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MIMETIC METHODS FOR LAGRANGIAN RELAXATION OF MAGNETIC
FIELDS *
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Abstract. We present a new code that performs a relaxation of a magfielictowards a force-free state
(Beltrami field) using a Lagrangian numerical scheme. Baifrfields are of interest for the dynamics of many
technical and astrophysical plasmas as they are the lowest)e states that the magnetic field can reach. The
numerical method strictly preserves the magnetic flux arddpology of magnetic field lines. In contrast to other
implementations we use mimetic operators for the spatialateres in order to improve accuracy for high distortions
of the grid. Compared with schemes using direct derivativesind that the final state of the simulation approximates
a force-free state with a significantly higher accuracy. Wplement the scheme in a code which runs on graphical
processing units (GPU), which leads to an enhanced congpsitieed compared to previous relaxation codes.
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1. Introduction. For astrophysical plasmas magnetic diffusivity can be sothat one
can assume the plasma to evolve on dynamic timescales augdodthe ideal induction
equation

0B

ot
whereB is the magnetic field and the plasma velocity. Such an evolution equation is most
conveniently studied using the Lagrangian descriptiorhefftuid, with position vectors of
fluid elements represented by X, ¢), wherexz(X,0) = X. For our purposes we assume
thatxz (X, t) is differentiable for allX andt. Equation (1.1) implies that magnetic field lines

behave like material lines of the plasma [2, 3, 22], a prgpetiich can be expressed with
the help of the flow of the velocity field,

-V x(ux B)=0, (1.2)

ox(X,t
which together with equation (1.1) implies that the magniids at timet = 0 and att > 0

are related by the pull-back unde(X , ¢) (see appendix A):
(z*(t)B)(X, 1) = B(X,0). (1.3)

This is a modern formulation of Alfvén’s Theorem [2]. Henedain the rest of this paper
we express the magnetic fielBl( X , ¢) as a function of the initial grid positionX” and time
t. We can also express it as function of the coordinates wihdifferent functional form
B(x(X,t),t) = B(X,t). When describing our numerical scheme we will sometimes for
simplicity suppress the explicit time dependence and simpite B(X ,¢) = B(X).

The velocity in Equation (1.1) is coupled to the magnetiafigh the magnetohydrody-
namic (MHD) momentum balance equation in a highly non-lingay. However, in order

to determine the end state of such an evolution (in the alesehexternal forces) one only
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has to know that the presence of a non-zero viscosity wiltinaously extract energy from
the system until a minimum energy state is reached [17]. énathsence of significant gas
pressure (low plasmg) this minimum energy state can be obtained from a simplatian
of the magnetic energy density under the assumption of al @&mlution (Eq. 1.1). This
results in a condition for a so-called force-free field ortBehi field

(VxB)xB=0 < V x B=aB. (1.4)

Herea is in general a function of the spatial variables, but duééosolenoidal condition on
B, « has to be constant along field lines, i2- Va = 0.

As long as one is interested only in the minimum energy sthtkeoevolution, one can
also prescribe an artificial dynamics instead of using thelMibmentum balance equation.
Specifically, if one takes

u=vJxB; J=VxB; ~>0, (1.5)

it is easy to prove that the magnetic energy monotonicallyekeses until a force-free state is
reached [6, 27]. This approach is called the magneto-drieti method [5].J is the electric
current density, where we normalize by setting the perntigabi, = 1.

The question as to whether, for an arbitrary given initidtifiB(X, 0), a corresponding
Beltrami field with the same topology (i.e. satisfying (1f&) some mapping:) exists, and if
so whether it is smooth, is unsolved. Examples where the@spanding Beltrami fields have
singularities (typically current sheets) exist [24]. Te@&gak solutions occur in particular for
cases where points, lines or surfaces of vanishing magfielticstrength exist in the initial
field. A debate is still ongoing under which conditions nane®th solutions can develop
from smooth initial fields in regions of non-vanishing matgioéeld [7, 13, 14, 19, 23, 25, 26].
This question was first raised by E. Parker, as a possibleasoeior the onset of magnetic
reconnection in the solar atmosphere, and is also knowreaBatker Problem.

Studying magneto-frictional relaxation numerically wéth Eulerian description requires
high spatial resolution in order to reduce numerical diffas However, the numerical dif-
fusion can never be completely eliminated with such a stahdpproach. Consequently, an
ideal evolution preserving the topology Bf can only be approximated. In order to circum-
vent this problem, Craig et al. [6] used a Lagrangian apgredatch directly calculates the
mappingz (X, t) and hence simulates a perfectly ideal evolution. The metthecfore pre-
serves the topology of field lines as well as the magnetic fiuaugh each surface element.
Additionally, V - B = 0 is automatically preserved, thus eliminating the need iicgrdence
cleaning.

Later, Pontin et al. [20] analyzed the quality of the forceef approximation obtained
using the method of Craig et al. [6]. They found that, while ttumerically calculated value
of (V x B) x B could be minimized to an arbitrarily small value, the trukresof (V x B) x
B—obtained from independent measures described below—arastdnes much higher.
The reason for this discrepancy was identified to be numlezicars in the derivatives that
increase as the grid becomes highly distorted. Accumulaifahese errors occurs due to
several multiplications of first and second derivatives$ #na required to obtain an expression
for (V x B) x B in the scheme (see Egs. (2.11) and (2.12) of Craig et al. @Jhsequently,
it turns out thatV - J = 0 can become large for high grid distortions. It was suggelsted
Pontin et al. [20] that these errors could be reduced by tatlog the electric current density
using a mimetic method [9, 10]. Derivative operators aren ttepresented as integrals, by
making use of e.g. Stokes’ or Gauss’ theorem. One of the gbatntages of this approach
is that numerically computed curls are discretely diveogenee.
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In the present work we apply these methods with the two-fotd af a qualitative im-
provement of the force-free approximation obtained andstefaconvergence. In order to
assess the quality of the force-free approximation and coatipnal efficiency of our new
scheme, we also implement the classical method, as deddrb€raig et al. [6]. The two
methods are compared throughout the remainder of the paper.

2. Numerical Approach: The GLEMuR Code.

2.1. Magnetic Field Relaxation. For the evolution of the velocity field. we use the
aforementioned magneto-frictional force (1.5), as it esuthe magnetic energy to decay
monotonically and the field to evolve towards a force-frestest For the sake of simplic-
ity the parametery = 1 is chosen to be constant in time and space. In principal it can
depend on space and time and this can be used for instancéresadoncerns about the
magneto-frictional method raised by Low [15] for cases oédiboundaries or null points in
the domain. All examples discussed below, however, do mpiire this.

From the pull-back formula, (1.3), an equation for the maigrfeeld can be derived [16]
(see appendix A)

1 3 Bxi

whereA is the determinant of the Jacobian mawix; /0X; and measures the local compres-
sion or expansion of the medium. This is analogous to Nasgornhula known in continuum
mechanics. Equation (2.1) is used to deterndihm the Lorentz force, which is required for

the numerical integration of (1.2). The other quantity rieeg for the Lorentz force is the
electric current which we determine froB via a mimetic operator.

2.2. Mimetic Operators. A property of the mimetic differential operators descrilgd
Hyman et al. [9] is that they map fields defined on a discreteesplgke grid points, onto
a different discrete space, e.g. centers of grid faces. Theoperator maps the magnetic
field, defined on grid nodes (primal mesh), onto points in #rgers of the faces of grid cells
(dual mesh), with the result th&® andJ are known at different locations. This is a general
characteristic of mimetic operators, which map their resaoto edges, faces or cells, rather
than onto the same grid points.

Terms like(V x B) x B requireB andV x B to be known at the same locations.
Therefore, using the standard mimetic operators some $amteypolation needs to be ap-
plied. It is not obvious which method or order of interpabatieads to numerical accuracy
or stability. Although we do not have a mathematical proohomerical stability, we will
characterize situations for which interpolations may. fail

Here we take an alternative approach, as described by Petrain [20], that mitigates
this requirement for an explicit interpolation step. Thereat through a surfac€ bounded
by the closed loog' can in general be computed using Stokes’ theorem:

/J-ﬁdszj[B-dr. (2.2)
C

U

For the current at the grid poiat;j, = (X, t) we calculate three loop integrals in the
three grid surfaces which intersect at this point. Forithgrid surface this loop is shown in
Figure 2.1. The right hand side of (2.2) is evaluated as

4
Z Br : dwra (23)
r=1
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FIG. 2.1. Schematic representation of the vectors used for the alonk in equationg2.3)(2.6). Here
only the contribution from théj-index plane is shown. For the remaining components onelgingeds to cyclically
permute the indices j andk.

with the difference vectordx; defined asley; = x11 — ®1, des = xir — @, €tc., the
magnetic fieldB, = (B(X1) + B(Xi1))/2, etc. and the position vectons = z(X7),
etc., where we use the short hand notatidiX ) = (X, t). The left hand side of (2.2) we
approximate by assuming that the current is constant onuhérdateral,

4
J(Xiji) - Y meAr, (2.4)
r=1
with the four triangle elements
n1 Ay = (@1 — @ij5) X (T — T4ijx) /2,
noAs = (T — i) X (T — Tije)/2,
n3As = (xur — k) X (v — Tiji)/2,
n4A4 = (.’BIV — mijk) X (.’BI — ngk)/2 (25)

The sum of the four surface elements is given as

4
nA :Z n, A, = (dey X des + dog x des + des X dey + day x dzy) /4. (2.6)

r=1

Hence, the discretized version of (2.2) at the grid locaigp reads

4
1
J(Xije) - m=— ; B, - dx,. (2.7)

This equation determines the current in directiorat «;;,. Together with corresponding
loops in thejk- and ki-grid surfaces complete information of all three composeaitthe
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vectorJ is obtained. The current components in igY” andZ directions are related to the
projections ofJ alongn by a system of linear equations that can be solved by inettia
matrix composed of the three normal vectarsNote that the three normal vectors have to
be linearly independent, which will always be the case sg amthe grid does not collapse
to being locally two-dimensional. We note that the schenmwiged above makes use of a
modified version of the approximated normal compared toukatl by Pontin et al. [20].

While the above approach removes the requirement of ancdéxjiterpolation step,
we note that it is based on the assumption tliatan be approximated as constant over
the quadrilateral shown in Figure 2.1. For distortions om d@hid scale, e.g. foldings, this
approximation will no longer be appropriate.

2.3. Next Nearest Neighbor Mimetic Approach. For finite difference methods, a higher
order scheme, including further next nearest neighborg,in@ease the stability and accu-
racy of the numerical simulatidn To test whether accuracy and stability increase with a
modified loop integral fotJ we perform a similar calculation as in equation (2.7) usia v
ues likex;;1,;+1,, and the magnetic field on those grid points.

Equation (2.3) is here augmented by further neighbors ofpthiat «;;;, forming an
octilateral (Figure 2.2). The loop integral over this aatiéral includes eight contributions:

8
Z Br : dwra (28)
r=1

where the difference vectodse,. and the magnetic field vectol3, are chosen in analogy to
equation (2.3) (see Figure 2.2). The surface elements are

n1 Ay =dxs x des/2, mneAs = day x das /2,
nsAs = deg x day /2, ngAy = daeg x dx,/2,
nsAs = dxa x dep/4, ngds = daep X dee/4,
nrA; =dxe x dep/4, ngAs =dxp x dza/4. (2.9)

The sum of the surface elements results in a similar equasd@.6):

8
nA = anAr = (dxo x das + day X des + dag x der + deg x dxp) /2
r=1

+ (dey x dep +dep x dee + dee x dep + dep x dxy) /4. (2.10)

Those elements are used in equation (2.7), where the maitrixérted to calculatd (X ;).

2.4. Time Stepping. For the numerical integration of equation (1.5), we arerggted
in fast convergence and stability. Adaptive time steps &eded to keep the error within
limits. Therefore, we use the method of lines to express #negh differential equations as a
set of ordinary differential equations and apply the fiftidler adaptive time step Runge—Kutta
formula [4, 21] for the time stepping.

The time step is adjusted according to the error of the caficu. If the error inx
exceeds a prescribed limit the step length is reduced via

0.2
ar = at|

N (2.11)

IHigher order derivatives do not necessarily lead to higkheumacies. For sufficiently smooth solutions, how-
ever, they lead to increased stability and accuracy for mpi@sttical problems.
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FI1G. 2.2. Schematic representation of the vectors used for the alouk in equation$2.9)and(2.10) Here
only the contribution from théj-index plane is shown. For the remaining components onelgingeds to cyclically
permute the indices j andk.

wheredt anddt’ are the old and adjusted time stefighe maximum error iz, as calculated
in [21] and A the desired maximum error (tolerance).Alf> A, the result is rejected and
recomputed withlt = d¢’. ShouldA fall below Ay /2, d¢’ is increased according to the same
equation, thus accelerating computation.

As we are dealing with a highly parallelizable problem, wekemase of parallel com-
puting facilities. For that, we developed a numerical codmad GLEMuR (Gpu-based La-
grangian mimEtic Magnetic Relaxation) which makes use etthmputing power of graphi-
cal processing units. As APl we use CUDA [18], which has bested and has seen various
applications in computational analysis.

2.5. Boundary Conditions. In the code we implement both periodic boundary condi-
tions and so-called line-tied boundary conditions. A ltieet boundary is a boundary at which
the plasma velocity is zero and the magnetic flux through amfase element is fixed (i.e.
B-n fixed). Periodic boundaries for a moving grid need care@dtment, since periodic grid
positions would not be physically consistent. In order tacbasistent with equation (2.1),
for a periodic boundary in, say, thedirection we choose

T, f—1 = Tijl
Yij, f—1 = Yijl
Zij,f—1 = %iji — L. —dZ (2.12)

for the lower boundary, wherg andi are the indices for the first and last inner points of the
domain in thez-direction andd~ is the initial grid spacing in the-direction. By analogy,
the upper boundary is set to

Lij,1+1 = Tijf
Yijgl+1 = Yijf
Ziji41 = Zijf + Lz +dZ. (2.13)
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With these conditions the magnetic field is automaticallgquic, i.e.

B(Xijr-1,t) = B(Xj,t)
B(Xi,jJ_*_l,t) = B(Xijf,t). (2.14)

In the results described in the following sections all baanek are line-tied, though periodic
boundaries do not qualitatively affect these results.

3. Field Relaxation.

3.1. Initial Configuration. Using the GLEMuR code as described above we compute
the ideal evolution of initially twisted magnetic fields giag with a rectangular computa-
tional grid. For comparison purposes two initial magnegtficonfigurations are considered.
Our primary focus is on an initial field for which we have an ex@osed-form expression for
the corresponding force-free field, i.e. we know exactlyekpected values af (X, t — o)
andB(X,t — oo). This allows us to compare in a straightforward and preciag the
quality of the relaxation. The form of the initial magnetiel@l is given by

B(X.0)= 3

2 2 2

2802 exp <—¥ - Z—2> ¢(Ye, — Xé,) + Boe.,  (3.1)
a’f‘ aZ
with the initial magnetic field amplitud®,, length of the twist regiom, width of the twist
regiona,., twist angle¢ and Cartesian unit vectoks. Unless explicitly stated, we choose
By = 1,a, = v/2,anda. = 2. The twist angle is chosen eitheér= 7/4, ¢ = 7/2 0r ¢ = .
The domain is a cuboid with size, = L, = 8 andL. = 20 with its center coinciding with
the origin of the coordinate system (Figure 3.1, left partgifice field lines turn first by some
angle around the-axis and then back by the same angle, determined by tharameter,
we will call this configuratiorisoHelix Although the twist decreases like a Gaussian with
distance to the center, there is a small and negligible nlaramponent at the side boundaries
of the order oft.1 - 1075.
The expected magnetic field in the relaxed state is of the form

Bielax = Boé... (3.2)

For the same configuration we can compute the grid’s defoomé&dr ¢ — oo which takes

the form
X2+v? 72 R )
Lrelax = COS <€Xp <_T - a—2> ¢> ()(6z + Yey)

. X?4y? 77 . 5
+ sin <exp (—T - a_§>¢) (Ye, — Xe,)
+Ze,. (3.3)

In the following we also mention results obtained using thentical initial condition to
that used by Pontin et al. [20]. They applied an initial magrfield of the form

B(X,0) = Bpe,
2
2By ¢; X2 4+v? Z — L;)?
+Z—O¢exp(— i —( )
a

2 2
ag az

) x (—=Yeé, + Xé,), (3.4)

i=1 r

where the symbols denote the same as in equation (B;13re the distances of the twist
regions from the mid-plane ang} the two twist angles. We choose the domain extent and
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FiGc. 3.1. Initial magnetic field for thesoHelix field (left panel) and théontin09field (right panel) with
¢ = mand¢, o = +m, respectively. The colors denote the field strength. Fodagdity, only magnetic field lines
passing the origin at a radius &f are plotted.

parameters to be the same values as foilgbelelix configuration (Figure 3.1, right panel).
Depending on the case we choose eithes = +7/2 or ¢1 2 = £7. The expected relaxed
magnetic field is also of the form (3.2). For convenience wi deinote this type of initial
field asPontin0Q

3.2. Diagnostics.

3.2.1. Force-FreenessThe final state of our relaxation simulations should be a mume
ical approximation to a force-free field. Thatis, the finalgnatic field (relaxed state) should
approximately satisfiW x B = aB, wherea is constant along magnetic field lines. In order
to quantify the quality of this approximation we make usehaf variablen*, defined as

J-B
= 5
[20], where in an exact force-free staté is constant along field lines. The magnitude of the
variation ofa* along a magnetic field line provides information on the pnagy to force-free
equilibrium.
In principle one can choose any field line and test how mutharies, but that would

require the tracing of field lines, which is computationaipensive and would need high
precision. To circumvent this difficulty we choose the cahline interval

sa=1{(0,0,2): Z € [-L./2,L./2]}. (3.6)

For the two configurations we know that there is one magnaetld fine lying ons,, that
is invariant in time (by symmetry). Therefore, we monitoe tmaximum difference of*
between any two points on, defined as

o (X5) —Oé*(Xj)>
ar i X, X € s,. (3.7)
< | Xi — X ’

a*

(3.5)

€ = max
%)
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3.2.2. Deviation from the Exact Known Equilibrium. For thelsoHelixfield one can
simply use the deviation between the exact and numericaltsess a measure of the quality
of the final state. The standard deviation of the magnetid f&esimply

o5 = |3 SOB(Xit) — Buetas (X)) (3.8)
ijk

with the analytically computed magnetic fiel8l1.. (X% ) for ¢ — oo and the total number
of grid pointsN.
In analogy, the deviation from the exact grid deformation is

e = % D (@(Xiji) = Tretax(Xijn))?, (3.9)

ijk
with the analytically computed grid,ciax (X ;) for t — oo given by equation (3.3).

3.2.3. Convexity. Certain mimetic methods have been shown to be stable forezonv
cells [11, 12]. For concave cells there is no such proof., ltherefore, important to monitor
the convexity of the cells. To somewhat simplify the analysid still retain significance, we
define a convexity parameter associated with grid pointispagh convexity is a property of
polygons. At each nod«;; one can define eight trihedra composed by its three nearest
neighbors in index spacdgk. The three vectors for the trihedra are given as

A

da” = Tits, jx — Tijk

da! = ®i jis; 1 — Tijk

dz” = @i jk+s, — Tijes  6i, 05,0 € {—1,1} (3.10)

and the convexity is defined as

1 sen(det(derdztda”)) = 6,065
F(Xijk) = { -1 snldett otherwise.)) ’ (3.11)
3.2.4. Magnetic Energy. As discussed above, a force-free magnetic field corresponds
to a minimum of the magnetic energy. It can be demonstratedttie magneto-frictional
evolution equation (1.5) implies a monotonic decay of thegnadic energy [6, 27]. The
reliability of the methods applied here and the quality & thlaxation is consequently also
measured by the evolution of the magnetic energy in the veldm

EM:/ B?/24V. (3.12)
14

Its numerical computation on a moving grid is not triviaha the volumelV' surrounding

each grid node changes in time. This volume is given by therdehantA of the Jacobian
matrix multiplied by the corresponding undistorted volud®édY dZ. Boundary points need
to be weighted by a facta}, as part of their volume lies outside the domain. For gridhfoi
lying on domain faceg = 1/2, on edges = 1/4 and on cornerg = 1/8. Thus, the

magnetic energy is

By = %Z«Xijk) B*(Xijk) A(Xijk) dXdYdZ. (3.13)

ijk
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FIG. 4.1. Comparison of the quality of the field relaxation for the mimapproach and the classical method
as evolution in time for thésoHelix field () = w/4). The mimetic approach results in improved quality of the
relaxed state as measured in particular &y andog, as well asc*.

4. Quality of the Force-Free Approximation. Here we describe results obtained using
the GLEMuUR code with mimetic differential operators basedonly nearest neighbors, as
described in section 2.2. These are compared with restittg ttee classical approach with
second-order spatial finite differences.

4.1. Evolution of Diagnostic Parameters.As the magnetic field evolves, it approaches
the relaxed state, which is captured by the decay of the ditgrvariables* for thePontin09
field and, additionallyy g ando,, for thelsoHelixfield (Figure 4.1, Tables 4.1 and 4.2).

The evolution ok* provides one window into the quality of the force-free fieldtained.
Comparing the results for the mimetic and classical apgrescwe find that for all of the
configurations investigated here (Figure 4.1, Tables 4dl4aP) the mimetic approach gives
a greatly improved relaxation as measuredeby The classical method converges to val-
ues of the order of one, almost independently of the reswiutvhile the mimetic approach
improves this by more than four orders of magnitude with esgence towards higher reso-
lutions (Tables 4.1 and 4.2).
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In addition to the above, one can also monitor directly themadized maximum of the
Lorentz force in the domain

|J x B
maXT.

For both methods this can be seen to decay to extremely salafs (Figure 4.1, Tables 4.1
and 4.2) that are essentially limited only by numerical woffierrors. However, as was
shown by Pontin et al. [20], these numbers can be highly euitshgy. In particular, it was
shown that for the classical method the Lorentz force is mizéd at the expense of the ac-
curacy of, in particular¥ x B. Comparing plots for both the classical and mimetic methods

£= (4.1)

TABLE 4.1
Asymptotic values of the diagnostic parameters as a fumaifathe resolutiorn, twist angle¢ and method
for the numerical derivatives for thsoHelix configuration. Runs marked Bydenote the use of double precision
arithmetic (64 bit) in contrast to single precision (32 billyphens mark simulation runs which do not converge.

@ method n £ €* oB ox

/4  Mimetict 17 3.5e—12 1.0e—2 1.3e—3 9.6e—3
n/4  Mimetict 33  9.4e—12 7.5e—3 3.8e—4 2.4e—3
7/4  Mimetict 65  2.le—11 2.7e—4 8.8¢—5 1.5e—3
7/4  Mimetict 129  4.4e—11 1l.4e—5 24e—5 1.5e—3
7/2  Mimetic 17 5.0e—5 8.3e—2 4.4de—3 2.4e—2
7/2  Mimetic 33  3.0e=5 6.le—2 1.5e—3 T.le—3
7/2  Mimetic 65  15e—4  2.3e—3 3.4de—4 5.9e—3
7/2 Mimetic 129  6.le—4  2.0e—4 1.3e—4 5.8¢—3
T Mimetic 17 - — - -

7r Mimetic 33  3.7e—4 54de—1 6.4e—3 2.Te—2
7 Mimetic 65 1le—3 27e—2 lde—3 2.le—2
% Mimetic 129  4.7e—3  2.4e—3 1.0e—3 2.3e—2
n/4  Classié 17 3.7e—12 4.9e—1 9.0e—3 8.6e—3
7/4  Classié 33  1.0e—11 9.6e—1 5.4e—3 5.1e—3
7/4  Classid 65  2.3e—11 1.1 5.2e—3  4.6e—3
7/4 Classié 129 5.0e—11 1.1 5.3e—3  4.6e—3
7/2  Classic 17 44e—5 9.9e—1 2.0e—2 3.5e—2
7/2  Classic 33 T.3e—5 1.9 1.9e—2  2.4e—2
7/2  Classic 65  1.5e—4 2.2 2.0e—2  2.0e—2
7/2  Classic 129 T.4e—4 2.2 2.1e—2  1.8e—2
7 Classic 17 5.le—5 2.0 5.5¢—2  1.3e—1
7 Classic 33  8.le-5 3.8 6.9e—2  1.2e—1
7r Classic 65  3.6e—4 4.3 7.5e—2  9.8e—2
7 Classic 129 8.3e—3 4.4 7.6e—2  T.de—2

TABLE 4.2
Asymptotic values of the diagnostic parameters as a fumcfdhe resolutiorn and method for the numerical
derivatives for théPontinO9configuration ¢ = 7/2).

method n £ €*

Mimetic 17 5.4e—5 1.1le—1
Mimetic 33 3.3e—4  1.8e—2
Mimetic 65 8.9e—4  T.4de—4
Mimetic 129 4.0e—3 6.4e—4
Classic 17 1.5e—4  5.0e—1
Classic 33 1.8e—4  7.9e—1
Classic 65 9.8¢—4  8.5e—1
Classic 129 2.9e—3 8.6e—1
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FIG. 4.2. Normalized relative free magnetic energy in time for theHelix configuration withyp = /4
using the mimetic approach (upper panel) and classical apgh (lower panel). As expected, the energy decreases
monotonically.

we see thaf continues to decrease even after all independent meadutesforce-freeness
stabilize to a constant level. As a result, we do not congliedirectly calculated value gf
to be a reliable measure of the true accuracy of the foradpproximation.

Further, the value of strongly depends on the resolution and the tolerakge The
former can even have a negative effect\if is chosen to be the same irrespective of the
resolution. We explain this by the error of the grid deforimatduring the time stepping
(Eq. 2.11), where\ is set to similar values for different resolutions. If thedgerror is
the same for high and low resolutions, the error in the déviea is higher for smaller grid
separations, which is why we see higher valuegfor

4.2. Deviations from the Analytical Solution. For thelsoHelix configuration, we can
directly assess the accuracy of the method by comparingélgmetic field and grid distortion
with the known exact values as measurealpyando,.. Like £ ande*, og ando,, decrease
over time, indicating the relaxation of the field towards ecésfree state (Figure 4.1). For
the mimetic approach there is a reduction in these quastitissome cases by more than two
orders of magnitude. We also confirm strong improvements initreasing resolution. Their
monotonic decay serves us as reassurance that the mimptwaap is very well suited for
studying relaxation processes.

4.3. Magnetic Energy. Motivated by previous predictions on the magnetic energy ev
lution [6, 27] we monitor the free magnetic eneri{c = Ey — EY;, whereEY, is the
magnetic energy stored in the homogeneous backgroundigld = Byé.. From that
analysis we confirm thafec and Ey; decrease monotonically in time (Figure 4.2), which is
well established even for very low grid resolutions. Thessieal approach allows the energy
to decay only down to a certain threshold while the mimetigrapch leads to the expected
decay of the free energy. This behavior also serves as additverification that all applied
methods are able to reproduce correct results within thmitd.

4.4. Grid Convexity and Stability. Relaxation of the magnetic fields used here results
in an untwisted magnetic field, which is achieved by twisting grid in the opposite sense
to the initial magnetic field twist. Increasing the field'stial twist (¢) also increases the
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FiG. 4.3. Grid distortion as seen in théj-index plane atZ = 0 for the final stage of the simulation for
the PontinO9configuration ¢ = 7). Red grid nodes denote convexity, while blue denote ciycay defined in
equation(3.11) The left panel shows the grid close to relaxation using thesical method. Second and third panel
show the same configuration using the mimetic method atttime200 andt¢ = 238.2, respectively. The mimetic
method breaks down shortly after the grid becomes localhcawe.

expected grid distortion of the relaxed state, as the fielginas itself. Such high distortions
lead to concave grid cells, particularly for low resoluspfor which the mimetic operators
might not yield a good approximation [12].

The grid distortion is clearly seen in Figure 4.3 where we file grid at the mid-plane
Z = 0 at an intermediate time for theontinO9configuration ¢§ = 7). We also plot the
convexity, as defined in equation (3.11), where red reptesamvexity and blue concavity.
Applying the classical method we find that the grid becomeallp concave (Figure 4.3, left
panel) but the simulation remains stable. The mimetic apgr@lso leads to concave cells
(Figure 4.3, central panel) which subsequently causegfhggd distortions and the method
breaks down (Figure 4.3, right panel). At this time, we sedoavhup of the diagnostic
parameters (Figure 4.4) together with a drop of the time Isyegeveral orders of magnitude,
at which point the simulation is stopped. Increased gridltg®n can delay this blow up.
Moreover, it should be stressed that while the classicalagmh is stable in this case, it does
not result in an improved relaxed state, as measured byndeed, the mimetic approach
before the blow up provides by orders of magnitude a bettexeffree approximation, see
Figure 4.4.

4.5. Next-Nearest-Neighbors Mimetic Approach.Here we apply our next-nearest-
neighbor curl operator to compute = V x B, described in Section 2.3. Subject to this
study is the field for which we know its analytical solutiong(§3.1)) with¢ = 7 /4. For
the evolution oft, o g ando, we observe almost identical behavior as for the neareshneig
bor approach. In that respect there is no advantage of thisad@ver the nearest neighbor
method. By contrast, far* we observe an improvement of up to 5 orders of magnitude (Fig-
ure 4.5). However, this method proves to be unstable forthroconfigurations discussed
herein. Indeed, the numerical instability sets in even teefloe grid becomes concave, which
severely limits its applicability. This suggests that irdihg additional grid points in the
mimetic approach is in general not likely to be fruitful.

5. Performance. We compare the computation time fdr= V x B for the classical
direct approach, as used by Craig et al. [6], with the minmagtjgroach. Since the simulation is
performed on an Nvidia graphics card model GTX 765M, we us@t¥ilDIA Visual Profiler
tool to compare the computation time of the computation &ksrfor a resolution 065 grid
points. For computing/ the classical approach requires a typical time of al3gui6ms,
while the mimetic approach only neeti% 82ms.
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FIG. 4.4. Time evolution for théontin09configuration ¢, o = =) of ¢* for J computed by using the
mimetic approach (upper panel) and classical derivatives/ér panel). Fore*, the mimetic method is far superior
in creating a force-free field but lacks in stability for thparticular field.
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FIG. 4.5. Time evolution of the force-free measutefor the next-nearest-neighbor mimetic approach using
thelsoHelix configuration withy) = 7 /4. The inset shows the time evolution foe= 17 for longer times. Compared
to the nearest neighbor method there is an improvement aférsiof magnitude as measureddyy

Summing up all computationally intensive floating point @®ns, like multiplications,
divisions and roots, we know that there d62 multiplications and divisions for the classical
method. For the mimetic approach there are dri§ multiplications and one division, but
12 roots. In both cases, multiplications and divisions by adeof 2™ with n € N are
excluded from the operation count, since they only requivévaise shift. The difference in
computational working load approximately reflects the mead timings.

Currently our code runs on single GPUs only. This means tirating simulations on
multiple graphics cards, like on a cluster, would not ineeethe computational speed. Since
efficient multi-GPU computation for finite difference schesnis rather labor intensive to
design we left this open for future work. However, the codelisently designed such that it
can in principle run on hardware with any number of multigssors, and has run on high-
end cards like the Nvidia Tesla K40. As the development oplgies cards is rapid we will
soon be able to use our code on future hardware without catipoél penalties.
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6. Conclusions. The question as to whether for an arbitrary given magnetit &eor-
responding force-free field (Beltrami field) with the sampdiogy exists, and if so whether
it is smooth, is an important unsolved problem in plasma f@sysWe have presented here
a new code that performs a relaxation of a magnetic field tdsvarforce-free state using a
Lagrangian numerical scheme. The method strictly preseéheemagnetic flux and the topol-
ogy of magnetic field lines. In contrast to other implements we use mimetic operators
for the spatial derivatives in order to improve accuracyhigh distortions of the grid. We im-
plement the scheme in a code which runs on graphical progessits (GPU), which leads
to an enhanced computing speed compared to previous lielaatdes. Compared with
schemes using direct derivatives we find that the final sthtBeosimulation approximates
a force-free magnetic field with a significantly higher aeayt Furthermore, as expected,
this accuracy improves as the resolution increases. Itusdphowever, that the method is
only numerically stable so long as the cells of the numegcal remain convex. This places
a restriction on the proximity of the initially prescribeélfi to the corresponding force-free
field. Increasing the number of points used in the schemertsider next-nearest-neighbors
is found to strongly compromise the stability, indicatihgtthis is not a fruitful approach for
such schemes.

Appendix A. Derivation of Egs. (1.3)and (2.1).

To extend the initial discussion about the ideal evoluti@express Eq. (1.1) in terms of
a Lie-derivative of a differential 2-formd associated with the vectd®. The relation between
the 2-form and the vectdB is given by the interior produgt = i g wherey is the standard
volume form in the domain. In Cartesian coordingt&s, X2, X3) this reads

B = Ba3d X% AdX? + Bi3d X A dX? + Brod X AdX2,
where
Bi2 = B3, Baz = By, 13 = —Bo.

Hence, Eq. (1.1) is equivalent to

0

whereLq, is the Lie-derivative with respect t@. This is in turn the differential formulation
of

(il:*(t)ﬁ)(X, t) = ﬁ(X’ 0),

where the star indicates the pull-back operation (see [13p@] and [8, pp. 140-3]). Writing
this out we get

% J
(" (08)(X 1) = By (X 1), 1) o P2 axk nax!, i jik,Le {1,2,3) andi < j.

One can solve this equation f@( X, t), using the formula for the adjoint of the Jacobian
matrix. Translating this back into components of the vefiedd B leads to equation (2.1).
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