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Abstract. We consider grouping as a general characterization for problems such as clustering,
community detection in networks, and multiple parametric model estimation. We are interested in
merging solutions from different grouping algorithms, distilling all their good qualities into a con-
sensus solution. In this paper, we propose a bi-clustering framework and perspective for reaching
consensus in such grouping problems. In particular, this is the first time that the task of find-
ing/fitting multiple parametric models to a dataset is formally posed as a consensus problem. We
highlight the equivalence of these tasks and establish the connection with the computational Gestalt
program, that seeks to provide a psychologically-inspired detection theory for visual events. We also
present a simple but powerful bi-clustering algorithm, specially tuned to the nature of the problem we
address, though general enough to handle many different instances inscribed within our characteriza-
tion. The presentation is accompanied with diverse and extensive experimental results in clustering,
community detection, and multiple parametric model estimation in image processing applications.

Key words. Consensus clustering, community detection, parametric model estimation, bi-
clustering, matrix factorization

1. Introduction. This paper addresses the problem of grouping data corrupted
by noise and outliers. In our context, the data is a set X of m elements, described by

(1.1) X =

(⋃
i

Xi

)
∪ O with (∀i)Xi ∩ O = ∅,

where each Xi is a group (the number of groups is unknown), and O contains the
outliers. Depending on the application context, O might be empty. Generically, we
consider that a grouping algorithm provides a set C of candidate groups (C ⊂ P(X ),
where P(X ) is the power set of X ). The groups in C do not need to form a partition
of X nor to cover X . This general characterization subsumes many different grouping
problems. For example, in this paper we address the following problems:

• If C is a partition of X , then we are considering clustering algorithms. Tra-
ditionally, these algorithms assume O = ∅. For a broad perspective on clus-
tering techniques, we refer the reader to the overview reported in [22].

• If our dataset is a network, i.e., X are its vertices, then we have a commu-
nity detection problem (notice that communities are not required to form
a partition of X ). See [38, and references therein] for a comprehensive survey
on community detection.

• If C contains a single group that was obtained by fitting a parametric model,
we are dealing with a parametric model estimation problem.

Of course, many other problems fit into this characterization, such as image and video
segmentation, or object detection in images and videos, to name just a few. Let us
consider that we are provided with a pool (universe) {Ck}ck=1 of c such candidate sets.
These candidates might come from:

• running different grouping algorithms;
• running one algorithm with different parameters;
• running a grouping algorithm on different modalities of the same data;
• all of the above simultaneously.
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Given the pool {Ck}ck=1, we ask: which is the set of candidates Ck most representative
of the actual grouping structure of X ? For this, one would need a criterion to select
a specific set and discard all others. This has proven a rather difficult task, where
even standard measures, such as modularity or normalized cuts, have known critical
shortcomings [24, 27]. But why do we have to settle with selecting one solution from
the pool? We argue that a better option is to combine the information of the different
results in the pool into a new result consistent with them.

Recently, there have been interesting attempts to formulate this consensus prob-
lem in a sound way. Let us assume that we have a quality measure ω for each group
in
⋃c
k=1 Ck. We establish a relation that says if two groups C ∈ Ck, C ′ ∈ Ck′ are

mutually consistent (e.g., they do not overlap, C ∩C ′ = ∅). We then browse through
the pool

⋃c
k=1 Ck and build a new solution by combining the subset of mutually con-

sistent groups with higher quality. This can be posed as a maximum-weight clique
problem. This type of formulation was simultaneously introduced in [7] and [21] for
image segmentation and extended for clustering [32] and community detection [45].

These two approaches, picking one candidate set Ck from the pool or combining
all candidate sets to form a new solution, share a common issue: we need a sound
and general quality measure (in the sense that it should allow to compare algorithms
based on different principles, applied to the same data). In the clustering field, a
plethora of methods to assess or classify clustering algorithms have been developed,
some of them with very interesting results, e.g., [5,10,23,24]. Unfortunately, the lack
of a general definition (i.e., algorithm independent) makes difficult to find a unifying
clustering theory and/or measure. In community detection for example, the best way
to establish the community structure of a network is also an elusive task and still
disputed, e.g., [27].

An alternative approach is to find and exploit the consistencies between the differ-
ent grouping candidates in {Ck}ck=1. Consensus/ensemble clustering is a well known
family of techniques used in data analysis to solve this type of problems. Typically, the
goal is to search for the so-called “mean” (or consensus) partition, i.e., the partition
that is most similar, on average, to all the input partitions.

The most common form of consensus clustering involves creating an m ×m co-
occurrence matrix (recall m is the number of data elements), defined as

(1.2) B = 1
c

c∑
k=1

Bk, where (Bk)ij =

{
1 if (∃C ∈ Ck) i, j ∈ C;

0 otherwise.

There are many algorithms for analyzing B, from simple techniques such as applying
a clustering algorithm to it (e.g., k-means, hierarchical or spectral clustering), to more
complex techniques. See [51] for a thorough survey of the area. In one way or another,
all these techniques try to find a binary low-rank decomposition of B such that

(1.3) B∗ = argmin
B̃∈{0,1}m×m

c∑
k=1

∥∥∥Bk − B̃
∥∥∥2

F
= argmin

B̃∈{0,1}m×m

∥∥∥B− B̃
∥∥∥2

F
.

In [33], for example, the task is relaxed into a symmetric non-negative matrix factor-
ization problem, replacing the binary constraint by non-negativity.

In the context of community detection, two works have explicitly addressed con-
sensus within the standard framework just described. In [9], the matrix B is simply
thresholded, and its connected components give the final result. In [28], B is consid-
ered as the adjacency matrix of a new weighted network. Then the following steps
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are iteratively applied: (1) a unique non-deterministic algorithm is applied c times,
(2) form B and threshold it to make it sparse, (3) stop if B is block diagonal, and (4)
build a new network from B and go to (1).

The mentioned aggregation process used to build B involves loosing information
contained in the individual matrices Bk. In particular, only pairwise relations are
conserved, while relations involving larger groups of nodes might be lost. In addition,
using the average of several partitions might not be robust if some of them are of poor
quality. All these methods involve working with an m ×m matrix, which is highly
prohibitive when the number of nodes m in the network becomes large.

Contributions. We propose a novel framework and perspective for reaching
consensus in grouping problems by posing them as a bi-clustering problem.1 The
proposed approach has two main advantages: (1) all relations are conserved (instead
of only keeping pairwise relations) and contribute to the consensus search, and (2) we
use a much smaller matrix, rendering the problem tractable for large datasets. We
also propose a new parameterless bi-clustering algorithm, fit for the type of matrices
we analyze. We stress that our goal is not finding a better optimum for the objec-
tive function of a given grouping method, but obtaining an overall good solution via
consensus search.

In addition, this is the first time that the task of finding/fitting multiple paramet-
ric models to a dataset is formally posed as a consensus/bi-clustering problem. The
equivalence of these tasks is highlighted by the proposed framework and we devote
special attention to explain the rationale behind this new characterization.

Finally, we make a formal connection with the computational Gestalt program [13],
that seeks to provide a psychologically-inspired detection theory for visual events. The
proposed framework allows to consider this theory from a new perspective both from
the statistical and algorithmic viewpoints. We provide some insights that show the
suitability of our approach as a new research direction in this field.

Organization. The remainder of this paper is organized as follows. In Section 2
we present the proposed approach for our general grouping framework. In sections 3, 4,
and 5 we show how this framework applies to the problems of clustering, community
detection, and multiple model parametric estimation, respectively. Each of these
sections is accompanied with diverse and extensive experimental results. In Section 6
we discuss the links with the computational Gestalt theory. Finally, we provide some
closing remarks in Section 7.

2. Reaching consensus by solving a bi-clustering problem. The input of
the consensus algorithm is a pool {Ck}ck=1 of candidates, that defines the universe of
candidates U =

⋃c
k=1 Ck. We also assign a weight wj ∈ R+ to each group candidate

Cj ∈ U . From the data X and U , we define an m × n matrix A, whose rows and
columns represent them = |X | data elements and the n = |U| candidates, respectively;
the element (A)ij = wj if the i-th element belongs to the j-th group, and 0 otherwise.
We call A a preference matrix. Fig. 1 presents two simplified examples.

The group weights indicate the importance assigned to each candidate and can
take any form. The simplest form uses uniform weights (∀j) wj = 1, in which case
A becomes a binary matrix. In this case, no prior information is used about the
quality of the input group candidates. If we have such information, it can be simply
incorporated in these weights.

1A preliminary version of this work, restricted to community detection in networks was published
in the conference proceedings [46].
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(a) Parametric model estimation
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(b) Clustering

Fig. 1: Two examples of preference matrix. (a) The data (objects) consist of 250
points on five segments (models) forming a star. The groups are potential parametric
models. (b) The data (objects) consist of 400 points on four clusters. In both cases the
preference matrix A was reordered (permuted) by group for improved visualization.

Although a clustering of elements/objects, using as features the set of sampled
models they belong to, might lead to good results in certain applications, it does
not fully address the problem at hand. The relationship of the objects with the
sampled models is the actual focus of interest (notice the block structure of A in
Fig. 1). A pattern-discovery algorithm is needed in this relationship space. We are
thus interested in finding clusters in the product set X ×U . Such a problem is known
in the literature as bi-clustering [37, and references therein], and we are therefore
formally connecting it here for the first time with consensus algorithms for grouping
problems.

The main contribution of this work is therefore to address the problem of grouping
by bi-clustering the preference matrix A. This provides a very intuitive rationale since,
for each bi-cluster, we are jointly selecting a subset of elements and a subset of groups
such that the former belongs to the latter. By directly analyzing A we keep all the
information contained in U (A is a complete representation of U). More classical
consensus algorithms analyze an m × m matrix, see definition (1.2), while we, in
contrast, work with a much smaller matrix since for common grouping problems m�
n. In multiple parametric model estimation, commonly m� n and we will show how
to prune U to go back to the general scenario. Another important feature for analyzing
very large datasets is that each base algorithm does not need to see the complete
dataset. We can split the network in several (preferably overlapping) chunks, run one
or more algorithms in each chunk, and let our bi-clustering formulation perform the
stitching via consensus.

Notice of course that if all the base algorithms consistently make the same mis-
takes, these will be translated to the consensus solution, a characteristic common
to all consensus algorithms, since there is no natural way to detect such consistent
mistake.

2.1. Solving the bi-clustering problem. Among many tools for bi-clustering,
see [37] and references therein, the Penalized Matrix Decomposition (PMD) [52] and
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the Sparse Singular Value Decomposition (SSVD) [30] have shown great promise,
mainly due to their conceptual and algorithmic simplicity. We are looking for in-
terpretable row-column associations within A. Both algorithms iterate two steps
until some stopping criterion is met: (1) find one bi-cluster {u,v, s}, where u ∈ Rm,
v ∈ Rn, s ∈ R+; (2) set A = A− suvT. For step (1), these algorithms solve

(PMD) min
u,v,s

∥∥A− suvT
∥∥2

F
s.t.

‖u‖2 = 1, ‖v‖2 = 1,

‖u‖1 ≤ c1, ‖v‖1 ≤ c2,
(2.1)

(SSVD) min
u,v,s

∥∥A− suvT
∥∥2

F
+ λ1 ‖u‖1 + λ2 ‖v‖1 .(2.2)

The sparsity-inducing constraints on u, v lead to approximating A with only a few
rows and columns of uvT. Let R,Q be the active sets (the sets of nonzero elements)
of u, v, respectively. R,Q act as indicators of the presence of a rank-one submatrix
in A: R selects rows (elements), while Q selects columns (groups). This behavior
makes both PMD and SSVD very suitable for bi-clustering.

Correctly setting the parameters c1, c2, λ1, λ2 is crucial, since they determine de
size of the bi-clusters (via the sparsity of u,v). PMD sets c1, c2 via cross-validation,
while SSVD uses the Bayesian information criterion. In [40] a minimum description
length criterion is used to set λ1, λ2 and the number of iterations for SSVD. In our
experiments, finding the correct values for these parameters has proven extremely
challenging, since each experiment needs specifically tuned set of values. This moti-
vates in part the development of the algorithm described next.

We propose to follow a different path for solving the bi-clustering problem at
hand. Let us first notice that non-negative matrix factorization (NMF) [36] pursues
a similar objective. For 1 ≤ q ≤ min{m,n}, NMF solves the problem

(2.3) min
X∈Rm×q,Y∈Rq×n

‖A−XY‖2F s.t. X,Y ≥ 0.

A is, in our application, a sparse non-negative matrix. Notice that the positivity
constraints on X,Y have a sparsifying effect on them. The intuition behind this is
that when approximating a sparse non-negative matrix, the non-negative factors will
only create a sparse approximation if they are themselves sparse. We thus obtain
sparse factors X,Y as in PMD and SSVD without introducing any (difficult to set)
parameters. Another consequence of the sparsity of A is that the Frobenius norm is
not entirely well suited for analyzing it. It is more appropriate to use instead an L1
fitting term,

(2.4) min
X∈Rm×q,Y∈Rq×n

‖A−XY‖1 s.t. X,Y ≥ 0.

With this change, we are now aiming at obtaining a “median” type of result instead
of the mean, providing robustness to poor group candidates present in the pool (i.e.,
columns of A in our representation).

Any standard NMF algorithm can be adapted to use the L1 norm and solve (2.4);
in this work, we modify the method in [54], that has shown good performance in
practice. The algorithmic details are provided in Appendix A.

A challenge with NMF is that q is not an easy parameter to set. To avoid a
cumbersome decision process, we propose to set q = 1 and inscribe the L1-NMF
approach in an iterative loop, as with PMD and SSVD. The rank-one factorization
XY will thus approximate a subset of A (because of the sparsity-inducing L1-norm),
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correctly detecting a single bi-cluster. Note that this is related to a common problem
in clustering known as masking, where a conceptually similar iterative procedure can
address the issue [44].

2.2. Algorithmic decisions and parameters. Algorithm 1 summarizes the
proposed non-negative bi-clustering approach. Notice that instead of subtracting the
product XY from A as in PMD and SSVD, we set the corresponding rows and
columns to zero, enforcing disjoint active sets between the successive Xt and Yt, and
hence orthogonality. This also ensures that non-negativity is maintained throughout
the iterations. If the bi-clusters are allowed to share elements, we do not change the
rows of A. The proposed algorithm is very efficient, simple to code, and demonstrated
to work well in the experimental results that we will present later.

The iterations should stop (1) when A is empty (line 2), or (2) when A only
contains noise (no structured patterns). The second case is controlled by the param-
eters τR and τC (line 7). These parameters determine the minimum bi-cluster size,
τR rows and τC columns, necessary for being considered a structured pattern. Note
that in contrast with the parameters discussed before, these are intuitive, related to
the physics of the problem, and easier to set: τR encodes the minimum number of
elements that a bi-cluster should contain, while τC encodes the minimum number of
candidate groups that need to be in agreement to form a bi-cluster.

In theory, τR and τC depend on m, n, and the probability of having a non-zero
entry in the preference matrix (the probability of success in a Bernoulli trial). It
would be interesting to further explore these dependencies from a theoretical point of
view. In all experiments in this paper, we set τC = 3. For clustering and community
detection, we use τR = 6 for all experiments. The number and the diversity of the
experiments in which these values work show that, in practice, they do not need
to be carefully tuned for each case. This is due in part to the fact that in the
clustering and community detection experiments, the bi-clusters are not allowed to
intersect, enabling the proposed algorithm to quickly eliminate spurious entries from
the preference matrix.

In the case of multiple parametric model estimation, where the bi-clusters do
intersect, we set τR = 1 and enforce a posteriori a more strict (higher) value for it
using the computational Gestalt theory. This adjustment can be done during the
bi-clustering process but we decided to do it a posteriori to improve clarity and ho-
mogeneity between the different applications.

Notice that, as an alternative, we could consider the proposed bi-clustering al-
gorithm as a lossy compression encoder; set τR = τC = 1, and select the first T
bi-clusters that yield maximum compression (low T ) with minimal loss (low fitting
error).

Note. A seemingly related approach [33] involves using symmetric non-negative
matrix factorization (SNMF) to cluster the co-occurrence matrix, defined in Equa-
tion (1.2), into q clusters. This is achieved by approximating problem (1.3) with

(2.5) min
H∈Rm×q
D∈Rq×q

∥∥B−HDHT
∥∥2

F
s.t.

H,D ≥ 0,

HTH = I,

where HDHT provides a non-negative low-rank approximation of B, and D is a
matrix that encodes the sizes of the q obtained clusters. As in all matrix decomposition
methods, the number of clusters q is a critical parameter and it is in fact one of the
parameters we are interested in discovering!
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Algorithm 1: Bi-clustering algorithm.

input : Preference matrix A ∈ Rm×n, stopping parameters τR, τC ∈ N
output : Bi-clusters {(Rt,Qt)}Tt=1

1 T ← 0;
2 while A 6= 0 do
3 T ← T + 1;
4 Solve Problem (2.4) for X,Y with q = 1;
5 RT ← {i, 1 ≤ i ≤ m, (X)i,1 6= 0};
6 QT ← {j, 1 ≤ j ≤ n, (Y)1,j 6= 0};
7 if |RT | ≤ τR ∨ |QT | ≤ τC then
8 T ← T − 1;
9 break;

10 if different bi-clusters are not allowed to share rows then
11 (∀i, j) i ∈ RT , 1 ≤ j ≤ n, (A)ij ← 0;

12 (∀i, j) 1 ≤ i ≤ m, j ∈ QT , (A)ij ← 0;

13 return {Rt}Tt=1, {Qt}Tt=1

Digging deeper, we point out that

(2.6)

n∑
i=1

(A)i(A)T
i = B,

where (A)i is a column of A and, when bi-clusters are not allowed to share rows, by
construction we have (∀t, t′), t 6= t′,Rt∩Rt′ = ∅. We thus have the same orthogonality
constraints as in Equation (2.5). The proposed formulation presents all the benefits
of Equation (2.5), but with increased robustness. A double averaging is present in
the original problem (1.3) and thus in problem (2.5). First, Equation (2.6) acts like
a pooling operator in A, loosing critical information. Second, the Frobenius norm is
known to be non-resilient to outliers. On the other hand, our formulation computes
a robust median approximation to the preference matrix, which carries all needed
information.

2.3. On the input pool of group candidates. There is a key ingredient in
every consensus problem: the quality of the input group candidates. Performing the
consensus of many extremely poor groups will not yield a good consensus solution.
Among the candidates fed to any consensus algorithm, there needs to be a certain
number of reasonably good groups and, at the same time, not too many bad groups.
Otherwise, if the number of bad groups overwhelms the number of good groups, a
masking phenomenon will occur and we will be facing an extremely hard pattern-
discovery problem.

We will thus assume that, in the general case, we have a set of reasonably good
candidate groups, contaminated with a few bad groups (by few we mean a number
not overwhelmingly large). In the particular case of parametric model estimation,
we have at our disposal more information about the nature of the groups (they are
parametric) and thus employ a simple but powerful testing procedure to eliminate the
vast majority of bad candidate groups. We are currently investigating how to perform
similar tests in non-parametric scenarios.

The nature of the group candidates plays a non-negligible role in the consensus
grouping: we would like the mistakes of the grouping algorithms to be as uncorrelated
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as possible (this is a general observation that applies to all consensus approaches).
The algorithms should ideally fit the data well, with their “mistakes” being caused
by different factors in the data and/or different algorithmic decisions/artifacts and
hence not systematically appearing over and over. This a key observation that is
not trivially enforced in practice; often it is enough to use a pool of candidates that
exhibit some consistency in the results while keeping some variety.

Following the presentation of our general consensus grouping framework and pro-
cedure, we now proceed to show different application contexts. We focus on clustering,
community detection in networks, and multiple parametric model estimation.

3. Consensus clustering. Clustering seeks to group observations into subsets
(called clusters) so that, in some sense, intra-cluster observations are more similar
than inter-cluster ones. It is one of the key components of exploratory data min-
ing and a common technique for statistical data analysis, used in such diverse fields
as machine learning, pattern recognition, image analysis, information retrieval, and
bioinformatics. See [22] for a broad overview of the field.

Consensus clustering is the most straightforward application of our grouping
framework. Each set Ck of candidate groups in the pool {Ck}ck=1 is the result of
an instance of a clustering algorithm, and the preference matrix A is therefore con-
structed in a straightforward fashion.

3.1. Experimental results. In these experiments, we use uniform weights in
A. For assessing the quality of a solution when ground truth is available, we use
the standard normalized mutual information (NMI) and F-measure to evaluate the
results. Let G, C be the ground truth and the evaluated solution, respectively. The
normalized mutual information is defined as

(3.1) NMI(G, C) = 2
H(G) + H(C)−H(G, C)

H(G) + H(C)
,

where H(G),H(C) are marginal entropies, and H(G, C) is the joint entropy of G and C.
The F-measure is defined as

(3.2) Fβ(G, C) =
(β2 + 1) · PG(C) · RG(C)
β2 · PG(C) + RG(C)

,

where PG(C),RG(C) are the precision and recall rates of C with respect to G. In these
experiments we use β = 1, and express the F-measure as a percentage.

In figures 2 and 3 we observe two synthetic examples, where the datasets are
different mixtures of Gaussians. In Figure 2 we run several instances of a Gaussian
mixture model (GMM) clustering algorithm and K-means, where each instance has a
different number of pre-specified clusters. In Figure 3 we run several instances of the
mean-shift algorithm, each one with a different kernel size. We show the bi-clusters
obtained with the proposed consensus algorithm. In both cases and without tuning
any parameters, the quality of the solution approximates quite well the ground truth
both qualitatively (by visual inspection) and quantitatively. In Figure 2, the consensus
solution ranks second best when comparing with the base algorithms in terms of NMI
and F-measure; in Figure 3, it ranks first.

It is interesting to visualize the differences between the more classical NMF, see
problem (2.3), and L1-NMF, see problem (2.4). In Figure 4 we compare the active-sets
of the rank-one factors X,Y obtained with both formulations at the first iteration of
Algorithm 1 for the example of Figure 2. NMF approximates in average the preference
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Fig. 2: Synthetic example of the proposed bi-clustering consensus computed from dif-
ferent instances of GMM and K-means, varying the number of classes. Each bi-cluster
corresponds to jointly selected point and cluster assignments (see the bi-clustered
preference matrix), we thus show with the same color its points and the covariance
matrices of its constituting clusters, represented by ellipses. NMI and F-M stand for
normalized mutual information and F-measure, respectively.

matrix as a whole; thus, the active-set of the analyzed bi-cluster merges information
from almost all the candidate groups (i.e., its Y factor is non-sparse), trying to ap-
proximate more than a single group (i.e., its X factor is non-sparse). Contrarily,
the proposed L1-NMF formulation robustly fits a subset of the preference matrix en-
tries; it thus selects a sparse number of candidate groups and closely fits a single
ground-truth group.

We compare in Figure 5 our bi-clustering approach with clustering-based consen-
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Base algorithms
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Fig. 3: Synthetic example of the proposed bi-clustering consensus computed from
different mean-shift instances, varying the kernel size. The bi-clusters correspond to
jointly selected point and cluster assignments (see the bi-clustered preference matrix),
we thus show with the same color its points and the corresponding covariance matrix,
represented by an ellipse. NMI and F-M stand for normalized mutual information
and F-measure, respectively.

sus methods on a standard synthetic dataset1. Our first observation is that spectral
clustering can obtain good results as a consensus algorithm, as long as the correct
number of classes is used. Notice that this is sort of a self-defeating argument because
we are introducing new (and critical) parameters for getting rid of other parameters.
The same consideration is valid for SNMF [33], although in this case we obtain a
very poor solution even if the correct number of classes is used (matrix B is not
really clustered, a thresholding of HDHT being still needed, see problem (2.5)). An-
other clustering algorithm, J-linkage [48], popular in parametric model estimation,
also yields a poor solution. Our algorithm, without tuning any parameters yields a
good solution and only misclassifies a single point (this occurs because 5 out of the 8
algorithms wrongly classify that specific point).

We also present experiments on standard real datasets from the UCI repository [4]
in Figure 6, where we compute the consensus solution of several instances of K-means
and spectral clustering. In all four examples, we obtained results competitive with the
best solutions in the pool (the best being always different for different datasets, our
proposed framework is universally good). In the Iris dataset, our consensus solution
is better than all of the base solutions. When the dataset contains only two classes,
e.g., the Breast dataset, it becomes much harder to optimize for the number of classes
since in the pool of solutions there is no balance between under and over-clustered
solutions: all of them either have the right number of clusters or are over-clustered.
In this case, we obtained good results by only employing algorithms that yield two or
three clusters.

1http://www.vision.caltech.edu/lihi/Demos/SelfTuningClustering.html

http://www.vision.caltech.edu/lihi/Demos/SelfTuningClustering.html
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Fig. 4: Bi-cluster extraction using NMF (problem (2.3)) versus L1-NMF (prob-
lem (2.4)) in Algorithm 1. We show the active set of the first extracted bi-cluster
in the example of Figure 2 (depicted there in light blue). Sparsely fitting the prefer-
ence matrix, by using the L1-norm, helps to detect a bi-cluster that corresponds to a
single ground-truth group, without tuning active-set thresholds.

Subspace clustering. In many problems involving high-dimensional data, each
class or category spans a low-dimensional subspace of the high-dimensional ambient
space. The data are a set X of m d-dimensional data points {xi ∈ Rd}mi=1 that lie
approximately in a union of low-dimensional subspaces. Sparse subspace clustering
aims at clustering these data points, finding the correct subspaces. The data are
represented as a matrix D ∈ Rm×d, whose columns are the vectors xi. In the case of
noisy data, the underlying algorithm is defined as [14]:

1. Solve the sparse optimization problem

(3.3) min
C,Z
‖C‖1 + κ

2µD
‖Z‖2F s.t.

D = DC + Z,

diag(C) = 0,

where µD ∈ R+ is a normalization coefficient dependent on D, and κ ∈ R+

is a parameter of the algorithm that controls how much denoising we wish to
apply.

2. Normalize the columns (C)i of C as (C)i ← (C)i/ ‖(C)i‖∞.
3. Form a similarity graph with m nodes representing the data points, set the

affinity matrix W of the graph to W = |C|+ |CT| (this is the element-wise
absolute value operator, i.e., (|B|)ij = |(B)ij |).

4. Apply spectral clustering [35] to the similarity graph, the number K of desired
clusters/subspaces being a parameter of the algorithm.

We use subspace clustering for motion segmentation in videos: given feature
points on multiple rigidly moving objects tracked in multiple frames of a video, the
goal is to separate the feature trajectories according to the object’s motions [14].
We treat the case of subspace clustering as yet another grouping instance, therefore
addressed by our proposed bi-clustering consensus approach. We run several instances
of this algorithm with different values for the regularization parameter κ and compute
the consensus solution from them. (We also experimented with different numbers of
classes, but sparse subspace clustering is very sensitive to using the wrong number
of classes.) The results of this experiment are shown in Figure 7. In this case,
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(a) The base algorithms are different spectral clustering instances, obtained by varying the
kernel weighting σ ∈ {0.005, 0.01, 0.015, 0.02} for producing the similarity matrix (from left
to right), and the desired number of classes K ∈ {3, 4} (from top to bottom).
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(b) Spectral clustering [35] (from left to right, K = 2, 3, 4)
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(c) SNMF [33] (q = 3)
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(d) J-linkage [48]
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(e) Bi-clustering

Fig. 5: Solving the consensus problem on a standard synthetic dataset [55]. (a) Re-
sults obtained with the base algorithms. (b) Clustering the co-occurrence matrix
might yield good results but introduces new parameters, depending on the employed
clustering algorithm. (c) SNMF yields a poor result, even when the correct number of
classes is specified. (d) J-linkage yields poor results. (e) A single point is misclassified
with the proposed bi-clustering approach. NMI and F-M stand for normalized mutual
information and F-measure, respectively.

following the methodology in [14], we use misclassification error to analyze our results.
Our first observation is that there is a range of κ values that give correct results,
thus enabling the use of consensus algorithms. The next observation is that very
low misclassification errors are obtained with the consensus solution, sometimes even
outperforming the best individual result.

On the parameters τR, τC. One of the stoping criteria for Algorithm 1 is the
size of the extracted bi-clusters. Each bi-cluster must have at least τR rows and τC



A BI-CLUSTERING FRAMEWORK FOR CONSENSUS PROBLEMS 13

Breast Glass Iris Wine

NMI F-M NMI F-M NMI F-M NMI F-M

A1 (Kgt − 1)-means – – 0.368 54.74 0.657 76.35 0.478 66.59
A2 (Kgt)-means 0.733 95.73 0.315 49.51 0.758 89.18 0.876 96.60
A3 (Kgt + 1)-means 0.708 93.98 0.358 50.21 0.722 82.43 0.791 89.34
A4 (Kgt + 2)-means – – 0.378 50.30 0.694 76.29 0.724 79.84
A5 SC (1,Kgt − 1) – – 0.289 46.99 – – 0.470 64.94
A6 SC (1,Kgt) 0.791 96.93 0.348 47.22 0.742 88.53 0.928 98.31
A7 SC (1,Kgt + 1) 0.705 93.02 0.385 49.19 0.623 77.81 0.720 82.53
A8 SC (1,Kgt + 2) – – 0.360 43.23 0.736 79.11 0.620 74.50
A9 SC (1,Kgt − 1) – – 0.315 47.48 – – 0.470 64.94
A10 SC (1,Kgt) 0.799 97.08 0.348 47.22 0.735 87.82 0.911 97.74
A11 SC (1,Kgt + 1) 0.709 92.46 0.352 45.25 0.665 79.16 0.731 83.08
A12 SC (1,Kgt + 2) – – 0.351 42.66 0.706 78.17 0.602 75.56
A13 SC (1,Kgt − 1) – – 0.315 46.86 – – 0.470 64.94
A14 SC (1,Kgt) 0.799 97.08 0.348 47.22 0.708 86.53 0.911 97.74
A15 SC (1,Kgt + 1) 0.691 91.97 0.350 44.75 0.613 78.20 0.731 83.08
A16 SC (1,Kgt + 2) – – 0.351 42.66 0.661 74.59 0.602 75.56
Consensus 0.799 97.08 0.381 46.89 0.770 89.12 0.915 98.01

(a) Normalized mutual information (NMI) and F-measure (F-M) values for each individual
algorithm and for the proposed consensus solution. SC (σ,K) stands for spectral clustering
with kernel σ and K clusters. For K-means, the value between parenthesis indicates the
actual value of K. Kgt indicates the ground truth number of classes.
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(b) Graph representation of Table (a), highlighting the quality of the proposed consensus
solution.

Fig. 6: Consensus experiments on datasets from the UCI repository [4]. The proposed
bi-clustering solution provides normalized mutual information (NMI) values that are
universally on par with the best algorithms from the pool (which is dataset dependent
and with carefully tuned parameters), without any information about the nature of
the algorithms or their parameters.
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Original features Compressed features

κ 2 3 All 2 3 All

100 1.46 5.86 2.45 1.48 5.85 2.47
200 1.61 5.50 2.49 1.62 5.65 2.53
300 1.60 4.78 2.31 1.58 5.30 2.42
400 1.53 4.84 2.27 1.62 5.37 2.46
500 1.61 4.55 2.27 1.66 4.52 2.30
600 1.54 4.50 2.20 1.62 4.54 2.28
700 1.66 4.36 2.27 1.73 4.41 2.34
800 1.53 4.40 2.18 1.83 4.40 2.41
900 1.95 5.43 2.73 1.79 5.56 2.64

1000 1.79 4.58 2.42 2.36 5.34 3.03
1100 2.16 5.25 2.86 2.15 5.24 2.85
1200 2.14 5.28 2.85 2.17 5.19 2.85
1300 2.20 5.27 2.90 2.53 5.12 3.12
1400 2.19 5.15 2.86 2.33 5.24 2.99

Cons. 1.56 4.25 2.17 1.78 4.30 2.35

(a) Misclassification errors. In orange we observe the
value of κ hand-selected in [14]. In green, we observe
the result of computing the consensus solution of all
the subspace clustering instances.
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(b) Graph representation of Ta-
ble (a) considering all instances in
the dataset. The value κ = 800
is marked with a vertical dotted
line. Very competitive misclassifi-
cation errors are obtained with our
consensus solution, without any in-
formation about the nature of the al-
gorithms or their parameters.

Fig. 7: Subspace clustering example for the Hopkins 155 dataset [50], which consists
of 155 video sequences of 2 or 3 motions, each corresponding to a low-dimensional
subspace in each video. We use the original trajectories and the data projected into
a lower-dimensional space using PCA. The base algorithms are different subspace
clustering instances [14], varying the regularization parameter κ in (3.3). We show
the mean misclassification error (%) for each of them and for our consensus solution.

Table 1: Bi-cluster sizes for several clustering experiments. Algorithm 1 returns T
bi-clusters. We compare the sizes of the T -th and (T + 1)-th bi-clusters, i.e., the last
returned and the first discarded, respectively. In the cases with missing numbers, the
algorithm terminated because A = ∅. These sizes help to understand why there is
no need to carefully tune the thresholds τR, τC, considering the size gap between the
T -th and (T + 1)-th bi-clusters.

#{RT } #{CT } #{RT+1} #{CT+1}

Figure 2 90 7 2 2
Figure 3 295 5 2 1
Figure 5 74 6 - -
Figure 6 (Breast) 243 8 - -
Figure 6 (Glass) 12 6 2 10
Figure 6 (Iris) 36 12 - -
Figure 6 (Wine) 67 13 1 5
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columns. As mentioned above, for every clustering experiment we set τR = 6, τC = 3.
Table 1 compares the size of the T -th and (T+1)-th bi-clusters (recall that Algorithm 1
only returns T bi-clusters, hence discarding the (T + 1)-th bi-cluster) for several
clustering experiments. The size drop is in all cases so dramatic that τR, τC become
extremely easy to set.

4. Consensus community detection in networks. Networks are frequently
used to describe many real-life scenarios were units interact with each other (e.g.,
see [1,34] and references therein). A seemingly common property to many networks is
the community structure: networks can be divided into (in general non-overlapping)
groups such that intra-group connections are denser than inter-group ones. Finding
and analyzing these communities sheds light on important characteristics of the net-
works and the data they represent. However, the best way to establish the community
structure is still disputed. Addressing this is the topic of this section.

Let G = (V,E, ψ) be the graph to analyze, where V is the set of m nodes, E is the
set of edges, and ψ : E → R+ is a weighting function on the edges (in the following we
indistinguishably use the terms graph and network). Generically, we consider that a
community-detection algorithm provides a set C of candidate communities (C ⊂ P(V ),
where P(V ) is the power set of V ).

4.1. Experimental Results. For the experiments we use the following base al-
gorithms for community detection: Louvain [6], Infomap [42], and Spectral Clustering
(SC-(K)) [35], where K is the number of detected clusters/communities. For assess-
ing the quality of a solution when ground truth is available, we again use normalized
mutual information (NMI). Unless specified, we use uniform weights in A.

Several algorithms, same network. The most classical consensus scenario is
when we have the result of several detection algorithms and wish to combine them
into a better result.

In Figure 8, we first explore the differences between the proposed iterative rank-
one L1-NMF approach and L1-NMF with q 6= 1. We use the Aegean34 network [15],
its small size makes easy to visualize the preference matrix A. The network models
the interactions between Middle Bronze Age (MBA) Aegean archaeological sites. Our
algorithm recovers the correct number of bi-clusters, a critical parameter in classical
NMF approaches.

In Figure 9 we observe in detail how the bi-clustering algorithm selects entries of
A to create a new solution, preferring regularities in the matrix, while disregarding
peculiarities of individual solutions (“inpainted” nodes do not have a black circle
around them in the bottom left graph in Figure 9). An important feature is that
the proposed algorithm does not blindly select the best solution, but composes a
consensual solution from the provided candidates.

In Table 2 we show our results using a generator of synthetic networks [29]. For
this experiment, we compute the modularity Mod(Ck) [34] of the solution Ck provided
by the k-th base algorithm, and use a smooth increasing nonlinear function of Mod(Ck)
as the weight for each community C ∈ Ck. In general, there is no community detection
algorithm that “rules them all” for every network; however our algorithm consistently
performs well in all examples.

Using seeds. What happens when there is not enough information in the net-
work to recover the “correct” structure? The College football network [17] presents a
very interesting such example. The network represents the matches played between
teams in a season. The teams are organized in divisions, and teams should play more
matches with teams from the same division than from different ones. Hence, divisions
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Preference
matrix A Bi-clustering

L1-NMF
(q = 2)

L1-NMF
(q = 3)

L1-NMF
(q = 4)

Fig. 8: The proposed iterative bi-clustering approach finds the correct number of bi-
clusters (3) on the Aegean34 network [15], with 34 nodes (a different color is assigned
to each pair (Rt;Qt), see Algorithm 1). L1-NMF, see problem (2.4), with q = 2
undersegments A (some nodes are not assigned to any community, i.e., no color,
despite a lot of consistency between the base algorithms), and with q = 4 oversegments
A (a single algorithm splitting a community is enough to create a new “artificial”
consensus community, see the red entries).

Table 2: Results with synthetic networks (m is the number of nodes and δ the average
node degree), produced with a standard benchmark generator [29]. There is no single
algorithm that produces the best solution for every network; however, the consensus
solution is always competitive with the best base solution (in bold). To “help” spectral
clustering, K was set to the number of ground truth communities. NMI and Mod.
stand for normalized mutual information and modularity, respectively.

Louvain Infomap
Spectral clustering

Consensus
K K − 1 K + 1 K + 2

m = 102 Mod. 0.494 0.481 0.335 0.307 0.429 0.361 0.476
δ = 5 NMI 0.565 0.514 0.333 0.350 0.517 0.379 0.584

m = 102 Mod. 0.436 0.436 0.436 0.286 0.378 0.321 0.436
δ = 15 NMI 1.000 1.000 1.000 0.612 0.851 0.774 1.000

m = 103 Mod. 0.757 0.753 0.612 0.651 0.618 0.601 0.750
δ = 5 NMI 0.867 0.886 0.782 0.813 0.806 0.793 0.885

m = 103 Mod. 0.759 0.759 0.665 0.662 0.662 0.634 0.759
δ = 10 NMI 0.995 1.000 0.907 0.892 0.910 0.890 1.000

m = 104 Mod. 0.765 0.765 0.753 0.760 0.721 0.699 0.765
δ = 300 NMI 1.000 1.000 0.955 0.980 0.958 0.960 1.000

m = 104 Mod. 0.794 0.794 0.783 0.785 0.791 0.784 0.794
δ = 50 NMI 1.000 1.000 0.978 0.973 0.969 0.981 0.994

Average NMI 0.904 0.900 0.826 0.770 0.835 0.796 0.911
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Preference matrix AT

Consensus

Louvain Infomap

Spectral clustering Consensus

Fig. 9: Running different standard algorithms on the “Les Misérables” network with
77 nodes [25]. We show three individual results and the consensus solution. The bi-
clustering result does not carbon-copy any of the individual solutions (the horizontal
bands in AT), but creates a new one. Also notice on the colored preference matrix
(bottom left) how the algorithm “corrects” individual solutions (a different color is
assigned to each pair (Rt,Qt), see Algorithm 1). The proposed consensus algorithm
detects two nodes as singletons (in white in the bottom right graph); it is interesting
to notice that the base algorithms all differ on how to treat these nodes and assign
them to different communities.

are considered as ground truth communities for this network. When we run differ-
ent community detection algorithms on this network, we can observe that one of the
divisions is not well recovered by any of them, one of its teams being assigned to a
different community, see the blue arrows in Figure 10. But in fact, when we observe
this team’s matches, it did not play against any of the teams in his division! We can
add a tiny bit of a priori information by manually adding seeds to A, i.e., by forcing
some nodes (in Figure 10 the red and green nodes in the 4th graph) to be on the same
community. For this, we just modify the corresponding rows of A by replacing them
by their disjunction (logical or). This simple seeding mechanism is able to correct the
“original mistake.”

One algorithm, different networks. The proposed approach also allows to
combine the results of community structure algorithms that analyze different aspects
of a given network (e.g., a network with different modalities or evolving over time).

The Facebook 100 dataset presents such an example. The edges represent Face-
book friendship but we can also observe several node attributes (e.g., gender, major,
minor, dorm, year of graduation). In our particular example, we focus on the 2006
Duke graduates. We build two modalities of this network, by assigning different
weights to the edges. In the first one, we use gender information, assigning a weight
of 1 if an edge links students of different sex and of 2 otherwise. In the second one,
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Louvain Infomap
Consensus

Non seeded (N)

Seeds
Consensus
Seeded (S)

Algorithm Mod. NMI

Louvain 0.6046 0.8964
Infomap 0.6005 0.9345
SC-(11) 0.5859 0.9054
SC-(10) 0.5928 0.8882
SC-(12) 0.5391 0.8872
Cons. (N) 0.5999 0.9309
Cons. (S) 0.5869 0.9425

Fig. 10: College football network with 115 nodes [17], representing the matches be-
tween different teams. All base methods separate the node (marked with a blue arrow)
from its division. By looking at its edges (in green in the 4th graph), we see that this
can indeed be correct given the network. Using a little extra information, i.e., forc-
ing the red and green nodes in the 4th graph to be in the same community, corrects
this effect. As before, NMI and Mod. stand for normalized mutual information and
modularity, respectively.

we use study field information, assigning a weight of 1 if the students do not share
major nor minor, of 2 if they share major or minor, and of 3 if they share major
and minor. We run the Louvain algorithm independently on these two networks
and obviously obtain two different community structures, see Figure 11. By running
our consensus algorithm on these two results, we produce a solution that aggregates
information from both modalities. The proposed approach allows to perform a co-
herent cross-modality analysis, something not possible with traditional community
detection algorithms. We can therefore expand the analysis to multimodal networks,
using standard algorithms (such as Louvain) and without the need to develop new
algorithms.

Another interesting example occurs when the network connectivity changes over
time or when different modalities exhibit different edge sets. This is important for
example when the graph is obtained through inference, because differences and/or
errors in the inference process might yield different connectivities. We simulate such
an example by taking a network and building 10 perturbed copies, randomly reas-
signing a subset of its edges. We then run Infomap on each copy and compare the
result in terms of NMI with the Infomap result on the original network (Table 3).
When a small portion of edges is perturbed, the best individual solution is still good,
because there is a non-negligible chance that one of the perturbations does not alter
the community structure of the original network. This is no longer true as the number
of perturbed edges increases. Our algorithm is able to balance out the peculiarities
of the perturbed solutions, obtaining a solution much closer to the original one and
hence more resilient to perturbations.
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Consensus Louvain (gender) Louvain (study field)

Fig. 11: Network of Facebook links between 2006 Duke graduates with 1424 nodes
(part of the Facebook 100 dataset [49]). We build two different modalities by assigning
weights to the edges according to different node (student) features: field of study
and gender. We find a consensus between the two different results of the Louvain
algorithm. The pie charts represent the distribution of the nodes of each modality’s
communities with respect to the consensus.

Table 3: Results of perturbing the edge set of the US politics books network with 105
nodes (http://www.orgnet.com/divided.html): ρ |E| edges are exchanged at ran-
dom. We provide average NMI values across 1000 trials, using 10 perturbed networks
per trial. The result of Infomap in the original network is considered the ground
truth. The consensus solution outperforms all individual ones, with the performance
gap increasing as more edges are perturbed.

ρ Best Median Consensus
0.1 0.9224 0.8388 0.9258
0.25 0.8004 0.6944 0.8551
0.3 0.7428 0.6315 0.8244
0.35 0.6801 0.5581 0.7933

5. Multiple parametric model estimation. This section addresses the prob-
lem of fitting multiple instances of a parametric model to data corrupted by noise
and outliers, formally connecting it with bi-clustering and consensus. In our context,
the data is a set X of m geometric objects, described by X = (

⋃
i Xi) ∪ O, with

(∀i)Xi ∩O = ∅, and O being once again outliers as detailed next. The objects in each
subset Xi, which might intersect, are (noisy) measurements that can be described
with a parametric model µ(θ(i)), where θ(i) is a parameter vector. In the following,
we say that the objects in Xi are inliers to the model µ(θ(i)). We also generally refer
to a set of objects as inliers, in the sense that it exists a statistically meaningful model
that describes them. The objects in O cannot be described with any of the models
µ(θ(i)), and we refer to them as outliers.

Let us define more formally these intuitive concepts. A model µ is defined as the
zero level set of a smooth parametric function fµ(x; θ),

(5.1) µ(θ) = {x ∈ Rd, fµ(x; θ) = 0},

http://www.orgnet.com/divided.html
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where θ is a parameter vector. We define the error associated with the datum x ∈ X
with respect to the model µ(θ) as

(5.2) eµ(x, θ) = min
x′∈µ(θ)

dist(x,x′),

where dist is an appropriate distance function. Using this error metric, we define the
Consensus Set (CS) of a model as

(5.3) C(θ) = {x ∈ X , eµ(x, θ) ≤ δ},

where δ is a threshold that accounts for the measurement noise.
The goal of this section is to find the set of inliers-model pairs {(Xi, θ(i))} from

the observed X such that Xi = C(θ(i)). This problem is, by itself, ill-posed. It is
standard in the literature to implicitly or explicitly impose a penalty on the number
of recovered pairs to render it tractable. We also adopt such a design choice. Notice
that once Xi is found, the corresponding θ(i) can be estimated for example by simple
least-squares regression, i.e.,

(5.4) θ̂(i) = argmin
θ

∑
x∈Xi

[
eµ(x, θ)

]2
.

This is an important but difficult problem, as standard robust estimators, like RANSAC
(RANdom SAmple Consensus) [11,16], are designed to extract a single model. Let us
then begin by formally explaining how does the RANSAC machinery work, to further
illustrate the value and perspective of our proposed multi-model formulation.

Let us denote by b the minimum number of elements necessary to uniquely char-
acterize a given parametric model, e.g., b = 2 for lines and b = 3 for circles. For
example, if we want to discover alignments in a 2D point cloud, the elements are
2D points, models µ are lines, and b = 2, since a line is defined by two points. A
set of b objects is called a minimal sample set (MSS). RANSAC randomly samples
n MSSs, each generating a model hypothesis. The number n is an overestimation of
the number of trials needed to obtain a certain number of “good” models [16,48,58].
Then RANSAC computes the CS of each model hypothesis using Equation (5.3).
Algorithm 2 describes the standard RANSAC procedure.

Applying RANSAC sequentially, removing the inliers from the dataset as each
model instance is detected, has been proposed as a solution for multi-model estima-
tion, e.g., [39]. However, this approach is known to be suboptimal [58]. The multi-
RANSAC algorithm [58] provides a more effective alternative, although the number
of models must be known a priori, imposing a very limiting constraint in many appli-
cations. An alternative approach consists of finding modes in a parameter space. The
overall idea is that we can map the data into the parameter space through random
sampling, and then seek the modes of the distribution by discretizing the distribution,
i.e., using the Randomized Hough Transform [53], or by using non-parametric density
estimation techniques, like the mean-shift clustering algorithm [43]. These, however,
are not intrinsically robust techniques, even if they can be robustified with outliers
rejection heuristics [48]. Moreover, the choice of the parametrization is critical, among
other important shortcomings [48]. The computational cost of these techniques can
be very high as well.

All these techniques share a common high-level conceptual approach to model es-
timation: in order to solve the problem, objects are clustered. In this work, we propose
an alternative formulation that involves as before bi-clustering the objects and the
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Algorithm 2: RANSAC

input: set of objects X , parametric function fµ.
1 Set b to the minimum number of elements necessary to uniquely characterize

model µ, see Equation (5.1);
2 foreach k ∈ {1 . . . n} do
3 Sample at random a minimal sample set (MSS) Xmms of size b from X ;

4 Estimate θ(k) from Xmms by solving (∀x ∈ Xmms) fµ(x; θ) = 0;

5 Check that µ(θ(k)) is not a degenerate model, otherwise go to line 3;

6 Compute C
(
θ(k)

)
;

7 kmax = argmaxk
∣∣C (θ(k)

)∣∣;
8 Estimate θ(kmax) from C

(
θ(kmax)

)
using least-squares;

9 return
(
C
(
θ(kmax)

)
, θ(kmax)

)
;

models generated with, e.g., RANSAC. First of all, the proposed modeling does not
impose non-intersecting subsets Xi. Secondly, it exploits consistencies that naturally
arise during the RANSAC execution, while explicitly avoiding spurious inconsisten-
cies. This new formulation conceptually changes the way that the data produced by
the popular RANSAC, or related model-candidate generation techniques, is analyzed.

5.1. Multiple model estimation by analyzing the preference matrix.
The information generated throughout the RANSAC iterations, i.e., the link between
objects and model hypotheses, can be represented with the same m × n preference
matrix A considered before, whose rows and columns represent objects and models,
respectively; the element (A)ij = 1 if the i-th object is in the CS of the j-th model,
and 0 otherwise.

Traditionally and as in clustering, in algorithms like RANSAC, the preference
matrix is (often implicitly) analyzed column-by-column or row-by-row. For example,
Toldo and Fusiello [48] proposed to cluster the objects in X using the rows of A as
feature vectors, obtaining a powerful state-of-the-art clustering-based technique for
multiple model estimation, called J-linkage. For this, they use a tailored agglom-
erative clustering algorithm. As all agglomerative clustering algorithms, J-linkage
proceeds in a bottom-up manner: starting from all singletons, each iteration of the
algorithm merges the two clusters with the smallest distance. J-linkage uses the Jac-
card distance [48], and the features are updated during the merging process. Each
cluster’s feature is computed as the intersection of the features of its objects (i.e., the
logical conjunction of the corresponding rows of A).

Although a clustering of objects, using as features the set of sampled models they
belong to, might lead to good results in certain applications, it does not fully address
the problem at hand. The relationship of the objects with the sampled models is the
actual focus of interest (notice again the block-diagonal structure of A in Figure 1).
A pattern-discovery algorithm is needed in this relationship space. We are thus inter-
ested in finding clusters in the product set X ×M, where M = {C(θ(i))}1≤i≤n is the
set of sampled models. As already mentioned in Section 2, such a problem is known
in the literature as bi-clustering.

We thus propose to address the problem of model estimation by bi-clustering
the matrix A, using the algorithm presented in Section 2. A further conceptual
advantage is that an object is allowed to belong to multiple bi-clusters, because we
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are partitioning the product set X ×M instead of X . This kind of situation occurs
very frequently, as observed in Figure 1: if the lines (models) intersect (left), then
they share points (objects); this is translated as elements outside the block-diagonal
structure of A (right). RANSAC-related techniques arbitrarily assign shared objects
to a given model.

5.2. Cleansing the preference matrix. The standard random sampling ap-
proach to multiple model estimation generates many good model instances (composed
of inliers), but also generates many bad models (composed mostly of outliers). In
general, the number of bad models exceeds by far the number of good ones. It is
not worth devoting computational effort in the analysis of these columns of A. Any
pattern-discovery technique, such as the bi-clustering approach presented in the previ-
ous section, would benefit from having a simple, efficient, and statistically meaningful
method for discarding the bad models. These models will typically contain only a
handful of objects. The question is how do we determine the minimum size of a
good consensus set? This important computational contribution is addressed next,
following the a contrario testing mechanism presented in depth in [13].

Let us assume that we have a set of m (random) objects. We are interested in
computing the probability that a model µ(θ) has an associated consensus set C(θ)
of at least k = |C(θ)| objects. Under the simplifying assumption that all objects are
i.i.d., the probability of such an event is B (m, k; p), where B is the binomial tail and
p = p(µ(θ), δ) is the probability that a random object belongs to the consensus set
C(θ), built with noise level δ. We will later provide details on how to compute p for
several different scenarios (Appendix B).

Let then µ(θ) be a model and C(θ) its associated consensus set, obtained with
precision parameter δ. The model µ(θ) is said to be ε-meaningful if (NFA stands for
Number of False Alarms)

(5.5) NFA(µ(θ)) = Ntests B (m, |C(θ)|; p) < ε,

where as mentioned above p = p(µ(θ), δ) takes different forms for different models, and
Ntests =

(
m
b

)
represents the total number of considered models. Recall that b is the

minimum number of elements necessary to uniquely characterize a given parametric
model. It is easy to prove, by the linearity of expectation, that the expected number of
ε-meaningful models in a finite set of random models is smaller than ε. Alternatively,
Ntests can be empirically set by analyzing a training dataset [8], providing a tighter
bound for the expectation.

Equation (5.5) provides a formal probabilistic method for testing if a model is
likely to happen at random or not. From a statistical viewpoint, the method goes
back to multiple hypothesis testing. Following an a contrario reasoning [13], we decide
whether the event of interest has occurred if it has a very low probability of occurring
by chance in the above defined random (background) model. In other words, a model
µ(θ) is ε-meaningful if |C(θ)| is sufficiently large to have NFA(µ(θ)) < ε. Only ε-
meaningful models are kept in A.

Notice that we are in a sense using the a contrario validation procedure backwards:
instead of using it to detect good models, we use it to eliminate bad models. We do
not need a very sharp event-detection procedure in order to only keep good models;
we only need a statistical test to eliminate the vast majority of clearly poor models.
Hence, the value of ε is not critical, our model being inherently robust to poor models,
as shown in Section 2. As any statistical test that controls false positives, our a
contrario tests do not provide a good control of false negatives (i.e., missed detections).
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We can thus easily relax the value of ε = 1, allowing for some quantity of poor models
in our cleansed preference matrix, but being sure that we do not miss good ones.

As a result of this statistical validation procedure, the preference matrix A is
considerably shrunk. Many unuseful columns are eliminated (be observed that only
about 10% of the original columns are kept in our experiments). Due to this elimi-
nation, some rows might also become zero-valued and can also be eliminated. This
shrunk preference matrix is fed to the bi-clustering algorithm (Algorithm 1), gaining
in stability of the results as well as in speed.

5.3. An algorithm for multiple parametric model estimation. When we
presented Algorithm 1, we claimed that tighter bounds could be computed for τR in
the case of parametric models. The tests used for cleansing the preference matrix are
readily available for this task. For each bi-cluster, we can compute its NFA, where the
number of elements in the group if the number of rows in the bi-cluster. Finally, we
only keep those bi-clusters that are ε-meaningful. The resulting complete algorithm
is as follows:

1. Compute the preference matrix A by randomly sampling minimal sampled
sets and computing their corresponding consensus sets (Section 5.1).

2. Cleanse A by discarding the columns that do not satisfy the statistical test
presented in Section 5.2. For these tests, we relax the value of ε.

3. Bi-cluster the cleansed version of A using Algorithm 1.
4. Discard the bi-clusters that are not ε-meaningful, see Section 5.2. For these

tests, we fix ε = 1. We also ask that each bi-cluster is meaningful when we
only consider the elements that do not belong to other bi-clusters. This last
step ensures that each bi-cluster contains some points that only belong to it
and is a mild version of the exclusion principle [13].

We next present many experimental results and different applications that make use
of this general algorithm for multiple model estimation.

5.4. Experimental results. Each minimal sample set (MSS) is built using non-
uniform random sampling [58], such that if an object x has already been chosen, y 6= x
is selected with probability

(5.6) Pr(y|x) = z−1 exp
(
−σ−2 dist (x,y)

2
)
,

where z is a normalization constant and σ is a parameter of the algorithm. Depend-
ing on the application at hand, the distance dist takes different forms (specified in
Appendix B).

We provide several standard 2D examples [48] with lines and circles in Figure 12.
For the line examples, we set n = 5000, σ = 0.5, δ = 0.03. For circles, we set
n = 20000, σ = 0.5, δ = 0.03. In all examples, the proposed bi-clustering approach
does a much better job at recovering the data structure than J-linkage and other
popular techniques, see Figure 13. J-linkage, considered a state-of-the-art algorithm,
has a general tendency to find clusters with fewer points than expected (there are
many ‘undercomplete’ lines and circles). This is further emphasized by comparing
the recall of both methods, see Table 12(b).

In all these examples, the bi-clustering algorithm automatically finds the number
of clusters. J-linkage uses the size of the obtained clusters to decide whether to keep
them or to discard them. In Figure 12(a), it can be easily seen that this method is
not stable, since the decay in the size does not indicate the proper cut-point.
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(a) J-linkage does not perform accurate point-model assignments, notice the missing points
on the detected lines and circles. The size of the J-linkage clusters is not a robust criterion for
selecting the final clusters. The proposed approach correctly retrieves the lines and circles.

Dataset J-linkage Bi-clustering

A 96 100.0
B 87.2 100.0
C 82.2 99.6
D 81.6 99.6

(b) Comparison of the recall (%) for the above examples (in these settings precision is
distorted by the outliers and is not completely meaningful). This shows that the bi-cluster
sizes are very close to the ground truth sizes (slightly larger, again because of the outliers).

Fig. 12: Several synthetic examples where the proposed approach yields considerable
improvements over J-linkage [48], both on the quality and the stability of the results.
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Fig. 13: Comparisons with several multiple model estimation algorithms on the exam-
ple in Figure 12 (reproduced from [48]). Contrarily to the proposed approach, these
techniques both miss models and detect false ones.

We also observe in Figure 12 that the proposed approach can correctly recover
overlapping models. This is an intrinsic limitation of J-linkage and most multiple
model estimation techniques, which are generally based on partitioning (clustering)
the set of objects (data).

Figure 14 presents an example of a real application with 3D planes from the Poz-
zovegianni dataset.2 The 3D points are obtained from different images of a building
with a sparse multi-view 3D reconstruction algorithm. Our algorithm recovers the 3D
planes in the scene to properly reconstruct the building structure (for this example,
n = 5000, σ = 0.5, δ = 0.5).

As an additional example, we developed a simple method for detecting cells in
microscopy images, see Figure 15. This is achieved by using ellipses as models (during
sampling, we discard ellipses that are too elongated). Instead of using edge points
as the base elements, we use line segments, detected with LSD [19], providing more
robust detections and making the process of estimating an ellipse from an MSS more
stable. For this example, we set n = 20000, σ = 30, δ = 10 and instead of using
a zero-centered distance distribution, see Equation (5.6), we set the mean distance
to 80 pixels. Our method retrieves most of the ellipses (i.e., cell membranes) in the
image without further tuning our generic algorithm. Notice that we employ a generic
a contrario test, that is not completely adapted to this scenario: should the lengths of
the segments be taken into account in the NFA, see definition (5.5), the results would

2http://www.diegm.uniud.it/fusiello/demo/samantha/#pozzo

http://www.diegm.uniud.it/fusiello/demo/samantha/#pozzo
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(a) Three 3D views of the 9 bi-clusters obtained with the proposed method. On the bottom
row, we also display the fitted planes

(b) Three different views of the 3D points projected back to the original images.

Fig. 14: Example with 3D planes on the Pozzoveggiani dataset. The 3D points
are obtained from a set of images, such as the ones in (b), using multi-view 3D
reconstruction. We correctly recover the building structure by detecting 3D planes.

automatically be further refined and improved. This is noticeable for small ellipses
(i.e., cell nuclei) that contain very few segments. Our goal in this work is to present
the general detection framework, we leave this specific refinement for future work.

Finally, we present another application for the proposed framework: vanishing
point detection in uncalibrated images. As with cells, in this application we use line
segments as the base objects/elements of our method. The groups are formed by
detecting the subset of lines that intersect at a given point in the image plane [47].
In this case, since we only need 2 segments to compute a MSS (i.e., an intersection
point) [47], and the number m of segments in not too large, we compute all m(m−1)/2
MSSs, instead of sampling at random (σ = 1, δ = 10 pixels). This helps to show that
in the other cases the sampling procedure does not artificially boosts the performance,
and only helps to speed up the algorithm. In Figure 16 we show some results from
the York Urban database [12], where we can robustly and reliably detect vanishing
points. As with ellipses, the results could be improved by considering the segment
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Original line segments
Consensus (without final cleansing)

Segment assignments Model assignments

Line segments selected
during sampling

Consensus (with final cleansing)
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J-linkage result
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Fig. 15: Ellipse (cell) detection example. We use line segments [19] as base elements
for our method. We are able to reliably detect most ellipses without a specific and
highly tuned method. Notice that the final cleansing process eliminates two detected
ellipses, one in the top left corner and one on the bottom of the image (indicated with
green arrows in the first row). These removals make sense from a perceptual point
of view. J-linkage (bottom row) does not yield good results, returning wrong clusters
and exhibiting an arbitrary cut-off point (notice the smooth decay in the cluster sizes).

length in the a contrario test. Using more sophisticated and specific schemes to obtain
the vanishing point candidates might also lead to further improvements [31].

In these experiments we can observe that the bi-clustering approach provides:
(1) a good description for each detected model instance in terms of its objects; (2)
a compact overall description, by considering the reduced number of detected bi-
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Fig. 16: Vanishing point detection example. Our simple approach correctly recovers
the vanishing points in the images. We only show the line segments in each bi-cluster,
because the vanishing points might lie far away from the image in the image plane.
The detection of 3D parallelism from 2D images is an ill-posed problem, as some
information is inherently lost during the projection. For a handful of segments (e.g.,
the one marked with a green arrow in the second image), there is no way of determining
from the observed projections their true 3D orientation. Despite this indeterminacy,
the overall problem is still solvable.

clusters; and (3) support for overlapping groups of objects. These features of the
proposed general approach lead to a rich characterization of the data in terms of
parametric models.

5.5. The boundaries of multiple parametric model estimation. The pro-
posed approach for detecting parametric models assumes that observing an unusual
concentration of elements around a parametric model instance is enough to produce a
robust candidate. In most situations this assumption is valid and works well in prac-
tice, as seen in the numerous previous examples. However, there are situations where
these element-model distances are not enough to fully characterize a given configura-
tion of elements. Let us illustrate this with a simple example, see Figure 17. Using
the classical definition of a consensus set, see (5.3), every line that passes through the
central cluster will have a large consensus set. This artificially fires many candidate
detections, that end up creating a bi-cluster. Notice that (1) this result is completely
consistent with our theoretical formulation, and (2) this is not a bi-product of using
lines since a similar effect will occur if we use circles, for example. Neither RANSAC
nor the Hough transform can discern between points lying along a line and points
concentrated in a small cluster. In fact, the setup is missing a dispersion constraint
along the model. This has been addressed for a particular case in [31], but many
formulations could be employed to achieve the desired effect, such as Ripley’s K and
L functions [41]. Additionally, this improved validation would greatly simplify the
validation step of the proposed method.
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Point configuration
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Fig. 17: An aberrant example, containing uniformly distributed points and a small
cluster in the center. We run our line detection algorithm and recover the central
cluster. The result is consistent with the proposed protocol, although one might
claim that a line detection scheme should yield no detections in this case. A stricter
definition of the a contrario pruning rule is needed to correct this effect: as before, we
need a concentration of points in the orientation orthogonal to the line and additionally
a dispersion of points along the line.

The values of δ (the distance threshold) and n (number of considered MSSs) are
in general very important to obtain good results. Notice that this dependency is not
introduced by our bi-clustering formulation, but common to most parametric model
estimation approaches. For example, methods based on RANSAC and the randomized
Hough transform share this dependency. In the general case, there is no theoretical
formulation nor clear practical guideline for properly setting their values. In practice,
many cases present a reasonably intuitive range for δ. In our experience, setting the
value of n is not critical when time is not a concern, as we can simply select a large
value. In time-critical applications, we can learn n from training examples.

Of course, the choices of n and τC are related. For a single model, the probability
of drawing at least τC outlier-free MSSs out of n (and thus guaranteeing its detection)
is given by

(5.7) 1−
τC−1∑
k=0

(
n

τC

)
(pMSS)k(1− pMSS)n−k,

where pMSS is the probability of drawing an MSS of cardinality b composed only
of inliers (recall that b is the minimum number of elements necessary to uniquely
characterize a given parametric model). See [48] for further details. This formulation
has two shortcomings. First, pMSS is not a trivial quantity to set and/or estimate
without deep knowledge about the structure of the dataset (consider that we are
actually trying to discover this structure). Second, the above equation relates n and τC
for a single model; establishing a sound relation for multiple models requires knowing
in advance the number of models. More research is much needed in this theoretically
and practically important aspect, as all state-of-the-art approaches would benefit from
it. As a side note, this problem is similar in nature to the Chinese restaurant and
Indian buffet processes, but with a fixed and unknown number of tables/dishes [2,18].

6. Connection with the computational Gestalt theory. We now provide
a brief discussion on the connections between the presented framework and the com-
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putational Gestalt theory.

The driving principle in the computational Gestalt theory is the Helmholtz prin-
ciple [13]. In its simplest form, it states that we do not perceive any structure in a
uniform random image [3]. The computational Gestalt theory makes extensive use of
a stronger form, namely that whenever some large deviation from randomness occurs,
a structure is perceived.

The Helmholtz principle is generically illustrated as follows. Let X be the set of
atomic objects present in an image. Let us assume that there is a subset XCF ⊂ X
whose objects share a common feature, say, color, orientation, position, etc. We then
face a decision problem: is this common feature happening by chance or is it significant
enough to make XCF stand out as a perceptual group? To answer this question, let
us make the following mental experiment: assume a priori that the considered feature
is randomly and uniformly distributed on all objects of X , i.e., the observed feature
is a realization of this uniform process. We finally ask: is this realization probable
or not? If not, this proves a contrario that a grouping process (a gestalt) is at play.
The Helmholtz principle states roughly that in such mental experiments, the object
features are assumed to be uniformly distributed and independent [13].

The theory can be interpreted as a multiple hypothesis testing framework for
visual events and works by controlling the Number of False Alarms (NFA), a proxy
of the expectation of the number of occurrences of a visual event under the stated a
contrario model.

In Section 5 we exploited this detection theory twice: (1) to cleanse the preference
matrix, and (2) to adjust τR, the minimum number of elements (rows) necessary to
accept a bi-cluster. These a contrario tests allow us to assess the improbability of
a given event or configuration. However, our framework also computes information
regarding the repeatability of this configuration when probing the data. In this sense,
we can interpret our framework as repeatedly querying the data at random and looking
for configurations that arise over and over. The a contrario tests do not exploit this
additional dimension that nonetheless plays a central role when assessing randomness:
if a given configuration arises over and over, what are the chances that it is a realization
of a random process? This simple discussion brings forward the need to develop
statistical tests that also consider the repeatability of a configuration under random
sampling, via τc in our framework.

As a side note, we would also like to point out the fact that, when (∀θ) p(µ(θ), δ) =
pδ, as in the case of 2D lines (see Appendix B), pδ ≈ ‖A‖0 /(mn), where ‖•‖0 stands
for the pseudo-norm counting the number of non-zeros. This simple observation might
lead to develop simpler, more general, and more extensible geometric probes, by
employing a reduced set of assumptions for computing p(m(θ), δ) than the ones used
in Appendix B, common in all a contrario literature.

The presented framework also has connections with the so-called Prägnanz prin-
ciple in Gestalt psychology: “...of several geometrically possible organizations that
one will actually occur which possesses the best, simplest and most stable shape,”
quoted in [57] from Koffka’s book [26]. Analyzing the set of possible configurations,
the proposed framework assigns a formal and mathematical meaning to the terms
best, simplest, and most stable. Let us analyze these characteristics one by one:

Best. Our resulting configurations (bi-clusters) are obtained as the solution of a
non-parametric minimization problem with an intuitive interpretation, see
problem 2.4.

Simplest. The rank-one nature of the extracted bi-clusters means that they provide
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a minimalistic explanation for the set of configurations. This set is interpreted
as a summation of rank-one bi-clusters, plus some noise.

More stable. Configurations that are hard to reproduce exhibit low stability. We
already discussed how our framework extracts the configurations that show
more repeatability when probing the data.

From this point of view, our framework might provide a mathematically sound way
to formulate and implement the Prägnanz principle, while integrating it with the
Helmholtz principle, seen as a stopping criterion for the bi-clustering process. Psy-
chophysical experiments are of course needed to fully validate this intuitive conceptual
vinculation.

7. Conclusion. In this paper we proposed a framework and a new perspective
for reaching consensus in grouping problems. Our general characterization of grouping
problems subsumes many different areas, e.g., clustering, community detection in
networks, and multiple parametric model estimation. We pose consensus grouping
as a bi-clustering problem, obtaining a conceptually simple and descriptively rich
modeling. We presented a simple but powerful bi-clustering algorithm, specifically
tuned to the nature of the problem we address, though general enough to handle
many different instances inscribed within our framework.

In particular, this is the first time that the task of finding/fitting multiple para-
metric models to a dataset was formally posed as a consensus bi-clustering problem.
The equivalence of these tasks is highlighted by the proposed framework, and we de-
voted special attention to explain the rationale behind this new characterization. As a
future line of research, we are currently investigating whether using a hard threshold-
ing scheme is actually necessary. Instead of working with binary data, we could work
with a real-valued object-model distance matrix, eliminating a critical parameter that
has been haunting the RANSAC framework for years.

We also discussed the connection with the computational Gestalt program [13],
that seeks to provide a quantitative psychologically-inspired detection theory for visual
events. We provided some cues that show the suitability of our approach as a new
research direction in this field. We are working on exploiting these new connections
to fully develop a new perspective on this fundamental problem.

We are also exploring how to use a contrario statistical tests in non-parametric
scenarios. From this perspective, we point out again that we do not need a very sharp
testing mechanism but a coarse procedure to avoid filling the preference matrix with
a huge number of poor groups that could clutter the bi-clustering algorithm. This
would allow for more freedom in the selection of the pool of input algorithms.

As an alternative, the framework could be extended with individual weights wij
(instead of column-wide weights) in the preference matrix. These weights would thus
model a confidence measure of the i-th element belonging to the j-th group. It would
be interesting to explore this possibility in depth.

Finally, we would like to stress that the proposed framework is not limited to the
presented applications. It is flexible enough to handle any type of grouping problem
and we plan to address other applications that can be formulated in this way. Two
clear examples of this are image segmentation (seen as an extension of clustering with
spatial constraints) and supervised classification, where we aim at fusing the output
of different classifiers to obtain robustified results.

Appendix A. We now show how to solve problem (2.4). The problem can be



32 M. TEPPER AND G. SAPIRO

equivalently re-formulated as

(A.1) min
U,V,X,Y,E

‖E‖1 s.t.

E = A−XY

X = U,Y = V

U,V ≥ 0,

where E ∈ Rm×n, X,U ∈ Rm×q, and Y,V ∈ Rq×n. We consider the augmented
Lagrangian of (A.1),

L (X,Y,U,V,E,Λ,Φ,Ψ) = ‖E‖1 + Λ • (X−U) + Φ • (Y −V)+

+ Ψ • (A−XY −E) + α
2 ‖X−U‖2F +

+ β
2 ‖Y −V‖2F + γ

2 ‖A−XY −E‖2F ,(A.2)

where Λ ∈ Rm×q,Φ ∈ Rq×n,Ψ ∈ Rm×n are Lagrange multipliers, α, β, γ are penalty
parameters, and B •C =

∑
i,j(B)ij(C)ij for matrices B,C of the same size.

We use the Alternating Direction Method of Multipliers (ADMM) for solving (A.1).
The algorithm works in a coordinate descent fashion, successively minimizing L with
respect to X,Y,U,V,E, one at a time while fixing the others at their most recent
values, i.e.,

Xk+1 = argmin
X

L (X,Yk,Uk,Vk,Ek,Λk,Φk,Ψk),(A.3a)

Yk+1 = argmin
Y

L (Xk+1,Y,Uk,Vk,Ek,Λk,Φk,Ψk),(A.3b)

Uk+1 = argmin
U≥0

L (Xk+1,Yk+1,U,Vk,Ek,Λk,Φk,Ψk),(A.3c)

Vk+1 = argmin
V≥0

L (Xk+1,Yk+1,Uk+1,V,Ek,Λk,Φk,Ψk),(A.3d)

Ek+1 = argmin
E

L (Xk+1,Yk+1,Uk+1,Vk+1,E,Λk,Φk,Ψk),(A.3e)

and then updating the multipliers Λ,Φ,Ψ, i.e.,

Λk+1 = argmin
Λ

L (Xk+1,Yk+1,Uk+1,Vk+1,Ek+1,Λ,Φk+1,Ψk+1),(A.3f)

Φk+1 = argmin
Φ

L (Xk+1,Yk+1,Uk+1,Vk+1,Ek+1,Λk+1,Φ,Ψk+1),(A.3g)

Ψk+1 = argmin
Ψ

L (Xk+1,Yk+1,Uk+1,Vk+1,Ek+1,Λk+1,Φk+1,Ψ).(A.3h)

Each of these steps can be written in closed form as

Xk+1 =
(
γ (A−Ek) YT

k + αUk − Λk + ΨkY
T
k

) (
YkY

T
k + αI

)−1
,(A.4a)

Yk+1 =
(
XT
k+1Xk+1 + βI

)−1 (
γXT

k+1 (A−Ek) + βVk − Φk + XT
k+1Ψk

)
,(A.4b)

Uk+1 = P+

(
Xk+1 + α−1Λk

)
,(A.4c)

Vk+1 = P+

(
Yk+1 + β−1Φk

)
,(A.4d)

Ek+1 = shrink
(
A−Xk+1Y

T
k+1 + γ−1Ψk , γ

−1
)
,(A.4e)

Λk+1 = Λk + ξα (Xk+1 −Uk+1) ,(A.4f)

Φk+1 = Φk + ξβ (Yk+1 −Vk+1) ,(A.4g)

Ψk+1 = Ψk + ξγ
(
A−Xk+1Y

T
k+1 −Ek+1

)
,(A.4h)
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where I is the q × q identity matrix, and

(P+(B))ij = max {(B)ij , 0} ,(A.5a)

(shrink(B, λ))ij = sign((B)ij) max {|(B)ij | − λ, 0} .(A.5b)

These iterations define our algorithm, the initialization being done with a rank-q SVD.
In practice, we set α, β, γ, ξ to 1.

Appendix B. We now describe how to compute p(µ(θ), δ) for the examples pre-
sented in Section 5. For simplicity, we assume that the objects under the background
model are independent and identically distributed, following a uniform law. The pre-
sented tests are, in some cases, rather crude. Much tighter bounds can be found by
carefully tuning the probabilistic models for each specific application. However, in
this simpler forms, they are already useful for demonstrating the capabilities of the
proposed framework, and are sufficient to lead to state-of-the-art results.

2D Lines. An object in X is a 2D point x ∈ R2. We need b = 2 points to define
a line. The parameter vector θ ∈ R3 of a line passing through two points x, x′, is
given by θ = [ x1 ] ×

[
x′

1

]
. Then, a line is the set of points (see Equation (5.1)) such

that

(B.1) µ(θ) = {x ∈ R2,
[
xT 1

]
θ = 0},

and the distance between a point x and a line (see Equation (5.2)) with parameter
vector θ = [A,B,C]T can be written as

(B.2) eµ(x, θ) =
(
A2 +B2

)−1/2 [
xT 1

]
θ.

Let a be the area of the bounding box enclosing the points (data). The longest line
segment in the bounding box has length D, where D is the diagonal length of the
bounding box. For a given line (model) `, we accept points q such that eµ(q, θ) < δ.
We can then compute the probability of a random point lying on a band with length
D and width 2δ [13]. This is given by 2δD/a, and we set p(µ(θ), δ) to this value for
all θ.

2D Circles. An object in X is a 2D point p ∈ R2. We need b = 3 points to
define a circle. The parameter vector θ = [ cρ ] of a circle, with center c ∈ R2 and
radius ρ ∈ R+, passing through three points p, p′, p′′ can be found by solving the
system of equations ‖p− c‖22 = ‖p′ − c‖22 = ‖p′′ − c‖22 = ρ2. A circle is the set of
points (see Equation (5.1)) such that

(B.3) µ([ cρ ]) = {x ∈ R2, ‖x− c‖2 = ρ},

and the distance between a point x and a circle (see Equation (5.2)) can be written
as

(B.4) eµ(x, [ cρ ]) = | ‖x− c‖2 − ρ |.

The probability of a random point lying on a band of width 2δ around a circle
with radius ρ is given by π

[
(ρ+ δ)2 − (ρ− δ)2

]
/a, where a is the area of the bounding

box enclosing the data. We set p(µ(θ), δ) to this value.
3D Planes. An object in X is a 3D point p ∈ R3. We need b = 3 points to

define a plane. The parameter vector θ ∈ R4 of a plane passing through three points
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p, p′, p′′, can be found by solving the system of equations
[
p p′ p′′

1 1 1

]T
θ = 0. A plane

is the set of points (see Equation (5.1)) such that

(B.5) µ(θ) = {x ∈ R3,
[
xT 1

]
θ = 0},

and the distance between a point x and a plane (see Equation (5.2)) with parameter
vector θ = [A,B,C,D]T can be written as

(B.6) eµ(x, θ) =
(
A2 +B2 + C2

)−1/2 [
xT 1

]
θ.

Let r be half the diagonal length of the 3D bounding box enclosing the points
(data). We compute the probability of a random point lying on a band of width 2δ
around a plane. This can be approximated by 2πr2δ/( 4

3πr
3), and we set p(µ(θ), δ) to

this value for all θ.
Ellipses in images. An object in the image is a line segment, detected using

LSD [19]. We use b = 3 segments to define an ellipse. We can define an ellipse, with
parameter vector θ = [A,B,C,D,E, F ]T, as the set of points (see Equation (5.1))
such that

(B.7) µ
(
[A,B,C,D,E, F ]T

)
= {[x, y]T ∈ R2, Ax2 +Bxy+Cy2 +Dx+Ey+F = 0},

where B2 − 4AC < 0. An ellipse passing through three line segments can be found
by solving the system of equations detailed in [20]. We can compute the distance
between a segment, with endpoints x,x′, and an ellipse (see Equation (5.2)) as

(B.8) eµ
(
{x,x′}, [A,B,C,D,E, F ]T

)
= max

y∈µ([A,B,C,D,E,F ]T)

{
‖x− y‖2
‖x′ − y‖2

}
.

Solving this for each endpoint involves finding the roots of a quartic polynomial. The
probability of a random point lying on a band of width 2δ around an ellipse with
radii ρ, ρ′, is given by π [(ρ+ δ)(ρ′ + δ)− (ρ− δ)(ρ′ − δ)] /a, where a is the area of
the bounding box enclosing the data. We set p(µ(θ), δ) to this value.

Vanishing points. We refer the reader to [47] for a description of the a contrario
test used in this case.
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