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Abstract. Equivalences are known between problems of singular stochastic control (SSC)
with convex performance criteria and related questions of optimal stopping, see for example
Karatzas and Shreve [SIAM J. Control Optim. 22 (1984)]. The aim of this paper is to investigate
how far connections of this type generalise to a non convex problem of purchasing electricity.
Where the classical equivalence breaks down we provide alternative connections to optimal
stopping problems.

We consider a non convex infinite time horizon SSC problem whose state consists of an
uncontrolled diffusion representing a real-valued commodity price, and a controlled increasing
bounded process representing an inventory. We analyse the geometry of the action and inaction
regions by characterising their (optimal) boundaries. Unlike the case of convex SSC problems
we find that the optimal boundaries may be both reflecting and repelling and it is natural to
interpret the problem as one of SSC with discretionary stopping.
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1 Introduction and Problem Formulation

It is well known that convexity of the performance criterion suffices to link certain singular
stochastic control problems to related problems of optimal stopping (cf. [16], [24] and [25],
among others). In this paper we establish multiple connections with optimal stopping for a non
convex, infinite time-horizon, two-dimensional, degenerate singular stochastic control problem
motivated by a problem of purchasing electricity. The non convexity arises because our electricity
price model allows for both positive and negative prices.

We model the purchase of electricity over time at a stochastic real-valued spot price (Xt)t≥0

for the purpose of storage in a battery (for example, the battery of an electric vehicle). The
battery must be full at a random terminal time, any deficit being met by a less efficient charging
method. This feature is captured by inclusion of a terminal cost term equal to the product of
the terminal spot price and a convex function Φ of the undersupply. Under the assumption of
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a random terminal time independent of X and exponentially distributed, we show in Appendix
A that this optimisation problem is equivalent to solving the following problem.

Letting λ > 0 and c ∈ [0, 1] be constants, {ν : ν ∈ Sc} a set of bounded increasing controls,
(Xx

t )t≥0 a continuous strong Markov process starting from x ∈ R at time zero and Cc,νt a process
representing the level of storage at time t:

Cc,νt = c+ νt, t ≥ 0, (1.1)

the problem is to find
U(x, c) := inf

ν∈Sc
Jx,c(ν), (1.2)

with

Jx,c(ν) := E

[ ∫ ∞
0

e−λsλXx
s Φ(Cc,νs )ds+

∫ ∞
0

e−λsXx
s dνs

]
, (1.3)

and the minimising control policy ν∗. It is notable that the integrands in (1.3) may assume both
positive and negative values: economically this corresponds to the possibility that the price is
negative prior to or at the random terminal time in the original optimisation problem discussed
in Appendix A.

In common with other commodity prices, the standard approach in the literature is to model
electricity prices through a geometric or arithmetic mean reverting process (see, e.g., [21] or [30]
and references therein). Motivated by deregulated electricity markets with renewable generation,
in which periods of negative electricity prices have been observed due to the requirement to
balance real-time supply and demand, we assume an arithmetic model. We assume that X
follows a standard time-homogeneous Ornstein-Uhlenbeck process1 with positive volatility σ,
positive adjustment rate θ and positive asymptotic (or equilibrium) value µ. On a complete
probability space (Ω,F ,P), with F := (Ft)t≥0 the filtration generated by a one-dimensional
standard Brownian motion (Bt)t≥0 and augmented by P-null sets, we therefore take Xx as the
unique strong solution of {

dXx
t = θ(µ−Xx

t )dt+ σdBt, t > 0,
Xx

0 = x ∈ R. (1.4)

We assume that the electricity storage capacity is bounded above by 1 (this resembles a
so-called finite-fuel constraint, see for example [16]): for any initial level c ∈ [0, 1] the set of
admissible controls is

Sc := {ν : Ω× R+ 7→ R+, (νt(ω))t≥0 is nondecreasing, left-continuous, adapted (1.5)

with c+ νt ≤ 1 ∀t ≥ 0, ν0 = 0 P− a.s.},

and νt represents the cumulative amount of energy purchased up to time t. From now on we
make the following standing assumption on the running cost function Φ.

Assumption 1.1. Φ : R 7→ R+ lies in C2(R) and is decreasing and strictly convex with Φ(1) = 0.

We note that we do not cover with Assumption 1.1 the case of a linear running cost function,
although the solution in the linear case is simpler and follows immediately from the results
contained in Sections 2 and 3 below.

With these specifications problem (1.2) shares common features with the class of finite-fuel,
singular stochastic control problems of monotone follower type (see, e.g., [6], [11], [16], [17],
[25] and [26] as classical references on finite-fuel monotone follower problems). Such problems,
with finite or infinite fuel and a running cost (profit) which is convex (concave) in the control

1See Appendix B for general facts on the Ornstein-Uhlenbeck process.
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variable, have been well studied for over 30 years (see, e.g., [2], [3], [5], [10], [16], [17], [23],
[24], [25] and [26], among many others). Remarkably it turns out that convexity (or concavity),
together with other more technical conditions, is sufficient to prove that such singular stochastic
control problems are equivalent to related problems of optimal stopping; moreover the optimally
controlled state process is the solution of a Skorokhod reflection problem at the free-boundary
of the latter (see, e.g., [10], [16], [24], [25] and [26]).

In our case the weighting function Φ appearing in the running cost is strictly convex, the
marginal cost e−λsXx

s dνs of exercising control is linear in the control variable, and the set of
admissible controls Sc (cf. (1.5)) is convex. However the Ornstein-Uhlenbeck process Xx of (1.4)
can assume negative values with positive probability and is also a factor of the running cost so
that the total expected cost functional (1.3) is not convex in the control variable. Therefore the
connection between singular stochastic control and optimal stopping as addressed in [16], [24]
and [25], among others, is no longer guaranteed for problem (1.2).

The optimisation problem we study (in common with many others in the literature, see for
instance [18], [19], [29], [31] or [35]) has two state variables, one which is diffusive and the other
which is a control process, a setup typically referred to as degenerate two-dimensional. Our
particular problem may be regarded as a two-dimensional (history dependent) relative of a class
of one-dimensional problems studied for example in a series of papers by Alvarez (see [1], [2] and
[3] and references therein). The latter problems are neither convex nor concave, and the ‘critical
depensation’ which they exhibit is also observed in the solutions we find. Their solutions are,
however, found in terms of optimal boundaries represented by points on the real axis rather than
the free boundary curves studied in the present paper. An advantage of the one-dimensional
setting is that general theory may be applied to develop solutions for general diffusion processes.
Since additional arguments are required to verify the optimality of the free boundaries in our
two-dimensional degenerate setting, however, such generality does not seem achievable and we
work with the specific class of Ornstein-Uhlenbeck processes given by (1.4).

We now briefly summarise the main findings that will be discussed and proved in detail in
Sections 1.1, 2, 3 and 4. We begin in Section 1.1 with a useful restatement of the problem (1.2) as
a singular stochastic control problem with discretionary stopping (SSCDS) (see Eq. (1.9) below).
To the best of our knowledge SSCDS problems were originally introduced in [12]. In that paper
the authors aimed at minimising total expected costs with a quadratic running cost depending
on a Brownian motion linearly controlled by a bounded variation process, and with a constant
cost of exercising control. The case of finite-fuel SSCDS was then considered in [28] were a
terminal quadratic cost at the time of discretionary stopping was also included. A detailed
analysis of the variational inequalities arising in singular control problems with discretionary
stopping may be found in [32] and [33].

Our SSCDS problem (1.2) exhibits three regimes depending on the sign of the function

k(c) := λ+ θ + λΦ′(c) (1.6)

over c ∈ [0, 1]. We will show (Section 3) that for fixed c, the sign of the function k determines
the nature of the relationship between the price level x and the net contribution to the infimum
(1.2) (equivalently, the infimum (1.9)) from exercising control. In particular, when k > 0 this
relationship is increasing and when k < 0 it is decreasing.

Since c 7→ k(c) is strictly increasing by the strict convexity of Φ (cf. Assumption 1.1) define
ĉ ∈ R as the unique solution of

k(c) = 0 (1.7)

should one exist, in which case ĉ may belong to [0, 1] or not depending on the choice of Φ and
on the value of the parameters of the model.

In Section 2 we study the case in which k(c) ≥ 0 for all c ∈ [0, 1] (and hence ĉ ≤ 0, if it
exists). We show that although problem (1.2) is non convex, the optimal control policy behaves
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as that of a convex finite-fuel singular stochastic control problem of monotone follower type (cf.,
e.g., [16], [25] and [26]) and, accordingly, (i) the optimal control ν∗ is of the reflecting type,
being the minimal effort to keep the (optimally) controlled state variable inside the closure of
the continuation region of an associated optimal stopping problem up to the time at which all
the fuel has been spent, and (ii) the directional derivative Uc of (1.2) in the c variable coincides
with the value function of the associated optimal stopping problem. In this case the infimum
over stopping times is not achieved in the SSCDS formulation (1.9), which may be interpreted
as a formally infinite optimal stopping time.

On the other hand, in Section 3 we assume k(c) ≤ 0 for all c ∈ [0, 1] (and hence ĉ ≥ 1). In
this case the optimal singular control policy in (1.9) is identically zero, which may be interpreted
as problem (1.2) becoming a stopping problem in which it is optimal to do nothing up to the
first hitting time of X at a repelling barrier (in the language of [28]) and then to exercise all the
available control. In particular the differential connection between SSC and optimal stopping
observed in the previous case breaks down here and, to the best of our knowledge, this is a rare
example of such an effect in the literature on SSC problems.

The case when ĉ exists in [0, 1] is discussed in Section 4. This case, in general involving
multiple free-boundaries, is left as an open problem although we refer to a complete solution of
the limiting case θ = 0 (cf. (1.4)) derived in a companion paper [13]. Finally, we collect in the
Appendix the model formulation, some well known facts on the Ornstein-Uhlenbeck process X
and some technical results.

Before concluding this section we observe that problem (1.2) may also fit in the economic
literature as an irreversible investment problem with stochastic investment cost. It is well
known that in the presence of a convex cost criterion (or concave profit) the optimal (stochastic)
irreversible investment policy consists in keeping the production capacity at or above a certain
reference level ` (see, e.g., [9], [15] and [34]; cf. also [4] among others for the case of stochastic
investments cost) which has been recently characterized in [19] and [35] where it is referred to
as base capacity. The index `t describes the desirable level of capacity at time t. If the firm has
capacity Ct > `t, then it faces excess capacity and should wait. If the capacity is below `t, then
it should invest νt = `t − Ct in order to reach the level `t.

Our analysis shows that in presence of non-convex costs it is not always optimal to invest
just enough to keep the capacity at or above a base capacity level. In fact, for a suitable choice
of the parameters (ĉ ≤ 0) the optimal investment policy is of a purely dichotomous bang-bang
type: not invest or go to full capacity. On the other hand, for a different choice of the parameters
(ĉ ≥ 1) a base capacity policy is optimal regardless of the non convexity of the total expected
costs. To the best of our knowledge this result is a novelty also in the mathematical-economic
literature on irreversible investment under uncertainty.

1.1 A Problem with Discretionary Stopping

In this section we establish the equivalence between problem (1.2) and a finite-fuel singular
stochastic control problem with discretionary stopping (cf. [12] and [28] as classical references
on this topic). We first observe that, for fixed (x, c) ∈ R × [0, 1] and any ν ∈ Sc, the process
(Xx

t )t≥0 and the processes (Ix,c,νt )t≥0, (Jx,νt )t≥0 defined by

Ix,c,νt :=

∫ t

0
e−λsλXx

s Φ(Cc,νs )ds and Jx,νt :=

∫ t

0
e−λsXx

s dνs, (1.8)

respectively, are uniformly bounded in L2(Ω,P), hence uniformly integrable. This is a straight-
forward consequence of standard properties of the Ornstein-Uhlenbeck process (1.4) (see Ap-
pendix B), Assumption 1.1, the finite fuel condition and an integration by parts.
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Proposition 1.2. Recall U of (1.2). Then one has U ≡ Û with

Û(x, c) = inf
ν∈Sc, τ≥0

E

[ ∫ τ

0
e−λsλXx

s Φ(Cc,νs )ds+

∫ τ

0
e−λsXx

s dνs + e−λτXx
τ (1− Cc,ντ )

]
(1.9)

for (x, c) ∈ R× [0, 1] and where τ must be a P-a.s. finite stopping time.

Proof. Fix (x, c) ∈ R× [0, 1]. Take a sequence of deterministic stopping times (tn)n∈N such that
tn ↑ ∞ as n ↑ ∞ in the expectation in (1.9) and use uniform integrability, continuity of Xx

· ,
Ix,c,ν· , left-continuity of Jx,ν· (cf. (1.8)) and that limn↑∞ E[e−λtnXx

tn(1 − Cc,νtn )] = 0, to obtain

Û ≤ U in the limit as n → ∞. To show the reverse inequality, for any admissible ν ∈ Sc and
any stopping time τ ≥ 0 set

ν̂t :=


νt, t ≤ τ,

1− c, t > τ.
(1.10)

The control ν̂ is admissible and then from the definition of U (cf. (1.2)) it follows that

U(x, c) ≤ Jx,c(ν̂) = E

[ ∫ τ

0
e−λsλXx

s Φ(Cc,νs )ds+

∫ τ

0
e−λsXx

s dνs + e−λτXx
τ (1− Cc,ντ )

]
.

Since the previous inequality holds for any admissible ν and any P-a.s. finite stopping time τ ≥ 0
we conclude that U ≤ Û , hence U ≡ Û .

Since the proof of Proposition 1.2 does not rely on particular cost functions (running cost
and cost of investment), the arguments apply to a more general class of SSC problems. However
in some cases (including the convex or concave SSC problems) it turns out that the infimum
over stopping times in (1.9) is not achieved and one should formally take τ = +∞: clearly
in those cases an equivalence such as Proposition 1.2 would add no insight to the analysis of
the problem. In contrast we show below that depending on the quantity ĉ introduced through
(1.7), both the control and stopping policies in (1.9) may play either trivial or nontrivial roles
through the interplay of two free-boundaries. A complete analysis of the interplay of these two
free-boundaries is outside the scope of this paper and a challenging open problem (discussed in
Section 4).

2 The Case ĉ ≤ 0

In this section we identify when the differential relationship between SSC and optimal stopping
known in convex problems of monotone follower type with finite fuel (cf., e.g., [16], [25] and
[26]) holds in our non-convex problem. In this case, as discussed above one should formally set
τ∗ = +∞ in (1.9). We find that the differential relationship holds when k(c) > 0 (cf. (1.6))
for all c ∈ [0, 1] or, equivalently, when ĉ < 0: in this case the derivative (with respect to c, the
direction of the control variable) of the value function in (1.2) is given by the value function of
the family of optimal stopping problems solved below and the optimal control ν∗ is of reflection
type, being the minimal effort to keep the (optimally) controlled state variable Cc,ν

∗
above the

corresponding non-constant free boundary. The case ĉ = 0 is similar, see Remark 2.3.

2.1 The Associated Family of Optimal Stopping Problems

The family of infinite time-horizon optimal stopping problems we expect to be naturally associ-
ated to the control problem (1.2) is given by

v(x; c) := sup
σ≥0

E

[
− e−λσXx

σ +

∫ σ

0
e−λsλXx

s Φ′(c)ds

]
, c ∈ [0, 1], (2.1)
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where the supremum is taken over all P-a.s. finite stopping times σ (see, for example, [16], [24] or
[25], among others). For any given value of c ∈ [0, 1], (2.1) is a one-dimensional optimal stopping
problem that can be addressed through a variety of well established methods. As c varies the
optimal stopping boundary points for problem (2.1) will serve to construct the candidate optimal
boundary of the action region of problem (1.2) and, as noted in the Introduction, we will therefore
require sufficient monotonicity and regularity of this free boundary curve to verify its optimality.

Define

G(x; c) :=
µ(k(c)− θ)

λ
+
k(c)(x− µ)

λ+ θ
, (x, c) ∈ R× [0, 1], (2.2)

x0(c) := − θµΦ′(c)

k(c)
> 0, c ∈ [0, 1] (2.3)

and let LX be the infinitesimal generator of the diffusion Xx, i.e.

LXf (x) :=
1

2
σ2f ′′(x) + θ(µ− x)f ′(x), for f ∈ C2

b (R) and x ∈ R. (2.4)

The next theorem is proved in Appendix C.1 and provides a characterisation of v in (2.1) and
of the related optimal stopping boundary.

Theorem 2.1. For each given c ∈ [0, 1] one has v(x; c) = −x+ u(x; c) where

u(x; c) :=

{
G(x; c)− G(β∗(c);c)

φλ(β∗(c))
φλ(x), x > β∗(c)

0, x ≤ β∗(c)
(2.5)

with φλ the strictly decreasing fundamental solution of LXf = λf (cf. (B-2) in Appendix) and
β∗(c) ∈ (−∞, x0(c)) the unique solution of problem:

find x ∈ R: Gx(x; c)− G(x; c)

φλ(x)
φ′λ(x) = 0. (2.6)

Moreover

σ∗ := inf{t ≥ 0 : Xx
t ≤ β∗(c)} (2.7)

is an optimal stopping time in (2.1) and c 7→ β∗(c) is strictly decreasing and, if ĉ < 1, it is C1

on [0, 1].

Remark 2.2. The monotonicity of the boundary, crucial for the verification theorem below, is
obtained using specific properties of the diffusion X (through the function φλ) and of the cost
functional. To the best of our knowledge general results of this kind for a wider class of diffusions
cannot be provided in this non-convex setting either by probabilistic or analytical methods; thus
a study on a case by case basis is required. We note in fact that in [13] in a setting similar to
the present one but with a different choice of X the geometry of the action and inaction regions
for the control problem is quite different.

Remark 2.3. In the case when ĉ = 0 (cf. (1.7)) one only has β∗ ∈ C1((0, 1]), as in fact
limc↓ĉ β∗(c) = +∞ along with its derivative. This follows by noting that taking y = β∗(c) in
(2.6) and passing to the limit as c ↓ ĉ, if limc↓ĉ β∗(c) = ` < +∞ one finds a contradiction. For
c = ĉ the optimal stopping time for problem (2.1) is σ∗ = 0 for any x ∈ R.
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2.2 The Solution of the Stochastic Control Problem

In this section we aim at providing a solution to the finite-fuel singular stochastic control problem
(1.2) by starting from the solution of the optimal stopping problem (2.1) (see also (C-1)) and
guessing that the classical connection to singular stochastic control holds.

By Theorem 2.1 we know that c 7→ β∗(c) is strictly decreasing and so has a strictly decreasing
inverse. We define

g∗(x) :=


1, x ≤ β∗(1)

β−1
∗ (x), x ∈ (β∗(1), β∗(0))

0, x ≥ β∗(0).

(2.8)

Obviously g∗ : R→ [0, 1] is continuous and decreasing. Moreover, since β∗ ∈ C1 and β′∗ < 0 (cf.
again Theorem 2.1), then g′∗ exists almost everywhere and it is bounded.

Define the function

F (x, c) := −
∫ 1

c
v(x; y)dy = x(1− c)−

∫ 1

c
u(x; y)dy. (2.9)

We expect that F (x, c) = U(x, c) for all (x, c) ∈ R× [0, 1], with U as defined in (1.2).

Proposition 2.4. The function F (x, c) in (2.9) is such that x 7→ F (x, c) is concave, F ∈
C2,1(R× [0, 1]) and the following bounds hold∣∣F (x, c)

∣∣+
∣∣Fc(x, c)∣∣ ≤ C1(1 + |x|),

∣∣Fx(x, c)
∣∣+
∣∣Fxx(x, c)

∣∣ ≤ C2 (2.10)

for (x, c) ∈ R× [0, 1] and some positive constants C1 and C2.

Proof. In this proof we will often refer to the proof of Theorem 2.1 in Appendix C.1. Recall
(2.5) and that uβ∗ ≡ u (cf. Theorem 2.1). Concavity of F as in (2.9) easily follows by observing
that x 7→ u(x; c) is convex (cf. again Theorem 2.1). It is also easy to verify from (2.2) and (2.5)
that u is of the form u(x; c) = A(c)P (x) + B(c) for suitable continuous functions A, B and P ,
so that (x, c) 7→ F (x, c) is continuous on R × [0, 1] and c 7→ Fc(x, c) is continuous on [0, 1] as
well. From the definition of uβ∗ (cf. (2.5)), (2.6), convexity of uβ∗ and continuity of β∗ it is
straightforward to verify that for x ∈ K ⊂ R, K bounded, |ux| and |uxx| are at least bounded
by a function QK(c) ∈ L1(0, 1). It follows that evaluating Fx and Fxx one can pass derivatives
inside the integral in (2.9) so to obtain

Fx(x, c) = (1− c)−
∫ 1

c
ux(x; y)dy = (1− c)−

∫ 1

g∗(x)∨c
ux(x; y)dy (2.11)

and

Fxx(x, c) = −
∫ 1

c
uxx(x; y)dy = −

∫ 1

g∗(x)∨c
uxx(x; y)dy. (2.12)

Therefore F ∈ C2,1 by (2.5), (2.6), convexity of u (cf. Theorem 2.1) and continuity of g∗(·) (cf.
(2.8)).

Recall now that φλ(x) and all its derivatives go to zero as x → ∞ and (2.8). Then bounds
(2.10) follow from (2.5), (2.9), (2.11) and (2.12).

From standard theory of stochastic control (e.g., see [20], Chapter VIII), we expect that
the value function U of (1.2) identifies with an appropriate solution w to the Hamilton-Jacobi-
Bellman (HJB) equation

max{−LXw + λw − λxΦ(c),−wc − x} = 0 for a.e. (x, c) ∈ R× [0, 1]. (2.13)

Recall Proposition 2.4.
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Proposition 2.5. For all (x, c) ∈ R× [0, 1] we have that F is a classical solution of (2.13).

Proof. First we observe that (2.2) and (2.9) give

F (x, c) = µΦ(c)+(x− µ)
λΦ(c)

λ+ θ
+ φλ(x)

∫ 1

c

G(β∗(y); y)

φλ(β∗(y))
dy for all c > g∗(x) (2.14)

For any fixed c ∈ [0, 1] and x ∈ R such that Fc(x, c) > −x, i.e. c > g∗(x) (cf. (2.9)), one has

(LX − λ)F (x, c) = −λΦ(c)x

by (2.14). On the other hand, for arbitrary (x, c) ∈ R× [0, 1] we notice that

(LX − λ)F (x, c) = (1− c)(θµ− (λ+ θ)x)−
∫ 1

c
(LX − λ)u(x; y)dy

by (2.11) and (2.12). Now, recalling (C-12) one has∫ 1

c
(LX − λ)u(x; y)dy ≤

∫ 1

c
[θµ− k(y)x]dy = [θµ− (λ+ θ)x](1− c) + λΦ(c)x,

since θµ− k(c)x ≥ 0 when Fc(x, c) = −x, i.e. c < g∗(x), by (C-13). Then

(LX − λ)F (x, c) ≥ −λΦ(c)x for all (x, c) ∈ R× [0, 1].

We now aim at providing a candidate optimal control policy ν∗ for problem (1.2). Let
(x, c) ∈ R× [0, 1] and consider the process

ν∗t =
[
g∗
(

inf
0≤s≤t

Xx
s

)
− c
]+
, t > 0, ν∗0 = 0, (2.15)

with g∗ as in (2.8) and [ · ]+ denoting the positive part.

Proposition 2.6. The process ν∗ of (2.15) is an admissbile control.

Proof. Fix ω ∈ Ω and recall (1.5). By definition t 7→ ν∗t (ω) is clearly increasing and such that

Cc,ν
∗

t (ω) ≤ 1, for any t ≥ 0, since 0 ≤ g∗(x) ≤ 1, x ∈ R. The map x 7→ g∗(x) is continuous,
then t 7→ ν∗t (ω) is continuous, apart of a possible initial jump at t = 0, by continuity of paths
t 7→ Xx

t (ω).
To prove that ν∗ ∈ Sc it thus remains to show that ν∗ is (Ft)-adapted. To this end, first of

all notice that continuity of g∗(·) also implies its Borel measurability and hence progressive mea-
surability of the process g∗(X

x). Then ν∗ is progressively measurable since g∗
(

inf0≤s≤tX
x
s

)
=

sup0≤s≤t g∗(X
x
s ), by monotonicity of g∗, and by [14], Theorem IV.33. Hence ν∗ is (Ft)-adapted.

To show optimality of ν∗ we introduce the action and inaction sets

C :=
{

(x, c) : Fc(x, c) > −x
}

and D :=
{

(x, c) : Fc(x, c) = −x
}
, (2.16)

respectively and with (x, c) ∈ R × [0, 1]. Their link to the sets defined in (C-2) is clear by
recalling that Fc = u. The following Proposition, which is somewhat standard (see, e.g., [27], p.
210 and [36] as classical references on the topic), is proved in Appendix C.2.

Proposition 2.7. Let C∗t := Cc,ν
∗

t = c+ ν∗t , with ν∗ as in (2.15). Then ν∗ solves the Skorokhod
problem
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1. (C∗t , X
x
t ) ∈ C, P-almost surely, for each t > 0;

2.

∫ T

0
e−λt1{(C∗t ,Xx

t )∈C}dν
∗
t = 0 almost surely, for all T ≥ 0,

where C := {(x, c) ∈ R × [0, 1] : c ≥ g∗(x)} denotes the closure of the inaction region C (cf.
(2.16)).

Theorem 2.8. The control ν∗ defined in (2.15) is optimal for problem (1.2) and F ≡ U
(cf. (2.9)).

Proof. The proof is based on a verification argument and, as usual, it splits into two steps.

Step 1. Fix (x, c) ∈ R × [0, 1] and take R > 0. Set τR := inf
{
t ≥ 0 : Xx

t /∈ (−R,R)
}

, take
an admissible control ν, and recall the regularity results for F of Proposition 2.4. Then we can
use Itô’s formula in its classical form up to the stopping time τR ∧ T , for some T > 0, to obtain

F (x, c) =E
[
e−λ(τR∧T )F (Xx

τR∧T , C
c,ν
τR∧T )

]
− E

[ ∫ τR∧T

0
e−λs(LX − λ)F (Xx

s , C
c,ν
s )ds

]
− E

[ ∫ τR∧T

0
e−λsFc(X

x
s , C

c,ν
s )dνs

]

− E

 ∑
0≤s<τR∧T

e−λs
(
F (Xx

s , C
c,ν
s+ )− F (Xx

s , C
c,ν
s )− Fc(Xx

s , C
c,ν
s )∆νs

)
where ∆νs := νs+−νs and the expectation of the stochastic integral vanishes since Fx is bounded
on (x, c) ∈ [−R,R]× [0, 1].

Now, recalling that any ν ∈ Sc can be decomposed into the sum of its continuous part and of
its pure jump part, i.e. dν = dνcont + ∆ν, one has (see [20], Chapter 8, Section VIII.4, Theorem
4.1 at pp. 301-302)

F (x, c) =E
[
e−λ(τR∧T )F (Xx

τR∧T , C
c,ν
τR∧T )

]
− E

[ ∫ τR∧T

0
e−λs(LX − λ)F (Xx

s , C
c,ν
s )ds

]
− E

[ ∫ τR∧T

0
e−λsFc(X

x
s , C

c,ν
s )dνconts −

∑
0≤s<τR∧T

e−λs
(
F (Xx

s , C
c,ν
s+ )− F (Xx

s , C
c,ν
s )
) ]
.

Since F satisfies the HJB equation (2.13) (cf. Proposition 2.5) and by noticing that

F (Xx
s , C

c,ν
s+ )− F (Xx

s , C
c,ν
s ) =

∫ ∆νs

0
Fc(X

x
s , C

c,ν
s + u)du, (2.17)

we obtain

F (x, c) ≤E
[
e−λ(τR∧T )F (Xx

τR∧T , C
c,ν
τR∧T )

]
+ E

[ ∫ τR∧T

0
e−λsλXx

s Φ(Cc,νs )ds

]

+ E

[ ∫ τR∧T

0
e−λsXx

s dν
cont
s

]
+ E

 ∑
0≤s<τR∧T

e−λsXx
s ∆νs

 (2.18)

=E

[
e−λ(τR∧T )F (Xx

τR∧T , C
c,ν
τR∧T ) +

∫ τR∧T

0
e−λsλXx

s Φ(Cc,νs )ds+

∫ τR∧T

0
e−λsXx

s dνs

]
.
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When taking limits as R → ∞ we have τR ∧ T → T , P-a.s. The integral terms in the
last expression on the right-hand side of (2.18) are uniformly integrable (cf. (1.8)) and F has
sub-linear growth (cf. (2.10)). Then we also take limits as T ↑ ∞ and it follows

F (x, c) ≤ E

[ ∫ ∞
0

e−λsλXx
s Φ(Cc,νs )ds+

∫ ∞
0

e−λsXx
s dνs

]
, (2.19)

due to the fact that limT→∞ E[e−λTF (Xx
T , C

c,ν
T )] = 0. Since the latter holds for all admissible ν

we have F (x, c) ≤ U(x, c).

Step 2. If c = 1 then F (x, 1) = U(x, 1) = 0. Take then c ∈ [0, 1), C∗ as in Proposition 2.7
and define ρ := inf

{
t ≥ 0 : ν∗t = 1− c

}
. We can repeat arguments of Step 1. on Itô’s formula

with τR replaced by τR ∧ ρ to find

F (x, c) =E
[
e−λ (τR∧ρ)F (Xx

τR∧ρ, C
∗
τR∧ρ)

]
− E

[ ∫ τR∧ρ

0
e−λs(LX − λ)F (Xx

s , C
∗
s )ds

]
− E

[ ∫ τR∧ρ

0
e−λsFc(X

x
s , C

∗
s )dν∗,conts

]

− E

 ∑
0≤s<τR∧ρ

e−λs
(
F (Xx

s , C
∗
s+)− F (Xx

s , C
∗
s )
) .

If we now recall Proposition 2.5, Proposition 2.7 and (2.17), then from the above we obtain

F (x, c) =E

[
e−λ (τR∧ρ)F (Xx

τR∧ρ, C
∗
τR∧ρ) +

∫ τR∧ρ

0
e−λsλXx

s Φ(C∗s )ds+

∫ τR∧ρ

0
e−λsXx

s dν
∗
s

]
(2.20)

As R → ∞, again τR → ∞, clearly τR ∧ ρ → ρ, P-a.s. and E
[
e−λ(τR∧ρ)F (Xx

τR∧ρ, C
∗
τR∧ρ)

]
→ 0.

Moreover, we also notice that since d ν∗s ≡ 0 and Φ(C∗s ) ≡ 0 for s > ρ the integrals in the last
expression of (2.20) may be extended beyond ρ up to +∞ so as to obtain

F (x, c) =E

[ ∫ ∞
0

e−λsλXx
s Φ(C∗s )ds+

∫ ∞
0

e−λsXx
s dν

∗
s

]
= Jx;c(ν

∗). (2.21)

Then F ≡ U and ν∗ is optimal.

3 The Case ĉ ≥ 1

In this section we examine the opposite regime to that of Section 2, when the infimum in
(1.9) is attained by an almost surely finite stopping time τ∗ and the constant control policy
ν̂ ≡ 0. Equivalently the solution to (1.2) does not exert control before the price process X
hits a repelling boundary, at which point all available control is exerted. We show that this
regime occurs when k(c) < 0 for all c ∈ [0, 1] (cf. (1.6)), or equivalently ĉ > 1. We confirm
this contrast with the differential relationship holding in Section 2 (i.e. the break-down of the
classical connection to optimal stopping) by showing that the principle of smooth fit does not
hold for the value function of the control problem, whose second order mixed derivative Ucx is
not continuous across the optimal boundary. The case ĉ = 1 is similar, see Remark 3.3.

We begin by observing that exercising no control produces a payoff equal to

λΦ(c)

∫ ∞
0

e−λsE [Xx
s ] ds (3.1)
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Figure 1: An illustrative diagram of the action/inaction regions in the case ĉ ≤ 0 and of the optimal
control ν∗ (see (2.15)). The boundary β∗ splits the state space into the inaction region (white) and action
region (hatched). When the initial state is (x, c) with x > β∗(c) one observes a Skorokhod reflection of
(Xx, Cc,ν

∗
) at β∗ in the horizontal direction up to when all the fuel is spent.

(cf. (1.2)). Suppose instead that we exert a small amount ∆0 of control at time zero and exercise
no further control. In this case the cost of control is x∆0 and, approximating Φ(c + ∆0) ∼
Φ(c) + Φ′(c)∆0, the payoff reads

λΦ(c)

∫ ∞
0

e−λsE [Xx
s ] ds+ ∆0λΦ′(c)

∫ ∞
0

e−λsE
[
Xx
s

]
ds+ x∆0

= λΦ(c)

∫ ∞
0

e−λsE [Xx
s ] ds+

∆0

λ+ θ

(
k(c)x+ θµΦ′(c)

)
(3.2)

recalling that E[Xx
s ] = µ+ (x− µ)e−θs (cf. (B-1)) to obtain the second term. Comparing (3.1)

and (3.2) we observe that the relative net contribution to the infimum (1.2) (equivalently, the
infimum (1.9)) from exercising the amount ∆0 of control is given by the second term in the
second line of (3.2), which for fixed c depends only on the term k(c)x. When x > −θµΦ′(c)/k(c)
the second term in (3.2) is negative and therefore favourable, while when x < −θµΦ′(c)/k(c)
it is positive and unfavourable. This suggests that in the present case, when ĉ > 1, we should
expect the inaction region to correspond to {(x, c) : x < γ(c)} for some function γ. Moreover,
since the curve c 7→ −θµΦ′(c)/k(c) is strictly decreasing as Φ is strictly convex, small control
increments in this profitable region x > −θµΦ′(c)/k(c) keep the state process (X,C) inside the
same region. It thus follows that infinitesimal increments due to a possible reflecting boundary
as in Section 2 do not seem to lead to an optimal strategy. Instead a phenomenon similar
to ‘critical depensation’ in optimal harvesting models is suggested, where it becomes optimal
to exercise all available control upon hitting a repelling free boundary (see for example [1] for
one-dimensional problems but note that in our setting the free boundary will in general be
non-constant).

We solve the optimisation problem (1.2) by directly tackling the associated Hamilton-Jacobi-
Bellmann equation suggested by the above heuristic and the dynamic programming princi-
ple. It is not difficult to show from (1.2) that x 7→ U(x, c) has at most sub-linear growth:
indeed, integrating by parts the cost term

∫∞
0 e−λsXx

s dνs and noting that the martingale
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Mt :=
∫ t

0 σe
−λsνsdBs is uniformly integrable, we can write for any ν ∈ Sc

Jx,c(ν) ≤ E

[ ∫ ∞
0

e−λs
(
λ|Xx

s |Φ(Cc,νs ) + |νs|[λ|Xx
s |+ θ(µ+ |Xx

s |)]
)
ds

]
≤ K(1 + |x|),

for some suitable K > 0, by (B-1), Assumption 1.1 and the fact that any admissible ν is
nonnegative and uniformly bounded.

We seek a couple (W,γ) solving the following system
LXW (x, c)− λW (x, c) = −λxΦ(c), for x < γ(c), c ∈ [0, 1),

Wc(x, c) ≥ −x, for (x, c) ∈ R× [0, 1],

W (x, c) = x(1− c), for x ≥ γ(c), c ∈ [0, 1],

Wx(γ(c), c) = (1− c), for c ∈ [0, 1].

(3.3)

We will verify a posteriori that W then also satisfies Wc(γ(c), c) = −γ(c) but does not satisfy
Wcx(γ(c), c) = −1, which is a smooth fit condition often employed in the solution of singular
stochastic control problems (see, for example, [18] and [31]).

Theorem 3.1. Let ψλ be the increasing fundamental solution of (LX − λ)f = 0 (cf. (B-3) in
Appendix) and define

x0(c) :=
θµΦ(c)

ζ(c)
, c ∈ [0, 1), (3.4)

where ζ(c) := (λ + θ)(1 − c) − λΦ(c) =
∫ 1
c k(y)dy < 0. There exists a unique couple (W,γ)

solving (3.3) with W satisfying W ∈ W 2,1,∞
loc (R × (0, 1)) and Wc(γ(c), c) = −1. The function

γ is decreasing and, if ĉ > 1, it is C1 on [0, 1]. For each c ∈ [0, 1], γ(c) ∈ (x0(c),+∞) is the
unique solution of

find x ∈ R:
ψλ(x)

ψ′λ(x)
= x− x0(c). (3.5)

For c ∈ [0, 1] the function W may be expressed in terms of γ as

W (x, c)=


ψλ(x)
ψλ(γ(c))

[
γ(c)(1−c)−λΦ(c)

(
γ(c)−µ
λ+θ + µ

λ

)]
+λΦ(c)

[
x−µ
λ+θ + µ

λ

]
, for x < γ(c),

x(1− c), for x ≥ γ(c).
(3.6)

Moreover the map x 7→Wc(x, c) is not C1 across the boundary γ and one has Wcx(γ(c), c) < −1,
c ∈ [0, 1].

Proof. The proof will be carried out in several steps.

Step 1. The first equation in (3.3) is an ordinary differential equation solved by

W (x, c) = A(c)ψλ(x) +B(c)φλ(x) + λΦ(c)

[
x− µ
λ+ θ

+
µ

λ

]
, (3.7)

with φλ and ψλ as in (B-2) and (B-3), respectively. Since W (x, c) = x(1 − c) for x > γ(c)
sub-linear growth is fulfilled as x → +∞; however, as x → −∞ one has that φλ(x) → +∞
with a super-linear trend. Since we are trying to identify U , it is then natural to set B(c) ≡ 0.
Imposing the third and fourth conditions of (3.3) at x = γ(c) we find

A(c)ψλ(γ(c)) = γ(c)(1− c)− λΦ(c)

(
γ(c)− µ
λ+ θ

+
µ

λ

)
(3.8)
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and

A(c)ψ′λ(γ(c)) = (1− c)− λΦ(c)

λ+ θ
. (3.9)

from which it follows that γ(c) should solve (3.5). Since ψλ/ψ
′
λ > 0 any solution of (3.5) must be

in the set (x0(c),+∞) and so (3.5) is equivalent to finding x ∈ (x0(c),+∞) such that H(x, c) = 0
with

H(x, c) := ψλ(x)
[
(1− c)− λΦ(c)

λ+ θ

]
− ψ′λ(x)

[
x(1− c)− λΦ(c)

(
x− µ
λ+ θ

+
µ

λ

)]
. (3.10)

Since ψ′λ > 0 and ψ′′λ > 0 (cf. (B-3) and (B-4)) it follows by direct calculation that Hx(x, c) > 0
and Hxx(x, c) > 0 on x ∈ (x0(c),+∞); moreover, since H(x0(c), c) < 0 there exists a unique
γ(c) solving (3.5). Now from (3.5), (3.8) and (3.9) we can equivalently set

A(c) :=
1

ψλ(γ(c))

[
γ(c)(1− c)− λΦ(c)

(
γ(c)− µ
λ+ θ

+
µ

λ

)]
=

1

ψ′λ(γ(c))

[
(1− c)− λΦ(c)

λ+ θ

]
(3.11)

and (3.6) follows by extending W to be x(1− c) for x > γ(c).

Step 2. Using (3.5) and (3.6) it is easy to check thatW (γ(c), c) = γ(c)(1−c) andWx(γ(c), c) =
(1− c).

Step 3. In order to establish the monotonicity of γ we study the derivative with respect to
c of the map c 7→ x− x0(c). Differentiating we obtain

d

d c
(x− x0(c)) = − d

d c
x0(c) = −θµ(λ+ θ)[Φ′(c)(1− c) + Φ(c)]

ζ2(c)
> 0, (3.12)

where the last inequality holds since −Φ(c) =
∫ 1
c Φ′(y)dy > Φ′(c)(1− c) by strict convexity of Φ.

Now (3.12) guarantees that c 7→ x− x0(c) is increasing and then the implicit function theorem
and arguments similar to those that led to (C-11) in the proof of Proposition C.3 allow us to
conclude that γ lies in C1([0, 1]) (if ĉ > 1) and is decreasing (for ĉ = 1 see Remark 3.3 below).

Step 4. We now aim to prove the second condition in (3.3). Recalling that W has been
extended to be x(1− c) for x ≥ γ(c) the result is trivial in that region. Consider only x < γ(c).
From (3.6) we have

W (x, c) = x(1− c)−
[
x(1− c)− λΦ(c)

(
x− µ
λ+ θ

+
µ

λ

)]
+

ψλ(x)

ψλ(γ(c))

[
γ(c)(1− c)− λΦ(c)

(
γ(c)− µ
λ+ θ

+
µ

λ

)]
(3.13)

and since γ is differentiable, recalling (2.2) and rearranging terms we have

Wc(x, c) =− x+G(x, c)− ψλ(x)

ψλ(γ(c))
G(γ(c), c)

+
ψλ(x)

ψλ(γ(c))
γ′(c)

[
(1− c)− λΦ(c)

λ+ θ

][
1−

ψ′λ(γ(c))

ψλ(γ(c))
(γ(c)− x0(c))

]
(3.14)

=− x+G(x, c)− ψλ(x)

ψλ(γ(c))
G(γ(c), c),
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where the last equality follows since γ solves (3.5). Note that as a byproduct of (3.14) we also
have Wc(γ(c), c) = −γ(c). Differentiating (3.14) with respect to x and taking x = γ(c) gives

Wcx(γ(c), c) + 1 =
k(c)

λ+ θ
−
ψ′λ(γ(c))

ψλ(γ(c))
G(γ(c), c) (3.15)

and hence from (2.2) and (3.5) we obtain

Wcx(γ(c), c) + 1 = − k(c)

(λ+ θ)

1

(γ(c)− x0(c))

[µθΦ′(c)
k(c)

+ x0(c)
]

= − θµ

ζ(c)

1

(γ(c)− x0(c))
[Φ′(c)(1− c) + Φ(c)]. (3.16)

Since γ(c) > x0(c), ζ(c) < 0 and Φ′(c)(1− c) + Φ(c) < 0 by the convexity of Φ we conclude that

Wcx(γ(c), c) + 1 < 0, c ∈ [0, 1]. (3.17)

For x < γ(c) we can differentiate with respect to c and x the first equation in (3.3), set ū(x, c) :=
Wxc(x, c) + 1 and find

LX ū(x, c)− (λ+ θ)ū(x, c) = −k(c) ≥ 0, for c ∈ [0, 1] and x < γ(c), (3.18)

with boundary condition ū(γ(c), c) = Wxc(γ(c), c)+1 < 0. Taking σγ := inf
{
t ≥ 0 : Xx

t ≥ γ(c)
}

and using Itô’s formula we find

ū(x, c) = E

[
e−(λ+θ)σγ ū

(
Xx
σγ , c

)
+ k(c)

∫ σγ

0
e−(λ+θ)sds

]
, for c ∈ [0, 1] and x < γ(c). (3.19)

It follows from (3.14) and recurrence of X that e−(λ+θ)σγ ū
(
Xx
σγ , c

)
= e−(λ+θ)σγ ū

(
γ(c), c

)
, P-a.s.

Moreover, k(c) < 0 and (3.17) imply that the right-hand side of (3.19) is strictly negative.
It follows that Wxc(x, c) + 1 < 0 for all x < γ(c) and hence x 7→ Wc(x, c) + x is decreasing.
Since Wc(γ(c), c) + γ(c) = 0 by (3.14), then we can conclude Wc(x, c) + x ≥ 0 for all (x, c) ∈
R× [0, 1].

Remark 3.2. If Wc were the value function of an optimal stopping problem with free boundary γ
we would expect the principle of smooth fit to hold, i.e. Wc( · , c) ∈ C1 across the boundary γ. In
the literature on singular stochastic control, continuity of Wcx is usually verified (cf. for instance
[18] and [31]) and often used to characterise the optimal boundary. However equation (3.17)
confirms that this property does not hold in this example, and indeed the differential relationship
between singular control and optimal stopping (in the sense, e.g., of [16], [24], [25]) breaks down.

Remark 3.3. It is interesting to note that if ĉ = 1 one has limc↑ĉ x0(c) = −∞ and hence
limc↑ĉ γ(c) = −∞, otherwise a contradiction is found when passing to the limit in (3.5) with
x = γ(c).

Since γ solving (3.5) is the unique candidate optimal boundary we set γ∗ := γ from now on.

Proposition 3.4. The function W of Theorem 3.1 solves (2.13) with W (x, 1) = U(x, 1) = 0.

Proof. The boundary condition at c = 1 follows from (3.6). Since W solves (3.3) it also solves
(2.13) for x < γ∗(c), c ∈ [0, 1]. It thus remains to prove that

(
LX − λ

)
W (x, c) ≥ −λΦ(c)x

for x > γ∗(c). Note that since W (x, c) = x(1 − c) in that region then
(
LX − λ

)
W (x, c) =

(1− c)
[
θµ− (λ+ θ)x

]
. Set

x̃(c) :=
(1− c)θµ
ζ(c)

, c ∈ [0, 1), (3.20)
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where again ζ(c) =
∫ 1
c k(y)dy, and observe that (1 − c)

[
θµ − (λ + θ)x

]
≥ −λΦ(c)x for all

x ≥ x̃(c). To conclude we need only show that γ∗(c) > x̃(c) for c ∈ [0, 1]. It suffices to prove
that H(x̃(c), c) < 0 (cf. (3.10)) and the result will follow since H(·, c) is strictly increasing and
such that H(γ∗(c), c) = 0.

Fix c ∈ [0, 1) and denote x̃ := x̃(c) and x0 := x0(c) (cf. (3.4)) for simplicity. Then we have

ψλ(x̃)

ψ′λ(x̃)
− (x̃− x0) =

ψλ(x̃)

ψ′λ(x̃)
− θµ

ζ(c)
(1− c− Φ(c)) =

ψλ(x̃)

ψ′λ(x̃)
− x̃

(1− c)
[(1− c)− Φ(c)] , (3.21)

where the last equality follows from (3.20). Since ψ′′λ > 0 and ψλ solves
(
LX − λ

)
ψλ = 0 we

obtain

ψλ(x̃)

ψ′λ(x̃)
>
θ(µ− x̃)

λ
(3.22)

and from the right-hand side of (3.21) also

ψλ(x̃)

ψ′λ(x̃)
− (x̃− x0) >

θ(µ− x̃)

λ
− x̃ [λ(1− c)− λΦ(c)]

λ(1− c)

=

(
θµ− (λ+ θ)x̃

)
(1− c) + λΦ(c)x̃

λ(1− c)
= 0. (3.23)

The inequality above implies H(x̃(c), c) < 0 so that γ∗(c) > x̃(c). Hence
(
LX − λ

)
W (x, c) ≥

−λΦ(c)x for x > γ∗(c).

Introduce the stopping time

τ∗ := inf
{
t ≥ 0 : Xx

t ≥ γ∗(c)
}
, (3.24)

and for any c ∈ [0, 1) define the admissible control strategy

ν∗t :=

{
0, t ≤ τ∗,
(1− c), t > τ∗.

(3.25)

Theorem 3.5. The admissible control ν∗ of (3.25) is optimal for problem (1.2) and W ≡ U .

Proof. The proof employs arguments similar to those used in the proof of Theorem 2.8. We
recall the regularity of W by Theorem 3.1 and note that

∣∣W (x, c)
∣∣ ≤ K(1 + |x|) for a suitable

K > 0. Then an application of Itô’s formula in the weak version of [20], Chapter 8, Section
VIII.4, Theorem 4.1, easily gives W (x, c) ≤ U(x, c) for all (x, c) ∈ R× [0, 1] (cf. also arguments
in step 1 of the proof of Theorem 2.8).

On the other hand, taking C∗t := Cc,ν
∗

t = c+ν∗t , c ∈ [0, 1), with ν∗ as in (3.25), and applying
Itô’s formula again (possibly using localisation arguments as in the proof of Theorem 2.8) we
find

W (x, c) =E

[
e−λτ∗W (Xx

τ∗ , C
∗
τ∗) +

∫ τ∗

0
e−λsλXx

s Φ(C∗s )ds

]
− E

[∫ τ∗

0
e−λsWc(X

x
s , C

∗
s )d ν∗,conts

]
(3.26)

− E

 ∑
0≤s<τ∗

e−λs
(
W (Xx

s , C
∗
s+)−W (Xx

s , C
∗
s )
) .
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Figure 2: An illustrative diagram of the action/inaction regions in the case ĉ > 0 and of the optimal
control ν∗ (see (3.25)). The boundary γ∗ splits the state space into the inaction region (white) and action
region (hatched). When the initial state is (x, c) with x < γ∗(c), the first time Xx hits γ∗(c) one observes
a single jump of (Xx, Cc,ν

∗
) in the horizontal direction up to c = 1.

Since (Xx
s , C

∗
s ) = (Xx

s , c) for s ≤ τ∗, then the third and fourth term on the right-hand side of
(3.26) equal zero, whereas for the first term we have from (3.3) and (3.25)

E
[
e−λτ∗W (Xx

τ∗ , c+ ν∗τ∗)
]

= E
[
e−λτ∗W (Xx

τ∗ , c)
]

=E
[
e−λτ∗Xx

τ∗(1− c)
]

= E

[∫ ∞
0

e−λsXx
s dC

∗
s

]
. (3.27)

For the second term on the right-hand side of (3.26) we have

E

[∫ τ∗

0
e−λsλXx

s Φ(c+ ν∗s )ds

]
= E

[∫ ∞
0

e−λsλXx
s Φ(c+ ν∗s )ds

]
, (3.28)

since Φ(1) = 0 by Assumption 1.1. Now, (3.26), (3.27) and (3.28) give W (x, c) = U(x, c), and
C∗ is optimal.

4 Considerations in the case ĉ ∈ (0, 1)

In this section we discuss the remaining case when ĉ ∈ (0, 1), equivalently when the function
k(·) of (1.6) changes its sign over (0, 1).

1. For c ∈ [ĉ, 1] it can be seen that setting the strictly convex penalty function in (1.3) equal
to Φ̂( · ) := Φ(ĉ+ · ) reduces problem (1.2) to that of Section 2. The optimal control strategy for
c ∈ [ĉ, 1] is therefore of reflecting type and it is characterised in terms of a decreasing boundary
β̂ defined on (ĉ, 1]. As expected the classical connection with optimal stopping holds in the sense
that Uc = v on R× (ĉ, 1] with v as in (2.1).

2. When c ∈ [0, ĉ) the optimal policy depends both on the local considerations discussed
at the beginning of Section 3 and also on the solution for c ∈ [ĉ, 1] given in point 1 above.
Assuming that the analytic expression of U is known for c ∈ [ĉ, 1] then the HJB equation in the
set R× [0, ĉ) has a natural boundary condition at c = ĉ and its solution is expected to paste (at
least) continuously with U( · , ĉ). Since the expression for U obtained in Section 2 is non-explicit
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in general, analysis of the geometry of the action and inaction regions is more challenging in
this case and its rigorous study is beyond the scope of this paper; nevertheless we will discuss
some qualitative ideas based on the findings of the previous sections.

3. The local considerations at the beginning of Section 3 hold in the same way in this
setting and therefore we may expect a repelling behaviour of the boundary of the action region.
Conjecturing the existence of a decreasing free boundary γ̂ defined on [0, ĉ) two possible optimal
controls can be envisioned, depending on the position of γ̂ relative to β̂ in the (x, c)-plane. For
an initial inventory c ∈ [0, ĉ), once the uncontrolled diffusion X hits γ̂(c) the inventory should
be increased as follows: i) if γ̂(c) ≤ infc∈(ĉ,1] β̂(c) all available control is exerted, otherwise ii)
the inventory is increased just enough to push (X,C) inside the portion of inaction region in
R× (ĉ, 1] (i.e. the subset of R× (ĉ, 1] bounded below by β̂). As a result the optimal boundaries
β̂ and γ̂ exhibit a strong coupling which together with the difficulty in handling the expressions
for φλ and ψλ challenges the methods of solution employed in this paper.

4. We note that determining the geometry of two coexisting free boundaries in a two dimen-
sional state space is not a novelty in the context of SSCDS but explicit solutions can only be
found in some specific models (see for instance [28] where a Brownian motion and a quadratic
cost are considered). Indeed it is possible to provide a solution when θ = 0, for which we refer
the reader to [13]. Before concluding this section we show that the latter results are consistent
with the above ideas. In [13] the interval [0, 1] for the values of the inventory is again split into
two subintervals by a point that here we denote by c̃ for clarity (in [13] it is denoted by ĉ). In
the portion R× [0, c̃) of the state space of [13] the boundary of the action region is of repelling
type consistent with point 3 above, although in this case two repelling boundaries are present.
For c ∈ (c̃, 1] the free boundary in [13] is constant with respect to c and, although the optimal
policy is therefore of bang-bang type, it is not difficult to see that it may equally be interpreted
as the limit of reflecting boundaries. Indeed smooth fit holds at this boundary when c ∈ (c̃, 1],
along with the differential connection with optimal stopping (see p. 3 in the Introduction of [13]
and Remark 3.3 therein) so that the qualitative behaviour is the same as that described in point
1 above.

A A Problem of Storage and Consumption

A problem naturally arising in the analysis of power systems is the optimal charging of electricity
storage. We consider the point of view of an agent that commits to fully charging an electrical
battery on or before a randomly occurring time τ > 0 of demand. At any time t > 0 prior to
the arrival of the demand the agent may increase the storage level Ct (within the limits of its
capacity, which is one unit) by buying electricity at the spot price Xt. Several specifications of
the spot price dynamics can be considered. We take (Xt)t≥0 as a continuous, strong Markov
process adapted to a filtration (Ft)t≥0 on a complete probability space (Ω,F ,P).

If the battery is not full at time τ then it is filled by a less efficent method so that the terminal
spot price is weighted by a strictly convex function Φ, and so is equal to Ψ(Xτ , Cτ ) = XτΦ(Cτ )
with Φ(1) = 0 (cf. Assumption 1.1). The storage level can only be increased and the process
Ct = c+ νt follows the dynamics (1.1) with ν ∈ Sc (cf. (1.5)). For simplicity and with no loss of
generality we assume that costs are discounted at a rate r = 0.

The aim of the agent is to minimise the future expected costs by optimally increasing the
storage within its limited capacity. Then the agent faces the optimisation problem with random
maturity

inf
ν∈Sc

E
[ ∫ τ

0
Xtdνt +XτΦ(Cτ )

]
. (A-1)
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Various specifications for the law of τ are clearly possible. Here we consider only the case of
τ independent of the filtration (Ft)t≥0 and distributed according to an exponential law with
parameter λ > 0; that is,

P
(
τ > t

)
= e−λt. (A-2)

This setting effectively models the demand as completely unpredictable. By the assumption of
independence of τ and (X,C), for any ν we easily obtain

E
[
XτΦ(Cτ )

]
= E

[ ∫ ∞
0

λe−λtXtΦ(Ct)dt
]

(A-3)

and

E
[ ∫ τ

0
Xtdνt

]
=E
[ ∫ ∞

0
λe−λs

(∫ s

0
Xtdνt

)
ds
]

=E
[ ∫ ∞

0

(∫ ∞
t

λe−λsds
)
Xtdνt

]
= E

[ ∫ ∞
0

e−λtXtdνt

]
, (A-4)

where the integrals were exchanged by an application of Fubini’s theorem. It then follows that
problem (A-1) may be rewritten as in (1.2) and (1.3).

B Facts on the Ornstein-Uhlenbeck Process

Recall the Ornstein-Uhlenbeck process X of (1.4). It is well known that X is a positively
recurrent Gaussian process (cf., e.g., [7], Appendix 1, Section 24, pp. 136-137) with state space
R and that (1.4) admits the explicit solution

Xx
t = µ+ (x− µ)e−θt +

∫ t

0
σeθ(s−t)dBs. (B-1)

We introduced its infinitesimal generator LX in (2.4); the characteristic equation LXu = λu,
λ > 0, admits the two linearly independent, positive solutions (cf. [22], p. 280)

φλ(x) := e
θ(x−µ)2

2σ2 D−λ
θ

((x− µ)

σ

√
2θ
)

(B-2)

and

ψλ(x) := e
θ(x−µ)2

2σ2 D−λ
θ

(
− (x− µ)

σ

√
2θ
)
, (B-3)

which are strictly decreasing and strictly increasing, respectively. In both (B-2) and (B-3) Dα

is the cylinder function of order α (see [8], Chapter VIII, among others) and it is also worth
recalling that (see, e.g., [8], Chapter VIII, Section 8.3, eq. (3) at page 119)

Dα(x) :=
e−

x2

4

Γ(−α)

∫ ∞
0

t−α−1e−
t2

2
−xtdt, Re(α) < 0, (B-4)

where Γ(·) is the Euler’s Gamma function.
We denote by Px the probability measure on (Ω,F) induced by the process (Xx

t )t≥0, i.e. such
that Px( · ) = P( · |X0 = x), x ∈ R, and by Ex[ · ] the expectation under this measure. Then, it
is a well known result on one-dimensional regular diffusion processes (see, e.g., [7], Chapter I,
Section 10) that

Ex[e−λτy ] =


φλ(x)

φλ(y)
, x ≥ y,

ψλ(x)

ψλ(y)
, x ≤ y,

(B-5)
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with φλ and ψλ as in (B-2) and (B-3) and τy := inf{t ≥ 0 : Xx
t = y} the hitting time of Xx

at level y ∈ R. Due to the recurrence property of the Ornstein-Uhlenbeck process X one has
τy <∞ Px-a.s. for any x, y ∈ R.

C Some Proofs from Section 2

C.1 Proof of Theorem 2.1

The proof goes through a number of steps which we organise in Lemmas, Propositions and
Theorems. Integrating by parts in (2.1) and noting that the martingale (

∫ t
0 e
−λsσdBs)t≥0 is

uniformly integrable we can write

u(x; c) := v(x; c) + x = sup
σ≥0

E

[ ∫ σ

0
e−λs [k(c)Xx

s − θµ] ds

]
, (C-1)

with k(c) as in (1.6). For each c ∈ [0, 1] we define the continuation and stopping regions of
problem (C-1) by

Cc := {x : u(x; c) > 0} and Dc := {x : u(x; c) = 0}, (C-2)

respectively. From standard arguments based on exit times from small balls one notes that
Dc ⊂ {x : x ≤ θµ

k(c)} as it is never optimal to stop immediately in its complement {x : x > θµ
k(c)}.

Since x 7→ u(x; c) is increasing, Dc lies below Cc and we also expect the optimal stopping strategy
to be of threshold type.

Now, for any given c ∈ [0, 1] and β(c) ∈ R we define the hitting time σβ(x, c) := inf{t ≥
0 : Xx

t ≤ β(c)}. For simplicity we set σβ(x, c) = σβ. A natural candidate value function for
problem (C-1) is of the form

uβ(x; c) =


E

[ ∫ σβ

0
e−λs (k(c)Xx

s − θµ) ds

]
, x > β(c),

0, x ≤ β(c).

(C-3)

An application of Fubini’s theorem, (B-1) and some simple algebra leads to

Lemma C.1. For all (x, c) ∈ R× [0, 1] and with G as in (2.2) one has

E

[ ∫ ∞
0

e−λs (k(c)Xx
s − θµ) ds

]
= G(x; c). (C-4)

Recall LX and φλ as in the statement of Theorem 2.1. The analytical expression of uβ is
provided in the next

Lemma C.2. For uβ as in (C-3) it holds

uβ(x; c) =

 G(x; c)− G(β(c); c)

φλ(β(c))
φλ(x), x > β(c)

0, x ≤ β(c).

(C-5)

Proof. From (C-3), (2.2) and strong Markov property we have that for all x > β(c)

uβ(x; c) = G(x; c)− E

[
E

[ ∫ ∞
σβ

e−λs (k(c)Xx
s − θµ) ds

∣∣∣Fσβ]] (C-6)

= G(x; c)− E
[
e−λσβG(Xx

σβ
; c)
]
,

= G(x; c)−G(β(c); c)
φλ(x)

φλ(β(c))
,
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where the last equality follows sinceXx is positively recurrent and by using well known properties
of hitting times summarised in Appendix B for completeness (cf. (B-5)).

The candidate optimal boundary β∗(c) is found by imposing the familiar principle of smooth

fit, i.e. the continuity of the first derivative uβx at the boundary β∗. This amounts to solving
problem (2.6).

Proposition C.3. Recall (2.3). For each c ∈ [0, 1] there exists a unique solution β∗(c) ∈
(−∞, x0(c)) of (2.6). Moreover, β∗ ∈ C1([0, 1]) and it is strictly decreasing.

Proof. Since we are only interested in finite valued solutions of (2.6) and φλ(x) > 0 for all
x ∈ (−∞,+∞) we may as well consider the equivalent problem of finding x ∈ R such that
H(x; c) = 0, where

H(x; c) := Gx(x; c)φλ(x)−G(x; c)φ′λ(x). (C-7)

We first notice that G(x0(c); c) = 0 (cf. (2.2) and (2.3)) and since k(c) > 0, then (i) G(x; c) > 0
for x > x0(c), (ii) G(x; c) < 0 for x < x0(c) and (iii) Gx(x; c) > 0 for all x. Hence

H(x0(c); c) = Gx(x0(c); c)φλ(x0(c)) > 0. (C-8)

Recall also that φλ is strictly convex (cf. (B-2) and (B-4) in Appendix B), then it easily follows
by (2.2) and (C-7) that

Hx(x; c) = −G(x; c)φ′′λ(x) > 0, for x < x0(c). (C-9)

Moreover, H(x; c) > 0 for all x ≥ x0(c) and so if β∗(c) exists such that H(β∗(c); c) = 0 then
β∗(c) < x0(c). Derivation of (C-9) with respect to x gives

Hxx(x; c) = −Gx(x; c)φ′′λ(x)−G(x; c)φ′′′λ (x) < 0, for x < x0(c),

which implies that x 7→ H(x; c) is continuous, strictly increasing and strictly concave on
(−∞, x0(c)). Hence, by (C-8) there exists a unique β∗(c) < x0(c) solving H(β∗(c); c) = 0
(and equivalently (2.6)). Since Hx(β∗(c); c) > 0 for all c ∈ [0, 1] (cf. (C-9)), then β∗ ∈ C1([0, 1])
from the implicit function’s theorem, with

β′∗(c) = − Hc(β∗(c); c)

Hx(β∗(c); c)
, c ∈ [0, 1]. (C-10)

We now show that c 7→ β∗(c) is strictly decreasing. A direct study of the sign of the right-
hand side of (C-10) seems non-trivial so we use a different trick. It is not hard to verify from (2.3)
that c 7→ x0(c) is strictly decreasing since c 7→ Φ′(c) is strictly increasing. Setting x̄ := β∗(c) in
(2.6), straightforward calculations give

φ′λ(x̄)

φλ(x̄)
=
Gx(x̄; c)

G(x̄; c)
=

k(c)

x̄k(c) + µθΦ′(c)
=

1

x̄− x0(c)

so that c 7→ Gx(x̄;c)
G(x̄;c) is strictly decreasing. Since c 7→ x0(c) is continuous it is always possible to

pick c′ > c sufficiently close to c so that x̄ < x0(c′) < x0(c) (hence G(x̄; c′) < 0) and one finds

Gx(x̄; c′)

G(x̄; c′)
<
φ′λ(x̄)

φλ(x̄)
(C-11)

and therefore H(x̄; c′) > 0. It follows that β∗(c
′) < β∗(c), since x 7→ H(x; c) is increasing for

x < x0(c′). Then c 7→ β∗(c) is a strictly decreasing map.
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We verify the optimality of β∗ in the next theorem and note that a stopping time σ is optimal
for (C-1) if and only if it is optimal for (2.1).

Theorem C.4. The boundary β∗ of Proposition C.3 is optimal for (C-1) in the sense that σ∗

of (2.7) is an optimal stopping time and uβ∗ ≡ u.

Proof. The candidate value function uβ∗ (cf. (2.5)) is such that uβ∗(·; c) ∈ C1(R) by Proposition

C.3 and it is convex. Hence it is also nonnegative, since uβ∗x (β∗(c); c) = uβ∗(β∗(c); c) = 0 by
(2.5) and (2.6).

It is easily checked that

(LX − λ)uβ∗(x; c) =

{
θµ− k(c)x, x > β∗(c),

0, x ≤ β∗(c).
(C-12)

We claim (and we will prove it later) that

β∗(c) <
θµ

k(c)
=: x̂0(c) (C-13)

so that (LX − λ)uβ∗(x; c) ≤ θµ− k(c)x for all x ∈ R.
Fix (x, c) ∈ R× [0, 1]. Take now R > 0 such that β∗(c) ∈ (−R,R) and define τR := inf{t ≥

0 : Xx
t /∈ (−R,R)}. By convexity of uβ∗(·, c), the Itô-Tanaka formula (see, for example, [27],

Chapter 3, Section 3.6 D) and the principle of smooth fit we have

E
[
e−λ(τR∧τ)uβ∗(Xx

τR∧τ , c)
]
≤ uβ∗(x, c) + E

[∫ τR∧τ

0
e−λs

(
θµ− k(c)Xx

s

)
ds

]
, (C-14)

for an arbitrary P-a.s. finite stopping time τ ≥ 0. Now τR ∧ τ ↑ τ as R ↑ ∞ and the integral
inside the expectation on the right-hand side of (C-14) is uniformly integrable. Then taking
limits as R ↑ ∞ and using that uβ∗ ≥ 0 we obtain

uβ∗(x; c) ≥ E

[∫ τ

0
e−λs

(
θµ− k(c)Xx

s

)
ds

]
.

Since τ is arbitrary we can take the supremum over all stopping times to obtain uβ∗ ≥ u.
To prove the reverse inequality we take τ = σ∗ to have strict inequality in (C-14). Then

we notice that 0 ≤ uβ∗(x, c) ≤ |G(β∗(c); c)| + |G(x; c)| for x > β∗(c) so that recurrence of Xx

implies that(
e−λτuβ∗(Xx

τ , c)
)
τ≥0

is uniformly integrable and e−λσ
∗
uβ∗(Xx

σ∗ ; c) = e−λσ
∗
uβ∗(β∗(c), c).

(C-15)

Therefore

lim
R→∞

E
[
e−λ (τR∧σ∗)uβ∗(Xx

τR∧σ∗ , c)
]

= E
[
e−λσ

∗
uβ∗(β∗(c), c)

]
= 0, (C-16)

and in the limit we find uβ∗ = u.
To conclude the proof we only need to show that (C-13) holds true. Set x̂0 = x̂0(c) for

simplicity. We have
H(x̂0; c)

φλ(x̂0)
=

k(c)

λ+ θ
− θµ(k(c)− θ)

λ(λ+ θ)

φ′λ(x̂0)

φλ(x̂0)
(C-17)

by (2.2), (C-7) and (2.3); since
(
LX − λ

)
φλ = 0 and φ′′λ > 0 we also have

θ(µ− x̂0)φ′λ(x̂0)− λφλ(x̂0) < 0. (C-18)
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It is clear that if k(c) ≥ θ then the right-hand side of (C-17) is strictly positive and β∗(c) < x̂0(c).
On the other hand, if k(c) < θ then µ− x̂0 < 0 and from (C-18) we get

φ′(x̂0)

φ(x̂0)
>

λ

θµ

(
k(c)

k(c)− θ

)
. (C-19)

Now plugging (C-19) into the right-hand side of (C-17) we find H(x̂0; c)/φλ(x̂0) > 0 so that
again β∗(c) < x̂0(c).

C.2 Proof of Proposition 2.7

By monotonicity of g∗ we have

C∗t = c+ ν∗t = c+
[
g∗
(

inf
0≤s≤t

Xx
s

)
− c
]+
≥ g∗(Xx

t ) ∧ 1 = g∗(X
x
t ),

since 0 ≤ g∗ ≤ 1. Hence 1 follows.
To prove 2 fix ω ∈ Ω and suppose that for some t > 0 we have (C∗t (ω), Xx

t (ω)) ∈ C,
i.e. C∗t (ω) > g∗(X

x
t (ω)). We distinguish two cases. In the case that g∗ (inf0≤u≤tX

x
u(ω)) ≥ c,

we have g∗ (inf0≤u≤tX
x
u(ω)) = C∗t (ω) > g∗(X

x
t (ω)) and then by monotonicity of g∗ we have

inf0≤u≤tX
x
u(ω) < Xx

t (ω). By continuity of t 7→ Xx
t (ω) we deduce that r 7→ inf0≤u≤rX

x
u(ω) is

constant in the interval r ∈ [t, t+ε(ω)) for some ε(ω) > 0. In the case that g∗ (inf0≤u≤tX
x
u(ω)) <

c, we have c = C∗t (ω) > g∗(X
x
t (ω)) and then again by monotonicity and continuity of g∗,

and continuity of Xx
t (ω), there exists ε(ω) > 0 such that c > g∗

(
inf0≤u≤t+ε(ω)X

x
u(ω)

)
and so

ν∗r (ω) = 0 for all r ∈ [0, t+ ε(ω)).
Summarising, we have shown that if (C∗t (ω), Xx

t (ω)) ∈ C then ν∗ is constant in a right
(stochastic) neighbourhood of t, establishing the second part.
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