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Abstract. Due to technical limitations, common display devices can only reproduce images
having a low range of intensity values (dynamic range). As a consequence, the dynamic range of
images encoding real world scenes, which is large, has to be compressed in order for them to be
reproduced on a common display, and this technique is called tone mapping. Because there is no
ground truth to compare with, evaluation of a tone mapped image has to be done by comparing
with the original high dynamic range image. As standard metrics based on pixel-wise comparisons
are not suitable for comparing images of different dynamic range, non local perceptual based metrics
are commonly used. We propose a general method for optimizing tone mapped images with respect
to a given non local metric. In particular, if the metric is perceptual, i.e. it involves perceptual
concepts, we provide an adequate minimization strategy. Experiments on a particular perceptual
metric tested with different tone mapped images provided by several tone mapping operators validate
our approach.
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difference

1. Introduction.

1.1. On tone mapping operators.

1.1.1. The tone mapping challenge. The vast range of light intensities of the
real world span many orders of magnitude. Even though the Dynamic Range (DR)
of the Human Visual System (HVS) is only 3-4 orders of magnitude, nonetheless it is
capable to handle intensities from about 10−6 to 108 cd/m2 [21], due to the fact that
it continuously adjusts to the light in any viewed scene. As the DR of most cameras
is only 2-3 orders of magnitude, they tend to fail in capturing the details and contrast
that we perceive with the naked eye.

The most popular approach to capture the real world luminance is to create
High Dynamic Range (HDR) images through the fusion of multiple Low Dynamic
Range (LDR) images generated by a standard camera shooting the scene with varying
exposure time [6]. However, HDR images can not be directly reproduced on common
displays since their ranges usually span only two orders of magnitude, meaning that
they can only reproduce LDR images.

Hence, a range compression of HDR images has to be performed in order for them
to be reproduced on common displays, and this technique is called tone mapping. In
particular, a good tone mapping operator (TMO) should produce in anyone watching
the display a perception of details as close as possible to the one he/she would have
had by observing the original scene directly [29].

1.1.2. Overview of tone mapping operators. Tumblin and Rushmeir [27]
formally introduced the problem of tone mapping to the computer graphics field.
Their TMO aims at transforming the real world luminance into the luminance gener-
ated by the display device. Since then, many TMOs have been proposed, and can be
classified as global or local approaches.
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Most of global TMOs consist in applying a compression curve to the image lev-
els, based on psychovisual laws. Besides Tumblin and Rushmeir [27] who use Stevens’
law, the Naka-Rushton formula is used in ([21],[24],[13]), Ferwerda’s model in [12], and
Weber-Fechner’s law in ([2],[29]) to name a few. In particular, Reinhard et al. [24]
developed a TMO based on the idea that tone mapping is similar to the adaptation
process in the HVS, and used a modification of the Naka-Rushton equation. Drago
et al. [7] introduced an adaptive logarithmic curve using a collection of logarithmic
functions ranging from log2 to log10, the choice of the logarithm base depending on
the luminance values. Mantiuk et al. [18] developed a piece-wise linear tone curve to
achieve DR compression, whose parameters are chosen so as to minimize the difference
between the estimated response of the HVS for the resultant image and the original
image. Global TMOs are in general very fast and do not introduce halos or artifacts,
but tend to produce low contrast images.

Local TMOs achieve DR compression by modifying each pixel based on its neigh-
borhood. Even though they are computationally more expensive than global ap-
proaches, they produce higher contrast images. However they have the tendency to
produce artefacts and halos [8][10][16].

More recently, Ferradans et al. [11] proposed a two stage TMO combining both
approaches. The first stage is a global tone mapping method that implements vi-
sual adaptation by combining the Naka-Rushton equation and Weber-Fechner’s law.
The second stage performs local contrast enhancement, based on a variational model
inspired by colour vision phenomenology.

1.1.3. Evaluation of tone mapping operators. The most straightforward
way to evaluate a TMO is to perform a subjective evaluation, where observers rate
the tone mapped image by comparing with the reference HDR image displayed on a
HDR screen [14], or they simply evaluate the tone mapped image by itself, without
any reference [31]. Subjects are asked to consider image attributes such as brightness,
contrast, colors, and naturalness, as well as overall quality. But subjective evaluation
is limited in many ways: firstly, it is often time consuming and expensive; secondly,
it is difficult to incorporate it in the design of tone mapping algorithms. This points
out the importance of objective evaluation of TMOs.

An accurate objective evaluation should mimic the subjective evaluation described
above, so it requires the use of a perceptual metric between images of different dynamic
range. An objective tone mapping evaluation tool has been proposed by Smith et al.
[26], based on the measure of suprathreshold contrast distortion between the source
HDR image and its tone mapped LDR version. However, the contrast measure is local,
meaning that its sensitivity is limited to high frequency details. More recently, Aydin
et al. [3] proposed a dynamic range independent metric (DRIM) whose contrast
measure is not limited to the values of neighboring pixels. Moreover, the metric
predicts three type of distortions at each pixel between the two images it compares:
loss of visible features, amplification of invisible features, and reversal of contrast
polarity (see Sect. 4.1 for a more detailed description of the metric DRIM).

1.2. Contribution. We propose in this paper a new approach for the improve-
ment of the tone mapped images that takes into account the metric that will be used
for the evaluation. In such a way, we are able to improve an existing TMO with
respect to a given metric. The aim of this paper is two-fold:

1. We develop a general framework for improving any tone mapped image by
reducing the distance with the corresponding HDR image. More precisely, assuming
that the metric met is designed to compare images of different dynamic range, our
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approach for reducing the distance between an HDR image H : Ω −→ R and its tone
mapped version L0 ∈ LDR(Ω) is to minimize functionals of the form

(1.1) arg min
L∈LDR(Ω)

∫
Ω

Φ(met(L,H)(x)) dx

where Φ: Rn −→ R+, through a gradient descent algorithm of initial condition L0.
Then the main task to implement the algorithm is to construct a discrete approxima-
tion of the functional derivative

(1.2)
∂met(L,H)(x)

∂L(y)

2. We apply the general framework described in (1.1) in the context of the
perceptual metric DRIM [3]. More precisely, we consider the following particular
cases of (1.1)

(1.3) arg min
L∈LDR(Ω)

∫
Ω

‖DRIM(L,H)(x)‖k dx

where k is a strictly positive constant. We evaluate our method by comparing in a
two-fold way the initial condition with the steady-state of the gradient descent algo-
rithm. Our tests show that we are able to improve the tone mapping results of several
state of the art approaches by a significant amount.

This paper is organized as follows. In Sect. 2, we present our general framework
for improving any tone mapped image as a gradient descent algorithm associated to a
non local variational problem. In particular, we give the expression of the gradient of
the functional to minimize. In Sect. 3, we consider the case of perceptual metrics and
detail the computation of the discrete functional derivative (1.2) from which derives
the discrete gradient of the functional (1.1). At last, in Sect. 4, we test the corre-
sponding gradient descent algorithm on several tone mapped images dealing with the
perceptual metric DRIM.

2. General framework for improving tone mapping results.

2.1. Distance between images as a non local operator. Many tasks in
image processing and computer vision require a validation by comparing the result
with the original data, e.g. optical flow estimation, image denoising, tone mapping.
Whereas measures based on pixel-wise comparisons (e.g. MSE, SNR, PSNR) are
suitable to evaluate algorithms for problems such as image denoising and optical flow
estimation, they are not relevant to evaluate tone mapping results, because the ground
truth is not known. Indeed, tone mapping results are evaluated by comparisons with
the original HDR images, where pixel-wise comparisons are not suitable since the
images compared are of different dynamic range. This leads us to the following defi-
nitions, where we first remind the reader of the concept of functional differentiation.

Definition 2.1 (functional derivative). Let X be a Banach space of scalar-valued
functions defined on some domain Ω. The derivative of F : X −→ Rn, n ≥ 1, with
respect to the function I ∈ X at the point y ∈ Ω is the quantity

(2.1)
∂F (I)

∂I(y)
: = lim

ε→0

F (I + εδy)− F (I)

ε
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where δy is the Dirac delta function concentrated at the point y.

The differential of F in the direction ϕ ∈ X is then

(2.2) δF (I;ϕ) : =

∫
Ω

ϕ(y)
∂F (I)

∂I(y)
dy

From now on, we consider the set of grey-level images defined on a domain Ω ⊂ R2

as the Banach space X : = C∞(Ω; [0, 1]).

Definition 2.2 (metric). Let Y be the Banach space of vector-valued smooth
functions defined on Ω. We call metric an operator met : X ×X −→ Y .

For x ∈ Ω, we consider F : X × X −→ Rn, n ≥ 1, defined by F (L,H) =
met(L,H)(x) and the partial derivatives of F with respect to L and H at the point
y ∈ Ω, i.e.

(2.3)
∂met(L,H)(x)

∂L(y)
: = lim

ε→0

met(L+ εδy, H)(x)−met(L,H)(x)

ε

(2.4)
∂met(L,H)(x)

∂H(y)
: = lim

ε→0

met(L,H + εδy)(x)−met(L,H)(x)

ε

where δy is the Dirac delta function concentrated at the point y ∈ Ω.
We say that met is

(i) pixel-wise if ∀L,H ∈ X, ∀x, y ∈ Ω, y 6= x, the quantities (2.3), (2.4) vanish.
(ii) non local if ∀L,H ∈ X, ∀x ∈ Ω,∃Ω ⊃ N (x) 3 x,N (x) 6= {x},∃y 6∈ N (x) s.t.
the quantities (2.3), (2.4) do not vanish.

Definition 2.3 (distance). A distance associated to the metric met is a func-
tional E : X ×X −→ R+ of the form

(2.5) E : (L,H) 7−→
∫

Ω

Φ(met(L,H)(x)) dx

for some map Φ: Rn −→ R+.
We say that the distance E is pixel-wise, resp. non local, if the associated metric

is pixel-wise, resp. non local.

Note that we only require the distance (2.5) to satisfy the non-negativity property
among the classical properties of a distance function (identity for L = H, symmetry,
triangle inequality).

In this context, we can classify image quality measures into several categories.
The set of pixel-wise distances includes MSE, PSNR and SNR measures, where the
function Φ in (2.5) is the Euclidean norm ‖ ‖2. Indeed, the corresponding terms
met(L+ εδy, H)(x)−met(L,H)(x) and met(L,H + εδy)(x)−met(L,H)(x) in formu-
lae (2.3), (2.4) vanish for y 6= x since such quantities only depend on the values L(x)
and H(x).

The second category gathers the metrics that are non local. This category can
actually be divided into two sub-categories: the set of metrics that compare images
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of same dynamic range (see e.g. [5] for LDR images and [15],[19] for HDR images),
and the set of metrics comparing images of different dynamic range (see e.g. [26]).
The metric DRIM [3] belongs to both sub-categories since it is independent of the
dynamic range of the images it compares.

At last, there exist image quality measures that are neither metrics nor distances
according to the definitions 2.2 and 2.3. This includes for instance the SSIM metric
[28].

2.2. Reduction of the distance between an HDR image and its tone
mapped version. In practice, LDR images are usually encoded in 8 bits whereas
HDR images are often encoded in 16 bits. This leads us to define the functional spaces
LDR(Ω) and HDR(Ω) as follows

(2.6) HDR(Ω) = {f ∈ C∞(Ω; [1/65536, 1])}

(2.7) LDR(Ω) = {f ∈ C∞(Ω; [1/256, 1])}

In particular, we have LDR(Ω) ⊂ HDR(Ω).

We consider the following problem: given an HDR image H and a metric met,
we aim at constructing the LDR image L∗ minimizing the distance with H, i.e. we
aim at solving the following variational problem

(2.8) L∗ : = arg min
L∈LDR(Ω)

E(L,H)

Proposition 2.4. Assuming that met is continuous, bounded, and Φ is contin-
uous, the variational problem (2.8) has a solution.

Proof. Under the assumption of the Proposition, the energy E is bounded since
the domain Ω of an image is a compact subset of R2. Moreover, the set LDR(Ω)
being closed, we deduce that there exists a function L∗ ∈ LDR(Ω) (not necessarily
unique) solution of the variational problem (2.8).

Proposition 2.5. Assuming that met and Φ are differentiable, the functions L
which are critical points of the energy

(2.9) EH : L 7−→ E(L,H)

satisfy ∫
Ω

δΦ

Å
met(L,H)(x);

δmet(L,H)(x)

δL(y)

ã
dx = 0 ∀y ∈ Ω

Proof. The functional EH being differentiable on the whole set LDR(Ω), its
critical points are the functions L where its gradient ∇EH vanishes.

Let ψ : Ω −→ R be a compact support function. We compute the differential δEH
of the energy EH at a function L in the direction ψ. We have

δEH(L;ψ) = δE((L,H); (ψ, 0))
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=

∫
Ω

δ (Φ ◦ met) ((L,H); (ψ, 0))(x) dx

=

∫
Ω

δΦ (met(L,H)(x); δ met ((L,H); (ψ, 0))(x)) dx

=

∫
Ω2

δΦ

Å
met(L,H)(x);

δmet(L,H)(x)

δL(y)

ã
ψ(y) dx dy

The last equality results from formula (2.2). At last, as ψ has compact support,
δEH(L;ψ) = 0 =⇒

(2.10)

∫
Ω

δΦ

Å
met(L,H)(x);

δmet(L,H)(x)

δL(y)

ã
dx = 0 ∀y ∈ Ω

The gradient of the functional EH at the function L is the map

(2.11) ∇EH(L) : y 7−→
∫

Ω

δΦ

Å
met(L,H)(x);

δmet(L,H)(x)

δL(y)

ã
dx

Due to the complexity of the metrics that compare images of different dynamic
range, the non local operators met encoding the metrics lack mathematical properties
like convexity. As a consequence, it is hard to prove the uniqueness or not of the
solution and establish accurate numerical schemes for reaching the solution(s) of the
variational problem (2.8).

For this reason, we adopt in this paper the following approach: instead of con-
structing the best tone mapped image(s) of a given HDR image H with respect to the
metric met by constructing solution(s) of the variational problem (2.8), we improve
existing tone mapping results by the use of a gradient descent algorithm where the
initial condition L0 is a tone mapped version of H.

Even if the gradient descent algorithm might converge towards critical points L∗
that are not global minima, we have EH(L∗) < EH(L0) meaning the LDR image L∗
is an improvement of the tone mapping result L0.

The main task to compute a discrete approximation of the gradient (2.11) in order
to perform the gradient descent algorithm is to compute accurate discrete approxi-
mations of the functional derivative

∂met(L,H)(x)

∂L(y)
: = lim

ε→0

met(L+ εδy, H)(x)−met(L,H)(x)

ε

where δy is the Dirac delta function concentrated at the point y ∈ Ω.
Our proposal is to make use of central differences of the form

(2.12)
∂metD(L,H)(a, b)

∂L(i, j)
: =

met(L+ ε1 δ(i,j), H)(a, b)−met(L− ε2 δ(i,j), H)(a, b)

d(L+ ε1 δ(i,j), L− ε2 δ(i,j))

for some well-chosen ε1, ε2, and where d(L+ε1 δ(i,j), L−ε2 δ(i,j)) measures a difference
between the two images L+ ε1 δ(i,j) and L− ε2 δ(i,j).

A straightforward choice would be to impose ε1, ε2 to be constant and independent
of both the intensity values L(i, j) and the metric met.
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3. Discrete functional derivatives in the case of perceptual metrics. We
argue that the increments ε1, ε2 in (2.12) should be dependent on the nature of the
metric. In particular, dealing with perceptual metrics, we claim that ε1, ε2 should
be chosen to make the difference between the images L and L+ ε1δ(i,j) be perceived
equally to the difference between the images L and L− ε2δ(i,j).

Our proposal in this paper is to make use of the concept of Just Noticeable
Difference (JND) in order to compute perceived differences between images. However,
perceptual metrics do not necessarily compare images in perceptually uniform spaces,
meaning that we need to express the JND into the space in which the metric is
operating, which is the luminance space in most of cases.

3.1. Approximation of the JND in the luminance space. In the domain
of psychophysics, the JND is the smallest difference ∆I in the intensity of a stimulus
at which a human is able to perceive a difference between a uniform intensity I and
a superimposed intensity I + ∆I.

Weber’s law, named after the German physician E.H.Weber, relates the JND with
the intensity of the stimulus according to the formula

(3.1)
JND

I
= k

for some constant k > 0. Note that k varies with the nature of the stimulus. Regard-
ing perception, visual experiments conducted later on by others showed that Weber’s
law holds for a large range of light intensity I. However, the relation does not hold
for low-intensity values [23].

The luminance, denoted by Y , is a measure of the light stimulus and is defined
as the radiance (light intensity reaching the retina) weighted by spectral sensitivity
functions. However the space Y is not perceptually uniform in the sense that the
difference between two luminance values is not proportional to the difference of light
intensity observed. In 1976, the CIE introduced a measure of the perception of the
light, called lightness, as the quantity

(3.2) L∗ =


903.3

Y

Yn
if

Y

Yn
≤ 0.008856

116

Å
Y

Yn

ã1/3

− 16 if
Y

Yn
> 0.008856

where Yn is the highest luminance value of the scene. The quantity Y/Yn is called
relative luminance. The space L∗ is perceptually uniform since a difference
of 1 in the space L∗ approximates pretty well 1 JND (see the book of Poynton [22]
for details about this and other of the following technical concepts).

Formula (3.2) makes the lightness have a range of 0 to 100. When scaled to the
range [0, 1], L∗ can be approximated by the 0.4-power of the relative luminance, i.e.
we have the relation

(3.3) 0.01L∗ '
Å
Y

Yn

ã0.4

When shooting a scene, a digital camera captures the light intensity from which it
encodes R,G,B values. Standard digital cameras also perform gamma correction:

(3.4) R′ = R
1
γ G′ = G

1
γ B′ = B

1
γ
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Assuming that these values are encoded in the sRGB color space (which is the standard
color space used in the broadcast and computer industries), γ is approximately 2.2.

Then the relative luminance Y/Yn of an image displayed by a monitor is given by

(3.5)
Y

Yn
' 0.2126R′

γ
+ 0.7152G′

γ
+ 0.0722B′

γ

From formulae (3.5) and (3.3), we end up with the formula

(3.6) L∗ ' (0.2126R′
γ

+ 0.7152G′
γ

+ 0.0722B′
γ
)0.4

(assuming that the lightness is normalized to the range [0,1]).

Finally, using the formula (3.6) and the perceptual uniformity of the lightness L∗,
we can express the JND for the light intensity of a color (R′, G′, B′) displayed at a
screen. An alternative approach to approximate the JND in luminance space can be
found in [25] (chapter 10, section 10.4.2)

3.2. Computation of the terms ε1, ε2,d. We assume that the metric met in
formula (2.12) is operating in the luminance space (e.g. the metric DRIM [3]).

In order to relate the increments ε1, ε2 as well as the measure d in formula (2.12)
to the JND, we have to face the following issue: the JND is determined on a uniform
background whereas expression (2.12) deals with image pixels. In order that the
computation of the JND at an image pixel makes more sense, our proposal is to
compute it using a smoothed version of the image L

(3.7) L̃ := L ∗Gσ

where Gσ is the Gaussian kernel associated to some variance σ. Indeed, convolving
an image with a Gaussian kernel reduces its variations, making the smoothed image
be locally closer to a uniform patch than the original image.

We can then express the JND for the light intensity perceived at the pixel (i, j)
of the image L using the formula (3.3) and the smoothed version L̃ of L as follows.

As a difference of 0.01 in the (normalized) lightness space approximates pretty
well 1 JND, we aim at solving the two functional equations

(3.8) (L̃+ ε1)0.4 − L̃0.4 = 0.01

(3.9) L̃0.4 − (L̃− ε2)0.4 = 0.01

whose solutions are

(3.10) ε1 = (L̃0.4 + 0.01)2.5 − L̃

(3.11) ε2 = L̃− (L̃0.4 − 0.01)2.5

However, defining ε1, ε2 as in (3.10), (3.11) yields an extra issue: we might have
L(i, j) + ε1(i, j) > 1 or L(i, j)− ε2(i, j) < 0. In such a case, the image L+ ε1(i, j)δi,j
or L− ε2(i, j)δi,j and consequently formula (2.12) would not be defined.
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We then relax this perceptual uniformity paradigm in order to stay in the range
[0, 1]. We end up with the following two extensions of equations (3.8) and (3.9)

(3.12) (L̃+ ε1)0.4 − L̃0.4 = min(0.01, 1− L̃0.4)

(3.13) L̃0.4 − (L̃− ε2)0.4 = min(0.01, L̃0.4)

whose solutions are

(3.14) ε1 : = (L̃0.4 + min(0.01, 1− L̃0.4))2.5 − L̃

(3.15) ε2 : = L̃− (L̃0.4 −min(0.01, L̃0.4))2.5

Hence, the image L+ ε1(i, j)δi,j never exceeds 1 since L̃ ≤ L by construction. For
the same reason, L− ε2(i, j)δi,j never gets negative.

Finally, we set

(3.16) d = min(0.01, 1− L̃0.4) +min(0.01, L̃0.4)

where min(0.01, 1− L̃0.4) can be viewed as a perceptual distance between the images
L and L+ ε1(i, j)δi,j and min(0.01, L̃0.4) a perceptual distance between the images L
and L− ε2(i, j)δi,j . The summation of the two terms makes the quantity d represent
a perceptual distance between the images L+ ε1(i, j)δi,j and L− ε2(i, j)δi,j .

4. Tests with the perceptual metric DRIM.

4.1. Dynamic range independent perceptual distances. As mentioned
above, the metric DRIM of Aydin et al. [3] compares in a perceptual manner im-
ages of any dynamic range. It aims at predicting details (contrast) changes between
two images. More precisely, the purpose of this metric is to consider the perception
that a viewer would have of both images relying on psychophysical data, and to esti-
mate at each pixel the probabilities that distortions between the two images appear.
The metric estimates three types of distortions between the two images:

• Loss of Visible Contrast (LVC), meaning that contrast is visible in one image
(called the reference image) and not in the second one (called test image).

• Amplification of Invisible Contrast (AIC), when details that were not in the
reference image appear in the test image.

• Contrast reversal (INV), meaning that contrast is visible in both reference
and test images but with different polarity (i.e. the same contour has the
gradient in opposite directions in the two images.)

The metric first considers the two input images separately and estimates the pixel-
wise probability of contrast to be visible (P k,l./v) and the probability of contrast not to

be visible (P k,l./i ) for each image for each of several bands of orientation l and spatial

frequency k, using models for processes in the human visual system [15, 30, 5].

Then the distortions LVC, AIC and INV are estimated for each pair of bands as:

(4.1) P k,lLV C = P k,lr/v × P
k,l
t/i P k,lAIC = P k,lr/i × P

k,l
t/v P k,lINV = P k,lr/v × P

k,l
t/v ×R

k,l.



10 PRAVEEN CYRIAC, THOMAS BATARD AND MARCELO BERTALMÍO

The subscript r/. and t/. indicate reference and test images. If the polarity of con-
trast in the test and reference images is the same then R is set to 1, else to 0.

The final LVC output of the metric is the probability of detecting LVC distor-
tion in any band, and is obtained by combining the probabilities over all the bands,
according to the formula

LV C = 1−
N∏
k=1

M∏
l=1

(1− P k,lLV C)

where N and M are the number of orientation and spatial bandwidth. AIC and INV
are computed in a similar way.
Note that for applications to tone mapping evaluation, the reference image is the lu-
minance map of an HDR image and the test image is the luminance map of its LDR
tone mapped version.

The metric also provides a “distortion map” (a color image) to visualize pixel-
wise distortions with the following color code: green hue represents LVC, blue hue
stands for AIC and red hue indicates INV, the saturation encoding the magnitude
of the corresponding distortion, whereas the intensity corresponds to the intensity
of the reference image (up to rounding). At each pixel, the maximum of the three
distortions is computed, and the corresponding color is displayed. If the maximum is
lower than 0.5, then the saturation is set to 0.

These three types of distortions estimated by the metric DRIM are illustrated on
Fig. 4.1. On the left column, we show two LDR grey-level images. We apply some
filters to these images in order to create distortions. To the image located in the top
row, we apply a Gaussian smoothing on its top-right part and unsharp masking on its
top-left part in order to obtain respectively a contrast reduction and a contrast en-
hancement. To the image located in the bottom row, we apply some contrast reversal
technique on the pattern in the chair. The images resulting of these filters are shown
in the middle column. Then, we compute the metric DRIM where the reference im-
ages are the original images on the left column and the test images are their distorted
versions in the middle column. The distortion maps, shown in the right column, are
consistent with the artificial distortions we created.

As the output of the metric DRIM encodes at each pixel the probabilities of de-
tecting the distortions LVC,AIC,INV between two images, we reinterpret the metric
DRIM as follows.

Definition 4.1 (Dynamic range independent perceptual metric). Let L,H : Ω −→
R be two images of any dynamic ranges, the perceptual metric DRIM between L and
H is the map

(4.2)
Ω −→ [0, 1]3

DRIM(L,H) : x 7−→ (LV C(L,H)(x), AIC(L,H)(x), INV (L,H)(x))

From the perceptual metric (4.2) we define a set of perceptual distances between
images of any dynamic range.

Definition 4.2 (Dynamic range independent perceptual distances). Let k be a
strictly positive number. The perceptual distance Ek(L,H) between L and H is
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Fig. 4.1. Distortion map illustration. Left: reference images. Middle: test images. Right:
distortion maps.

(4.3) Ek(L,H) : = ‖DRIM(L,H)‖Lk

In others words, we have

(4.4) Ek(L,H) =

∫
Ω

(LV C k(L,H)(x) +AIC k(L,H)(x) + INV k(L,H)(x))1/k dx

Note that both definitions of metric and distance are coherent with the definitions
2.2 and 2.3 in Sect. 2.

Moreover, the distances Ek are symmetric since LV C(L,H) = AIC(H,L) and
INV (L,H) = INV (H,L) according to formula ( 4.1).

4.2. Reducing a dynamic range independent perceptual distance be-
tween an HDR image and its tone mapped version. In this Section, we detail
the gradient descent algorithm mentioned in the end of Sect. 2 in the context of the
distances (4.3).

4.2.1. Expression of the gradient of the distance. We first show the exis-
tence of a solution of the minimization problem related with the distances (4.3).

Proposition 4.3. Let H be an HDR image. Assuming that the metric DRIM
of Definition 4.1 is continuous, the variational problem

(4.5) arg min
L∈LDR(Ω)

Ek(L,H)

has a solution.
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Proof. Each distortion being in the range [0, 1], the Lk norms being continuous,
and the space LDR(Ω) being closed, Proposition 4.3 appears to be a particular case
of Proposition 2.4.

Proposition 4.4. Assuming that H is non constant and the metric DRIM is
differentiable on the space LDR(Ω), the critical points of the energy

(4.6) EkH : L −→ Ek(L,H)

satisfy
(4.7)∫

Ω

LV C(L,H)k−1 ∂LV C(L,H)
∂L(y) +AIC(L,H)k−1 ∂AIC(L,H)

∂L(y) + INV (L,H)k−1 ∂INV (L,H)
∂L(y)

(LV C(L,H)k +AIC(L,H)k + INV (L,H)k)1−1/k
dΩ = 0

∀y ∈ Ω.

The proof of the Proposition relies upon the following postulate: the metric DRIM
only vanishes when the inputs are two identical constant images.

Even if the postulate is counterintuitive, it holds because the metric DRIM first
treats the two images separately. More precisely, it estimates the probabilities that
the contrast is visible or not in each image and then combines the results in order to
determine the distortions LV C,AIC, INV between the two images. Hence, even if
the images are identical, the fact that the images are first treated separately makes
the distortions be 0 only if the probability that the contrast is visible is 0 at each
pixel of both images, i.e. if both images are constant. All the experiments we have
run confirm this analysis.

Proof. The energy EkH is differentiable on the whole set LDR(Ω) since the metric
DRIM does not vanish for non constant images (postulate). Then, according to Prop.
2.5, the critical points of (4.6) satisfy

(4.8)

∫
Ω

δ‖ ‖k
Å
DRIM(L,H)(x);

δDRIM(L,H)(x)

δL(y)

ã
dx = 0 ∀y ∈ Ω

Finally, expression (4.7) follows from (4.8) and

δ‖ ‖k((u1, u2, u3); (v1, v2, v3)) =
uk−1

1 v1 + uk−1
2 v2 + uk−1

3 v3

‖(u1, u2, u3)‖kk−1

The term ∇EkH(L) : y 7−→
(4.9)∫

Ω

LV C(L,H)k−1 ∂LV C(L,H)
∂L(y) +AIC(L,H)k−1 ∂AIC(L,H)

∂L(y) + INV (L,H)k−1 ∂INV (L,H)
∂L(y)

(LV C(L,H)k +AIC(L,H)k + INV (L,H)k)1−1/k
dΩ

is the gradient of the energy EkH at the function L.

4.2.2. The discrete gradient descent algorithm. The discrete approxima-
tion of the gradient descent algorithm in the context of the distances (4.3) is of the
form

(4.10) Ln+1 = Ln − αn∇DEkH(Ln), L0 = TMO(H)
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In what follows, we detail the expressions of the discrete gradient ∇DEkH , the initial
condition L0 and the steps αn.

The discrete gradient operator. We express the discrete gradient ∇DEkH as

(4.11) ∇DEkH(L) : (i, j) 7−→∑
(a,b)∈Ω

LV C(L,H)k−1 ∂LV C
D(L,H)

∂L(i,j) +AIC(L,H)k−1 ∂AIC
D(L,H)

∂L(i,j) + INV (L,H)k−1 ∂INV
D(L,H)

∂L(i,j)

(LV C(L,H)k +AIC(L,H)k + INV (L,H)k)1−1/k

Note that we have omitted the dependence of the terms on the pixels (a, b) for the
sake of shortness.

The discrete functional derivatives of the distortions LV C,AIC, INV with re-
spect to L at the pixels (i, j) are computed using formula (2.12). For instance, dealing
with the distorsion LV C, we have
(4.12)
∂LV CD(L,H)(a, b)

∂L(i, j)
: =

LV C(L+ ε1(i, j) δ(i,j), H)(a, b)− LV C(L− ε2(i, j) δ(i,j), H)(a, b)

d(L+ ε1(i, j) δ(i,j), L− ε2(i, j) δ(i,j))

and the values ε1, ε2, d are determined by (3.14), (3.15) and (3.16) respectively.

The step. The images produced at each iteration of the gradient descent (4.10)
are not necessarily LDR images, but as the metric DRIM is designed for images
of any dynamic range, the numerical scheme is well defined if the values of Ln+1 are
in the range [0, 1] at each iteration which can be achieved if αn is chosen small enough.

We then determine αn through a line search strategy that will force the values of
the image to be in the range [0, 1]. The pseudo-code for the computation of αn is the
following

Initializations: λ = 0, Enew = EkH(Ln), Eold = EkH(Ln) + 1, Ltemp = Ln

while Enew < Eold and Ltemp(i, j) ∈ [0, 1]∀(i, j) ∈ Ω do
λ = λ+ 0.001
Eold = Enew
Ltemp = Ln − λ∇DEkH(Ln)
Enew = EkH(Ltemp)
end while
αn = λ− 0.001

Initial condition and output image of the gradient descent. As the perceptual
metric involved is the metric DRIM, the function L0 should be the light intensity
produced by a screen when displaying the tone mapped image TMO(H), which can
be obtained as follows.

Denoting by R0, G0, B0 the inverse gamma corrected components (see Sect. 3.1)
of the tone mapped image TMO(H) in the sRGB color space, we transform TMO(H)
into XYZ color coordinates with the formula

(4.13)

à
X0

Y0

Z0

í
=

à
0.4124 0.3576 0.1805

0.2126 0.7152 0.0722

0.0193 0.1192 0.9502

íà
R0

G0

B0

í
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As mentioned in Sect. 3.1, the component Y0 is an accurate approximation of the light
intensity produced when displaying a color image on a monitor. Hence, we take Y0 as
the initial condition L0 of the gradient descent (4.10).

In order to make to final output of our algorithm be an LDR image, we project
the steady-state L∗ of the gradient descent onto the discrete space of LDR images
LDR(Ω) as follows.

Assuming that the domain Ω of the HDR image H is of size M × N , we define
the discrete spaces HDR(Ω) and LDR(Ω) as matrices of the form

(4.14) HDR(Ω) = {A ∈M(M,N), Ai,j =
k

65536
, k ∈ [1, 65536] ∩ N}

(4.15) LDR(Ω) = {A ∈M(M,N), Ai,j =
k

256
, k ∈ [1, 256] ∩ N}

Then, the projection PD onto the set LDR(Ω) consists, for A ∈ M(M,N) with
values in the range [0, 1], in clipping and quantizing into the usual 8 bits domain as

(4.16) PDA i,j =


1

256
if Ai,j ≤

1

256
b256×Ai,jc

256
if

1

256
≤ Ai,j ≤ 1

where b c is the floor function.
Finally, the output of the algorithm is the color image of components (R∗, G∗, B∗)

defined byà
R∗

G∗

B∗

í
=

à
0.4124 0.3576 0.1805

0.2126 0.7152 0.0722

0.0193 0.1192 0.9502

í−1à
X0

PDL∗

Z0

í
4.2.3. Preprocessing. To increase the chance that the gradient descent algo-

rithm (4.10) does not stop at a local minimum of the energy EkH too close to the
initial condition L0, we apply a preprocessing on L0 in order to get an initial condition
Lnew of the algorithm (4.10) that is closer (in terms of perceptual distance) to H than
L0. The method we propose relies on the intuition that high values of LVC might
be reduced by application of local sharpening whereas high values of AIC might be
reduced by local Gaussian blurring. Hence we perform local Gaussian blurring and
unsharp masking (4.17) (see [1] for details) to L0 depending on the values of the
function LV C(L0, H) − AIC(L0, H). More precisely, denoting by Lsmooth a blurred
version of L0 and defining Lsharp as

(4.17) Lsharp = L0 + α (L0 − Lsmooth)

for some constant α, we define the image Lnew as
(4.18)

Lnew(i, j)=

Lsharp(i, j) if LV C(L0, H)−AIC(L0, H)(i, j) > 0

(1− β)L0(i, j) + βLsmooth(i, j) if LV C(L0, H)−AIC(L0, H)(i, j) < 0
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Experiments on different tone mapped images described in the next Section show that
the distance with H is indeed reduced as well as the errors in the distortions map.

4.2.4. Numerical scheme. We summarize in this Section the different steps of
our algorithm.

1. Let H be an HDR image and L0 be a tone mapped version of H. As the
metric DRIM only takes into account the luminance information of the input im-
ages, we first convert them into luminance maps: we apply the transformation (4.13)
on the LDR image L0 and extract the luminance channel Y0, and use the function
pfs read luminance[17] to extract the luminance information of H.
2. We perform the preprocessing described in Sect. 4.2.3 on the image Y0 with the
following parameters: the variance σ of the Gaussian smoothing kernel is set to 0.62,
and the constants α, β are respectively 0.7 and 0.5. These values provide good results
and have been fixed for all the experiments in this paper.
3. We apply the gradient descent algorithm (4.10) where the initial condition is the
output of the preprocessing. We test different values for k and different domains for
the summation in the expression of the discrete gradient operator (4.11). Indeed,
because the variational problem we propose is non local, the gradient operator is an
integral operator, meaning that its computation might be very time-consuming. In
order to decrease the execution time of the algorithm, we adopt the following two
approaches: we consider 50×50 neighborhoods, and make use of computers equipped
with multiple cores to compute the gradient operator over the whole image domain.
The algorithm stops when the energy does not decrease anymore, i.e. when we reach
a local or global minimum.

The pseudo code of the gradient descent algorithm is given below.

while Enew < Eold do
for each pixel p do

L+
n = Ln + ε1(p)δp

L−n = Ln − ε2(p)δp, . ε1, ε2 from (3.14) and (3.15)

(LV C+/−, AIC+/−, INV +/−) = DRIM(L
+/−
n , H),

Diff type = (type+ − type−)/d(p), type ∈ Type = {LV C,AIC, INV } . d
from (3.16)

gradient(p) =
∑
X(

∑
Type type

k−1 ×Difftype)/(
∑
Type type

k)1−1/k

. X is either 50× 50 or full image domain
end for

Ln+1 = Ln − αn × gradient, . αn determined in Sect. 4.2.2

(LV C,AIC, INV ) = DRIM(Ln+1, H)

Eold = Enew
Enew =

∑
X(LV Ck +AICk + INV k)1/k

end while
L∗ = Ln . L∗ steady-state of the gradient descent
Return PD(L∗) . PD from (4.16)

4. The final output LDR color image is then obtained by combining the X0

and Z0 components of the output of the preprocessing with the output PDL∗ of the
gradient descent algorithm.
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4.3. Experiments. We test our algorithm dedicated to optimize tone mapped
images on different HDR images taken from the MPI [20] and Fairchild [9] databases,
and tone mapped images produced by the TMOs of Ferradans et al. [11], Drago et
al. [7], Reinhard et al. [24], and Mantiuk et al. [18].

The evaluation of our algorithm is two-fold: global and pixel-wise. As a pixel-
wise measure, we compare the distortion maps (see details in Sect. 4.1) of the initial
condition and output. As a global measure, we compare their averaged perceptual
distance with H, making use of the following energy

(4.19) E(L,H) =
1

|Ω|
∑

(a,b)∈Ω

‖DRIM(L,H)(a, b)‖2

The first experiment we propose consists in evaluating the preprocessing. In
Fig. 4.2, we show the input tone mapped images, output color images of the prepro-
cessing, as well as their distortion maps. We have applied the formula (4.18) to the
luminance channel of tone mapped images obtained with the method of Ferradans et
al.[11] (top row image) and Drago et al. [7] (bottom row image). The HDR source
images are taken from the MPI database [20]. We observe that the LVC distortion
has been reduced, whereas the INV distortion has increased a bit. As we can see in
formula (4.18), the preprocessing is only devoted to reduce the LVC and AIC distor-
tions, and does not take into account the INV distortion. Hence, some choices of the
parameters α, β might yield an increase of the INV distortion.

On Table 4.1, we present results of the preprocessing (amongst other results)
tested on images of the Fairchild database [9] for the TMOs aforementioned. Note
that the images have been rescaled to 200×200 pixels in order to speed up the gra-
dient descent algorithm. Average results have been computed over 10 images of the
dataset. The results confirm that the preprocessing reduces the perceptual distance
with respect to the HDR source image.

In the second experiment, we evaluate the final output of our method described
above for different perceptual distances (4.3) parametrized by a strictly positive num-
ber k. Table 4.1 shows the distance (4.19) of the initial tone mapped images and
output images with a given HDR image for the following values of the parameter
k : 0.8, 1, 1.2, 2, 5 and 50. The summation for the computation of the gradient op-
erator (4.11) has been done on 50 × 50 neighborhoods. The results show that the
minimum distance is always reached for k close to 1 (k = 0.8 in most of the cases),
and the distance increases when k gets away from this optimal k value. Note that the
same behavior occurs when k is lower than the optimal value but we do not show the
result in this paper. We would like to point out that these results were not expected.

In Fig 4.3, we show a region of the output color images obtained with k = 0.8, 1
and 5 along with their distortion maps. The HDR source is the image “snow” from
the MPI database [20]. The input tone mapped image is provided by the TMO of
Mantiuk et al. [18]. Taking a close look, we can see in the distortion maps that there
is an increase in AIC (blue patches) and INV (red patches) with the increase in k
value, which is coherent with the fact that the distance increases with the value of k.
However, visual differences are almost impossible to perceive for such close values of
k.
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Fig. 4.2. Evaluation of preprocessing stage for Ferradans et al.[11] (top row) and Drago et al.
(bottom row) TMOs. From left to right: input tone mapped image, output of preprocessing stage,
distortion map of the input, distortion map of the output.

Fig. 4.3. Comparison of output with different k values. Top left: final output with k = 0.8. Top
middle: final output with k = 1.2. Top right: final output with k = 5. Bottom row: corresponding
distortion maps

In the third experiment, we compare the output of the preprocessing stage with
the final output of our method using 50× 50 neighborhoods and parameter k = 0.8,
as well as their distortions maps (see Fig 4.4). The HDR source is the image “Peck-
Lake” from the Fairchild database, and the input tone mapped image is provided by
the TMO of Drago et al. [7]. Its corresponding distortion map reveals a great loss
of contrast (green patches). We observe that the preprocessing stage reduces such a
distortion, and the gradient descent algorithm applied to the output of the prepro-
cessing reduces it to even greater extent. These improvements are confirmed when
computing the perceptual distances (4.19) at each stage with the HDR source image:
initial (0.639), preprocessing (0.509), and final (0.389). There is a 23% reduction in
distance in the final image compared to the preprocessed image. From this result and
the ones shown in Table 4.1 we can claim that applying the gradient descent algorithm
to the output of the preprocessing provides much better results than applying only
the preprocessing.

Fig 4.5 shows some regions of images on Fig. 4.4 and “BarHarborPresunrise” from
the Fairchild database. We observe that the preprocessing and the final output have
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Table 4.1
Distance with different k values.

XXXXXXXXImage
TMO Drago

et al.[7]
Reinhard
et al.[24]

Mantiuk
et al.[18]

Ferradans
et al.[11]

AmikBeav
DamPM1

Initial 0.726 0.744 0.763 0.745
Preprocess 0.573 0.611 0.66 0.702

Final (k = 0.8) 0.464 0.515 0.59 0.546
Final (k = 1) 0.469 0.517 0.59 0.545

Final (k = 1.2) 0.474 0.519 0.59 0.546
Final (k = 2 ) 0.494 0.534 0.6 0.558
Final (k = 5 ) 0.543 0.57 0.624 0.559
Final (k = 50) 0.561 0.588 0.639 0.602

Barharbor
Presun

Initial 0.662 0.665 0.533 0.561
Preprocess 0.53 0.552 0.493 0.511

Final (k = 0.8) 0.417 0.454 0.446 0.46
Final (k = 1) 0.416 0.452 0.442 0.457

Final (k = 1.2) 0.418 0.453 0.444 0.454
Final (k = 2) 0.433 0.465 0.447 0.462
Final (k = 5) 0.469 0.508 0.47 0.490
Final (k = 50) 0.496 0.528 0.484 0.501

Average
(10 images)

Initial 0.645 0.657 0.573 0.590
Preprocess 0.527 0.575 0.515 0.536

Final (k = 0.8) 0.417 0.460 0.457 0.460
Final (k = 1) 0.420 0.461 0.457 0.460

Final (k = 1.2) 0.426 0.464 0.457 0.462
Final (k = 2 ) 0.442 0.476 0.467 0.471
Final (k = 5) 0.475 0.511 0.481 0.494
Final (k = 50) 0.490 0.529 0.497 0.511

higher contrast than the original tone mapped images which means that the LVC
distortion has been reduced. Note that the results on top-row are coherent with the
distortion maps in Fig. 4.4.

At last, we analyze the impact of modifying the neighborhood size used for the
summation in the expression of the gradient operator (4.11). We test our algorithm
for 50 × 50 as well as 200 × 200 neighborhoods (the whole image domain). The pa-
rameter k has been set to 0.8, which is the value giving the best results in the case of
50 × 50 neighborhoods according to the second experiment. In Fig 4.6, we show the
output color images obtained with the two neighborhood sizes along with their dis-
tortion maps. The HDR source images are “BarHarborPresunrise” and “PeackLake”
from the Fairchild database. The input tone mapped image is provided by the TMO
of Reinhard et al. [24] and Drago et al. [7]. The distortion maps show that using
the whole image domain substantially reduces the LVC distortion (less green patches
appear in the distortion map), and reduces (in less proportion) the INV distortion
(less red patches). This improvement is due to the fact that the metric DRIM uses the
information of the whole image to estimate the distortions at each pixel (see details
in Sect. 4.1). Then, restricting the domain where we compute the gradient operator
yields some information loss.

Table 4.2 compares the distance between the final output images (using the afore-
mentioned domains) with the HDR source image. We can see that the results obtained
by using a 200 × 200 neighborhood have smaller error than the results achieved by
using a 50×50 neighborhood, and this numerical behavior is consistent with the visual
distortion maps presented in Fig 4.6.

In Fig 4.7, we show some results of our algorithm with a 200× 200 neighborhood
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Fig. 4.4. Comparison between the output of preprocessing stage and the final stage. Top left:
input tone mapped image of Drago et al.[7]. Top middle: output of preprocessing stage. Top right:
final output with k = 0.8. Bottom row: corresponding distortion maps.

Fig. 4.5. Visual comparisons between the output images of the different stages. Top left:
“PeacLake” tone mapped by Drago et al. [7]. Bottom left: “BarHarborPresun” tone mapped by
Drago et al. [7]. Middle: output of preprocessing stage. Right: final output with k = 0.8.

tested on the different TMOs mentioned above applied to the same HDR image. By
a close observation of the output images, we can notice an enhancement of details of
the initial tone mapped images which is confirmed by comparing the corresponding
distortion maps (reduction of LVC distortion).
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Fig. 4.6. Comparison between the final output with 50× 50 and 200× 200 neighborhoods. First
row left: input tone mapped image of Reinhard et al. [24], third row left: input tone mapped image
of Drago et al. [7]. Middle: final output with 50 × 50 neighborhood and their distortions maps.
Right: final output with 200 × 200 neighborhood and their distortions maps.
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Table 4.2
Distance at the final stage of our method with 50× 50 and 200× 200 neighborhoods. Percentile

improvement at each stage with respect to the original tone mapping result is given in brackets.

XXXXXXXXImage
TMO Drago

et al.[7]
Reinhard
et al.[24]

Mantiuk
et al.[18]

Ferradans
et al.[11]

AmikBeav
DamPM1

Initial 0.726 0.744 0.763 0.745
Preprocess 0.573 (21%) 0.611 (13%) 0.66 (14%) 0.702 (6%)

Final (50 × 50) 0.464 (36%) 0.515 (31%) 0.59 (23%) 0.546 (27%)
Final (200 × 200) 0.264 (64%) 0.356 (52%) 0.47 (38%) 0.388 (48%)

Barharbor
Presun

Initial 0.662 0.665 0.533 0.561
Preprocess 0.53 (20%) 0.552 (17%) 0.493 (7%) 0.511 (9%)

Final (50 × 50) 0.417 (37%) 0.454 (32%) 0.446 (16%) 0.46 (18%)
Final (200 × 200) 0.206 (69%) 0.248 (63%) 0.352 (34%) 0.34 (39%)

5. Conclusion. Based on perceptual metrics that measure distortions between
images of different dynamic range, we propose in this paper a method to improve tone
mapped images based on a non local variational problem. We tested this approach
with the metric DRIM [3] for different tone mapped images provided by several tone
mapping operators. The experiments show that our approach improves the tone
mapped images tested in the sense that it reduces their perceptual distance to their
HDR source. Our method provides an average reduction of the distance by more than
25%.
Further work will be devoted to apply the proposed framework to contexts where
minimization of a perceptual distance could also be useful. One such application
may be to optimize gamut mapping methods by considering a perceptual metric that
measures color distortions between images. We are also investigating improvements
of our mathematical model. Indeed, we were using in this paper a gradient descent
approach in order to reduce perceptual distances between images. However, this
approach suffers from two main issues when dealing with tone mapping: first, the
gradient descent algorithm might stop at local minima that are not global and that
are close to the initial condition; second, the representation of LDR and HDR images
as smooth functions is not very realistic since we are not taking into account the
specificity of their dynamic ranges: the use of other functional spaces might be more
appropriate and lead to better algorithms.
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