
ar
X

iv
:1

50
6.

08
09

1v
1 

 [
m

at
h.

O
C

] 
 2

6 
Ju

n 
20

15

GENERALIZED BENDERS DECOMPOSITION FOR ONE CLASS OF

MINLPS WITH VECTOR CONIC CONSTRAINT∗

ZHOU WEI†‡ AND M. MONTAZ ALI‡§

Abstract. In this paper, we mainly study one class of mixed-integer nonlinear programming

problems (MINLPs) with vector conic constraint in Banach spaces. Duality theory of convex vector

optimization problems applied to this class of MINLPs is deeply investigated. With the help of

duality, we use the generalized Benders decomposition method to establish an algorithm for solving

this MINLP. Several convergence theorems on the algorithm are also presented. The convergence

theorems generalize and extend the existing results on MINLPs in finite dimension spaces.
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1. Introduction. In many optimization problems, decision variables appearing

in objective and constraint functions are continuous and discrete. These optimiza-

tion problems can be modelled as mixed-integer nonlinear programming problems

(MINLPs). In general, MINLP is defined mathematically as follows:

P





minimize
x, y

f(x, y)

subject to g(x, y) ≤ 0,

x ∈ X, y ∈ Y discrete variable,

(1.1)

where f : Rn ×R
p → R and g : Rn ×R

p → R
m are nonlinear functions, X ⊂ R

n, and

Y ⊂ R
p is a polyhedral set of discrete points.

MINLP problem P is a natural approach to solve problems by simultaneously

optimizing the system structure (discrete) and parameters (continuous). Over the

past decades, MINLPs have been used in various applications such as the process

industry, chemical engineering design, production planning and control, optimal de-

sign of gas or water transmission networks, finance and scheduling problems etc.(cf.

[4, 9, 13, 14, 29, 30] and references therein). Note that two subclasses of mixed-integer

linear programming (MILP) problem and nonlinear programming (NLP) problem are

embedded in MINLP simultaneously, and thus MINLP problem P falls into the class

of NP-hard problems and becomes one of the most difficult optimization problems. It

is known that methods for solving MINLP problem P mainly fall in two broad classes.
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One class is heuristic methods which do not provide a guarantee that on termination

the incumbent is a minimizer, while the other class is deterministic methods which

terminate with a guaranteed solution or an indication that the problem has no inte-

ger solution. The deterministic methods for solving MINLP problem P with convex

functions are mainly on NLP/LP based on branch-and-bound method (cf. [20, 24]),

extended cutting-plane method (cf. [5, 31, 32]), outer approximation method (cf.

[6, 33, 34]), variable and Lagrangean decompositions (cf. [7, 22]), generalized Benders

decomposition (cf. [1, 2]) etc.

Vector optimization relates to functional analysis and mathematical program-

ming, and has been found to play many important roles in economics theory, engi-

neering design, management science, multi-criteria decision making and so on. In

recent years, the study on vector optimization has received increasing attentions in

the literature (see [3, 8, 15, 19, 21, 23] and references therein). To the best of our

knowledge, there is not much literature to study MINLPs in the framework of vector

optimization, and from the theoretical viewpoint as well as for applications, it is of

significance to continue studying MINLPs in general infinite dimension spaces. Moti-

vated by this, in this paper, we mainly study one class of MINLPs with vector conic

constraints in the context of Banach spaces, and aim to establish an appropriate algo-

rithm for solving it. Let E,Z be two Banach spaces, D be a normed linear space and

K be a closed convex cone in Z which specifies a partial order �K on Z as follows:

z1 �K z2 ⇐⇒ z2 − z1 ∈ K for all z1, z2 ∈ Z. (1.2)

In this paper, we consider the following MINLP problem (VOP) with vector conic

constraint:

(VOP)






minimize
x, y

f(x, y)

subject to g(x, y) �K 0,

x ∈ X, y ∈ Y discrete variable,

(1.3)

where f : E × D → R and g : E × D → Z, X ⊂ E and Y ⊂ D a set with discrete

variables. When we take E := R
n, Z := R

m, D := R
p and K := R

m
+ , problem

(VOP) reduces to the MINLP problem P . Hence it is more general to study this

class of MINLPs. With respect to solving problem (VOP), we are inspired by some

ideas from generalized Benders decomposition and use this decomposition method to

construct an appropriate algorithm for finding the optimal value of problem (VOP).

Benders decomposition was first introduced by Benders [1] and has been applied

to a variety of optimization problems such as mixed-integer linear programming, non-

linear programming and MINLPs. It is known that Benders decomposition is an

approach for exploiting the structure of mathematical programming problems with

complicating variables. Such variables, if temporarily fixed, may render the remaining

optimization problem considerably more tractable. For the special class of problems

studied by Benders [1], fixing the complicating variables reduces the given problem
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to an ordinary linear programming, parameterized by the value of the complicating

vectors. Along this line, Geoffrion [11] generalized the Benders decomposition to a

broader class of problems where the parameterized subproblem need no longer be a

linear programming. Rouhani et al. [26] and Floudas and Ciric [9] used the generalized

Benders decomposition approach to solve MINLPs which are modelled from practical

problems of reactive source planning in power systems and heat exchanger network

synthesis respectively. It is noted that Hooker and Ottosson studied logice-based Ben-

ders decomposition, one extension of Benders decomposition, and applied this method

to planning and scheduling. Readers are invited to consult references [16, 17, 18] for

more details. For these reasons, the generalized Benders decomposition has been ex-

tensively studied by many authors over past decades (cf. [1, 2, 10, 11, 12, 28] and

references therein).

Note that Geoffrion [11] employed the generalized Benders decomposition and

nonlinear convex duality (cf. [10]) to reformulate MINLP problem P and derive one

equivalent master problem. The algorithm, presented through the generalized Benders

decomposition procedure, alternates between solutions of relaxed master problems

and nonlinear convex subproblems. Sahinidis and Grossmann [28] further discussed

convergence properties of this generalized Benders decomposition procedure. Inspired

by [11, 28], in this paper, we mainly study the generalized Benders decomposition in

vector optimization and use this approach to construct one corresponding algorithm

for solving MINLP problem (VOP) of (1.3). To achieve this aim, along the line given

by Geoffrion [11], it is necessary to separate problem (VOP) into many subproblems,

establish an equivalent master problem of problem (VOP) and solve the relaxation

of master problems. For the equivalence between problem (VOP) and its master

problem, we are inspired by Geoffrion [10] to study the duality of convex vector

optimization problems and proved several duality results (see Section 3).

The paper is organized as follows. In Section 2, we give some definitions and pre-

liminaries used in this paper. Section 3 is devoted to duality theory results on convex

vector optimization problems. Several duality results generalize the corresponding

ones obtained in [10]. In Section 4, we use the generalized Benders decomposition to

establish an algorithm for solving problem (VOP) of (1.3) with the help of duality

results given in Section 3. The convergence theorems on the algorithm are obtained

therein. The conclusion of this paper is presented in Section 5.

2. Preliminaries. Let E be a Banach space (i.e. complete normed linear space)

and E∗ denote the dual space of E with dual pairing 〈·, ·〉 between E∗ and E. Given

a set C ⊂ E, let C and int(C) denote the norm closure and the interior of C,

respectively. For x ∈ E and δ > 0, denote B(x, δ) the open ball with center x and

radius δ.

Let S be a closed convex set of E and x ∈ S. We denote T (S, x) the contingent

cone of S at x; that is v ∈ T (S, x) if and only if there exist a sequence {vk} in E

converging to v and a sequence tk in (0,+∞) decreasing to 0 such that x+ tkvk ∈ S
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for all k ∈ N, where N denotes the set of all natural numbers. The normal cone of S

at x, denoted by N(S, x), is defined as:

N(S, x) := {x∗ ∈ E∗ : 〈x∗, v〉 ≤ 0 for all v ∈ T (S, x)}. (2.1)

It is known that N(S, x) and T (S, x) are the dual cones of each other and one can

verify that

N(S, x) = {x∗ ∈ E∗ : 〈x∗, y − x〉 ≤ 0 for all y ∈ S}. (2.2)

Let ψ : E → R ∪ {+∞} be a convex function. We denote

dom(ψ) := {x ∈ E : ψ(x) ∈ R} and epi(ψ) = {(x, α) ∈ E × R : ψ(x) ≤ α}

the domain and the epigraph of ψ, respectively. Recall that ψ is said to be lower

semicontinuous at x ∈ E, if lim infy→x ψ(y) ≥ ψ(x). Let x ∈ dom(ψ). Recall that the

subdifferential of ψ at x is defined by

∂ψ(x) := {x∗ ∈ E∗ : (x∗,−1) ∈ N(epi(ψ), (x, ψ(x)))}. (2.3)

It is known that x∗ ∈ ∂ψ(x) if and only if

〈x∗, y − x〉 ≤ ψ(y)− ψ(x) for all y ∈ E.

Let F : E ⇒ E∗ be a set-valued mapping. We denote dom(F ) := {x ∈ E :

F (x) 6= ∅} the domain of F . Let x ∈ dom(F ). Recall that F is said to be norm-

to-weak∗ upper semicontinuous at x, if for every weak∗ open set V containing F (x)

and every sequence {xn} ⊂ dom(F ) with ‖xn − x‖ → 0, one has F (xn) ⊂ V for

all sufficiently large n. Equivalently, it is easy to verify that F is norm-to-weak∗

upper semicontinuous at x if and only if for any generalized sequences {xk} and {x∗k}

satisfying xk
‖·‖
−→ x, x∗k

w∗

−→ x∗ and x∗k ∈ F (xk) for all k, one has x∗ ∈ F (x). Recall

that F is said to be locally bounded at x, if there exist constants δ,M ∈ (0,+∞) such

that ‖u∗‖ ≤M holds for any u ∈ B(x, δ) and any u∗ ∈ F (u).

Let Z be a Banach space and K ⊂ Z be a closed convex cone. The partial order

in Z by K is defined as (1.2). Let ϕ : E → Z be a function. Recall that ϕ is said to

be K-convex, if

ϕ(λx1 + (1− λ)x2) �K λϕ(x1) + (1− λ)ϕ(x2) for any x1, x2 ∈ E and any λ ∈ [0, 1].

If one takes Z := R and K := [0,+∞), then K-convexity of ϕ reduces to the general

convexity of real-valued function ϕ.

3. Duality for convex vector optimization problems. In this section, we

study one nonlinear convex primal vector optimization problem as well as its associate

duality problem and pay main attention to duality theory for this problem. Note that

Geoffrion [10] investigated duality theory for nonlinear convex programming with
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convex function constraints in finite dimension spaces, and gave optimality and weak

and strong duality theorems by virtue of the concept of perturbation function. Along

the line in [10], we apply this approach to the study on convex vector optimization

primal problem in Banach spaces and endeavour to provide several duality results on

this primal problem and its dual problem. These duality results on primal problem and

its dual will play a key role in the construction of generalized Benders decomposition

algorithm for solving problme (VOP) of (1.2). Furthermore the finite convergence of

this algorithm is also mainly dependent on these duality results (see Section 4). We

begin with this convex vector optimization primal problem.

Let E,Z be two Banach spaces and K ⊂ Z be a closed convex cone with a

nonempty interior. We define the partial order in Z byK as follows: for any z1, z2 ∈ Z,

z1 �K z2 ⇐⇒ z2 − z1 ∈ K and z1 ≺K z2 ⇐⇒ z2 − z1 ∈ int(K).

We consider the following convex primal programming problem:

(P)






minimize
x

f(x)

subject to g(x) �K 0,

x ∈ X,

(3.1)

where X ⊂ E is convex, f : X → R is convex and g : X → Z is K-convex.

The dual problem of (P) is taken to be:

(D)

{
maximize

u∗

[
inf
x∈X

{f(x) + 〈u∗, g(x)〉}
]

subject to u∗ ∈ K+,
(3.2)

where K+ := {z∗ ∈ Z∗ : 〈z∗, z〉 ≥ 0, ∀z ∈ K} denotes the dual cone of K. If we take

E := R
n, Z := R

m and K := R
m
+ , primal problem (P) and dual problem (D) reduce

to the classic convex programming with convex function constraints and its associate

dual programming in finite dimensional spaces, respectively.

Problems (P) and (D) are in close connection with each other and always have

optimal values (possibly ±∞) provided we invoke the customary convention that an

infimum (resp. supremum) taken over an empty set is +∞ (resp. −∞). To investigate

the interrelationship between problems (P) and (D), we first recall some definitions

on problems (P) and (D).

Definition 3.1. A linear continuous functional u∗ ∈ K+ is said to be essentially

infeasible in problem (D), if

inf
x∈X

{f(x) + 〈u∗, g(x)〉} = −∞.

Problem (D) is said to be essentially infeasible, if every u∗ ∈ K+ is essentially infea-

sible in problem (D); otherwise, problem (D) is said to be essentially feasible.

Definition 3.2. A pair (x̄, ū∗) ∈ E × Z∗ is said to satisfy the optimality condi-
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tions for problem (P), if




(i) f(x̄) + 〈ū∗, g(x̄)〉 = min
x∈X

{
f(x) + 〈ū∗, g(x)〉

}
,

(ii) 〈ū∗, g(x̄)〉 = 0,

(iii) ū∗ ∈ K+,

(iv) g(x̄) �K 0.

(3.3)

A linear continuous functional ū∗ ∈ Z∗ is said to be an optimal Lagrange multiplier

for problem (P), if (x̄, ū∗) satisfies the optimality conditions for some x̄ ∈ X.

Remark 3.1. (a) It is easy to verify that if ū∗ ∈ Z∗ is an optimal Lagrange

multiplier, then there exists x̄ ∈ X such that x̄ is an optimal solution to problem

(P). This means that an optimal Lagrange multiplier presupposes the existence of

an optimal solution to problem (P). Furthermore, if ū∗ ∈ Z∗ is an optimal Lagrange

multiplier, then (x̄, ū∗) satisfies the optimality conditions (i)-(iv) in (3.3) for any

optimal solution x̄ to problem (P).

(b) The optimality conditions are equivalent to a constrained saddle-point of the

Lagrange function, that is, (x̄, ū∗) satisfies the optimality conditions (i)-(iv) in (3.3)

if and only if (x̄, ū∗) ∈ X ×K+ with 〈ū∗, g(x̄)〉 = 0 and

f(x̄) + 〈u∗, g(x̄)〉 ≤ f(x̄) + 〈ū∗, g(x̄)〉 ≤ f(x) + 〈ū∗, g(x)〉 ∀(x, u∗) ∈ X ×K+.

For the case of primal problem (P) when taking E := R
n, Z := R

m and K := R
m
+ ,

Geoffrion [10] exploited the concept of perturbation function to study convex duality

theory between primal problem (P) and its duality problem (D), and proved the

existence of optimal Lagrange multipliers for this primal problem. To delve into the

problems (P) and (D) in this section, we consider this notion of perturbation function

in vector optimization and study its close interrelationship with optimal Lagrange

multipliers for problem (P) of (3.1).

Recall that the perturbation function v(·) associated with problem (P) is defined

on Z as follows:

v : Z → R ∪ {±∞}, z 7→ v(z) := inf
x∈X

{
f(x) subject to g(x) �K z

}
, (3.4)

where each z ∈ Z is called the perturbation vector for v(·). We denote

A :=
{
z ∈ Z : there exists x ∈ X such that g(x) �K z

}
(3.5)

the feasible set of the perturbed problem. Note that v(z) = +∞ if and only if z 6∈ A

by the customary convention.

Proposition 3.1. (i) Let A be defined as (3.5). Then A is a convex set and v(·)

is convex and monotone nonincreasing on A.

(ii) Suppose that X is compact, f is lower semicontinuous and that g is con-

tinuous. Then A = dom(v) is a closed subset and v(·) is lower semicontinuous.

Furthermore, suppose that the Slater constraint qualification

g(x̂) ≺K 0 for some x̂ ∈ X (3.6)
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holds. Then v(·) is continuous at 0Z ∈ A.

Proof. (i) The convexity of A and v(·) as well as monotone nonincreasing of v(·)

follows from the convexity of f and the K-convexity of g.

(ii) Since X is compact, f is lower semicontinuous and g is continuous, it is easy

to verify that A is closed and for any z̄ ∈ A there exists x̄ ∈ X such that v(z̄) = f(x̄).

Then A = dom(v) and v(z) = +∞ for all z 6∈ A. For the lower semicontinuity of v(·),

it suffices to prove that v(·) is lower semicontinuous on A. Let z ∈ A and zi → z with

zi ∈ A for all i ∈ N. Then for any i ∈ N, there exists xi ∈ X such that g(xi) �K zi

and

v(zi) ≥ f(xi)−
1

i
.

Since X is compact, without loss of generality, we can assume that xi → x ∈ X

(considering subsequence if necessary). It follows that g(x) �K z as K is closed and

g is continuous. This implies that

lim inf
i→∞

v(zi) ≥ lim inf
i→∞

(f(xi)−
1

i
) ≥ f(x) ≥ v(z)

as f is lower semicontinuous at x.

Now, suppose that Slater constraint qualification (3.6) hold. Then −g(x̂) ∈

int(K) and thus there exists δ > 0 such that −g(x̂) + B(0Z , δ) ⊂ K. This im-

plies that B(0Z , δ) ⊂ A = dom(v). Hence 0Z ∈ int(A) = int(dom(v)) and it follows

from [25, Proposition 3.3] that v(·) is continuous at 0Z . The proof is complete. �

The following proposition provides an equivalent interpretation to optimal La-

grange multipliers and asserts precisely that the set of optimal Lagrange multipliers

is essentially the negative of subdifferential of perturbation function at the origin.

Proposition 3.2. Suppose that problem (P) has an optimal solution and denote

U the set of all optimal Lagrange multiplier for problem (P). Then U = −∂v(0).

Proof. The “⊂” part. Let ū∗ ∈ U . Then there exists x̄ ∈ X such that the pair

(x̄, ū∗) satisfies the optimal conditions (i)-(iv) in (3.3). From the optimal conditions

(i) and (ii), we have

f(x) + 〈ū∗, g(x)〉 ≥ f(x̄) + 〈ū∗, g(x̄)〉 = f(x̄), ∀x ∈ X. (3.7)

Let z ∈ A and x ∈ X with g(x) �K z. Then 〈ū∗, z〉 ≥ 〈ū∗, g(x)〉 by the optimal

condition (iii) and it follows from (3.7) that f(x) ≥ f(x̄) − 〈ū∗, z〉. By taking the

infimum of the left-hand side over the indicated values of x, one has

v(z) ≥ f(x̄)− 〈ū∗, z〉 ∀z ∈ A.

This implies that −ū∗ ∈ ∂v(0) since f(x̄) = v(0) and v(z) = +∞ for any z 6∈ A.

For the “⊃” part, let −ū∗ ∈ ∂v(0) and x̄ be an optimal solution of problem (P).

Then g(x̄) �K 0. We only need to prove that the pair (x̄, ū∗) satisfies the optimality

conditions (i)-(iii). Noting that −ū∗ ∈ ∂v(0), it follows that

v(z) ≥ v(0)− 〈ū∗, z〉 ∀z ∈ Z. (3.8)
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This implies that 〈ū∗, z〉 ≥ v(0) − v(z) ≥ 0 holds for all z ∈ K as v(·) is monotone

nonincreasing and consequently ū∗ ∈ K+. Noting that decreasing the right-hand side

of problem (P) to g(x̄) will not destroy the optimality of x̄, it follows that

v(g(x̄)) = v(0) and 〈ū∗, g(x̄)〉 ≥ 0.

On the other hand, 〈ū∗, g(x̄)〉 ≤ 0 follows from −g(x̄) ∈ K and ū∗ ∈ K+. This

means that 〈ū∗, g(x̄)〉 = 0 and thus the optimality condition (ii) holds. To prove the

optimality condition (i), for any x ∈ X , when taking z := g(x) in (3.8), we have

v(g(x)) ≥ v(0)− 〈ū∗, g(x)〉.

Since f(x) ≥ v(g(x)) for all x ∈ X and f(x̄) = v(0), one has

f(x) + 〈ū∗, g(x)〉 ≥ f(x̄) = f(x̄) + 〈ū∗, g(x̄)〉 ∀x ∈ X

(thanks to the optimality condition (ii)). Hence the optimality condition (i) holds.

The proof is complete. �

It is known from Proposition 3.2 that optimal Lagrange multipliers can be deter-

mined from subdifferential ∂v(0) and thus it is necessary to study equivalent condi-

tions ensuring the nonempty of ∂v(0). The following proposition provides a criterion

for the existence of subdifferential of perturbation function v(·) at a point where it is

finite.

Proposition 3.3. Let v(·) associate with problem (P) be defined as (3.4) and

z̄ ∈ dom(v). Suppose that X is compact, f is lower semicontinuous and that g is

continuous. Then ∂v(z̄) 6= ∅ if and only if there exists M ∈ (0,+∞) such that

v(z̄)− v(z)

‖z − z̄‖
≤M ∀z ∈ Z\{z̄}.

Proof. By virtue of Proposition 3.1, one has v(·) is a lower semicontinuous

convex function and v(z) > −∞ for all z ∈ Z. Let z∗ ∈ ∂v(z̄). Then the necessity

part follows by taking M := ‖z∗‖+ 1. It suffices to prove the sufficiency part. Let

Φ : = {(z, r) ∈ Z × R : v(z̄)− v(z) ≥ r} and

Ψ : = {(z, r) ∈ Z × R : M‖z − z̄‖ < r}.

Then Ψ and Φ are convex sets, Ψ∩Φ = ∅ and Ψ is open. By the seperation theorem

(cf. [27, Theorem 3.4]), there exists (z∗, β) ∈ (Z ×R)∗ = Z∗ ×R with (z∗, β) 6= (0, 0)

such that

sup
(z,r)∈Ψ

{
〈z∗, z〉+ βr

}
< α < inf

(z,r)∈Φ

{
〈z∗, z〉+ βr

}
. (3.9)

Then β < 0 (thanks to (z̄, 1) ∈ Ψ and (z̄, 0) ∈ Φ). Noting that (z̄, 0) ∈ Φ and

(z̄, ε) ∈ Ψ for all ε > 0, it follows from (3.9) that

〈z∗, z − z̄〉+ βr < 0 ∀(z, r) ∈ Ψ and

〈z∗, z − z̄〉+ βr ≥ 0 ∀(z, r) ∈ Φ.
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Noting that (z, v(z̄)− v(z)) ∈ Φ for all z ∈ dom(v), it follows that

〈
z∗

β
, z − z̄〉 ≤ v(z)− v(z̄), ∀z ∈ Z.

This implies that z̃∗ := z∗

β
∈ ∂v(z̄). The proof is complete. �

Remark 3.2. (a) The proof of Proposition 3.3 is inspired by some ideas from

[10, Lemma 2], and furthermore it is known from the proof that the conclusion is still

valid for general proper extended-real-valued, but not taking negative infinity, convex

function defined on Z.

(b) Under the assumptions of Proposition 3.1(ii), the perturbation function v(·)

is a lower semicontinuous convex function. A deep theorem referring to the subdiffer-

ential ∂v, proved by Brøndsted and Rockafellar, is that dom(∂v) is dense in dom(v);

that is for any z ∈ Z with v(z) ∈ R, there exists zn → z such that ∂v(zn) 6= ∅ for all

n ∈ N. Readers are invited to consult [25, Theorem 3.17] for Brøndsted-Rockafellar

theorem and its proof in detail.

Using propositions 3.1, 3.2 and 3.3, we obtain the following theorem on charac-

terizations for the existence of optimal Lagrange multipliers.

Theorem 3.4. Suppose that problem (P) has an optimal solution. Then the

following statements are equivalent:

(i) The set of all Lagrange multipliers for problem (P) is nonempty.

(ii) ∂v(0) is a nonempty set.

(iii) v(0) is finite and there exists M ∈ (0,+∞) such that

v(0)− v(z) ≤M‖z‖ (3.10)

holds for any z ∈ Z.

The following result provides a criterion for the essential feasibility of problem

(D) and also gives one necessary condition for essential feasible problem (D).

Proposition 3.5. (i) Suppose that problem (D) is essentially feasible. Then

v(z) > −∞ for all z ∈ A.

(ii) Suppose that X is compact, f is lower semicontinuous and that g is continu-

ous. Then problem (D) is essentially feasible.

Proof. (i) Suppose that problem (D) is essentially feasible. Then there exists

u∗ ∈ K+ and β ∈ R such that

f(x) + 〈u∗, g(x)〉 ≥ β, ∀x ∈ X. (3.11)

Let z ∈ A and x ∈ X with g(x) �K z. By (3.11), one has

f(x) ≥ f(x) + 〈u∗, g(x)− z〉 ≥ β − 〈u∗, z〉.

This implies that v(z) ≥ β − 〈u∗, z〉 > −∞.

(ii) By virtue of Proposition 3.1, one has v(·) is a lower semincontinuous convex

function and A = dom(v). Let z ∈ A. Using [25, Theorem 3.17], there exists zi → z
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such that v(zi) ∈ R and ∂v(zi) 6= ∅ for all i. Then we can take u∗i ∈ ∂v(zi) such that

v(z) ≥ v(zi) + 〈u∗i , z − zi〉, ∀z ∈ Z, (3.12)

and consequently −u∗i ∈ K+ due to the nonincreasing of v(·) and (3.12). Let x ∈ X .

Then g(x) ∈ A and it follows from (3.12) that

〈u∗i , g(x)− zi〉 ≤ v(g(x)) − v(zi) ≤ f(x)− v(zi).

This implies that f(x) + 〈−u∗i , g(x)〉 ≥ v(zi) + 〈−u∗i , zi〉 and thus

inf
x∈X

{
f(x) + 〈−u∗i , g(x)〉} ≥ v(zi) + 〈−u∗i , zi〉 > −∞.

Hence −u∗i is feasible to problem (D) and problem (D) is essentially feasible. The

proof is complete. �

Clearly the customary weak duality result that the optimal value of primal prob-

lem (P) is not smaller than the optimal value of problem (D) holds. Furthermore, the

next proposition is the strong duality result on problems (P) and (D) which demon-

strates the close connection between optimal Lagrange multipliers and solutions to

the dual problem (D).

Proposition 3.6. Let v(0) be finite. Then ū∗ ∈ Z∗ is an optimal solution of

problem (D) and the optimal values of problem (P) and problem (D) equal if and only

if −ū∗ ∈ ∂v(0).

Proof. We first prove the sufficiency part. Suppose that −ū∗ ∈ ∂v(0). Then

v(z) ≥ v(0) + 〈−ū∗, z〉, ∀z ∈ Z.

Thus 〈ū∗, z〉 ≥ v(0)−v(z) ≥ 0 for all z ∈ K by the nonincreasing of v(·) and ū∗ ∈ K+.

For any x ∈ X , f(x) ≥ v(g(x)) and f(x) + 〈ū∗, g(x)〉 ≥ v(0). This implies that

inf
x∈X

{f(x) + 〈ū∗, g(x)〉} ≥ v(0) = inf
x∈X

{f(x) : g(x) �K 0}. (3.13)

Using the weak duality, one has

max
u∗∈K+

{
inf
x∈X

{f(x) + 〈u∗, g(x)〉}
}
≤ inf

x∈X
{f(x) : g(x) �K 0} = v(0) (3.14)

and it follows from (3.13) and (3.14) that

inf
x∈X

{f(x) + 〈ū∗, g(x)〉} = max
u∗∈K+

{
inf
x∈X

{f(x) + 〈u∗, g(x)〉}
}
= v(0).

This means that ū∗ is an optimal solution of problem (D) and the optimal values of

problem (P) and problem (D) equal.

The necessity part. Let ū∗ be an optimal solution of problem (D) and the optimal

values of problems (P) and (D) equal. Then ū∗ ∈ K+ and

inf
x∈X

{f(x) + 〈ū∗, g(x)〉} = v(0). (3.15)
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For any z ∈ A and any x ∈ X with g(x) �K z, by (3.15), one has

f(x) + 〈ū∗, z〉 ≥ f(x) + 〈ū∗, g(x)〉 ≥ v(0).

This implies that

v(z) ≥ v(0) + 〈−ū∗, z〉 ∀z ∈ A.

Hence −ū∗ ∈ ∂v(0) as v(z) = +∞ for all z 6∈ A. The proof is complete. �

We close this section with the following proposition which will be used in next

section.

Proposition 3.7. Suppose that the optimal value of problem (D) is finite. Then

0Z ∈ A.

Proof. Suppose to the contrary that 0Z 6∈ A. By the seperation theorem, there

exist z∗ ∈ Z∗ with z∗ 6= 0 and α ∈ R such that

inf
z∈A

〈z∗, z〉 > α > 0. (3.16)

Let u∗ ∈ K+ such that u∗ is essentially feasible in problem (D). Then

inf
x∈X

{f(x) + 〈u∗, g(x)} > −∞.

This and (3.16) imply that u∗ + tz∗ is also essentially feasible in problem (D) for all

t > 0 as g(x) ∈ A. Hence

inf
x∈X

{f(x) + 〈u∗ + tz∗, g(x)〉} ≥ inf
x∈X

{f(x) + 〈u∗, g(x)〉}+ t inf
x∈X

〈z∗, g(x)〉.

Letting t → +∞ and by virtue of (3.6), we obtain the contradiction that optimal

value of (D) is +∞. The proof is complete. �

4. Generalized Benders decomposition for MINLPs with vector conic

constraint. In this section, we pay main attention to one class of MINLPs with

vector conic constraint, and use generalized Benders decomposition approach and

duality results on convex vector optimization problems to construct an appropriate

algorithm for solving this MINLP. We begin with this class of MINLPs.

Let E,Z be two Banach spaces, D be a normed linear space, and let X ⊂ E be

a closed convex set, Y ⊂ D be a set with discrete variables and K ⊂ Z be a closed

convex cone with a nonempty interior. This MINLP problem (VOP) is defined as

follows

(VOP)





minimize
x, y

f(x, y)

subject to g(x, y) �K 0,

x ∈ X, y ∈ Y discrete variable,

(4.1)

where f : X × Y → R and g : X × Y → Z satisfy that f(·, y) is convex and g(·, y) is

K-convex on X for any fixed y ∈ Y .
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As pointed out in [11], Geoffrion employed nonlinear duality theory and gener-

alized Benders decomposition to project MINLP problem P in (1.1) onto y-space,

rather than xy-space, reformulate problem P as one equivalent master problem and

construct the generalized Benders decomposition procedure for solving relaxation of

master problems. To solve problem (VOP) along this line, we are inspired to sepa-

rate problem (VOP) into many independent vector optimization problems by fixing

discrete variables y.

Let y ∈ Y be fixed. We consider the following vector optimization problem P (y)

P (y)





minimize
x

f(x, y)

subject to g(x, y) �K 0,

x ∈ X,

and its associate dual is defined as follows:

D(y)

{
maximize

u∗

[
inf
x∈X

{f(x, y) + 〈u∗, g(x, y)〉}
]

subject to u∗ ∈ K+.

The perturbation function vy(·) associated with problem P (y) is defined by

vy(z) := inf
x∈X

{f(x, y) : g(x, y) �K z}, ∀z ∈ Z. (4.2)

We denote

V := {y ∈ Y : g(x, y) �K 0 for some x ∈ X} (4.3)

the feasible set of all values of y ∈ Y for which vector optimization problem P (y) is

feasible. Then problem (VOP) can be equivalently rewritten as

{
minimize

y
vy(0)

subject to y ∈ V.
(4.4)

After separating problem (VOP) into many problems P (y), it is necessary to

establish the master problem which is equivalent to problem (VOP). The key step

for this equivalent reformulation is to provide dual equivalent representation for the

optimal value vy(0) of problem P (y) and feasible set V . To achieve it, we first give

two propositions on the dual equivalent interpretations of vy(0) and V .

The first proposition shows that feasible set V is represented in terms of the

intersection of a collection of regions that contain it.

Proposition 4.1. Suppose that X is compact and g(·, y) is continuous for any

y ∈ Y . Then ȳ ∈ V if and only if

inf
x∈X

〈u∗, g(x, ȳ)〉 ≤ 0 ∀u∗ ∈ K+ with ‖u∗‖ = 1. (4.5)
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Proof. The necessity part follows from the definition of V in (4.3). We only need

to prove the sufficiency part. Let

A(y) := {z ∈ Z : g(x, y) �K z for some x ∈ X}, ∀y ∈ Y. (4.6)

Since X is compact and g(·, y) is continuous for any y ∈ Y , it follows that A(y) is

closed for any y ∈ Y . By (4.5), one has

sup
u∗∈K+,‖u∗‖=1

inf
x∈X

〈u∗, g(x, ȳ)〉 ≤ 0.

This implies that

max
u∗∈K+

{
inf
x∈X

〈u∗, g(x, ȳ)〉
}
= 0. (4.7)

We consider the following vector optimization problem:

P̃ (ȳ)






minimize
x

f̃ȳ(x) := 〈0E∗ , x〉

subject to g(x, ȳ) �K 0Z ,

x ∈ X.

Then the dual of problem P̃ (ȳ) is as follows:

D̃(ȳ)

{
maximize

u∗

[
inf
x∈X

{〈u∗, g(x, ȳ)〉}
]

subject to u∗ ∈ K+,

and (4.7) implies the optimal value of problem D̃(ȳ) equals 0. Using the proof of

Proposition 3.7, we obtain that 0Z ∈ A(ȳ) = A(ȳ). Then there exists x ∈ X such

that g(x, ȳ) �K 0Z and therefore ȳ ∈ V . The proof is complete. �

By virtue of Theorem 3.4 and Proposition 3.6, we obtain the following proposition

on the dual interpretation of vy(0) which is given by the pointwise supremum of a

collection of functions.

Proposition 4.2. Suppose that vy(0) is finite and problem P (y) possesses a

Lagrange multiplier for any y ∈ V . Then the optimal value of problem P (y) equals

that of its dual problem D(y) for all y ∈ V ; that is,

vy(0) = max
u∗∈K+

{
inf
x∈X

{
f(x, y) + 〈u∗, g(x, y)〉

}}
(4.8)

holds for all y ∈ V .

Under the assumptions that X is compact, g(·, y) is continuous for any y ∈ Y and

problem P (y) possesses an optimal Lagrange multiplier for any y ∈ Y where problem

P (y) is feasible, by using Propositions 4.1 and 4.2, we obtain that problem (VOP) is

equivalent to the following master problem:





minimize
y∈Y

[
sup

u∗∈K+

{
inf
x∈X

{f(x, y) + 〈u∗, g(x, y)〉}
}]

subject to inf
x∈X

〈z∗, g(x, y)〉 ≤ 0, ∀z∗ ∈ K+ with ‖z∗‖ = 1.
(4.9)

13



Using the definition of supremum as the smallest upper bound, the master problem

(4.9) is equivalent to the following master problem (MP):

(MP)






minimize
y∈Y, η∈R

η

subject to η ≥ inf
x∈X

{f(x, y) + 〈u∗, g(x, y)〉}, ∀u∗ ∈ K+

inf
x∈X

〈z∗, g(x, y)〉 ≤ 0, ∀z∗ ∈ K+ with ‖z∗‖ = 1.

(4.10)

It is known that one type of relaxation, in which not all constraints are included,

is one natural strategy for solving master problem (MP) in (4.10). We begin to

solve one relaxed version of master problem, not including all constraints in (4.10). If

the obtained optimal solution does not satisfy constraints having not been considered,

then we generate and add to the relaxed problem one or more violated constraints and

solve it again. We continue this approach until a relaxed problem solution satisfies all

constraints, or until a termination criterion demonstrates that a solution of acceptable

accuracy has been obtained. Geoffrion [11] discussed in detail that a solution to a

relaxed version of master problem can be tested for feasibility with respect to the

ignored constraints and one violated constraint can be generated in case of infeasibility.

This discussion given in [11] can also be applied to problem (MP) in (4.10) and it

enables (MP) of (4.10) to be solved by this relaxation approach.

Now, we can formally state the generalized Benders decomposition procedure for

solving problem (VOP). For the validity of equivalence between problems (VOP) and

master problem (MP), we suppose that (VOP) satisfies the following assumption:

(A) X is compact, g(·, y) is continuous for any y ∈ Y and the Slater constraint

qualification

g(x̂, y) ≺K 0 for some x̂ ∈ X (4.11)

holds for any y ∈ Y where problem P (y) is feasible.

Using Propositions 3.1 and 3.2, it follows from the Slater constraint qualifica-

tion (4.11) that P (y) possesses an optimal Lagrange multiplier for any y ∈ Y where

problem P (y) is feasible.

The detailed algorithm, used to solve problem (VOP) by generalized Benders

decomposition procedure, is stated as follows.

Algorithm 1(Generalized Benders Decomposition procedure for problem (VOP))

Step 1: Take y1 ∈ V and z∗1 ∈ K+ with ‖z∗1‖ = 1. Solve the primal problem

P (y1) and obtain an optimal Lagrange multiplier u∗1 of P (y1). Set

T 1 = S1 := {1} and UBD1 := vy1
(0).

Select the convergence tolerance parameter ε > 0 and let k := 1.
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Step 2: Solve the following relaxed master problem RMP(T k, Sk):

RMP(T k, Sk)





minimize
y∈Y, η∈R

η

subject to η ≥ inf
x∈X

{f(x, y) + 〈u∗i , g(x, y)〉}, ∀i ∈ T k,

inf
x∈X

〈z∗j , g(x, y)〉 ≤ 0, ∀j ∈ Sk.

(4.12)

Denote (yk+1, ηk+1) the optimal solution of RMP(T k, Sk). If UBDk ≤ ηk+1 + ε,

terminate; otherwise, go to Step 3.

Step 3: Solve the primal problem P (yk+1). There must occur one of the following

two cases:

(a) vyk+1
(0) < +∞. If vyk+1

(0) ≤ ηk+1 + ε, terminate; otherwise, determine an

optimal Lagrange multiplier u∗k+1 of problem P (yk+1), and let

T k+1 := T k ∪ {k + 1}, Sk+1 := Sk and UBDk+1 := min{UBDk, vyk+1
(0)}.

Set k := k + 1 and return to Step 2.

(b) vyk+1
(0) = +∞; that is, problem P (yk+1) is infeasible. Take z

∗
k+1 ∈ K+ with

‖z∗k+1‖ = 1 such that

inf
x∈X

〈z∗k+1, g(x, yk+1)〉 > 0.

Let

T k+1 := T k, Sk+1 := Sk ∪ {k + 1} and UBDk+1 := UBDk.

Set k := k + 1 and return to Step 2.

Now, we study the following example and demonstrate the generalized Benders

decomposition procedure when solving MINLP problem by Algorithm 1.

Example 4.1. Consider the following MINLP problem:





minimize
x, y

f(x, y) = −x+max{y − 1,−y + 1}

subject to g(x, y) = x+max{−y, y − 2} ≤ 0,

x ∈ [−1, 1], y ∈ {0, 1, 2}.

(4.13)

Then X = [−1, 1], Y = {0, 1, 2} and K = K+ = [0,+∞). It is easy to verify that

(x∗, y∗) = (1, 1) and f∗ = f(1, 1) is the solution of problem (4.13). First, we take

y1 = 0 and z∗1 = 1 ∈ K+. Solve primal problem P (y1) and its dual D(y1), and denote

an optimal Lagrange multiplier u∗1 = 1. Let T 1 = S1 := {1},UBD1 = vy1
(0) = 1

and ε ∈ (0, 1). By computing, the relaxed master problem RMP(T 1, S1) is defined as

follows:

RMP(T 1, S1)





minimize
y∈Y, η∈R

η

subject to max{y − 1,−y + 1}+max{−y, y− 2} ≤ η,

−1 + max{−y, y − 2} ≤ 0.

(4.14)
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It is easy to verify that its solution is (y2, η2) = (1, 0). Since UBD1 > η2 + ε, by Step

2, we go to Step 3 and solve primal problem P (y2). Noting that x2 = 1 is an optimal

solution of P (y2) and vy2
(0) = −1 < UBD1+ε, then terminate the algorithm by Step

2 and consequently (x2, y2, vy2
(0)) = (1, 1,−1) is an ε-tolerance optimal solution of

problem (4.13).

Next, we focus on theoretical convergence of Algorithm 1 by generalized Benders

decomposition procedure and prove convergence theorems with the help of some mild

assumptions. We first need the following proposition which will be used in the proof

of convergence theorems.

Proposition 4.3. Suppose that X is compact, and f(·, ·), g(·, ·) are continuous

on X × Y . Denote U(y) the set of all optimal Lagrange multipliers of problem P (y)

for any y ∈ Y where problem P (y) is feasible and let

L(y, u∗) := inf
x∈X

{
f(x, y) + 〈u∗, g(x, y)〉

}
, ∀(y, u∗) ∈ Y ×K+. (4.15)

Then L(·, ·) is ‖ · ‖ × w∗ continuous on Y ×K+ and the set-valued mapping U(·) is

norm-to-weak∗ upper semicontinuous on V .

Proof. Let (ȳ, ū∗) ∈ Y × K+, and take any generalized sequence (yα, u
∗
α) in

Y ×K+ such that yα → ȳ and u∗α
w∗

−→ ū∗. Then for any α, there exists xα ∈ X such

that

f(xα, yα) + 〈u∗α, g(xα, yα)〉 = L(yα, u
∗
α) (4.16)

as X is compact and f(·, ·), g(·, ·) are continuous. Noting that X is compact, with-

out loss of generality, we can assume that xα → x̄ ∈ X (considering generalized

subsequence if necessary). By (4.16), one has

L(ȳ, ū∗) ≤ f(x̄, ȳ) + 〈ū∗, g(x̄, ȳ)〉

≤ lim
α
(f(xα, yα) + 〈u∗α, g(xα, yα)〉)

= lim inf
α

L(yα, u
∗
α).

This implies that L(·, ·) is ‖·‖×w∗ lower semicontinuity at (ȳ, ū∗). It suffices to prove

the ‖ · ‖ × w∗ upper semicontinuity of L(·, ·) at (ȳ, ū∗). For any x ∈ X , one has

f(x, ȳ) + 〈ū∗, g(x, ȳ)〉 = lim
α
(f(x, yα) + 〈u∗α, g(x, yα)〉)

≥ lim sup
α

L(yα, u
∗
α),

This yields that

L(ȳ, ū∗) = inf
x∈X

(f(x, ȳ) + 〈ū∗, g(x, ȳ)〉) ≥ lim sup
α

L(yα, u
∗
α)

and consequently L(·, ·) is ‖ · ‖ × w∗ upper semicontinuous at (ȳ, ū∗). Thus L(·, ·) is

‖ · ‖ × w∗ continuous at (ȳ, ū∗).
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Next, we prove the norm-to-weak∗ upper semicontinuity of mapping U(·). Let

ȳ ∈ V and take any generalized sequence (yα, u
∗
α) in V × K+ such that yα → ȳ

and u∗α
w∗

−→ ū∗ with u∗α ∈ U(yα). We only need to show that ū∗ ∈ U(ȳ). By

Definition 3.2, for any α, there exists xα ∈ X such that g(xα, yα) �K 0, u∗α ∈ K+

with 〈u∗α, g(xα, yα)〉 = 0 and

f(xα, yα) + 〈u∗α, g(xα, yα)〉 = L(yα, u
∗
α). (4.17)

Since X is compact, without loss of generality, we can assume that xα → x̄ ∈ X

(considering generalized subsequence if necessary) and it follows from the continuity

of g(·, ·) that g(x̄, ȳ) �K 0, 〈ū∗, g(x̄, ȳ)〉 = 0 and ū∗ ∈ K+. Using (4.17) and the

continuity of L(·, ·) and f(·, ·), one has

f(x̄, ȳ) + 〈ū∗, g(x̄, ȳ)〉 = L(ȳ, ū∗).

This implies that (ū∗, x̄) satisfies the optimality conditions (i)-(iv) in (3.3) for P (ȳ)

and consequently ū∗ ∈ U(ȳ). The proof is complete. �

Theorem 4.4. Suppose that X,Y are compact and f(·, ·) and g(·, ·) are contin-

uous on X × Y . Denote U(y) the set of all optimal Lagrange multipliers of P (y) for

any y ∈ Y for which problem P (y) is feasible and suppose that the set-valued map-

ping y 7→ U(y) is locally bounded on V . Then for any given ε > 0, the algorithm by

generalized Benders decomposition procedure terminates in a finite number of steps.

Proof. Suppose to the contrary that there exists ε0 > 0 such that the procedure

does not terminate in a finite number of steps. Then there exists a sequence (yk, ηk)

in V ×R generated by Step 2. For any k, we take u∗k ∈ U(yk). From Step 2, it is not

hard to verify that {ηk} is nondecreasing and bounded above. By taking a generalized

subsequence if necessary, we can assume that (yk, ηk) → (ȳ, η̄) ∈ V × R since X,Y

are compact and V is closed. Noting that mapping U(·) is locally bounded at ȳ, it

follows that {u∗k} is bounded. Applying Banach-Alaoglu theorem (cf. [27, Theorem

3.15]), we can assume that u∗k
w∗

−→ ū∗ (considering the generalized subsequence if

necessary). By the norm-to-weak∗ upper semicontinuity of U(·) in Proposition 4.3,

one has ū∗ ∈ U(ȳ). Using Step 2 and Step 3, we yield

ηk+1 ≥ L(yk+1, u
∗
k)

and consequently

η̄ ≥ L(ȳ, ū∗) (4.18)

by taking limits as k. Noting that u∗k ∈ U(yk) and ū∗ ∈ U(ȳ), it follows from

Propositions 3.2 and 3.6 that

vyk
(0) = L(yk, u

∗
k) and vȳ(0) = L(ȳ, ū∗).

This and the ‖ · ‖ × w∗ continuity of L(·, ·) imply that

lim
k
vyk

(0) = vȳ(0). (4.19)
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Then, for ε0 > 0, when k is sufficiently large, one has

ηk +
ε0

2
> η̄ ≥ vȳ(0) > vyk

(0)−
ε0

2

(thanks to (4.18) and (4.19)). Thus

vyk
(0) ≤ ηk + ε0 for all k sufficiently large,

which contradicts the termination criterion at Step 3(a). The proof is complete. �

The following convergence theorem can be obtained from Theorem 4.1.

Theorem 4.5. Suppose that X is compact, the cardinality of Y is finite and

that f(·, y) is continuous on X for any fixed y ∈ Y . Then for any given ε > 0,

the algorithm by generalized Benders decomposition procedure terminates in a finite

number of steps.

Proof. Let U(y) denote the set of all optimal Lagrange multipliers of problem

P (y) for which problem P (y) is feasible. Let y ∈ Y such that problem P (y) is feasible.

By virtue of the Slater constraint qualification (4.11) and Proposition 3.1, one has

vy(·) is continuous at 0 ∈ Z and it follows from Theorem 3.4 that

U(y) = −∂vy(0). (4.20)

Since vy(·) is continuous at 0, by using [25, Proposition 1.11], one has ∂vy(0) is

bounded. Noting that the cardinality of Y is finite, it follows from (4.20) that U(·) is

bounded on V . Hence the termination criterion in Theorem 4.5 follows from Theorem

4.4. The proof is complete. �

5. Conclusions. This paper is devoted to the study on one class of MINLPs

with vector conic constraint in the context of Banach spaces. By using convex primal

vector optimization programming and its associated duality results obtained in Sec-

tion 3, the generalized Benders decomposition method has been used to study MINLP

problem (VOP) and establish a corresponding algorithm for solving this problem (see

Algorithm 1 in Section 4). With regards to the convergence of the algorithm, it is

shown by Theorems 4.4 and 4.5 that the termination criterion in a finite number of

steps follows with some mild assumptions. The algorithm extends the generalized

Benders decomposition in the sense of solving MINLPs from problem P in finite di-

mension space to problem (VOP) in more general Banach space.
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