS12] and [Seb13].

An et al. [AKS12] and Sebő [Seb13] use two different LP relaxations
of the s-t path TSP in their algorithms. [AKS12] uses the path version of
the Held-Karp LP relaxation for TSP, whereas [Seb13] uses a weaker LP
relaxation. This motivates a comparison of these two LP relaxations. We
mention that Sebő proves an approximation factor of 8

5 for a more general
problem, namely, the connected T-join problem, and the LP in his paper is
a relaxation of this problem. We show that both LPs for the s-t path TSP
have the same (fractional) optimal value. Also, we show that the minimum
cost of integral solutions of the two LPs are within a factor of 3

2 of each
other; moreover, we present an example to show that the factor of 3

2 is
tight. We prove this result by showing that a half-integral solution of the
stronger LP-relaxation of cost c can be rounded to an integral solution of
cost at most 3

2c.
For the s-t path TSP, it is known that the integrality ratio of the path

version of the Held-Karp LP relaxation has a lower bound of 3
2 . All of the al-

gorithms mentioned above are LP-based. This leads to the best known upper
bound 8

5 on the integrality ratio of the LP relaxation. A natural open ques-
tion is to close this gap by designing an LP-based 3

2 -approximation algorithm
for the s-t path TSP. Given a connected graph H with unit edge costs and
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two fixed vertices s and t, the s-t path graph-TSP is to find a minimum-cost
Hamiltonian path from s to t in the metric completion of H. For this critical
special case of the s-t path TSP, the integrality ratio of the corresponding
LP relaxation has been resolved already. The first 3

2 -approximation algo-
rithm was given by Sebő and Vygen [SV14] using ear decompositions. Gao
[Gao13] designed another, conceptually simpler, LP-based 3

2 -approximation
algorithm. The analysis of the 3

2 -approximation factor of [Gao13] uses the
graphic property only for one point: to guarantee that the cost of a special
spanning tree constructed in the algorithm is at most the optimum of the
LP relaxation. A natural question is whether we can extend this graphic
LP-based approximation algorithm and analysis to the general metric case.
Unfortunately, we present an instance that shows that that is not possi-
ble. Moreover, our instance also illustrates that probabilistic methods are
relevant for the analysis of improved LP-based approximation algorithms.
This instance may shed some light on how to design a better approximation
algorithm for the s-t path TSP.

The paper is organized as follows. Section 2 has some notation and basic
results. Section 3 presents our unified correction vector. Section 4 shows the
relationship of two different LP relaxations of the s-t path TSP. Section 5
discusses an instance that points to some of the obstructions for obtaining
better approximation factors.

2 Preliminaries

Let G = (V,E) be a complete graph. Let s, t be two fixed vertices in G.
We call a nonempty, proper subset of vertices S a cut ; thus, ∅ ( S ( V . In
particular, if |S ∩ {s, t}| = 1, then we call S an s-t cut. For S ⊆ V , let δ(S)
denote the set of edges that have one end in S, thus, δ(S) = {(u, v) ∈ E :
u ∈ S, v /∈ S}. If S = {v}, then we use δ(v) instead of δ({v}). Let E(S)
denote the set of edges induced by S, thus, E(S) = {(u, v) ∈ E : u, v ∈ S}.
For any two sets A and B, we use A\B to denote {a ∈ A : a /∈ B}. For a
vector x ∈ RA, we define x(D) =

∑
e∈D x(e) for any subset D of A. When

there is no risk of confusion, we will use the same notation H for a subgraph
H and its edge set E(H).

For any probabilistic event A, we use Pr(A) to denote the probability of
occurrence of A. For a random variable R, the expectation of R is denoted
by E(R).
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2.1 Linear programs

The path version of the Held-Karp relaxation for the s-t path TSP is defined
as follows:

(L.P.1) minimize :
∑
e∈E

cexe

subject to : x(δ(s)) = x(δ(t)) = 1

x(δ(v)) = 2 ∀ v 6= s, t

x(δ(S)) ≥ 1 ∀ s-t cut S

x(δ(S)) ≥ 2 ∀ ∅ ( S ( V, |S ∩ {s, t}| even

1 ≥ xe ≥ 0 ∀ e ∈ E
The spanning tree polytope is shown as follows:

(L.P.2) minimize :
∑
e∈E

cexe

subject to : x(E) = |V | − 1

x(E(S)) ≤ |S| − 1 ∀∅ ( S ( V

xe ≥ 0 ∀e ∈ E

Lemma 2.1 Every solution x of (L.P.1) lies in the spanning tree polytope
(L.P.2).

Proof. By the degree constraint for each vertex in (L.P.1), we have
x(E) = |V | − 1. Now consider the second set of constraint in (L.P.2). If
|S ∩ {s, t}| is even, by the degree and cut constraints in (L.P.1), x(E(S)) =∑

v∈S x(δ(v))−x(δ(S))
2 ≤ 2|S|−2

2 = |S|− 1. Otherwise, |S ∩{s, t}| = 1. Similarly,

x(E(S)) =
∑
v∈S x(δ(v))−x(δ(S))

2 ≤ (2|S|−1)−1
2 = |S| − 1. This completes the

proof. �

2.2 T -joins

Let T be a nonempty subset of V with |T | even. For F ⊆ E, if the set of odd
degree vertices of the graph (V, F ) is T , then we call F a T -join. For any
∅ ( S ⊆ V , if |S∩T | is odd (even), then we call S a T -odd cut (T -even cut).
The following LP formulates the problem of finding a T -join of minimum
cost:

(L.P.3) minimize :
∑

e∈E cexe
subject to : x(δ(S)) ≥ 1 ∀ T -odd S

xe ≥ 0 ∀e ∈ E

4



Lemma 2.2 [EJ01] The optimal value of (L.P.3) is the same as the mini-
mum cost of a T -join.

Let K be a spanning tree. The set of wrong degree vertices of K is
defined as {v ∈ {s, t} : |δ(v)∩K| even } ∪ {v ∈ V \{s, t} : |δ(v)∩K| odd }.

Lemma 2.3 [AKS12] Let T be the set of wrong degree vertices of a spanning
tree K. Let S be an s-t cut. If S is T -odd, then |δ(S) ∩K| is even.

The proof can be also found in [CFG12, Lemma 2.1]. But for the sake
of completeness, we present a proof here.

Proof. Since
∑

v∈S |δ(v)∩K| = 2|E(S)∩K|+|δ(S)∩K|, we have |δ(S)∩K|
has the same parity as

∑
v∈S |δ(v) ∩K|. Without loss of the generality, we

assume s ∈ S, t /∈ S. By the definition of T , we know that (S\{s})∩T is the
set of vertices v in S\{s} such that |δ(v) ∩K| is odd. If |δ(s) ∩K| is odd,
then s /∈ T . In this case, since S is T -odd, |(S\{s}) ∩ T | is odd. Hence, we
have an even number of vertices v in S such that |δ(v) ∩K| is odd, which
implies that

∑
v∈S |δ(v) ∩K| is even. Otherwise, |δ(s) ∩K| is even. Then,

s ∈ T . This implies that |(S\{s}) ∩ T | is even. Similarly,
∑

v∈S |δ(v) ∩K|
is even. �

2.3 Polyhedra and convex decomposition

Let
P := {x : Ax ≤ b} where A ∈ Rm×n, b ∈ Rm.

Let x′ be a feasible solution of P. For a constraint ai
ᵀ
x ≤ bi in P, we

say x′ is tight at this constraint if ai
ᵀ
x′ = bi. Let x1, x2 be two distinct

feasible solutions of P. If there exists a 0 < λ < 1 and y ∈ P such that
λx1 + (1− λ)y = x2, we say x1 is in some convex decomposition of x2 in P.

From the geometry of polyhedra, we have the following characterization
of the convex decompositions.

Lemma 2.4 The solution x1 is in some convex decomposition of x2 in P if
and only if x1 is tight at the constraints of P where x2 is tight.

2.4 Christofides’ algorithm for s-t path TSP

Hoogeveen [Hoo91] gave a variant of Christofides’ algorithm to achieve the
first approximation factor of 5

3 for the s-t path TSP.
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Christofides’ algorithm for s-t path TSP
Compute a minimum-cost spanning tree J∗. Let T be the set of wrong
degree vertices of J∗. Find a minimum-cost T -join F ∗. Then, the union
J∗∪̇F ∗ of J∗ and F ∗ (that keeps the duplicated edges) forms a connected
graph that has even degree at all nodes except s and t. One can then take
the Eulerian traversal that starts at s and ends at t, and shortcut it, to
obtain an s-t path visiting all vertices of no greater cost.

Theorem 2.5 [Hoo91] Christofides’ algorithm for s-t path TSP achieves an
approximation factor of 5

3 .

For the sake of completeness, we present a nice proof from Sebő and
Vygen [SV14].

Proof. Let P ∗ be an optimal solution of s-t path TSP. Let T, J∗, F ∗ be
as in the algorithm. Let R be the s-t path in J∗ and FP ∗ be the T -join in
P ∗. Since P ∗ is a spanning tree, we know c(J∗) ≤ c(P ∗). So, we only need
to prove c(F ∗) ≤ 2

3c(P
∗). This follows from the fact that J∗∪̇P ∗ can be

partitioned into three T -joins: one is J∗\R, one is FP ∗ , and one is the union
of R and P ∗\FP ∗ . One can check that each of these edge sets is a T -join
by using the fact that T is the set of wrong degree vertices of J∗. Then,
3c(F ∗) ≤ c(J∗) + c(P ∗) ≤ 2c(P ∗). This completes the proof. �

3 Unified correction vector

An et al. [AKS12] designed a randomized Christofides’ algorithm for the s-t

path TSP, and they proved an approximation factor of 1+
√
5

2 by analysing
this algorithm. Their algorithm and their analysis were based on the LP
relaxation (L.P.1). Sebő [Seb13] presented a new analysis of this randomized
algorithm and improved the approximation factor to 8

5 . The algorithm and
analysis of [Seb13] were based on a different LP relaxation, see (L.P.4) in
Section 4. In Section 4, we prove that (L.P.1) and (L.P.4) have the same
optimal value. This result together with a few more observations implies that
(L.P.4) can be replaced by (L.P.1) in the algorithm and analysis of [Seb13]
to achieve the same approximation factor of 8

5 . In this section, we prove the
approximation factor of [AKS12]; also, we prove the 8

5 -approximation factor
of [Seb13] based on (L.P.1) rather than (L.P.4).

Randomized Christofides’ algorithm:
Solve the LP relaxation (L.P.1) to get an optimal solution x∗. Since x∗ is in
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the spanning tree polytope, there exists a convex decomposition of spanning
trees J1, J2, . . . , Jl such that

∑
1≤i≤l λiX Ji = x∗ where

∑
1≤i≤l λi = 1, λi >

0 and X Ji is the edge incidence vector of Ji. Such a decomposition can
be found in polynomial time, see Theorem 51.5 of [Sch03]. We sample
a spanning tree J from these spanning trees according to the probability
defined by the coefficient λi of each spanning tree in the convex combination.
Let T denote the set of the wrong degree vertices of J . Then, as in the
Christofides’ algorithm, a minimum-cost T -join F is added to fix the wrong
degree vertices of J .

The expected cost of the random solution of the algorithm is the sum
of the expected cost of J , which is the cost of x∗, and the expected cost
of the T -join F . Any feasible solution of the T -join polyhedron provides a
cost upper bound for the T -join F . An et al. [AKS12] introduced correction
vectors to construct a special type of fractional T -join. A correction vector
for a τ -narrow cut S is an edge vector z that satisfies

∑
e∈δ(S) ze ≥ 1, where

the definition of τ -narrow cut will be given next. The correction vectors
were further analyzed in [Seb13] to obtain a better approximation factor. In
this section, we present a unified correction vector to derive the results of
both [AKS12] and [Seb13].

The following key definition is introduced in [AKS12]. Let 0 < τ ≤ 1. If
an s-t cut Q satisfies x∗(δ(Q)) < 1 + τ , we call it a τ -narrow cut. Let Cτ be
the set of all τ -narrow cuts that contain s. It turns out that τ -narrow cuts
have a nice structural property.

Lemma 3.1 [AKS12] Let Q1, Q2 be two distinct cuts in Cτ . Then either
Q1 ( Q2 or Q2 ( Q1.

For the sake of completeness, we present a proof.

Proof. Suppose that the statement is false. Then both Q1\Q2 and
Q2\Q1 are nonempty. Note that both Q1\Q2 and Q2\Q1 are {s, t}-even.
Hence, x∗(δ(Q1)) + x∗(δ(Q2)) ≥ x∗(δ(Q1\Q2)) + x∗(δ(Q2\Q1)) ≥ 4 by the
constraints in (L.P.1). However, x∗(δ(Q1)) + x∗(δ(Q2)) < 2 + 2τ ≤ 4. This
is a contradiction. �

Thus, we can use Q1, Q2, . . . , Qk to denote all of the τ -narrow cuts
containing s such that s ∈ Q1 ( Q2 ( Q3 · · · ( Qk ( V . Note that
Cτ = {Qi}1≤i≤k. Define Li = Qi\Qi−1 for i = 1, 2, . . . , k, k+1 where Q0 = ∅
and Qk+1 = V . Each Li is nonempty and ∪1≤i≤k+1Li = V . We call {Li}
the partition derived by the τ -narrow cuts Cτ .

Let X J denote the edge incidence vector of the edge set of J . For any
Q ∈ Cτ , we let eQ be an edge in δ(Q) of minimum cost. Let X eQ denote the
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edge incidence vector of {eQ}, i.e., X eQeQ = 1, and X eQe = 0 if e 6= eQ. Our
unified correction vector is defined as X eQ for each Q ∈ Cτ , i.e., the unified
correction vector simply assigns the value one to the minimum-cost edge in
each τ -narrow cut. In contrast, the correction vectors used in [AKS12] and
[Seb13] are fractional but sum up to at least one for each τ -narrow cut.

Let α, β and τ be real parameters between 0 and 1, whose specific values
are given later. Recall that J is the random spanning tree in the randomized
Christofides’ algorithm. Our fractional feasible T -join solution with unified
correction vectors, called unified fractional T -join, is as follows:

Unified fractional T -join:

f = αX J + βx∗ +
∑

Q∈Cτ , Q is T -odd

(1− 2α− βx∗(δ(Q)))X eQ .

where α, β, τ satisfy the following condition:

α+ 2β = 1, τ =
1− 2α

β
− 1, α ≥ 0 and β ≥ 0. (1)

Let us derive the settings of α, β and τ in (1). The purpose of the unified
fractional T -join f is to provide an upper bound on the cost of the minimum-
cost T -join F in the randomized Christofides’ algorithm. By Lemma 2.2, it
suffices to make f feasible for the T -join polyhedron (L.P.3). This requires
special settings of α, β and τ .

Consider the cut constraints in (L.P.3). Let S be a T -odd cut. First we
need to make sure that for any Q ∈ Cτ , the coefficient 1 − 2α − βx∗(δ(Q))
is nonnegative. Since x∗(δ(Q)) < 1 + τ for any Q ∈ Cτ , it suffices to set
1− 2α− β(1 + τ) = 0, i.e., τ = 1−2α

β − 1.
Suppose that S is an s-t cut. Note that S is T -odd. Hence, by Lemma

2.3, |δ(S)∩J | is even. If S is not a τ -narrow cut, then f(δ(S)) ≥ αX J(δ(S))+
βx∗(δ(S)) ≥ 2α+ β(1 + τ). By the assumption that τ = 1−2α

β − 1, we have
f(δ(S)) ≥ 1 in this case. If S is a cut in Cτ , then f(δ(S)) ≥ 2α+βx∗(δ(S))+
(1− 2α− βx∗(δ(S)))X eS (δ(S)) ≥ 1.

Now the only remaining case is that S is {s, t}-even. Then x∗(δ(S)) ≥ 2
by (L.P.1). Since J is a spanning tree, we have X J(δ(S)) ≥ 1. This implies
f(δ(S)) ≥ αX J(δ(S)) + βx∗(δ(S)) ≥ α+ 2β. Hence, in this case, it suffices
to set α+ 2β = 1.

Hence, we have the following result by the analysis above.

Lemma 3.2 The unified fractional T -join f is a feasible solution of the
T -join polyhedron (L.P.3).
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Lemma 3.2 shows that the expected cost of the minimum-cost T -join F
computed by the randomized Christofides’ algorithm is at most the expected
cost of the unified fractional T -join. Hence, the expected cost of the solution
of the randomized Christofides’ algorithm is upper bounded by the optimal
value of (L.P.1) plus the expected cost of the unified fractional T -join. In
Section 3.1 and Section 3.2, we will present two different analyses of the
expected cost of the unified fractional T -join to derive two different approx-
imation factors from [AKS12] and [Seb13] for the randomized Christofides’
algorithm.

Remark 3.3 From the analysis above, the cost analysis of the unified frac-
tional T -join is critical for proving an approximation factor for the random-
ized Christofides’ algorithm. If we can get a better upper bound on the cost
of the unified fractional T -join, then the approximation factor can be further
improved.

The following lemma is used in the analysis of the expected cost of the
unified fractional T -join in Section 3.1 and Section 3.2.

Lemma 3.4 [AKS12][Seb13] Let J be the random spanning tree and T be
the set of wrong degree vertices of J in the randomized Christofides’ algo-
rithm. Let Q ∈ Cτ , i.e., Q is a τ -narrow cut. Then

(i) Pr(|δ(Q) ∩ J | = 1) ≥ 2− x∗(δ(Q)), and

(ii) Pr(Q is T -odd) ≤ x∗(δ(Q))− 1.

For the sake of completeness, we present a proof.

Proof. Since J is a spanning tree, |δ(Q) ∩ J | ≥ 1 always holds. So∑
i≥1 Pr(|δ(Q) ∩ J | = i) = 1. Then

Pr(|δ(Q) ∩ J | ≥ 2) ≤
∑
i≥1

i ∗ Pr(|δ(Q) ∩ J | = i)−
∑
i≥1

Pr(|δ(Q) ∩ J | = i)

= E(|δ(Q) ∩ J |)−
∑
i≥1

Pr(|δ(Q) ∩ J | = i)

= x∗(δ(Q))− 1.

Note that E(|δ(Q) ∩ J |) = x∗(δ(Q)) follows from the fact that E(X J) = x∗

since J is a random tree in the convex decomposition of spanning trees
for x∗ where the coefficients of the spanning trees define the probability

9



distribution. Thus, we have Pr(|δ(Q) ∩ J | = 1) = 1− Pr(|δ(Q) ∩ J | ≥ 2) ≥
2− x∗(δ(Q)). This proves the first inequality.

Now consider the second inequality. By Lemma 2.3, |δ(Q) ∩ J | is even
if Q is T -odd. This means Pr(Q is T -odd) ≤ Pr(|δ(Q) ∩ J | is even) ≤
Pr(|δ(Q) ∩ J | ≥ 2) ≤ x∗(δ(Q))− 1. �

3.1 AKS’ 1+
√
5

2
-approximation via unified correction vector

First, we present two lemmas needed for the cost analysis of the randomized
Christofides’ algorithm.

Lemma 3.5 Let K be a spanning tree with n vertices. Let S = {Si : 1 ≤
i ≤ n − 1} be a family of subsets of the vertex set of K such that |Si| = i
and Si ( Si+1. There exists a bijection from S to E(K) such that each cut
Si is mapped to an edge of K in δ(Si).

Proof. Without loss of generality, we can assume that the vertex set of K
is {v1, v2, . . . , vn} and Si = {v1, v2, . . . , vi} for 1 ≤ i ≤ n− 1. We prove the
result by induction on n. The statement is clearly true for n = 2. Suppose
n ≥ 3. Consider the vertex vn.

We first pick the edge e of K incident with vn in the unique path of K
between vn−1 and vn. We map Sn−1 to this edge e. Let K ′ be the graph
obtained from K\{e} by contracting vn−1 and vn into a single vertex v′n−1.
Note that K ′ is a connected graph with n − 2 edges. This implies that K ′

is a spanning tree with n− 1 vertices {w1, w2, . . . , wn−1} where wi = vi for
1 ≤ i ≤ n − 2 and wn−1 = v′n−1. Note that δ({w1, w2, . . . , wi}) is a subset
of δ(Si) for 1 ≤ i ≤ n− 2. Hence, we can define the rest of the bijection by
applying the induction hypothesis to the spanning tree K ′ on these n − 1
vertices.

�

Lemma 3.6 ∑
Q∈Cτ

c(eQ) ≤ c(x∗) (2)

Proof. Let Kmin be a minimum-cost spanning tree on G. Consider
the partition {Li} derived by Cτ . We contract every Li into a single ver-
tex. Then the resulting graph obtained from Kmin is connected. Let
K be a spanning tree of the contracted graph. Applying Lemma 3.5 to
K, we construct an injective mapping φ from Cτ to the edge set of K
such that φ(Q) ∈ δ(Q) for each Q ∈ Cτ . Note that K ⊆ Kmin. Then

10



∑
Q∈Cτ c(eQ) ≤

∑
Q∈Cτ c(φ(Q)) ≤ c(Kmin) ≤ c(x∗) since x∗ is in the span-

ning tree polytope. The first inequality follows from the fact that eQ is the
minimum-cost edge in δ(Q). �

Theorem 3.7 [AKS12] The randomized Christofides’ algorithm achieves

an approximation factor of 1+
√
5

2 .

Proof. Since J is a random spanning tree based on the convex decomposi-
tion of spanning trees for x∗, we have E(X J) = x∗. Hence, the expected cost
of the solution of the randomized Christofides’ algorithm is upper bounded
by the optimal value of (L.P.1) plus the expected cost of the minimum-cost
T -join F . By Lemma 2.2 and Lemma 3.2, the expected cost of F is at most
the expected cost of the unified fractional T -join.

E[c(αX J + βx∗ +
∑

Q∈Cτ , Q is T -odd

(1− 2α− βx∗(δ(Q)))X eQ)]

Lemma 3.4
≤ (α+ β)c(x∗) +

∑
Q∈Cτ

(x∗(δ(Q))− 1)(1− 2α− βx∗(δ(Q)))c(eQ)

≤ (α+ β)c(x∗) + max
0≤z<τ

z(1− 2α− βz − β)
∑
Q∈Cτ

c(eQ)

Lemma 3.6
≤ (α+ β + max

0≤z<τ
z(1− 2α− βz − β))c(x∗)

By (1)
= (α+ β + β max

0≤z<τ
z(τ − z))c(x∗).

The last equality follows from the fact that 1− 2α = β(τ + 1) by (1). The
value of z that maximizes the expression is τ

2 . Hence, the upper bound
on the expected cost of the unified fractional T -join is at most (α + β +
β( τ2 )2)c(x∗). Substitute τ = 1−2α

β − 1, α = 1 − 2β from (1) into the upper

bound. Minimizing with respect to β gives
√
5−1
2 c(x∗) with optimal settings:

β = 1√
5
, α = 1− 2√

5
, τ = 3−

√
5. Therefore, the optimal value of (L.P.1) plus

this upper bound
√
5−1
2 c(x∗) on the expected cost of the unified fractional

T -join leads to the approximation factor of 1+
√
5

2 that was first proved in
[AKS12]. �

In [AKS12], the correction vector is constructed by using flow computa-
tions to map the optimal LP solution x∗ to the τ -narrow cuts. In contrast,
our unified correction vector simply assigns the value one to the minimum-
cost edge in each τ -narrow cut. We avoid the flow computation argument
of [AKS12] by using Lemma 3.5.
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3.2 Sebő’s 8
5
-approximation via unified correction vector

Let P be the s-t path in J . Sebő [Seb13] points out the crucial fact that
J\P is a T -join for the set of wrong degree vertices T of J . Recall that
F is the minimum-cost T -join in the randomized Christofides’ algorithm.
This implies that E(c(F )) ≤ E(c(J\P )). Note that c(x∗) = E(c(J)) =
E(c(J\P )) + E(c(P )).

It turns out that E(c(P )) also serves as an upper bound in another cost
inequality similar to (2); see the following lemma.

Lemma 3.8 ∑
Q∈Cτ

(2− x∗(δ(Q)))c(eQ) ≤ E(c(P )). (3)

Proof. Let Q ∈ Cτ ; thus, Q is a τ -narrow cut. If |δ(Q) ∩ J | = 1, then let
e′Q denote the unique edge in δ(Q)∩ J . Recall that a τ -narrow cut is an s-t
cut, and therefore e′Q must be in P since P is the s-t path in J . Moreover,
observe that Q is one of the two connected components of J\{e′Q}. Hence,
for distinct Q1, Q2 ∈ Cτ such that |δ(Q1) ∩ J | = 1 and |δ(Q2) ∩ J | = 1, the
edges e′Q1

and e′Q2
must be distinct (otherwise, J\{e′Q1

} and J\{e′Q2
} would

have the same connected components, contradicting the fact that Q1, Q2 are
distinct sets containing s). Then

c(P ) ≥
∑

|δ(Q)∩J |=1,Q∈Cτ

c(e′Q) ≥
∑

|δ(Q)∩J |=1,Q∈Cτ

c(eQ).

By Lemma 3.4,

E(c(P )) ≥
∑
Q∈Cτ

Pr(|δ(Q) ∩ J | = 1)c(eQ) ≥
∑
Q∈Cτ

(2− x∗(δ(Q)))c(eQ).

�

Theorem 3.9 [Seb13] The randomized Christofides’ algorithm achieves an
approximation factor of 8

5 .

Proof. By an argument similar to the one in the proof of Theorem 3.7,
we are only concerned with the expected cost of the unified fractional T -
join, which bounds the expected cost of the minimum-cost T -join F in the

12



randomized Christofides’ algorithm.

E[c(αX J + βx∗ +
∑

Q∈Cτ , Q is T -odd

(1− 2α− βx∗(δ(Q)))X eQ)]

Lemma 3.4
≤ (α+ β)c(x∗) +

∑
Q∈Cτ

(x∗(δ(Q))− 1)(1− 2α− βx∗(δ(Q)))c(eQ)

≤ (α+ β)c(x∗) +
∑
Q∈Cτ

(x∗(δ(Q))− 1)(1− 2α− βx∗(δ(Q)))

2− x∗(δ(Q))
(2− x∗(δ(Q)))c(eQ)

≤ (α+ β)c(x∗) + max
0≤z<τ

z(1− 2α− βz − β)

1− z
∑
Q∈Cτ

(2− x∗(δ(Q)))c(eQ)

Lemma 3.8
≤ (α+ β)c(x∗) + max

0≤z<τ

z(1− 2α− βz − β)

1− z
E(c(P ))

By (1)
= (α+ β)c(x∗) + β max

0≤z<τ

z(τ − z)
1− z

E(c(P )). (4)

The last equality follows from the fact that 1 − 2α = β(τ + 1) by (1).
The value of z that maximizes the expression is 1 −

√
1− τ . Hence, the

upper bound on the expected cost of the unified fractional T -join is at most
(α+β)c(x∗) +β(1−

√
1− τ)2E(c(P )). Substitute τ = 1−2α

β − 1, α = 1− 2β
from (1) into (4). Then the coefficients of the terms in (4) only depend on β.
Denote the coefficient of the last term in (4) by h(β) where h(β) = (

√
β −√

1− 2β)2. Then the bound can be written as (1− β)c(x∗) + h(β)E(c(P )).
Note that c(x∗) = E(c(J\P )) + E(c(P )). Assume E(c(P )) = λ0c(x

∗). So
0 ≤ λ0 ≤ 1 and E(c(J\P )) = (1− λ0)c(x∗). Since E(c(J\P )) ≥ E(c(F )), we
have

E(c(F )) ≤ min{(1− λ0)c(x∗), (1− β + h(β)λ0)c(x
∗)}

≤ max
0≤λ≤1

{min{(1− λ)c(x∗), (1− β + h(β)λ)c(x∗)}}. (5)

λ maximizes the expression when (1 − λ)c(x∗) = (1 − β + h(β)λ)c(x∗). So
λ = β

h(β)+1 . Minimizing the upper bound in (5) with respect to β gives
3
5c(x

∗) with optimal settings: β = 4
9 , α = 1

9 , τ = 3
4 ; moreover, λ = 2

5 .
Therefore, the optimal value of (L.P.1) plus this upper bound 3

5c(x
∗) leads

to the approximation factor of 8
5 that was first proved in [Seb13]. �
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4 Linear programming relaxations of the s-t path
TSP

In this section, we investigate the relationship between two different LP re-
laxations of the s-t path TSP. Let H = (V,E(H)) be a connected graph
with nonnegative edge costs c′, and let s and t be two fixed vertices. For
a partition W = {W1,W2, . . . ,W`} of the vertex set V , let δ(W) denote
∪1≤i≤`δ(Wi). Let G = (V,E) be the metric completion of H with metric
costs c. As mentioned in Section 3, (L.P.1) is a linear programming relax-
ation of the s-t path TSP on G. Let 2H be the graph obtained from H by
doubling every edge of H. The s-t path TSP on G is equivalent to the prob-
lem of finding a minimum-cost trail in 2H from s to t visiting every vertex
at least once (multiple visits are allowed for the vertices but not the edges).
Thus, the problem is to find a minimum-cost connected spanning subgraph
of 2H with {s, t} as the odd-degree vertex set. Hence, the following (L.P.4)
is another LP relaxation of the s-t path TSP.

(L.P.4) minimize :
∑

e∈E(H) c
′
exe

subject to : x(δ(W)) ≥ |W| − 1 ∀ partition W of V
x(δ(S)) ≥ 2 ∀∅ ( S ( V, |S ∩ {s, t}| even

xe ≥ 0 ∀e ∈ E(H)
Note that (L.P.4) is defined on the original graph H but (L.P.1) is defined
on the metric completion G of H.

In this section, we show that both LPs, (L.P.1) and (L.P.4), have the
same (fractional) optimal value, see Corollary 4.3. But these two LPs can
differ with respect to integral solutions. Observe that the integral solutions
of (L.P.1) are exactly the s-t Hamiltonian paths of G; this follows because
an integral solution induces a graph that is connected, has degree one at s, t,
and has degree two at all other vertices. The integral solutions of (L.P.4)
need not correspond to the s-t Eulerian paths of H; see the example shown
in Figure 1.

Let Opt(LPk) denote the optimal value of (L.P.k), for k = 1, 4. Let
Optint(LPk) denote the minimum cost of an integral solution that satisfies
all constraints of (L.P.k), for k = 1, 4. We call Optint(LPk) the optimal
integral value of (L.P.k). The following table summarizes the relationship
between the two LPs; the new results of this section appear in the last two
columns.

LPs Graph Costs Optimum Optimal Integral Value

(L.P.1)G: metric completion of H c: metric extension of c′ Opt(LP1) Optint(LP1)

(L.P.4) H c′ ≥ 0 Opt(LP1)Optint(LP4) ≤ Optint(LP1) ≤ 3
2Optint(LP4)
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To obtain these results, we need an edge-splitting lemma. Let K be a
multigraph, i.e., two adjacent vertices in K may be connected by one or more
edges. Let (u, v), (v, w) ∈ E(K). The splitting operation on (u, v), (v, w) at
the vertex v is defined as follows:

• Remove (u, v), (v, w) and then add (u,w) if u 6= w.

If u = w, then we remove the loop formed by adding (u,w); note that
this removal of the loop has no effect on the edge-connectivity of the graph.
We use the following result to prove Lemma 4.2; see [Fra92, Theorem A′].

Lemma 4.1 [Lov74][Lov79, Ex. 6.51] Let K be a multigraph with even
degree at each vertex. Let v ∈ V (K) and let U = V (K)\{v}. Let d be a
positive integer. If

|δ(S)| ≥ d for each ∅ ( S ( U (6)

then the edges incident with v can be partitioned into |δ(v)|
2 disjoint edge

pairs (p, v), (v, q) such that the multigraph obtained by applying the splitting
operation to any one of these edge pairs (at the vertex v) still satisfies (6).

Lemma 4.2 Let x be a rational solution of (L.P.4) of cost c′(x). Then
there exists a solution x′ of (L.P.1) with cost at most c′(x). Moreover, if x
is an integral solution, then x′ is half-integral.

Proof. The first part of this statement follows from the parsimonious
property shown in [BT97]. However, to show the second part of the state-
ment, we present a proof for the first part as well.

Define an edge vector y on G as follows:

ye =

{
xe, if e ∈ E(H),

0, otherwise.

Since G is the metric completion of H, we know c(y) ≤ c′(x). Then we
construct y′ from y as follows:

y′e =

{
1 + ye, if e = (s, t),

ye, otherwise.

By the constraints of (L.P.4) and the fact that y′(s,t) = y(s,t) + 1, we

have y′(δ(S)) ≥ 2 for each cut S. Let C be a positive integer such that
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Cy′ is integral. Consider the multigraph K2C with 2Cy′(u,v) number of edges

between u and v. Then |δK2C
(S)| ≥ 4C.

By using Lemma 4.1, we apply splitting operations at every vertex until
the degree of every vertex is exactly 4C. We claim that this procedure can be
applied such that the number of edges between s and t is ≥ 2C. To see this,
consider a splitting operation at s or t, say s; note that splitting at other
vertices does not decrease the number of edges between s and t. There are at
least 2C+1 feasible splitting pairs available at s (since otherwise there is no
need to do a splitting operation at s, i.e., |δK2C

(s)| = 4C). This implies that
we can always choose a splitting pair such that at least 2C edges between s
and t are preserved.

Let z be the edge vector associated with the resulting graph after split-
ting, i.e., z(u,v) equals the number of edges between u and v in the resulting
graph. Furthermore, let z′ = z/2C. Then z′(δ(S)) ≥ 2 for each cut S,
z′(δ(v)) = 2 for each vertex v, and z′(s,t) ≥ 1. Consider two different vertices

u, v. We know z′(δ(u)) = z′(δ(v)) = 2 and z′(δ({u, v})) ≥ 2. This implies
z′(u,v) ≤ 1. In particular, z′(s,t) = 1. Construct x′ from z′ as follows:

x′e =

{
z′e − 1 = 0, if e = (s, t),

z′e, otherwise.

By the properties obtained for z′, we have x′ is a feasible solution of
(L.P.1). Note that the splitting operations never increase the total cost
since the edge costs are metric on G. Therefore, the cost of x′ is at most
c′(x). In particular, if x is integral, we can set C = 1 in the procedure. In
this case, x′ is half-integral. �

Conversely, any feasible solution of (L.P.1) can be transformed to a fea-
sible solution of (L.P.4): the idea is to replace each edge (u, v) in E(G) by
a shortest u-v path in H. Note that every solution of (L.P.1) is a feasi-
ble solution of the spanning tree polytope. Hence, it can be seen that the
transformed solution is feasible for (L.P.4), and, in particular, it satisfies the
partition constraints in (L.P.4). Hence,

Opt(LP4) ≤ Opt(LP1), Optint(LP4) ≤ Optint(LP1). (7)

By Lemma 4.2, we have the following result.

Corollary 4.3 Opt(LP4) = Opt(LP1).

However, (L.P.1) and (L.P.4) may differ in terms of the integral optimal
value. Consider the graph with unit edge costs in Figure 1; this is meant to
be the original graph H in the instance of the s-t path TSP.
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s t

Figure 1: Tight Example

Note that (L.P.4) is defined on the original graph but (L.P.1) is defined
on the metric completion. Let ` be the length of the middle path in Figure 1.
It is not hard to see that Optint(LP1) ≈ 3` but Optint(LP4) ≈ 2` when ` is
sufficiently large. (For (L.P.4), consider the integral solution with value 1 for

every edge of the original graph.) In this case, Optint(LP1)
Optint(LP4)

≈ 3
2 . Interestingly,

3
2 can be proved to be an upper bound for this ratio. This example shows
that the upper bound of 3

2 is tight. To prove this upper bound, we present
an algorithm to round a half-integral solution of (L.P.1) to an integral one
by increasing the cost by a factor of at most 3

2 .
Apply the randomized Christofides’ algorithm to a half-integral solution

x of (L.P.1). Let J be the random spanning tree obtained from x. Let F be
a minimum-cost T -join for the set of wrong degree vertices T of J .

Lemma 4.4 x(δ(S)) ≥ 2 for any T -odd cut S.

Proof. For any vertex v ∈ V , x(δ(v)) is integral by the constraints
of (L.P.1). Since xe is half-integral, x(δ(S)) =

∑
v∈S x(δ(v)) − 2x(E(S))

implies that x(δ(S)) is integral. Suppose x(δ(S)) < 2 for some T -odd cut S.
Then we have x(δ(S)) = 1. By the constraints of (L.P.1), S must be an s-t
cut. Note that E(X J) = x and |J ∩ δ(S)| ≥ 1 since J is a random spanning
tree. This implies |J ∩ δ(S)| = 1 always holds. However, since S is an s-t
cut and also a T -odd cut, we have |δ(S)∩ J | is even by Lemma 2.3. This is
a contradiction. �

Theorem 4.5 If the input is a half-integral solution x of (L.P.1), then the
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randomized Christofides’ algorithm outputs a Hamiltonian s-t path with cost
at most 3

2c(x).

Proof. By Lemma 4.4, 1
2x is a feasible solution of the T -join polyhedron

(L.P.3). This means E(c(F )) ≤ 1
2c(x). Therefore E(c(J))+E(c(F )) ≤ 3

2c(x).
�

Now we are ready to prove the ratio for the optimal integral values of
the two LPs.

Theorem 4.6 Optint(LP4) ≤ Optint(LP1) ≤ 3
2Optint(LP4). Moreover, the

bounds are tight.

Proof. The lower bound is due to (7). Now consider the upper bound. Let
x be an optimal integral solution of (L.P.4). By Lemma 4.2, there exists a
half-integral solution x′ of (L.P.1) such that c(x′) ≤ c′(x). By Theorem 4.5,
we can get an s-t Hamiltonian path with cost at most 3

2c(x
′). This means

Optint(LP1) ≤ 3
2c(x

′) ≤ 3
2c
′(x) = 3

2Optint(LP4).
The tight example for the upper bound is shown in Figure 1. For the

tightness of the lower bound, consider the graph H consisting of one path
connecting s and t where every edge has unit cost. �

5 Counterexample to two approaches

For s-t path TSP, the main question is whether there exists a 3
2 -approximation

algorithm. When addressing this problem, two natural questions arise:

• [Gao13] presented a simple 3
2 -approximation algorithm for the s-t path

TSP in the graphic case. Does it extend to give the same approxima-
tion factor for the general metric case?

• Does every spanning tree in a given convex decomposition of an opti-
mal solution x of (L.P.1) achieve a 3

2 -approximation factor by adding
a minimum-cost T -join to fix the wrong degree vertices ?

The first question concerns the extension of the algorithm for the graphic
case. The second question focuses on the role of randomness and probabilis-
tic methods in the analysis of the recent LP-based approximation algorithms.
We answer these questions negatively by providing a counterexample. In the
following, we make the questions more precise and then show how our coun-
terexample serves as a negative answer.
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Let G be the metric completion of some connected graph H with unit
edge costs c′. The s-t path TSP defined on G is called s-t path graph-TSP.
In this important special case, the gap between the upper bound and lower
bound of the LP integrality ratio has been closed. The first 3

2 -approximation
algorithm for the s-t path graph-TSP was given by [SV14] using sophisti-
cated techniques. [Gao13] presented another 3

2 -approximation algorithm
which was conceptually simpler than that in [SV14].

Let x∗ be an optimal solution of the (L.P.4) defined on H. Note that
c′e = 1 for e ∈ E(H) in this case. Let Q be an s-t cut. If x∗(δ(Q)) < 2, we
call it a narrow cut, which is exactly a 1-narrow cut as defined in Section
3. Note that the narrow cuts containing s still have the nice structural
property of Lemma 3.1 even when x∗ is an optimal solution of (L.P.4). We
recall some notation from Section 3. The cuts Q1, Q2, . . . , Qk are all the
narrow cuts containing s such that s ∈ Q1 ( Q2 ( Q3 · · · ( Qk ( V . Define
Li = Qi\Qi−1 for i = 1, 2, . . . , k, k + 1 where Q0 = ∅ and Qk+1 = V . Note
that each Li is nonempty and ∪1≤i≤k+1Li = V . It is shown in [Gao13] that
H restricted on each Li is connected and also there exists at least one edge
between each two consecutive Li and Li+1 in H.

We sketch the 3
2 -approximation algorithm in [Gao13]. The algorithm

constructs a minimal spanning tree on each Li and then connects them
together by a unit cost edge between each two consecutive Li and Li+1. This
results in a spanning tree on H, which is called a good spanning tree. Then
a minimum-cost T -join Fgood is added to correct the wrong degree vertices
of the good spanning tree. Since every edge in H has unit cost, the good
spanning tree has minimum cost, which is at most Opt(LP4). Furthermore,
it is shown in [Gao13] that the minimum-cost T -join Fgood has cost at most
1
2Opt(LP4). This gives a 3

2 -approximation factor in total.
The only part in the analysis using the graphic property is that the

good spanning tree has cost at most Opt(LP4). A natural extension of the
definition of a good spanning tree would be as follows:

• In the general metric case, a good spanning tree is constructed by con-
necting the minimum-cost spanning tree in each Li with a minimum-
cost edge from Li to Li+1.

If the cost of this “extended” good spanning tree is bounded above by
Opt(LP4) in the general metric case, then it gives us a 3

2 -approximation
factor for s-t path TSP. Unfortunately, this is not true. To show this, we
present our counterexample, a complete graph G = H = Hb with metric
edge costs cHb and vertex set {0, 1, . . . , 7} where s = 0, t = 7. The metric
edge costs cHb are given by the metric completion of the costs indicated in
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Figure 2 below. Note that for every edge e in Figure 2, cHbe is exactly the
edge cost value shown in that figure.

Figure 2 shows the support graph of a feasible solution xHb of (L.P.4),
where the first number on each edge denotes the xHb value and the second
number denotes the cost of the edge.

0 3 4 5 6

1 2 7

1/3, 1

2/3, 1

1, 1

1, 1

1/3, 1

2/3, 2

1/3, 2

1/3, 2

2/3, 2

1/3, 2
1/3, 2

narrow cuts

1, 1

Figure 2: Support graph of xHb with edge xHb values and edge costs

Lemma 5.1 xHb is an optimal solution for (L.P.4) with respect to cHb.
Furthermore, xHb is an extreme point of the polyhedron of (L.P.4) on Hb.

Proof. To show the optimality of xHb for (L.P.4), it is sufficient to prove
that xHb is an optimal solution of (L.P.1) by Corollary 4.3. We use com-
plementary slackness conditions to prove the optimality of xHb for (L.P.1).
Let S1 be the set of all s-t cuts and S2 be the set of all {s, t}-even cuts. Let
S = S1 ∪ S2.

(Dual of (L.P.1))

maximize : ys + yt + 2
∑

v/∈{s,t}

yv +
∑
S∈S1

dS + 2
∑
S∈S2

dS −
∑
e

ue

subject to :

yw + yv − u(w,v) +
∑

(w,v)∈δ(S),S∈S

dS ≤ c(w,v), (w, v) ∈ E

u, d ≥ 0

The following dual solution y, d, u witnesses the optimality of xHb to
(L.P.1) by the complementary slackness conditions:

• u(1,2) = u(3,4) = 2
3 , u(5,6) = 4

3 , and ue = 0 for any other edge e
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• d{3,4,5,6} = 1
3 and dS = 0 for any other S

• y0 = 0, y2 = y3 = 2
3 , y1 = y4 = y5 = 1, y6 = 4

3 , y7 = 1
3

Hence xHb is also an optimal solution of (L.P.4).
Denote the polyhedron of (L.P.4) on Hb by K. We now show that xHb

is an extreme point of K. Otherwise, there exists xHb 6= z ∈ K and z′ ∈ K
such that xHb = λz + (1− λ)z′ for some 0 < λ < 1.

Clearly, for any edge e not in the support graph of xHb , we have ze =
0 by Lemma 2.4. We also apply Lemma 2.4 to δ(v) for each vertex v,
and the cuts S1 = {3, 4}, S2 = {1, 2}, S3 = {5, 6}, S4 = {3, 4, 5, 6}. Then,
z(δ(v)) = 1 for v = 0, 7 and z(δ(v)) = 2 for other vertices, and z(δ(Sj)) = 2
for 1 ≤ j ≤ 4. Hence, ze = 1 for each e ∈ E1 = {(3, 4), (1, 2), (5, 6)}.
Let a = z(0,3), b = z(4,5). By the z-values on the edges in E1 and the values
z(δ(v)) for v ∈ V (Hb), we have z(0,1) = 1−a, z(1,3) = a, z(3,6) = 1−2a, z(6,7) =
2a, z(2,7) = 1− 2a, z(2,5) = 1− b, z(2,4) = 1− b. Now consider δ(2) and δ(S4).
Then

2(1− b) + (1− 2a) + 1 = 2, 4a+ 2(1− b) = 2.

Hence, a = 1
3 , b = 2

3 . By checking each edge, z = xHb . This is a contradic-
tion. Therefore, xHb is an extreme point of K. Note that the analysis above
also shows that xHb is an extreme point of the polytope of (L.P.1) on Hb.

�
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111
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222

1 2

3

4

5 6 7

Figure 3: Cost of the good spanning tree

The cost of the corresponding good spanning tree is 10 and is shown in
Figure 3. The number on the edge between 3 and 4 in Figure 3 is the edge
cost. The numbers below the dashed narrow cuts are the minimum costs
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of the edges crossing the narrow cuts to connect two consecutive parts. By
Lemma 5.1, we know the optimal value of (L.P.4) is cHb(xHb) = 92

3 . So, we
can see that the cost of the good spanning tree is strictly larger than the
optimal value of (L.P.4). This refutes the statement that the cost of the
“extended” good spanning tree can be upper bounded by Opt(LP4).

Interestingly, this instance also illustrates that probabilistic methods are
important for the analyses of improved LP-based approximation algorithms
such as the “randomized Christofides’ algorithm” or its deterministic version
the “best-of-many Christofides’ algorithm” (see [AKS12]). The randomized
Christofides’ algorithm obtains a better approximation factor by sampling
a spanning tree J from the convex decomposition of x∗. However, is it
true that for an arbitrary spanning tree in the support of a given convex
decomposition, the cost of the spanning tree plus a minimum-cost T -join is
at most 3

2Opt(LP1) ? In the rest of this section, via the instance Hb, we
show this statement is false in general.

We recall the optimal solution xHb of (L.P.1) on Hb with metric costs
cHb . We know that xHb is in the spanning tree polytope (L.P.2). The tight
constraints of xHb for the inequality constraints of (L.P.2) are illustrated as
dashed circles in the Figure 4 except the tight constraints for V \{s}, V \{t},
V \{s, t}.

0 3 4 5 6

1 2 7

1/3

2/3

1

1

1/3

2/3

1/3

1/3 2/3

1/31/3

1

Figure 4: Tree Jb

By Lemma 2.4, the tree Jb with the dark edges in the graph of Figure
4 is in some convex decomposition of xHb in (L.P.2), i.e., Jb is a spanning
tree in the support of some convex decomposition of xHb . Let Tb be the set
of wrong degree vertices of Jb, i.e., Tb = {1, 3, 4, 6}. Fb = {(3, 6), (1, 4)} is
a minimum-cost Tb-join with cost 5. Hence, the total cost of the disjoint
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union of Jb and Fb is 15, which is larger than 3
2 times the optimal value

cHb(xHb) = 92
3 of (L.P.1). This shows the importance of the probabilistic

techniques in the analysis of the “randomized Christofides’ algorithm” or its
deterministic version the “best-of-many Christofides’ algorithm”. Note that
the minimum-cost Tb-join Fb to fix the wrong degree vertices of Jb is also
larger than half of the optimal value 92

3 of (L.P.1).
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