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Abstract

We present new, and mostly sharp, bounds on the maximum length of certain generalizations
of Davenport-Schinzel sequences. Among the results are sharp bounds on order-s double DS
sequences, for all s, sharp bounds on sequences avoiding catenated permutations (aka formation
free sequences), and new lower bounds on sequences avoiding zig-zagging patterns.

1 Introduction

A generalized Davenport-Schinzel (DS) sequence is one over a finite alphabet, say rns “ t1, . . . , nu,
none of whose subsequences are isomorphic to a fixed forbidden sequence σ or a set of such sequences.
(A sparsity criterion is also included in order to prohibit degenerate infinite sequences such as
aaaaa ¨ ¨ ¨ .) When σ is the alternating sequence abab ¨ ¨ ¨ with length s` 2 this definition reverts to
that of standard order-s DS sequences. Whereas standard DS sequences have countless applications
in discrete and computational geometry, generalized DS sequences have found fewer applications [29,
24, 6, 20, 17, 3]. Whereas bounding the length of DS sequences is now essentially a closed problem [2,
16, 22], the most basic questions about generalized DS sequences are open, or have received only
partial answers.

We are mainly interested in answering two questions about forbidden sequences. A purely
quantitative question is to determine the maximum length Expσ, nq of a σ-free sequence over an
n-letter alphabet, for specific σ or large classes of σ. An equally interesting question, particularly
when Expσ, nq is superlinear in n, is to characterize the structure of σ-free sequences. There are
infinitely many forbidden sequences one could study, but some classes of subsequences are more
interesting than others, either because of their applications, or their intrinsic structure, or for
historical reasons. In this report we focus on forbidden sequences that generalize, in various ways,
the idea of an alternating sequence. In order to properly explain our results, in Section 1.4, we
need to introduce some notation and terminology and to review the history of DS sequences and
their generalizations, in Sections 1.1–1.3. For the moment we can take a high-level tour of the
results. Following convention, let λspnq “ Expabab ¨ ¨ ¨ , nq be the extremal function for order-s DS
sequences, where the alternating pattern has length s` 2.

˚This work is supported by NSF CAREER grant CCF-0746673, NSF grants CCF-1217338 and CNS-1318294, and
a grant from the US-Israel Binational Science Foundation.
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Double DS sequences. The most modest way to generalize an alternating sequence abab ¨ ¨ ¨ is
simply to double each letter, transforming it to abbaabb ¨ ¨ ¨ .1 Double DS sequences were the first
generalized DS sequences to be studied [5, 1, 14]. Let λdbl

s be the extremal function of order-s
double DS sequences. Davenport and Schinzel [5] noted that λdbl

1 pnq is linear (see [13, p. 13]) and
Adamec, Klazar, and Valtr [1] proved that λdbl

2 pnq is also linear, matching λ1 and λ2 up to constant
factors. (The forbidden sequences here are abba and abbaab.) Klazar and Valtr [14] claimed without
proof that λdbl

3 pnq “ Θpnαpnqq, which would match λ3 asymptotically [9]. However, this claim was
later retracted [13]. Here αpnq is the inverse-Ackermann function. We prove that λdbl

3 pnq is, in fact,
Θpnαpnqq, and more generally, that λdbl

s and λs are asymptotically equivalent for every order s.

Perm-free Sequences. Take any s ` 1 permutations over ta, bu. Regardless of one’s choice,
the concatenation of these permutations necessarily contains an alternating subsequence of length
s`2: the first permutation contributes two symbols and every subsequent permutation at least one.
Define Permr,s`1 to be the set of all sequences obtained by concatenating s`1 permutations over an
r-letter alphabet, and let Λr,s be the extremal function of Permr,s`1-free sequences.2 The argument
above shows that order-s DS sequences are Perm2,s`1-free, which implies that λspnq ď Λ2,spnq.
Klazar [10] introduced Permr,s`1-free sequences as a “universal” method for finding upper bounds
on Expσ, nq. If there exist r, s (and there always do) such that σ is contained in every member of
Permr,s`1, then Expσ, nq “ OpΛr,spnqq.

It is straightforward to show that λspnq and Λ2,spnq are asymptotically equivalent. A natural
hypothesis, given [16, 22], is that λs and Λr,s are asymptotically equivalent, for all r. We prove
that this hypothesis is false, which is quite surprising. One upshot of [2, 16, 22] is that when
s ě 7 is odd, λspnq and λs´1pnq are essentially indistinguishable, and that λ5pnq and λ4pnq are
asymptotically distinguishable, but very similar. In contrast, we prove that, in general, Λr,spnq
behaves very differently at odd and even s. The extremal functions λs and Λr,s are asymptotically
equivalent only when s ď 3, or s ě 4 is even, or r “ 2.

Just as DS sequences can be generalized to double DS sequences, Permr,s`1 can be transformed
into a set Permdbl

r,s`1 by “doubling” it. Let Λdbl
r,spnq be the extremal function of Permdbl

r,s`1-free
sequences. The function Λdbl

r,s was studied in a different, but essentially equivalent form by Cibulka
and Kynčl [3]. We prove that Λdbl

r,s is asymptotically equivalent to Λr,s for all r, s. This fact is not
surprising, but what is surprising is how many new techniques are needed to prove it when s “ 3.

Zig-zagging Patterns. One way to view the alternating sequence abab ¨ ¨ ¨ with length s ` 2
is as a zig-zagging pattern with s ` 1 zigs and zags. Generalized to larger alphabets, we obtain
the N -shaped sequences, of the form ab ¨ ¨ ¨ zy ¨ ¨ ¨ ab ¨ ¨ ¨ z, when s “ 2, the M -shaped sequences
ab ¨ ¨ ¨ zy ¨ ¨ ¨ ab ¨ ¨ ¨ zy ¨ ¨ ¨ a, when s “ 3, the NN -shaped sequences ab ¨ ¨ ¨ zy ¨ ¨ ¨ ab ¨ ¨ ¨ zb ¨ ¨ ¨ ab ¨ ¨ ¨ z,
when s “ 4, and so on. Klazar and Valtr [14] (see also [20]) proved that the extremal function of
each N -shaped forbidden sequence is linear, matching λ2pnq. See Valtr [29] for an application of
N -shaped sequences to bounding the size of geometric graphs and Pettie [20] for an application of
M -shaped sequences to bounding the complexity of the union of fat triangles.

Given [14, 20], one is tempted to guess that the extremal function for a zig-zagging forbidden
sequence is, if not asymptotically equivalent to the corresponding order-s DS sequence, at least

1It is straightforward to show that repeating letters more than twice, or repeating the first and last at all, can
affect the extremal function by at most a constant factor. See [1].

2These were called pr, s` 1q-formation-free sequences by Nivasch [16].
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close to it. We give lower bounds showing that for each t, there is an M -shaped forbidden sequence
with extremal function Ωpnαtpnqq and an NN -shaped forbidden sequence with extremal function
Ωpn ¨2p1`op1qqα

tpnq{t!q. Put a different way, in terms of their extremal functions M -shaped sequences
may be similar to ababa but NN -shaped sequences bear no resemblance to ababab.

Our results on zig-zagging patterns are the least conclusive, and therefore offer the most oppor-
tunities for future research. They are based on a general, parameterized method for constructing
non-linear sequences.

1.1 Sequence Notation and Terminology

Let |σ| be the length of a sequence σ “ pσiq1ďiď|σ| and let }σ} be the size of its alphabet Σpσq “ tσiu.
Two equal length sequences are isomorphic if they are the same up to a renaming of their alphabets.
We say σ is a subsequence of σ1 if σ can be obtained by deleting symbols from σ1. The predicate
σ ă σ1 asserts that σ is isomorphic to a subsequence of σ1. If σ ć σ1 we say σ1 is σ-free. If P is a
set of sequences, σ ă P holds if σ ă σ1 for every σ1 P P and P ć σ holds if σ1 ć σ for every σ1 P P .
The assertion that σ appears in or occurs in or is contained in σ1 means σ ă σ1. The projection of
a sequence σ onto G Ď Σpσq is obtained by deleting all non-G symbols from σ. A sequence σ is
k-sparse if whenever σi “ σj and i ‰ j, then |i´ j| ě k. A block is a sequence of distinct symbols.
If σ is understood to be partitioned into a sequence of blocks, JσK is the number of blocks. The
predicate JσK “ m asserts that σ can be partitioned into at most m blocks. The extremal functions
for generalized Davenport-Schinzel sequences are defined to be

Expσ, n,mq “ maxt|S| : σ ć S, }S} “ n, and JSK ď mu

Expσ, nq “ maxt|S| : σ ć S, }S} “ n, and S is }σ}-sparseu

where σ may be a single sequence or a set of sequences. The conditions “JSK ď m” and “S is }σ}-
sparse” guarantee that the extremal functions are finite. Note that Expσ, n,mq has no sparseness
criterion. The extremal functions for order-s DS sequences are defined to be

λspnq “ Exp

length s` 2
hkkikkj

abab ¨ ¨ ¨ , nq and λspn,mq “ Exp

length s` 2
hkkikkj

abab ¨ ¨ ¨ , n,mq.

Since }abab ¨ ¨ ¨ } “ 2, the sparseness criterion forbids only immediate repetitions.

1.2 Davenport, Schinzel, Ackermann, Tarjan

Davenport and Schinzel [4] observed that λ1pnq “ n and λ2pnq “ 2n ´ 1. It took several decades
for all the other orders to be understood. The following theorem synthesizes results of Hart and
Sharir [9], Agarwal, Sharir, and Shor [2], Klazar [12], Nivasch [16], and Pettie [22].

Theorem 1.1. Let λspnq be the maximum length of a repetition-free sequence over an n-letter

3



alphabet avoiding subsequences isomorphic to abab ¨ ¨ ¨ (length s` 2). Then λs satisfies:

λspnq “
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n s “ 1

2n´ 1 s “ 2

2nαpnq `Opnq s “ 3

Θpn2αpnqq s “ 4

Θpnαpnq2αpnqq s “ 5

n ¨ 2α
tpnq{t!`Opαt´1pnqq s ě 6, t “ t s´2

2 u.

Here αpnq is the functional inverse of Ackermann’s function discovered by Tarjan [28], defined
as follows.

a1,j “ 2j j ě 1

ai,1 “ 2 i ě 2

ai,j “ w ¨ ai´1,w i, j ě 2

where w “ ai,j´1

One may check that in the table pai,jq, the first column is constant and the second column merely
exponential: ai,1 “ 2 and ai,2 “ 2i. Ackermann-type growth only appears at the third column,
motivating the following definition of the inverse functions.

αpn,mq “ minti | ai,j ě m, where j “ maxtrn{ms, 3uu

αpnq “ αpn, nq

There are numerous variants of Ackermann’s function in the literature, all of which are equivalent
inasmuch as their inverses differ by at most a constant. Observe that Theorem 1.1 is robust to
perturbations of αpnq by Op1q, so it does not depend on any particular definition of Ackermann’s
function or its inverse.3

1.3 Generalizations of DS Sequences

Certain classes of forbidden sequences have received significant attention. We review three systems
for generalizing (standard) DS sequences, then mention some miscellaneous results in the area.

Double DS Sequences. Let dblpσq be obtained from σ by doubling each letter except for the
first and last, for example, dblpabcabcq “ abbccaabbc. The extremal functions for order-s double
DS sequences are λdbl

s pnq “ Expdblpabab ¨ ¨ ¨ q, nq and λdbl
s pn,mq “ Expdblpabab ¨ ¨ ¨ q, n,mq, where the

alternating sequence has length s`2. It is known that λdbl
1 pnq and λdbl

2 pnq are linear, matching λ1 and
λ2 asymptotically. See Davenport and Schinzel [5], Adamec, Klazar, and Valtr [1], and Klazar [11,
13, p. 13]. Pettie [19, 20] proved that λdbl

3 pnq “ Opnα2pnqq and Exptabbaabba, abababu, nq “
Θpnαpnqq, and that for s ě 4, λdbl

s pnq matched what were the best upper bounds on λspnq at the
time [16], namely λdbl

s pnq ă n¨2α
tpnq{t!`Opαt´1pnqq, for even s, and λdbl

s pnq ă n¨2α
tpnqplogpαpnqq`Op1qq{t!,

for odd s.
3See Pettie [22, p. 4] for a discussion of this notion of “Ackermann-invariance.”
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Catenated Permutations. Recall that Permr,s`1 is defined to be the set of sequences obtained
by concatenating s ` 1 permutations over an r-letter alphabet. For example, abcd cbad badc P
Perm4,3. Let Λr,spnq “ ExpPermr,s`1, nq to be the extremal function for Permr,s`1-free sequences,
with Λr,spn,mq defined analogously.4 It is straightforward to show that if σ is contained in every
member of Permr,s`1 then

Expσ, n,mq ď Λr,s`1pn,mq and Expσ, nq “ OpΛr,s`1pnqq.

Nivasch [16] proved that any σ is contained in every member of Perm}σ},|σ|´}σ}`1. Very recently
Geneson, Prasad, and Tidor [8] showed that it suffices to consider a subset Binr,s`1 Ă Permr,s`1

consisting of binary patterns, where each of the s ` 1 permutations is either 12 ¨ ¨ ¨ pr ´ 1qr or
rpr ´ 1q ¨ ¨ ¨ 21. By repeated application of the Erdős-Szekeres theorem, they showed that every
member of Permr1,s`1 contains a member of Binr,s`1, where r1 “ pr ´ 1q2

s
` 1. Consequently, if σ

is contained in every member of Binr,s`1 then Expσ, nq “ OpΛr1,spnqq.
Nivasch [16], improving [10], gave the following upper bounds on Λr,s, for any r ě 2, s ě 1,

where t “ t s´2
2 u. The lower bounds follow from previous [9, 2] and subsequent [22] constructions

of order-s DS sequences.

Λr,spnq “
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Θpnq s ď 2

Θpnαpnqq s “ 3

Θpn2αpnqq s “ 4

Ω
`

nαpnq2αpnq
˘

and O
`

n2αpnqplogαpnq`Op1qq
˘

s “ 5

n ¨ 2α
tpnq{t!`Opαt´1pnqq even s ě 6

Ω
´

n ¨ 2α
tpnq{t!`Opαt´1pnqq

¯

and O
´

n ¨ 2α
tpnqplogαpnq`Op1qq{t!

¯

odd s ě 7

Note that Λr,s matches the behavior of λs when s ď 3 or s is even.
Cibulka and Kynčl [3] studied a problem on 0-1 matrices that is essentially equivalent to the

following generalization of Perm-free sequences. Define Permdbl
r,s`1 to be the set of all sequences

over rrs “ t1, . . . , ru that can be written σ1 . . . σs`1, where σ1 and σs`1 are permutations of rrs and
σ2, . . . , σs are sequences containing two copies of each symbol in rrs. Define Λdbl

r,spnq and Λdbl
r,spn,mq

to be the extremal functions of Permdbl
r,s`1-free sequences. Cibulka and Kynčl only considered

Λdbl
r,spn,mq. For consistency we state the bounds on Λdbl

r,spnq they would have obtained using the

4The “s` 1” here is chosen to highlight the parallels with order-s DS sequences. Recall that every σ P Perm2,s`1

contains an alternating sequence abab ¨ ¨ ¨ with length s` 2, hence λspnq ď Λ2,spnq.
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available reductions from r-sparse to blocked sequences [16].5 For any r ě 2, s ě 1, and t “ t s´2
2 u,

Λdbl
r,spnq “
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Θpnq s “ 1

Ωpnq and Opnαpnqq s “ 2

Ωpnαpnqq and Opnα2pnqq s “ 3

Ωpn2αpnqq and Opnα2pnq2αpnqq s “ 4

Ω
`

nαpnq2αpnq
˘

and O
`

n2αpnqplogαpnq`Op1qq
˘

s “ 5

n ¨ 2α
tpnq{t!`Opαt´1pnqq even s ě 6

Ω
´

n ¨ 2α
tpnq{t!`Opαt´1pnqq

¯

and O
´

n ¨ 2α
tpnqplogαpnq`Op1qq{t!

¯

odd s ě 7

The definition of Permdbl
r,s`1 may at first seem unnatural. Surely dblpPermr,s`1q “ tdblpσq |σ P

Permr,s`1u would be a more useful way to “double” the set Permr,s`1. For example, it is known
that abcacbc ă Perm4,4, and therefore that dblpabcacbcq ă dblpPerm4,4q, but we cannot immediately
conclude, as we would like, that Expdblpabcacbcq, nq ď Λdbl

4,3pnq. It turns out that the maximum
length of Permdbl

r,s`1-free sequences and dblpPermr,s`1q-free sequences are the same asymptotically.
The proof of Lemma 1.2 appears in the appendix.

Lemma 1.2. The following bounds hold for any r ě 2, s ě 1.

ExpdblpPermr,s`1q, n,mq ď r ¨ Λdbl
r,spn,mq ` 2rn

ExpdblpPermr,s`1q, nq “ OpΛdbl
r,spnqq.

Zig-zagging Patterns. Klazar and Valtr [14] introduced the N -shaped zig-zagging patterns
tNku, where

Nk “ 1 2 . . . pk ` 1q k ... 1 2 . . . pk ` 1q.

Note that Nk-free sequences generalize order-2 DS sequences since N1 “ abab. (The vertical
placement of the symbols in Nk carries no meaning. It is only intended to improve readability.) It
was shown [14, 20] that ExpdblpNkq, nq “ Opnq, which matches λ2pnq asymptotically. Pettie [20]
proved that ExptMk, abababu, nq “ Θpnαpnqq, matching λ3pnq, where Mk is the kth M -shaped
sequence,

Mk “ 1 2 . . . pk ` 1q k ... 1 2 . . . pk ` 1q k ... 1.

See [29, 24, 6, 20] for applications of N - and M -shaped sequences.
A different way to view even-length alternating patterns abab ¨ ¨ ¨ with length s ` 2 is as a

sequence of ps ` 2q{2 zigs, without corresponding zags. When generalized to an r-letter alpha-
bet we get the sequence p12 ¨ ¨ ¨ rqps`2q{2, which is contained in every member of Binr,s`1 since
at least r s`1

2 s of the constituent permutations must be identical. It follows from [8, 2, 16] that

Expp1 ¨ ¨ ¨ rqps`2q{2, nq “ ΘpΛr1,spnqq “ n ¨ 2p1`op1qqα
tpnq{t!, where r1 “ pr ´ 1q2

s
` 1 and t “ t s´2

2 u.

5The only notable case here is s “ 4. Cibulka and Kynčl proved that Λdbl
r,1pn,mq “ Opn`mq, Λdbl

r,2pn,mq “ Oppn`

mqαpn,mqq and Λdbl
r,4pn,mq “ Oppn `mqαpn,mq2αpn,mqq, which imply, by [16, Lem. 5.7], that Λdbl

r,2pnq “ Opnαpnqq

and Λdbl
r,4pnq “ Opnα2

pnq2αpnqq.
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Other Forbidden Patterns. Much of the research on generalized DS sequences [1, 14, 13, 20,
21, 19, 18] has focussed on delineating linear and non-linear forbidden sequences. A σ is linear if
Expσ, nq “ Opnq. It is known that ababa and abcacbc are the only 2-sparse minimally non-linear
sequences over three letters [14, 19, 20]. There are only a few varieties of sequences known to be
linear. We have already seen that doubled N -shaped sequences (dblpNkq) are in this category.
Pettie [20, 18] proved that abcbbccac is linear, and showed that if π1, π2 are two permutations on
the same alphabet, then π1 dblpπ2q is linear. For example, Expabcde aacceebbd, nq “ Opnq. More
linear sequences can be generated via Klazar and Valtr’s [14] splicing operation. If σ “ σ1aaσ2 and
σ1 are linear, where Σpσq X Σpσ1q “ H, then σ1aσ

1aσ2 is also linear.
Other research has focussed on identifying cofinal sets of forbidden sequences, with respect to

the total order on extremal functions.6 Klazar’s general upper bounds [10] imply that standard DS
sequences tpabqku are cofinal. Pettie [19], answering a question of Klazar [13], proved that the set of
ababa-free forbidden sequences is also cofinal. This fact is witnessed by the two-sided comb-shaped
sequences tDku, which generalize D1 “ abacacbc. Here Dk is defined to be

Dk “ 1
2

1
3

1
4
. . .

1

pk ` 2q

1

pk ` 2q

2

pk ` 2q

3

pk ` 2q

4

pk ` 2q
. . . pk ` 1q

pk ` 2q.

1.4 New Results

In prior work [22] we showed that λs behaves very similarly at the odd and even orders. In this
paper we prove, quite unexpectedly, that Λr,s matches λs only when s ď 3, or s ě 4 is even, or
r “ 2. When s ě 5 is odd and r ě 3, Λr,s and λs diverge. Moreover, we prove that λs and λdbl

s are
essentially equivalent, and that Λr,s and Λdbl

r,s are essentially equivalent.

Theorem 1.3. (Omnibus Bounds) For all s ě 1 and r “ 2, λs, λ
dbl
s , Λr,s, and Λdbl

r,s are asymptoti-
cally equivalent, namely,

λspnq, λ
dbl
s pnq,Λ2,spnq,Λ

dbl
2,spnq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

Θpnq s ď 2

Θpnαpnqq s “ 3

Θpn2αpnqq s “ 4

Θpnαpnq2αpnqq s “ 5

n ¨ 2α
tpnq{t!`Opαt´1pnqq s ě 6, where t “ t s´2

2 u.

However, the behavior of Λr,s and Λdbl
r,s changes when r ě 3. In particular,

Λr,spnq,Λ
dbl
r,spnq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

Θpnq s ď 2

Θpnαpnqq s “ 3

Θpn2αpnqq s “ 4

n ¨ 2α
tpnqplogαpnq`Op1qq{t! odd s ě 5

n ¨ 2α
tpnq{t!`Opαt´1pnqq even s ě 6.

6A set A is cofinal if, for any σ, there is a σ1 P A such that Expσ, nq “ opExpσ1, nqq.
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The new parts of Theorem 1.3 not covered by previous work [9, 2, 16, 3, 22] are

(i) upper bounds on λdbl
s , for s ě 4, which also cover Λdbl

2,s,

(ii) lower bounds on Λr,s for r ě 3 and odd s ě 5,

(iii) a linear upper bound on Λdbl
r,2,

(iv) an Opn2αpnqq upper bound on Λdbl
r,4, and

(v) an Opnαpnqq upper bound on Λdbl
r,3, which also covers λdbl

3 .

For task (i) we generalize (and simplify) the recent analysis of [22] to work for double DS sequences.
This analysis only achieves tight bounds for s ě 4. For task (ii) we give a construction of sequences
that are Perm3,s`1-free (but necessarily not Perm2,s`1-free) with length n ¨ 2α

tpnqplogαpnq`Op1qq{t!.
Task (iii) requires no proof. It follows from the linearity of dblpNkq-free sequences. For task (iv)
we give a single analysis of Λdbl

r,s that is tight for all r ě 3, s ě 4, but not s “ 3. Task (v) is far and
away the most difficult to prove. It requires the development of techniques new to the analysis of
generalized DS sequences.

Zig-zagging Patterns. Recall that the N - and M -shaped sequences tNk,Mku generalize abab “
N1 and ababa “M1. Define Zk to be the corresponding generalization of ababab “ Z1, that is,

Zk “ 1 2 . . . pk ` 1q k ... 1 2 . . . pk ` 1q k ... 1 2 . . . pk ` 1q.

We give a flexible new way to construct (and succinctly encode) nonlinear sequences that subsumes
nearly all prior constructions [9, 2, 15, 16, 21, 19, 22]. Using the new constructions we are able
to show that for any t, there exists a k such that ExpMk, nq “ Ωpnαtpnqq and an l such that
ExpZl, nq “ Ωpn ¨2p1`op1qqα

tpnq{t!q. The bounds on Mk-free sequences are perhaps not too surprising,
but they demonstrate that the extremal function for a set of forbidden sequences can be different
than any member. (Recall that ExptMk, abababu, nq “ Θpnαpnqq for any k [20].) The new bounds on
Zl show definitively that, in general, zig-zagging sequences are not closely tied to the corresponding
DS sequences. In fact, the set tZlu is cofinal among all forbidden sequences, the other known cofinal
sets being tpabqku and two-sided combs tDku. Our new sequence constructions also let us show
that the one-sided combs tCku behave differently than C1 “ abcacbc, where

Ck “ 1 2 3
. . .

pk ` 2q

1

pk ` 2q

2

pk ` 2q

3

pk ` 2q
. . . pk ` 1q

pk ` 2q.

We prove ExpCk, nq “ Ωpnαkpnqq.

1.5 Organization

In Section 2 we present sharp lower bounds on Permr,s`1-free sequences. In Section 3 we review a
number of standard sequence transformations and review the linear upper bounds on λs, λ

dbl
s ,Λr,s,

and Λdbl
r,s when s P t1, 2u. In Section 4 we establish sharp upper bounds on Λdbl

r,s-free sequences,
for all s ě 4. Section 5 reviews the derivation tree structure introduced in [22], which is used in
Sections 6 and 7. In Section 6 we present sharp upper bounds on Λdbl

r,3 (and λdbl
3 ) and in Section 7

we give sharp upper bounds on λdbl
s for all s ě 4. Section 8 is devoted to a new, generalized

construction of nonlinear sequences. We prove that, under appropriate parameterization, they are
Mk-free, Zk-free, and Ck-free. Some open problems are discussed in Section 9.
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2 Lower Bounds on Perm-Free Sequences

2.1 Composition and Shuffling

We consider sequences made up of blocks, each of which is designated live or dead. To distinguish
the two we use parentheses to indicate live blocks and angular brackets for dead blocks. The number
of live blocks in T is LT M and the number of both types is JT K. Our sequences are constructed
through composition and two types of shuffling operations. These operations were implicit in all
constructions since Hart and Sharir [9] but were usually presented in an ad hoc manner.

Composition A sequence T over the alphabet t1, . . . , }T }u is in canonical form if symbols are
ordered according to their first appearance in T . All sequences encountered in our construction are
assumed to be in canonical form. To substitute T for a block B “ pa1, . . . , a}T }q means to replace B
with a copy of T pBq under the alphabet mapping k ÞÑ ak. If Tmid is a sequence with }Tmid} “ j and
Ttop a sequence in which live blocks have length j, Tsub “ Ttop ˝Tmid is obtained by substituting for
each live block B in Ttop a copy TmidpBq. The live/dead status of a block in Tsub is inherited from
its status in Ttop or Tmid, hence LTsub M “ LTtop M ¨ LTmid M and JTsubK “ JTtopK` LTtop MpJTmidK´ 1q.
If all symbols appear in µtop live blocks and νtop dead blocks in Ttop, and µmid live blocks and νmid

dead blocks in Tmid, then the corresponding multiplicities in Tsub are µtop ¨µmid and νtop`µtop ¨νmid.

Shuffling Let Tbot “ pL1q 〈D1〉 pL2q 〈D2〉 ¨ ¨ ¨ pLlq 〈Dl〉 be a sequence with l live blocks L1, . . . , Ll
and Tsub “ pL11q 〈D11〉 pL12q 〈D12〉 ¨ ¨ ¨

`

L1l1
˘ 〈

D1l1
〉

be a sequence whose live blocks L11, . . . , L
1
l1 have

length precisely l “ LTbot M. The Ds here represents zero or more dead blocks appearing between
live blocks. The postshuffle Tsh “ Tsub 5 Tbot is obtained by first forming the concatenation
T ˚bot of l1 copies of Tbot, each over an alphabet disjoint from the other copies. A copy of Tsub

is shuffled into T ˚bot as follows. Let L1q “ pa1a2 ¨ ¨ ¨ alq be the qth live block of Tsub and T
pqq
bot “

´

L
pqq
1

¯ 〈
D
pqq
1

〉
¨ ¨ ¨

´

L
pqq
l

¯ 〈
D
pqq
l

〉
be the qth copy of Tbot in T ˚bot. We substitute the following for

T
pqq
bot, for all q, yielding Tsh.

´

L
pqq
1 a1

¯ 〈
D
pqq
1

〉
¨ ¨ ¨

´

L
pqq
l al

¯ 〈
D
pqq
l D1q

〉
In other words, we insert ap at the end of the pth live block in T

pqq
bot and insert all the dead blocks

D1q following L1q in Tsub immediately after T
pqq
bot. See Figure 1. The preshuffle Tsh “ Tsub 4 Tbot is

formed in exactly the same way except that we insert ap at the beginning of the block, that is, we

substitute for T
pqq
bot the sequence

´

a1L
pqq
1

¯ 〈
D
pqq
1

〉
¨ ¨ ¨

´

alL
pqq
l

¯ 〈
D
pqq
l D1q

〉
. In this section we consider

only postshuffling whereas both pre- and postshuffling are used in Section 8.

2.2 Construction of the Sequences

Our Permr,s`1-free sequences are constructed inductively, beginning with Permr,4-free sequences
tTρpi, jquiě1,jě0,ρě2. Each Tρpi, jq consists of a mixture of live and dead blocks. The parameters i
and j control the multiplicity of symbols and the length of live blocks, respectively. The length of
dead blocks are guaranteed to be a multiple of ρ. This construction is essentially the same as [19],
and, ignoring the role of ρ, essentially the same as [9, 15, 30, 21].

9



Figure 1: Here L1q “ pa1 ¨ ¨ ¨ alq is the qth live block of Tsub and T
pqq
mid is the qth copy of Tmid in T ˚mid.

The sequence Tsub 5 Tmid is obtained by shuffling L1q into the live blocks of T
pqq
mid and inserting D1q

after T
pqq
mid.

V pjq “ p1 ¨ ¨ ¨ jq 〈j ¨ ¨ ¨ 1〉 one live block, one dead

Tρp1, jq “ V pjq

Tρpi, 0q “ p q
ρ ρ ě 2 empty live blocks, for i ě 2

Tρpi, jq “ Tsub 5 Tbot “ pTtop ˝Tmidq5 Tbot

where Tbot “ Tρpi, j ´ 1q

Tmid “ V pLTbot Mq
Ttop “ Tρpi´ 1, LTbot Mq

Lemma 2.1 identifies some simple properties of Tρpi, jq that let us analyze its length and for-
bidden substructures.

Lemma 2.1. Let T “ Tρpi, jq for some ρ ě 2.

1. Live blocks of T consist solely of first occurrences and all first occurrences appear in live
blocks.

2. Live blocks of T have length j.

3. All symbols appear i` 1 times in T .

4. When i ě 2, the number of live blocks and the length of dead blocks are both multiples of ρ.

5. As a consequence of Parts 1–3, |T | “ pi` 1q}T } “ pi` 1qjLT M.

Proof. All the claims trivially hold in the base cases, when i “ 1 or j “ 0. Assume the claim holds
inductively for pairs lexicographically smaller than pi, jq. Note that Part 1 holds for Tmid “ V p¨q.
If it holds for Ttop and Tmid it clearly holds for Tsub, and if it holds for Tbot as well then it also
holds for Tρpi, jq “ Tsub 5 Tbot.

Part 2 follows since, by the inductive hypothesis, live blocks in Tbot “ Tρpi, j ´ 1q have length
j´ 1 and exactly one symbol gets shuffled into each live block when forming Tρpi, jq “ Tsub 5Tbot.

10



Part 3 follows since the multiplicity of symbols in Ttop is i, by the induction hypothesis, and the
multiplicity in V p¨q is 2, so the multiplicity of symbols in Tsub is i` 1. The multiplicity of symbols
in Tbot is already i ` 1, by the induction hypothesis, so all symbols occur in T with multiplicity
i` 1.

Turning at last to Part 4, the claim is vacuous when i “ 1 and clearly holds when i ě 2, j “ 0.
In general, if LTbot M “ LTρpi, j ´ 1q M is a multiple of ρ then LTρpi, jq M is also a multiple of ρ.
All dead blocks in Tρpi, jq are either (i) inherited from Tbot, or (ii) inherited from Ttop, or (iii)
are first introduced in Tsub as the second block in a copy of Tmid “ V pLTbot Mq. The inductive
hypothesis implies that the length of category (i) blocks are multiples of ρ. When i ě 3 the
inductive hypothesis also implies the length of category (ii) blocks are multiples of ρ. When i “ 2
we have Ttop “ Tρp1, LTbot Mq “ V pLTbot Mq. By virtue of LTbot M being a multiple of ρ, the length
of the lone dead block in Ttop is a multiple of ρ. Category (iii) blocks satisfy the property for the
same reason, since Tmid “ V pLTbot Mq and LTbot M is a multiple of ρ.

Lemma 2.2. Tρpi, jq is an order-3 DS sequence, and hence Permr,4-free for all r ě 2.

Proof. The claim clearly holds in all base cases, so we can assume T “ Tρpi, jq was formed from
Ttop, Tmid, and Tbot. Any occurrence of ababa could not have arisen from a shuffling event. If
a P ΣpTtopq and b P ΣpT ˚botq, the projection of T onto ta, bu is |b˚ab˚| a˚, where the bars mark
the boundary of b’s copy of Tbot. (The live block of Tsub shuffled into b’s Tbot contains the first
occurrence of a. All other as in Tsub are inserted after this copy of Tbot.) We could also not
create an occurrence of ababa during a composition event, where a and b shared a live block in
Ttop. The projections of Ttop and Tsub onto ta, bu would be, respectively, of the form pabqa˚b˚ and
pabq 〈ba〉 a˚b˚, the latter being ababa-free.

The Uspi, jq sequences defined below have the property that all blocks are live and have length
exactly j and all symbols occur µs,i times, where the µ-values are defined below. This contrasts
with Tρpi, jq, where there is a mixture of live and dead blocks having non-uniform lengths. We
define U3pi, jq to be identical to Tjpi, jq as a sequence, but we interpret it as a sequence of live
blocks of length exactly j. This is possible since, in Tjpi, jq, the length of live blocks is j and the
length of all dead blocks a multiple of j. Since all blocks in Us are live we can use the identities
JUspi, jqK “ LUspi, jq M and |Uspi, jq| “ µs,i}Uspi, jq} “ jJUspi, jqK. Sequences essentially the same
as tUsu were used in [19] to prove lower bounds on ExpDk, nq, where tDku are the two-sided combs
defined in Section 1.3.

U2pi, jq “ p1 ¨ ¨ ¨ jq pj ¨ ¨ ¨ 1q two blocks, for all i

Uspi, 1q “ p1q
µs,i µs,i identical blocks, for i ě 1, s ě 3

Usp0, jq “ p1 ¨ ¨ ¨ jq one block, for s ě 3

U3pi, jq “ Tjpi, jq (reinterpreted) for i ě 1, where ρ “ j ě 2

Uspi, jq “ Usub 5 Ubot “ pUtop ˝Umidq5 Ubot

where Ubot “ Uspi, j ´ 1q

Umid “ Us´2pi, JUbotKq
Utop “ Uspi´ 1, }Umid}q
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The multiplicities tµs,iu are defined as follows.

µ2,i “ 2 for all i

µ3,i “ i` 1 for all i

µs,0 “ 1 for all s ě 4

µs,i “ µs,i´1µs´2,i for s ě 4 and i ě 1

Lemma 2.3. Let U “ Uspi, jq, where s ě 2, i ě 1, j ě 1.

1. All symbols appear in U with multiplicity precisely µs,i.

2. All blocks in U have length precisely j.

3. If a and b share a common block and a ă b according to the canonical ordering of U , then the
projection of U onto ta, bu has the form either a˚b˚pbaqb˚a˚ or a˚pabqa˚b˚. Moreover, unless
s “ 2, every pair of symbols appear in at most one common block.

Proof. Parts 1 and 2 hold in the base cases and follow easily by induction on s, i, and j. For Part 3,
if b precedes a in their common block then, in some shuffling event, a P ΣpUsubq was postshuffled
into b’s copy of Ubot and all other copies of a were placed before or after this copy of Ubot, hence
U ’s projection onto ta, bu is a˚b˚pbaqb˚a˚. If a precedes b in their common block then this must be
the first occurrence of b in U (otherwise b ă a in the canonical ordering). By the same reasoning
as above the projection of U onto ta, bu must be of the form a˚pabqa˚b˚.

In Lemma 2.4 we analyze the subsequences avoided by Us and in Lemma 2.6 we lower bound
the length of Us.

Lemma 2.4. When s “ 3 or s ě 2 is even, Us is an order-s DS sequence and hence Perm2,s`1-free.
When s ě 5 is odd and r ě 3, Us is Permr,s`1-free.

Proof. The claim is clearly true for s “ 2 and Lemma 2.2 takes care of s “ 3. Observe that ababab
can never be introduced by a shuffling event. If a P ΣpUsubq and b P ΣpU˚botq, only one copy of a can
appear between two bs; all others precede or follow b’s copy of Ubot in U˚bot. Thus any alternating
subsequence ab ¨ ¨ ¨ ab of length s` 2 ě 6 must be introduced in Usub “ Utop ˝Umid by composition.
The projection of Utop onto ta, bu is of the form a˚b˚pbaqb˚a˚. Since Umid “ Us´2p¨, ¨q has order
s ´ 2 and b precedes a in the canonical ordering of Umid, its longest alternating subsequence is
bab ¨ ¨ ¨ ab (length s´ 1), hence the longest alternating subsequence in Usub has length s` 1.

We now consider U “ Uspi, jq, where s ě 5 is odd. Recall that U is regarded as a sequence over
the alphabet t1, . . . , }U}u in canonical form. Generalizing our previous terminology, we will say U
is σ-free, where Σpσq “ t1, . . . , }σ}u, if U contains no subsequences order-isomorphic to σ, that is,
that are both isomorphic to σ and preserve the relative order of symbols in σ.7 Define Ps`1 to be

7For example, 5678 5678 contains several subsequences isomorphic to 2121, but none are order-isomorphic. It
contains many subsequences order-isomorphic to 1212 such as 6868. We should point out that the concepts of
canonical form and order-isomorphic were introduced by none other than Davenport and Schinzel [4, p. 691], who
noted that order-s DS sequences in canonical form are p3p12qs{2q-free, for even s, and p31p21qps´1q{2

q-free, for odd s.
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the set of σ P t1, 2, 3u˚ such that dblpσq contains a subsequence σ1σ2 ¨ ¨ ¨σs`1, where σ1 and σs`1

are permutations of t2, 3u and σ2, . . . , σs are permutations of t1, 2, 3u.8

We will prove that Uspi, jq (in canonical form) is Ps`1-free by induction, which implies that
Uspi, jq is Permr,s`1-free for all r ě 3. The claim holds at s “ 3 since all members of P4 contain
ababa as a subsequence, on the alphabet t2, 3u. For s ě 5, Ps`1 could not have arisen from a
shuffling event since every member of Ps`1 contains a sequence isomorphic to ababab. It also could
not have arisen from a composition even in which some strict subset of t1, 2, 3u appears in one block.
Whether this subset is t1, 2u or t2, 3u or t1, 3u, the 1s can only be involved in two permutations
whereas they must be involved in at least four, namely σ2, . . . , σs.

We can therefore assume that any Ps`1 sequence over the alphabet ta, b, cu arises from a com-
position event, where a, b, c share a common block B in Utop. (For reasons that will become clear
shortly, it is better to use symbols a, b, c rather than integers 1, 2, 3.) To obtain Usub we substitute
for B a copy UmidpBq of Umid “ Us´2p¨, ¨q. Without loss of generality a ă b ă c according to
the canonical ordering of Utop. According to Lemma 2.3(3) the projection of Utop onto ta, b, cu,
ignoring immediate repetitions, is either

(i) abcpcbaqcba, or

(ii) abpbcaqbca, or

(iii) abpbacqbac, or

(iv) apabcqabc.

That is, in cases (ii)–(iv) B contains the first c in Utop and in case (iv) B also contains the first b
in Utop. In case (i) c ă b ă a according to the canonical ordering of UmidpBq. In order for Usub to
contain a Ps`1 sequence we would need UmidpBq to contain

tabu

s´3
hkkkkkkkikkkkkkkj

tabcu ¨ ¨ ¨ tabcu tabu,

where the curly brackets indicate arbitrary permutations of the enclosed sequences. (The tabu
permutations on either end can be extended to permutations on tabcu by borrowing the cs adjacent
to B in Utop.) In cases (ii) and (iii), b ă a, c according to the canonical ordering of UmidpBq, so for
Usub to contain a Ps`1 sequence, UmidpBq must contain

tcu

s´2
hkkkkkkkikkkkkkkj

tabcu ¨ ¨ ¨ tabcu tacu.

Once again, the permutations on tcu and tacu on either end can be extended to tbcu and tabcu by
borrowing the bs on either side of B. In case (iv) we have a ă b ă c according to the canonical
ordering of UmidpBq, which, by the same reasoning, would need to contain

tbcu

s´2
hkkkkkkkikkkkkkkj

tabcu ¨ ¨ ¨ tabcu tbcu

None of cases (i)–(iv) is possible since Umid “ Us´2 is Ps´1-free, by the induction hypothesis.

8For example, 23 21 23 2 P P4 since doubling the first and second 3 and the first 1 yields a sequence of the desired
form.
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Remark 2.5. Notice that in the proof of Lemma 2.4, “Ps´1-freeness” is defined with respect to the
canonical ordering on ta, b, cu in Umid, which is identical to their ordering in B. Although a ă b ă c
with respect to Utop, identifying a, b, and c with 1,2, and 3 would be confusing as their canonical
ordering is typically different in Umid.

We have established that Us is Permr,s`1-free and now need to lower bound its length.

Lemma 2.6. Fix s and let t “ tps´ 2q{2u.

1. For even s, µs,i “ 2p
i`t´1
t q “ 2i

t{t!`Opit´1q.

2. For odd s, µs,i “
śi
l“0pi` 1´ lqp

l`t´1
t´1 q “ 2i

tplog iq{t!`Opitq.

Proof. Consider the even case first. When i “ 0 we have µs,0 “ 1 “ 2p
0`t´1
t q and when s “ 2, t “ 0

we have µ2,i “ 2p
i`0´1

0 q “ 2. The claim holds for all even s ě 4 since, by Pascal’s identity,

µs,i “ µs,i´1 ¨ µs´2,i “ 2p
pi´1q`t´1

t q`pi`pt´1q´1
t´1 q “ 2p

i`t´1
t q. Clearly 2p

i`t´1
t q ě 2i

t{t!.
For odd s the base case i “ 0 is trivial. When s “ 5, t “ 1 we have µ5,i “ µ3,iµ3,i´1 ¨ ¨ ¨µ3,0 “

pi ` 1q!, which can be expressed as
śi
l“0pi ` 1 ´ lqp

l`t´1
t´1 q since t “ 1 and

`

l`0
0

˘

“ 1 for all l. For
odd s ě 7 the bound follows by induction.

µs,i “ µs,i´1 ¨ µs´2,i

“

i´1
ź

l“0

ppi´ 1q ` 1´ lqp
l`t´1
t´1 q ¨

i
ź

l1“0

pi` 1´ l1qp
l1`t´2
t´2 q

“

i
ź

l2“0

pi` 1´ l2qp
l2`t´2
t´1 q ¨

i
ź

l1“0

pi` 1´ l1qp
l1`t´2
t´2 q {l2 def

“ l ` 1. When l2 “ 0, pi` 1qp
t´2
t´1q “ 1.}

“

i
ź

l“0

pi` 1´ lqp
l`t´2
t´1 q`p

l`t´2
t´2 q “

i
ź

l“0

pi` 1´ lqp
l`t´1
t´1 q

When s is odd, it is simpler to obtain asymptotic bounds on log2pµs,iq directly, without analyzing
the closed-form expression above. Assuming inductively that log2pµs´2,iq “ it´1plog iq{pt ´ 1q! `
Opit´2q, where the constant hidden in the second term depends on s´ 2, we have

log2pµs,iq “ log2pµs´2,iq ` log2pµs,i´1q “

i
ÿ

x“1

log2pµs´2,xq

“

i
ÿ

x“1

”xt´1 log x

pt´ 1q!
`Opxt´2q

ı

“
it log i

t!
`Opxt´1q.

Note that the sum is faithfully approximated by the integral
şi
0 x

t´1plog xq{pt´ 1q!`Opxt´2q dx “
itplog iq{t!`Opit´1q as the two differ by Opit´1q.

It is a tedious exercise to show that for n “ }Uspi, jq} and m “ JUspi, jqK, i “ αpn,mq ` Op1q
and i “ αpnq ` Op1q when j “ Op1q. (See [16, 19] for several examples of such calculations.)
Lemmas 2.2, 2.4, and 2.6 establish all the lower bounds of Theorem 1.3, with the exception of
λ5pnq “ Ωpnαpnq2αpnqq, which is proved in [22].
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Remark 2.7. It should be possible to improve the lower bounds on Λ3,s, for odd s ě 5, by
substituting Nivasch’s construction of order-3 DS sequences [16, §6] for Tjpi, jq in the definition of

U3pi, jq. Nivasch’s sequences are roughly twice as long as Tjpi, jq, which would lead to a 2p
i`Op1q

t q

factor improvement in µs,i, for odd s ě 5. The only technical issue is to deal with non-uniform
block lengths. In the [16] construction there is no straightforward way to force dead blocks to have
lengths that are multiples of some ρ. As a consequence, the block lengths in Uspi, jq would also be
non-uniform, but upper bounded by j.

3 Sequence Transformations and Decompositions

This section reviews some basic results and notation that is used throughout the article, sometimes
without direct reference.

3.1 Sparse Versus Blocked Sequences

An m-block sequence can easily be converted to an r-sparse one by removing up to r ´ 1 symbols
in each block, except the first. This shows, for example, that λspn,mq ď λspnq ` m ´ 1 and
Λdbl
r,spn,mq ď Λdbl

r,spnq ` pr ´ 1qpm ´ 1q. However, converting an r-sparse sequence into one with
Opnq blocks is, in general, not known to be possible without suffering some asymptotic loss. The
following lemma generalizes reductions of Sharir [23] and Pettie [22] to λdbl

s ,Λr,s, and Λdbl
r,s. In the

interest of completeness we include a proof in Appendix A.

Lemma 3.1. (Cf. Sharir [23], Füredi and Hajnal [7], and Pettie [22].) Define γs, γ
dbl
s , γr,s, γ

dbl
r,s :

N Ñ N to be non-decreasing functions bounding the leading factors of λspnq, λ
dbl
s pnq,Λr,spnq, and

Λdbl
r,spnq, e.g., Λdbl

r,s ď γdbl
r,s pnq ¨ n. The following bounds hold.

λspnq ď γs´2pnq ¨ λspn, 2nq λdbl
s pnq ď pγ

dbl
s´2pnq ` 4q ¨ λdbl

s pn, 2nq

λspnq ď γs´2pγspnqq ¨ λspn, 3nq λdbl
s pnq ď pγ

dbl
s´2pγ

dbl
s pnqq ` 4q ¨ λdbl

s pn, 3nq

Λr,spnq ď γr,s´2pnq ¨ Λr,spn, 2nq ` 2n Λdbl
r,spnq ď pγ

dbl
r,s´2pnq `Op1qq ¨ Λ

dbl
s pn, 2nqq

Λr,spnq ď γr,s´2pγr,spnqq ¨ Λr,spn, 3nq ` 2n Λdbl
r,spnq ď pγ

dbl
r,s´2pγ

dbl
r,s pnqq `Op1qq ¨ Λ

dbl
s pn, 3nqq,

where the Op1q term in the last two inequalities depends on r and s.

3.2 Reductions Between Perm-Free Sequences and DS Sequences

It is not immediate from the definitions that λspnq “ ΘpΛ2,spnqq and λdbl
s pnq “ ΘpΛdbl

2,spnqq. These
functions are, in fact, asymptotically equivalent. Refer to Appendix A for proof of Lemma 3.2.

Lemma 3.2. The extremal functions for order-s (double) Davenport-Schinzel sequences and Perm2,s`1-
free (Permdbl

2,s`1-free) sequences are equivalent up to constant factors. In particular,

λspnq ď Λ2,spnq ă 3 ¨ λspnq ` 2n
λspn,mq ď Λ2,spn,mq ă 2 ¨ λspn,mq ` n
λdbl
s pnq ď Λdbl

2,spnq ă 5 ¨ λdbl
s pnq ` 4n

λdbl
s pn,mq ď Λdbl

2,spn,mq ă 3 ¨ λdbl
s pn,mq ` 2n

Given these equivalences, we will only prove upper bounds on λdbl
s and not discuss Λdbl

2,s.
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3.3 Linearity at Orders 1 and 2

We bound the length of sequences inductively through the use of recurrences. The induction
bottoms out when s P t1, 2u, so we need to handle these two orders directly. Lemma 3.3 summarizes
known linear bounds on λs, λ

dbl
s ,Λr,s, and Λdbl

r,s when s ď 2. A proof of Lemma 3.3 appears in
Appendix A.

Lemma 3.3. At orders s “ 1 and s “ 2, the extremal functions λs, λ
dbl
s ,Λr,s, and Λdbl

r,s obey the
following.

λ1pnq “ n λ1pn,mq “ n`m´ 1
λ2pnq “ 2n´ 1 λ2pn,mq “ 2n`m´ 2 (Davenport-Schinzel [4])
λdbl

1 pnq “ 3n´ 2 λdbl
1 pn,mq “ 2n`m´ 2 (Dav.-Sch. [5],Klazar [13])

λdbl
2 pnq ă 8n λdbl

2 pn,mq ă 5n`m (Klazar [11], Füredi-Hajnal [7])
Λr,1pnq “ Λdbl

r,1pnq ă rn Λr,1pn,mq “ Λdbl
r,1pn,mq ă n` pr ´ 1qm (Klazar [10])

Λr,2pnq ă 2rn Λr,2pn,mq ă 2n` pr ´ 1qm (Klazar [10])
Λdbl
r,2pnq ă 6rrn Λdbl

r,2pn,mq ă 2 ¨ 6r´1pn`m{3q (Pettie [20], cf. [14])

The linear bound on Λdbl
r,2 is a consequence of bounds on dblpNr´1q-free sequences [14, 20],

though this connection was not noted earlier [3].

3.4 Sequence Decomposition

We adopt and extend the sequence decomposition notation from [22]. This style of decomposition
goes back to Hart and Sharir [9] and Agarwal, Sharir, and Shor [2], and has been used many times
since then [10, 16, 19, 3]. This notation is used liberally throughout Sections 4–7.

Let S be a sequence over an n “ }S} letter alphabet consisting of m “ JSK blocks. (It may be
that S avoids some forbidden sequences, but this has no bearing on the decomposition.) A partition
of S into m̂ intervals S1 ¨ ¨ ¨Sm̂ is called uniform if m1 “ ¨ ¨ ¨ “ mm̂´1 are equal powers of two and
mm̂ may be smaller, where mq “ JSqK is the number of blocks in the qth interval. A symbol is
global if it appears in multiple intervals and local otherwise. Let Š “ Š1 ¨ ¨ ¨ Šm̂ and Ŝ “ Ŝ1 ¨ ¨ ¨ Ŝm̂
be the projections of S onto local and global symbols, so |S| “ |Š| ` |Ŝ|. Define n̂ “ }Ŝ} to be the
size of the global alphabet and n̂q “ }Ŝq} and ňq “ }Šq} to be number of global and local symbols
in ΣpSqq, so n “ n̂`

ř

1ďqďm̂ ňq.

A global symbol a P ΣpŜqq is classified as first, last, or middle if no as appear before Sq, no
as appear after Sq, or as appear both before and after Sq.

9 Let Śq, S̀q, S̄q ă Ŝq be the projections
of Ŝq onto symbols classified as first, last, and middle in Ŝq; let ńq, ǹq, and n̄q be the sizes of the
alphabets ΣpŚqq,ΣpS̀qq, and ΣpS̄qq. Define Ś, S̀, and S̄ to be subsequences of first, last, and middle
occurrences, namely

Ś “ Ś1 Ś2 ¨ ¨ ¨ Śm̂´1

S̀ “ S̀2 ¨ ¨ ¨ S̀m̂´1 S̀m̂

S̄ “ S̄2 ¨ ¨ ¨ S̄m̂´1

Note that Ŝ1 “ Ś1 consists solely of first occurrences and Ŝm̂ “ S̀m̂ consists solely of last occurrences,
so S̄ is empty if m̂ “ 2. These notational conventions will be applied to sequences and other objects

9Note that if a P ΣpŜqq is classified as first, all of the possibly many occurrences of a in Sq are “first” occurrences.
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defined later. For example, the diacritical marks ,̌ ,̂ ,́ ,̀ and ¯ will be applied to objects pertaining
to local, global, first, last, and middle symbols, respectively. Moreover, whenever we define a new
subsequence of Sq, say S̃q, quantities and objects pertaining to S̃q will be indicated with the same
diacritical mark, such as ñq “ }S̃q}.

The global contracted sequence Ŝ1 “ B1 ¨ ¨ ¨Bm̂ is obtained by contracting each interval Ŝq to a
single block Bq consisting of some permutation of ΣpŜqq. Unless specified otherwise, the symbols
in Bq are ordered according to their first occurrence in Ŝq. It follows that Ŝ1 ă Ŝ, so Ŝ1 inherits
any forbidden sequences of Ŝ.

4 Upper Bounds on Permdbl

r,s-free Sequences

In this section we give recurrences for the extremal functions of Permr,s`1-free sequences and
Permdbl

r,s`1-free sequences. Lemmas 4.4 and 4.5 give closed-form upper bounds on the length of such
sequences in terms of Ackermann’s function. These bounds on Λr,s and Λdbl

r,s are sharp, except for
Λ2,s and Λdbl

2,s, when s ě 5 is odd, and Λdbl
r,3, for any r ě 2. These exceptions are addressed in

Sections 6 and 7.

4.1 A Recurrence for Λr,s

In reading the proofs of Recurrences 4.1 and 4.3 one should keep in mind that all extremal functions
are superadditive. For example,

Λr,spn1,m1q ` Λr,spn2,m2q ď Λr,spn1 ` n2,m1 `m2q

Recurrence 4.1. Define n and m to be the alphabet size and block count parameters. For any
m̂ ě 2, any block partition tmqu1ďqďm̂, and any alphabet partition tn̂u Y tňqu1ďqďm̂, Λr,s obeys the
following recurrences, for any fixed r ě 2, s ě 3.

When m̂ “ 2,

Λr,spn,mq ď
ÿ

qPt1,2u

Λr,spňq,mqq ` Λr,s´1p2n̂,mq

and when m̂ ą 2,

Λr,spn,mq ď
m̂
ÿ

q“1

Λr,spňq,mqq ` 2 ¨ Λr,s´1pn̂,mq ` Λr,s´2pΛr,spn̂, m̂q ´ 2n̂,mq.

Proof. We adopt the sequence decomposition notation from Section 3.4. The contribution of local
symbols is

ř

q |Šq| ď
ř

q Λr,spňq,mqq. As each symbol in Śq appears at least once after Sq, each Śq
is a Permr,s-free sequence, it follows that

m̂´1
ÿ

q“1

|Śq| ď
m̂´1
ÿ

q“1

Λr,s´1pńq,mqq ď Λr,s´1

˜

m̂´1
ÿ

q“1

ńq,
m̂´1
ÿ

q“1

mq

¸

“ Λr,s´1pn̂,m´mm̂q.
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A symmetric statement is true for each S̀q, hence the contribution of last occurrences is
ř

q |S̀q| ď
Λr,s´1pn̂,m ´ m1q. If m̂ “ 2 then we have accounted for all symbols, and by superadditivity
Λr,s´1pn̂,m1q ` Λr,s´1pn̂,m2q ď Λr,s´1p2n̂,mq.

If m̂ ą 2 then we must also count middle symbols. Each symbol in S̄q appears at least once
before S̄q and at least once afterward. This implies that S̄q is Permr,s´1-free, hence

ÿ

q

|S̄q| ď
ÿ

q

Λr,s´2pn̄q,mqq

ď Λr,s´2

˜

ÿ

q

n̄q,
ÿ

q

mq

¸

superadditivity

“ Λr,s´2p|Ŝ
1| ´ 2n̂,m´m1 ´mm̂q (1)

ă Λr,s´2pΛr,spn̂, m̂q ´ 2n̂,mq Ŝ1 is Permr,s`1-free

Equality (1) follows since
ř

q n̄q counts the number of middle occurrences of symbols in Ŝ1, that is,

the length of Ŝ1 less 2n̂ for first and last occurrences.

4.2 A Recurrence for Λdbl
r,s

Recall that Λdbl
r,spn,mq was defined to be the extremal function for Permdbl

r,s`1-free, m-block sequences
over an n-letter alphabet. Here Permdbl

r,s`1 is the set of sequences over the alphabet rrs “ t1, . . . , ru of
the form σ1 ¨ ¨ ¨σs`1, where σ1 and σs`1 contain one occurrence of each symbol in rrs and σ2, . . . , σs
contain exactly two occurrences of each symbol in rrs.

Remark 4.2. The definition of Λdbl
r,s has one annoying property. Suppose S is a sequence and S1 a

contracted version of it in which each occurrence of a symbol represents two or more occurrences in
S. We would like to say that if S is Permdbl

r,s`1-free then S1 is Permr,s`1-free, but this is not strictly
true. For example, suppose S1 contained the Perm2,4 sequence ab

ˇ

ˇ bpa
ˇ

ˇ bqa
ˇ

ˇ ab, where the bars
separate the four constituent permutations over ta, bu and the parentheses mark the boundaries of
one block B in S1. If we substitute aa and bb for all as and bs outside B, and substitute abab for
B, we find that S may only contain aabb bb pababq aa aabb, which contains no Permdbl

2,4 sequence.
On the other hand, if occurrences in S1 represent at least three occurrences in S, and symbols in
the blocks of S1 are sorted according to the 2nd occurrence in the corresponding subsequence of S,
then S1 is Permr,s`1 free if S is Permdbl

r,s`1-free.
We can easily “force” blocks in S1 to represent at least three corresponding occurrences in the

original sequence. Suppose we are given an initial Permdbl
r,s`1-free sequence S‹. Obtain S from S‹ by

retaining every other occurrence of each symbol, so S is also Permdbl
r,s`1-free and |S| ě |S‹|{2. When

bounding |S| inductively we may construct a contracted version S1 whose occurrences represent at
least two occurrences in S, and hence at least three occurrences in S‹. (One subtlety here is that S1

will be a subsequence of S‹, not necessarily S, since we order symbols in the blocks of S1 according
to their position in S‹.)

In Recurrence 4.3 (and Recurrences 6.1 and 7.4 later on) we use the inference rS is dblpσq-
frees Ñ rS1 is σ-frees, knowing that the bounds we obtain on the given extremal function may be
off by a factor of two.
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Recurrence 4.3. Define n and m to be the alphabet size and block count parameters. For any
m̂ ě 2, block partition tmqu1ďqďm̂, and alphabet partition tn̂uYtňqu1ďqďm̂, Λdbl

r,s obeys the following
recurrences, for any fixed r ě 2, s ě 3.

When m̂ “ 2,

Λdbl
r,spn,mq ď

ÿ

qPt1,2u

Λdbl
r,spňq,mqq ` Λdbl

r,s´1p2n̂,mq ` 2n̂

and when m̂ ą 2,

Λdbl
r,spn,mq ď

m̂
ÿ

q“1

Λdbl
r,spňq,mqq ` Λdbl

r,spn̂, m̂q ` 2 ¨ Λdbl
r,s´1pn̂,mq

` Λdbl
r,s´2pΛr,spn̂, m̂q ´ 2n̂,mq ` 2 ¨ Λr,spn̂, m̂q

Proof. We consider the case when m̂ ą 2 first. Let S be a Permdbl
r,s`1-free sequence. The contribution

of local symbols is
ř

q |Šq| ď
ř

q Λdbl
r,spňq,mqq. If a global symbol appears exactly once in some Ŝq

that occurrence is called a singleton. Let 9S be the subsequence of Ŝ consisting of singletons. Clearly
9S can be partitioned into m̂ blocks, hence | 9S| ď Λdbl

r,spn̂, m̂q. Remove all singleton occurrences from

Ŝ and let :S be what remains. Classify occurrences in :Sq as first, middle, and last according to
whether they do not occur before, do not occur after, or occur both before and after interval q in
Ŝ (not in :S.) Let Ś, S̀, S̄ ă :S be the subsequences of first, last, and middle occurrences. Obtain
Ś´q (and S̀´q ) from Śq (and S̀q) by removing the last (and first) occurrence of each symbol, and
obtain S̄´q from S̄q by removing both the first and last occurrence of each symbol. It follows that

both Ś´q and S̀´q are Permdbl
r,s-free, and that S̄´q is Permdbl

r,s´1-free. The contribution of first and last

non-singleton occurrences in :S is therefore at most
ÿ

q

”

Λdbl
r,s´1pńq,mqq ` ńq ` Λdbl

r,s´1pǹq,mqq ` ǹq

ı

ď 2 ¨
”

Λdbl
r,s´1pn̂,mq ` n̂

ı

.

Form :S1 from :S by contracting each interval into a single block. Since :S is Permdbl
r,s`1-free, :S1 must

be Permr,s`1. (See Remark 4.2.) Therefore, the contribution of middle non-singleton occurrences
is at most

ÿ

q

”

Λdbl
r,s´2pn̄q,mqq ` 2n̄q

ı

ď Λdbl
r,s´2

˜

ÿ

q

n̄q,
ÿ

q

mq

¸

` 2 ¨
ÿ

q

n̄q

“ Λdbl
r,s´2p|

:S1| ´ 2n̂,mq ` 2p| :S1| ´ 2n̂q

ď Λdbl
r,s´2pΛr,spn̂, m̂q ´ 2n̂,mq ` 2 ¨ Λr,spn̂, m̂q ´ 4n̂.

When m̂ “ 2 there are no middle occurrences and, in the worst case, no singletons. The total
number of first and last occurrences is pΛdbl

r,s´1pn̂,m1q`n̂q`pΛ
dbl
r,s´1pn̂,m2q`n̂q ď Λdbl

r,s´1p2n̂,mq`2n̂.
This concludes the proof of the recurrence.

Lemma 4.4 gives explicit upper bounds on Λr,s and Λdbl
r,s in terms of inductively defined coeffi-

cients tπs,i, π
dbl
s,i u and the ith row-inverse of Ackermann’s function. One should keep in mind, when

reading this lemma and similar lemmas, that we will ultimately substitute αpn,mq ` Op1q for i,
and that this choice makes the dependence on the block count m negligible.
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Lemma 4.4. Fix parameters i ě 1, r ě 2, s ě 3, and c ě s´ 2. Let n,m be the alphabet size and
block count and let j be minimal such that m ď pai,jq

c. Then Λr,s and Λdbl
r,s are bounded as follows.

Λr,spn,mq ď πs,i
`

n`Oppcjqs´2mq
˘

Λdbl
r,spn,mq ď πdbl

s,i

`

n`Oppcjqs´2mq
˘

,

where the asymptotic notation hides a constant depending only on r. The coefficients tπs,i, π
dbl
s,i u

are defined as follows.

π1,i “ πdbl
1,i “ 1

π2,i “ 2

πs,1 “ 2πs´1,1 “ 2s´1

πs,i “ 2πs´1,i ` πs´2,ipπs,i´1 ´ 2q (2)

πdbl
2,i “ 2 ¨ 6r´1

πdbl
s,1 “ 2πdbl

s´1,1 ` 1 ă p6r´1 ` 1q2s

πdbl
s,i “ πdbl

s,i´1 ` 2πdbl
s´1,i ` pπ

dbl
s´2,i ` 2qπs,i´1 (3)

The proof is by induction over tuples ps, i, jq, where c and r are regarded as fixed. (The base
cases when s P t1, 2u follow from Lemma 3.3.) At the base case i “ 1 we let j be minimal such
that m ď a1,j . By invoking Recurrence 4.1 with m̂ “ 2 is it easy to show that Λr,spn,mq ď
πs,1pn ` Opjs´2mqq, where the constant hidden by the asymptotic notation does not depend on s
or c. This also implies that Λr,spn,mq ď πs,1pn ` Oppcjqs´2mqq when j is defined to be minimal
such that m ď ac1,j , since ac1,j “ a1,cj “ 2cj . In the general case, when i ą 1, we apply Recurrence
4.1 using a uniform block partition with width wc “ aci,j´1, so

m̂ “ rm{wcs ď pai,jq
c{pai,j´1q

c “ pai´1,wq
c.

We invoke the inductive hypothesis with parameters i, j ´ 1 on sequences with wc blocks (namely
tŠqu). On sequences with m blocks (such as Ś, S̀) we invoke the inductive hypothesis with i, j and
on sequences with m̂ blocks we invoke it with i ´ 1, w. The induction goes through smoothly so
long as the coefficients tπs,i, π

dbl
s,i u are defined as in Lemma 4.4, Eqns. (2,3). See [22, Appendices B

and C] for several examples of such proofs in this style.10

Lemma 4.5. (Closed Form Bounds) The ensemble tπs,i, π
dbl
s,i usě3,iě1 satisfies the following,

10For an alternative approach see Nivasch [16, §3]. It differs in two respects. First, it refers to the slowly growing
row-inverses of Ackermann’s function rather than using the ‘j’ parameter of Ackermann’s function. Second, there is
no equivalent to our ‘c’ parameter in [16], which leads to a system of two recurrences, one for the leading factor of
the n term, and one for the leading factor of the js´2m term. For yet another style of analysis, which leads to the
same recurrences for πs,i and πdbl

s,i , see Nivasch [16, §4], Cibulka and Kynčl [3, §2], or Sundar [25].
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where t “ t s´2
2 u.

π3,i “ 2i` 2

πdbl
3,i “ Θpi2q

π4,i, π
dbl
4,i “ Θp2iq

π5,i, π
dbl
5,i ď 2ipi`Op1qq!

πs,i, π
dbl
s,i ď 2p

i`Op1q
t q for even s ą 4

πs,i, π
dbl
s,i ď 2p

i`Op1q
t q logp2pi`1q{eq for odd s ą 5

Proof. First consider the case when s P t3, 4u. Eqn. (2) simplifies to

π3,i “ 2` π3,i´1

π4,i “ 2π3,i ` 2pπ4,i´1 ´ 2q

One proves by induction that π3,i “ 2i ` 2 and π4,i “ 10 ¨ 2i ´ 4pi ` 2q. Using these identities,
Eqn. (3) can be simplified to

πdbl
3,i “ πdbl

3,i´1 ` 2 ¨ p2 ¨ 6r´1q ` p1` 2qp2i´ 2q

πdbl
4,i ď πdbl

4,i´1 ` 2 ¨ πdbl
3,i ` p2 ¨ 6

r´1 ` 2qp10 ¨ 2i´1 ´ 4pi` 1qq.

A short proof by induction shows πdbl
3,i ď 6

`

i`1
2

˘

` 4 ¨ 6r´1pi` 1q and that πdbl
4,i ď 20p6r´1 ` 2q2i. In

the general case we have, for s ě 5,

πs,i ď 2πs´1,i ` πs´2,iπs,i´1

“ 2πs´1,i ` πs´2,ip2πs´1,i´1 ` πs´2,i´1p2πs´1,i´2 ` πs´2,i´2p ¨ ¨ ¨ ` πs´2,2πs,1q ¨ ¨ ¨ qq

“

i´2
ÿ

l“0

2πs´1,i´l ¨

l´1
ź

k“0

πs´2,i´k ` πs,1 ¨
i´2
ź

k“0

πs´2,i´k (4)

When s “ 5 we have πs´1,i “ Θp2iq and πs´2,i “ 2pi` 1q, so (4) can be written

“

i´2
ÿ

l“0

Θp2i´lq ¨ 2pi` 1q2i ¨ ¨ ¨ 2pi` 2´ lq ` πs,1 ¨ 2pi` 1q2i2pi´ 1q ¨ ¨ ¨ 2p3q

“ Θp2i ¨ pi` 1q!q “ 2pi`Op1qq logp2pi`1q{eq

We prove that there are constants tCsu such that πs,i ď 2p
i`Cs
t q when s is even and πs,i ď

2p
i`Cs
t q logp2pi`1q{eq when s is odd. The analysis above shows that C4 and C5 exist. When s ą 4 is

even, (4) is bounded by

ď

i´2
ÿ

l“0

2p
i´l`Cs´1

t´1 q logp2pi´l`1q{eq
¨

l´1
ź

k“0

2p
i´k`Cs´2

t´1 q
` πs,1 ¨

i´2
ź

k“0

2p
i´k`Cs´2

t´1 q (5)
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By Pascal’s identity
řx
k“0

`

i´k`Cs´2

t´1

˘

“
`

i`1`Cs´2

t

˘

´
`

i´x`Cs´2

t

˘

, so (5) is bounded by

ď 2p
i`1`Cs´2

t q ¨

˜

i´2
ÿ

l“0

2p
i´l`Cs´1

t´1 q logp2pi´l`1q{eq ´ p
i´l`1`Cs´2

t q
` πs,1

¸

(6)

ď 2p
i`1`Cs

t q, for some sufficiently large Cs.

The sum in (6) clearly converges as iÑ8, though for some constant values of i´ l (depending on
Cs´1 and Cs´2),

`

i´l`Cs´1

t´1

˘

logp2pi´ l` 1q{eq may be significantly larger than
`

i´l`1`Cs´2

t

˘

. When
s ą 5 is odd the calculations are similar. By the inductive hypothesis, (4) is bounded by

ď

i´2
ÿ

l“0

2p
i´l`Cs´1

t q ¨

l´1
ź

k“0

2p
i´k`Cs´2

t´1 q logp2pi´k`1q{eq
` πs,1 ¨

i´2
ź

k“0

2p
i´k`Cs´2

t´1 q logp2pi´k`1q{eq
(7)

ď 2p
i`1`Cs´2

t q logp2pi`1q{eq
¨

˜

i´2
ÿ

l“0

2p
i´l`Cs´1

t q´p
i´l`1`Cs´2

t q logp2pi`1q{eq
` πs,1

¸

ď 2p
i`1`Cs

t q logp2pi`1q{eq, for some sufficiently large Cs.

Turning to πdbl
s,i , we have

πdbl
s,i “ πdbl

s,i´1 ` 2πdbl
s´1,i ` pπ

dbl
s´2,i ` 2qπs,i´1

“ πdbl
s,1 `

i´2
ÿ

l“0

“

2πdbl
s´1,i´l ` pπ

dbl
s´2,i´l ` 2qπs,i´1´l

‰

(8)

It is straightforward to show that when s ě 4, the bounds on πs,i also hold for πdbl
s,i with respect to

different constants tDsu. When s “ 5, Eqn. (8) becomes

πdbl
5,i “ πdbl

5,1 `

i´2
ÿ

l“0

´

2 ¨Θp2i´lq ` pΘpi´ lq2q ` 2q ¨Θp2i´1´lpi´ lq!q
¯

“ Θp2ipi` 2q!q ď 2pi`D5q logp2pi`1q{eq, for a sufficiently large D5.

When s ą 4 is even, Eqn. (8) implies, by the inductive hypothesis, that

πdbl
s,i ď πdbl

s,1 `

i´2
ÿ

l“0

„

2p
i´l`Ds´1

t´1 q logp2pi´l`1q{eq`1
` p2p

i´l`Ds´2
t´1 q

` 2q2p
i´1´l`Cs

t q



ď 2p
i`l`Ds

t q, for a sufficiently large Ds.

When s ą 5 is odd,

πdbl
s,i ď πdbl

s,1 `

i´2
ÿ

l“0

„

2p
i´l`Ds´1

t q`1
` p2p

i´l`Ds´2
t´1 q logp2pi´l`1q{eq

` 2q2p
i´1´l`Cs

t q logp2pi´lq{eq



ď 2p
i`Ds
t q logp2pi`1q{eq, for a sufficiently large Ds.
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Given that Lemma 4.5 holds for all i, one chooses i to be minimum such that the ‘m’ term
does not dominate, that is, the minimum i for which j ď 3 or pcjqs´2 ď n{m. It is straightforward
to show that i “ αpn,mq ` Op1q is optimal, which immediately gives bounds on Λr,spn,mq and
Λdbl
r,spn,mq analogous to those claimed for Λr,spnq and Λdbl

r,spnq in Theorem 1.3, excluding the case
s “ 3, which is dealt with in Section 6. In order to obtain bounds on Λr,spnq and Λdbl

r,spnq we invoke
Lemma 3.1. For example, it states that Λr,spnq “ γr,s´2pγr,spnqq ¨Λr,spn, 3nqq` 2n, where γr,spnq is
a non-decreasing upper bound on Λr,spnq{n. The γr,s´2pγr,spnqq factor may not be constant, but it
does not affect the error tolerance already in the bounds of Theorem 1.3.11

Remark 4.6. Our lower and upper bounds on Λr,spnq are tight (when r ě 3) inasmuch as they are

both of the form n ¨ 2α
tpnq{t!`Opαt´1pnqq when s ě 4 is even and n ¨ 2α

tpnqplogαpnq`Op1qq{t! when s ě 5
is odd. However, it is only when s is even that these bounds are sharp in the Ackermann-invariant
sense of [22, Remark 1.1], that is, invariant under ˘Op1q perturbations in the definition of αpnq.
For example, our lower and upper bounds on Λr,5pnq are n¨pαpnq`Op1qq! and n¨2αpnqpαpnq`Op1qq!.
The 2αpnq factor gap could probably be closed by substituting Nivasch’s construction of order-3 DS
sequences [16, §6] for U3pi, jq in Section 2, which would lead to sharp, Ackermann-invariant bounds
of Λr,5pnq “ n ¨ 2αpnqpα ` Op1qq!. With a more careful analysis of the recurrence for πs,i it should
be possible to obtain sharp, Ackermann-invariant bounds on Λr,spnq for all odd s.

5 Derivation Trees

Derivation trees were introduced in [22] to model hierarchical decompositions of sequences. They are
instrumental in our analysis of Permdbl

r,4-free sequences, in Section 6, and of double DS sequences,
in Section 7. Throughout this section we use the sequence decomposition notation defined in
Section 3.4.

A recursive decomposition of a sequence S can be represented as a rooted derivation tree T “
T pSq. Nodes of T are identified with blocks. The leaves of T correspond to the blocks of S whereas
internal nodes correspond to blocks of derived sequences. Let Bpvq be the block of v P T , which
may be treated as a set of symbols if we are indifferent to their permutation in Bpvq.

Base Case. Suppose S “ B1B2 is a two block sequence, where each block contains the whole
alphabet ΣpSq. The tree T pSq consists of three nodes u, u1, and u2, where u is the parent of u1

and u2, Bpu1q “ B1, Bpu2q “ B2, and Bpuq does not exist. For every a P ΣpSq call u its crown and
u1 and u2 its left and right heads, respectively. These nodes are denoted cr|a, lh|a, and rh|a.

Inductive Case. If S contains m ą 2 blocks, choose a uniform block partition tmqu1ďqďm̂, that
is, one where m1, . . . ,mm̂´1 are equal powers of two and mm̂ may be smaller. This block partition
induces local sequences tŠqu1ďqďm̂ and an m̂-block contracted global sequence Ŝ1. Inductively

construct derivation trees T̂ “ T pŜ1q and tŤqu1ďqďm̂, where Ťq “ T pŠqq. To obtain T pSq, identify

the root of Ťq (which has no block) with the qth leaf of T̂ , then place the blocks of S at the leaves
of T . This last step is necessary since only local symbols appear in the blocks of tŤqu whereas the

11For example, when s “ 6, γr,s´2pγr,spnqq “ O

˜

2
α

ˆ

2α
2pnq{2`Opαpnqq

˙
¸

“ Op2αpαpnqqq is non-constant. Nonetheless

Op2αpαpnqqq ¨ Λr,spn, 3nq “ Op2αpαpnqqq ¨ n ¨ 2α
2pnq{2`Opαpnqq

“ n ¨ 2α
2pnq{2`Opαpnqq.
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Figure 2: The derivation tree T pSq is the composition of T̂ “ T pŜ1q and tŤqu1ďqďm̂, where Ťq “
T pŠqq. A global symbol a P ΣpŜq appears in blocks at the leaf level of T , at the leaf level of T̂ ,
and possibly at higher levels of T̂ .

leaves of T must be identified with the blocks of S. The crown and heads of each symbol a P ΣpSq
are inherited from T̂ , if a is global, or some Ťq if a is local to Sq. See Figure 2 for a schematic.

5.1 Special Derivation Trees

It is useful to constrain T to use a uniform block partition. Every derivation tree generated in this
fashion can be embedded in a full rooted binary tree with height rlogms, though the composition
of blocks depends on how block partitions are chosen. We will generate two varieties of derivation
trees. At one extreme is the canonical derivation tree, where block partitions are chosen in the
least aggressive way possible. At the other extreme is one where block partitions are guided by
Ackermann’s function.

Canonical Derivation Trees. The canonical derivation tree T ‹pSq of a sequence S is obtained
by choosing the uniform block partition with m̂ “ rm{2s. We form T ‹pSq by constructing T ‹pŜ1q
recursively and composing it with the trivial three-node base case trees tT pŠqquq.

Derivation Trees via Ackermann’s Function. Given a parameter i ě 1, define j ě 1 to be
minimal such that m ď ai,j . If j “ 1 then m “ ai,1 “ 2, meaning T pSq must be the three-node
base case tree. When j ą 1 we choose a uniform block partition with width w “ ai,j´1 (which is
a power of 2), so m̂ “ rm{ws ď ai,j{ai,j´1 “ ai´1,w. The global tree T̂ is constructed recursively
with parameter12 i´ 1 and each local tree Ťq is constructed recursively with parameter i.

12Note that when i “ 1 it does not matter that i´ 1 “ 0 is an invalid parameter. In this case w “ a1,j´1 “ a1,j{2
and m̂ “ 2, so T̂ is forced to be a three-node base case tree.
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Figure 3: In this example v is a hawk leaf in T|a since it is a descendant of rh|a. Its wing node
wi|apvq, quill qu|apvq, and feather fe|apvq are indicated.

5.2 Projections of the Derivation Tree

The projection of T onto a P ΣpSq, written T|a, is the tree rooted at cr|a on the node set tcr|auYtv P
T | a P Bpvqu. The edges of T|a represent paths in T passing through blocks that do not contain a.

Definition 5.1. (Anatomy of a projection tree)

• The leftmost and rightmost leaves of T|a are wingtips, denoted lt|a and rt|a.

• The left and right wings are those paths in T|a extending from lh|a to lt|a and from rh|a to
rt|a.

• Descendants of lh|a and rh|a in T|a are called doves and hawks, respectively.

• A child of a wing node that is not itself on the wing is called a quill.

• A leaf is called a feather if it is the rightmost descendant of a dove quill or leftmost descendant
of a hawk quill.

• Suppose v is a node in T|a. Let wi|apvq be the nearest wing node ancestor of v, qu|apvq the
quill ancestral to v, and fe|apvq the feather descending from qu|apvq. See Figure 3 for an
illustration.

If T pSq is specified, the terms feather and wingtip can also be applied to individual occurrences in
S. For example, an occurrence of a in block Bpvq of S is a feather if v is a feather in T|a.

When T pSq is constructed according to Ackermann’s function, a short proof by induction shows
that the height of each projection tree T|a (distance from cr|a to a leaf) is at most i` 1.
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6 Upper Bounds on Permdbl

r,4-free Sequences

Since order-3 DS sequences are necessarily Perm2,4-free, we have Λdbl
r,3pnq ě Λr,3pnq ě λ3pnq “

Θpnαpnqq. In this Section we prove tight upper bounds of Λdbl
r,3pnq “ Opnαpnqq. These bounds

imply λdbl
3 pnq is also Opnαpnqq, resolving one of Klazar’s open problems [13].

Our analysis is different in character from all previous analyses of (generalized) Davenport-
Schinzel sequences. There are two new techniques used in the proof which are worth highlighting.
Previous analyses partition the symbols in a block based on some attributes (first, middle, last,
etc.), but do not assign any attributes to the blocks themselves. In our analysis we must treat
blocks differently based on their context within the larger sequence, that is, according to properties
that are independent of the contents of the block. (See the definition of roosts in Section 6.2.)
The second ingredient is an accounting scheme for bounding the proliferation of symbols. Rather
than count the number of occurrences of a symbol, say b, we assign each occurrence of b a potential
based on its context. If one b in Ŝ1 begets multiple bs in Ŝ, the number of bs increases, but the
aggregate potential of the bs in S may, in fact, be at most the potential of the originating b in Ŝ1.
That is, sometimes proliferating symbols “pay for themselves.” We only need to track changes in
sequence potential, not sequence length. Amortizing the analysis in this way lets us account for
the proliferation of symbols across many levels of the derivation tree, not just between Ŝ1 and S.

6.1 A Potential-Based Recurrence

Fix a Permdbl
r,4-free sequence Z and i‹ ě 1. Define j‹ to be minimal such that its block count

JZK ď ai‹,j‹ and let T “ T pZq be constructed as in Section 5.1 with parameter i‹. In this section
we analyze a sequence S encountered in the recursive decomposition of Z, that is, S is either Z
itself or a sequence encountered when recursively decomposing Ẑ 1 and tŽqu. Since S ă Z, it too
must be Permdbl

r,4-free but we can often say something stronger. If each occurrence of a symbol in
S represents at least two occurrences in Z then S must be Permr,4-free.13 Call an occurrence in S
terminal if it represents exactly one occurrence in Z and non-terminal otherwise. In terms of the
derivation tree, an occurrence of a in S is terminal iff it has exactly one leaf descendant in T|a.

Each occurrence of a symbol in S carries a nonnegative integer potential based on its context
within S and even within T pZq. Since the length of S is no more than its aggregate potential, it
suffices to upper bound the potential. Define Υpn,mq to be the maximum potential of an m-block
sequence over an n-letter alphabet encountered in decomposing Z. The way potentials are assigned
will be discussed shortly. For the time being it suffices to know that the maximum potential is
φ “ Op1q, all terminals carry unit potential, and all non-terminals carry potential at least three.

Our goal is to prove that Υ obeys the following recurrence.

Recurrence 6.1.

Υpn,mq “
ÿ

1ďqďm̂

Υpňq,mqq ` 2 ¨
”

φ ¨ Λr,2pn̂,mq ` Λdbl
r,2pn̂,mq ` n̂

ı

` Υpn̂, m̂q

` pr ´ 1qφ ¨m ` 2rpr ´ 1qpi‹ ´ 2qs2 ¨ m̂

Decomposing S as usual, it follows that the maximum potential of local sequences tŠquq is
ř

q Υpňq,mqq, giving the first term of Recurrence 6.1. The sequence Ś of global first occurrences

13This is not quite true, but we can make this inference when bounding Λdbl
r,3 asymptotically. See Remark 4.2 for a

discussion of this issue.
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Figure 4: Here v is an internal node of T|a. Between qu|apvq and v, a has molted twice: at v’s
parent it molted one a to the right and at v’s grandparent it molted two as to the left.

can be partitioned into terminals Śt and non-terminals Śnt. After removing the last occurrence of
each symbol in Śt, the resulting sequence is Permdbl

r,3-free, so its length (and potential) is |Śt| ď

Λdbl
r,2pn̂,mq ` n̂. We endow each non-terminal in Śnt an initial potential at most φ. (Note that

occurrences of a in Ś correspond to quills in T|a.) Being Permr,3-free, the potential of Śnt is therefore

at most φ¨Λr,2pn̂,mq. A symmetric analysis is applied to S̀, the sequences of last occurrences, which
gives the second term of Recurrence 6.1.

The global contracted sequence Ŝ1 begets Ś, S̀, and S̄, the first two of which we have just
accounted for. In general |S̄| may be significantly larger than |Ŝ1|. We account for this proliferation
in symbols by showing that the aggregate potential of S̄ is nonetheless at most that of Ŝ1 plus
pr´1qφ ¨m`2rpr´1qpi‹´1qs2 ¨ m̂, which explains the last three terms of Recurrence 6.1. Consider
the sequence S̄q begat by the middle symbols of block Bq in Ŝ1. We decompose S̄q as follows.

1. Tag any symbol occurring exactly once in S̄q. (Its potential in S̄q will be at most its potential
in Ŝ1.)

2. Tag the first non-terminal occurrence of each symbol in S̄q.

3. Tag the first, second, and last terminal occurrence of each symbol in S̄q.

4. Tag the first r ´ 1 untagged occurrences (terminal and non-terminal) in each block of S̄q.

Symbols that are tagged in both of Steps 2 and 3 have molted; all others are unmolted. We will
say that the non-terminal a tagged in Step 2 has molted those terminal as tagged in Step 3. See
Figure 4 for a schematic.

We claim S̄q has been completely tagged after Step 4. If this were not so, there must be r
symbols a1, . . . , ar in some block B in S̄q. If ak is terminal in B it must be preceded by two
terminal aks and followed by one terminal ak in S̄q; if ak is non-terminal in B it must be preceded
by a non-terminal ak. Dividing S̄q at the left boundary of B, we see two occurrences of each of
a1, . . . , ar on both the left and right side of the boundary, which may take the form of one non-

27



terminal or two terminals. Since a1, . . . , ak are categorized as global middle in Sq, each appears
both before and after Sq, yielding an instance of Permdbl

r,4 in Z, a contradiction.
The aggregate potential of those symbols tagged in Step 4 is at most pr ´ 1qφ ¨m, which are

covered by the second-to-last term of Recurrence 6.1. Suppose that a P Bq is non-terminal in Ŝ1

but it begets only terminal as in S̄q, that is, no as are tagged in Step 2. This proliferation of as
causes no net increase in potential since the a P Bq carries potential at least 3, which covers the
potential of the three terminal as tagged in Step 3. In general, for each molted symbol a, we will
tag one non-terminal and up to three terminals in Steps 2 and 3. This will cause no net increase in
potential provided that the a in Bq carries at least the potential of the non-terminal a in S̄q plus 3.
In order to avoid cumbersome statements, we will treat the non-terminal a tagged in Step 2 as the
“same” a P Bq. For example, if B is a block in S̄q and a P B is non-terminal, to say the a P B has
molted four times means that, in T|a, B has four ancestors, possibly including itself, and all strict
descendants of qu|apBq, which each have at least one sibling in T|a. This sibling corresponds to an
a removed in Step 3 at some stage in the decomposition of S.

In the remainder of this section we explain why it suffices to endow each new non-terminal
quill with a constant potential φ. The analysis above shows that 3 ¨ pi‹ ´ 1q suffices, which is not
constant.14

6.2 Roosts, Eggs, and Fertility

Our analysis considers properties of blocks (and of occurrences of symbols) that depend on their
context within a larger sequence.

Definition 6.2. (Roosts and Eggs) Let S be a sequence encountered in the decomposition of Z.

1. An interval I of zero or more blocks in S is a k-roost if there are k distinct symbols a1, . . . , ak
such that the sequence contains

a1 a2 ¨ ¨ ¨ ak a2
ka

2
k´1 ¨ ¨ ¨ a

2
1 I a2

1a
2
2 ¨ ¨ ¨ a

2
k akak´1 ¨ ¨ ¨ a1,

where b2 refers to two terminal bs or one non-terminal b. The occurrences of a1 just to the
left and right of I are called k-left mature and k-right mature. A k-mature occurrence of a
symbol whose block is a k-roost is infertile. A k-left mature occurrence that is not infertile
is k-left fertile; k-right fertile is defined analogously. (For any l ă k, k-roosts are clearly also
l-roosts, and k-mature occurrences also l-mature.)

2. An occurrence of a1 in block B of S is a k-egg if the sequence contains

a1 a2 ¨ ¨ ¨ ak a2
ka

2
k´1 ¨ ¨ ¨ a

2
2 B a2

2a
2
3 ¨ ¨ ¨ a

2
k akak´1 ¨ ¨ ¨ a1

Note that any middle occurrence of a symbol is a 1-egg.

One may already discern from Definition 6.2 the shape of the rest of the proof. A k-roost can only
exist if the sequence contains a Permdbl

k,4 sequence, so there cannot be r-roosts. If the proliferation
of symbols necessarily leads to k-roosts for ever larger k, we have a cap on the proliferation of
symbols. Lemma 6.3 lists some straightforward consequences of Defintion 6.2.

14Observe that for any a P ΣpZq, the height of T|a is i‹ ` 1 and all quills of T|a are at distance at least 2 from cr|a.
Every non-terminal quill can therefore molt up to i‹ ´ 1 times, generating up to three terminals per molting, each of
which carries unit potential.
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Figure 5: A k-egg is formed when a middle a1 P Bq is dropped into a pk ´ 1q-roost in Šq.

Figure 6: The shaded blocks are k-roosts. A k-left fertile occurrence of a P Bq in Ŝ1 begets at most
one k-left fertile occurrence in Sq, and, in this example, one k-infertile occurrence. Since Bq`1 is
a k-roost in Ŝ1, all blocks in Sq`1 are k-roosts in S whether or not they were already k-roosts in
Šq`1.

Lemma 6.3. (Properties of Roosts and Eggs) Let S be an m-block sequence encountered in the
recursive decomposition of a Permdbl

r,4-free sequence Z. Define tSq, Šq, Ŝqu1ďqďm̂ and Ŝ1 “ B1 ¨ ¨ ¨Bm̂
as usual.

1. No block in S is an r-roost. All r-eggs represent at most 3 occurrences in Z.

2. If Bq is a k-roost in Ŝ1, every block of Sq is a k-roost in S.

3. Let B be a block in Sq containing a global symbol a. If B is a pk ´ 1q-roost in Šq and the
a P Bq is a middle occurrence in Ŝ1 then a P B is a k-egg in S. See Figure 5.

4. Let B be a block in Sq containing a global symbol a. Suppose the a P Bq is k-left fertile in
Ŝ1 and the a P B is k-left fertile in S. All blocks following B in Sq are k-roosts in S. A
symmetric statement is true of k-right fertile occurrences. See Figure 6.

6.3 Molting and the Evolution of Potentials

Consider the status of a non-terminal symbol a as it descends, in T|a, from qu|apvq to some leaf v.
Since a P Bpqu|apvqq is a middle symbol at that level (it is not on either wing of T|a), this a begins as
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a 1-egg and may become 1-fertile (left or right), then 1-infertile, then a 2-egg, 2-fertile, 2-infertile,
and so on. It cannot become r-mature (fertile or infertile) for this would mean that Permdbl

r,4 ă Z,
so there are at most 3pr ´ 1q transitions. Multiple transitions may occur simultaneously. When a
non-terminal first becomes a k-egg, or k-fertile, or k-infertile, its potential becomes φeg

k , φ
fe
k , or φin

k ,
where

φ “ φeg
1 ą φfe

1 ą φin
1 ą ¨ ¨ ¨ ą φeg

r´1 ą φfe
r´1 ą φin

r´1 ą φeg
r “ 3

If we can show that each symbol molts Op1q times between status transitions, it suffices to set the
initial potential at φ “ Oprq “ Op1q. This is clearly true of k-egg Ñ k-mature transitions. Any
k-egg a that molts three as must have molted two of them to the same side, left or right, making
it k-mature. Since a non-terminal can molt up to 3 terminals in the molting event that makes it
k-mature, it suffices to set φeg

k ´φ
fe
k “ 5. (If this a transitions directly from a k-egg to k-infertile, all

the better, for φin
k ă φfe

k .) We now analyze the k-fertile Ñ k-infertile and k-infertile Ñ pk ` 1q-egg
transitions.

Lemma 6.4. Fix a block index q ď JŜ1K and let F Ă Bq be those symbols newly k-left fertile,
that is, they were not k-left fertile at any ancestor of Bq in their respective derivation trees. The
total number of terminals molted by F -symbols before they become k-infertile is at most 2|F | ` pr´
1q
`

i‹´1
2

˘

.

Proof. Lemma 6.3(4) implies that so long as symbols in F remain k-fertile, as they travel from Bq
to a block in Sq, to blocks at lower levels of the derivation tree, they will always be contained in a
single block at that level of the tree. In other words, there is a sequence of nodes pBq “ v1, v2, . . . , vlq
in T lying on a path from Bq “ v1 (in Ŝ1), to v2 (in S), to a descendant leaf vl (where l ď i‹) such
that any symbol a P F is k-left fertile in some prefix of the list Bpv1q,Bpv2q, . . . ,Bpvlq. See Figure 7.
Call a symbol a P F type pf, gq if a molted a terminal to the right at both Bpvf q and Bpvgq, for
1 ă f ă g ď l.15 That is, in T|a, Bpvf q and Bpvgq have right siblings. Note that during the time in
which this a is k-left fertile it can molt at most once to the left: molting two as to the left would
make it k-infertile.

By the pigeonhole principle, if pr ´ 1q
`

i‹´1
2

˘

` 1 symbols in F molted twice to the right then a
subset F 1 Ă F of r of them have the same type, say pf, gq. However, this would imply that Z is
not Permdbl

r,4-free. Since k-fertile symbols are middle symbols, every symbol in F 1 appears at least
once before and after Bq. The occurrences of F 1-symbols in Bpvgq are non-terminal, so they each
represent at least two occurrences in Z. Finally, the F 1-symbols appear twice at descendants of Bq
but to the right of Bpvgq. See Figure 7.

To sum up, we let each F -symbol molt once to the left and once to the right while k-left fertile.
Some subset can molt more than once to the right, but the total number of such terminals molted
by these symbols is at most pr ´ 1q

`

i‹´1
2

˘

.

A nearly symmetric analysis can be applied to right fertile symbols. The asymmetry comes
from the fact that non-terminals can molt two terminals to the left but only one to the right.

Lemma 6.5. Fix a block index q ď JŜ1K and let F Ă Bq be those symbols newly k-right fertile,
that is, they were not k-left fertile at any ancestor of Bq in their respective derivation trees. The
total number of terminals molted by F -symbols before they become k-infertile is at most 2|F | ` pr´
1qp

`

i‹´1
2

˘

` i‹ ´ 1q.

15Note that a symbol that molts exactly twice to the right has one type. In general, a symbol that molts h times
to the right is of

`

h
2

˘

distinct types.
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Figure 7: A newly k-left-fertile symbol a P Bq “ Bpv1q in Ŝ1. As a progresses down T|a it continues
to be k-left fertile at Bpv2q, . . . ,Bpv5q. Since it molts to the right at blocks Bpv3q and Bpv5q it has
type p3, 5q. It also molts to the left at Bpv3q. Were it to molt twice to the left at Bpv3q, Bpv3q

would then become a k-roost and the a P Bpv3q k-infertile.

Proof. The argument is the same as above, except that we allow types pf, fq if a symbol molts
twice to the left at Bpvf q. There are now at most p

`

i‹´1
2

˘

` i‹ ´ 1q possible types, and we cannot
see r symbols of the same type.

According to Lemmas 6.4 and 6.5, it suffices to set φfe
k “ φin

k ` 2. The total number of molted
terminals unaccounted for, over all q, all k ă r, counting both k-left fertile and k-right fertile
symbols in Bq, is m̂ ¨ pr ´ 1q2p2

`

i‹´1
2

˘

` i‹ ´ 1q ă m̂ ¨ rpr ´ 1qpi‹ ´ 1qs2, which are covered by the
last term of Recurrence 6.1.

The remaining task is to analyze the k-infertile Ñ pk ` 1q-egg transition.

Lemma 6.6. Let u, v, w be distinct nodes such that a, b P Bpuq, a P Bpvq, b P Bpwq, where v is the
parent of u in T|a and w is the parent of u in T|b. If a, b were k-infertile in blocks Bpvq and Bpwq
then at least one of a, b became a pk ` 1q-egg when it was inserted into Bpuq.

Proof. This is a consequence of Lemma 6.3(2,3). Without loss of generality w is a strict ancestor
of v, so a was inserted into Bpuq before b was inserted into Bpuq. Since the a P Bpvq was k-infertile,
Bpvq was a k-roost, by definition. By Lemma 6.3(2), Bpuq became a k-roost after a was inserted
there. By Lemma 6.3(3), when b was inserted in Bpuq it became a pk ` 1q-egg.

Lemma 6.7. Let I Ă ΣpŜqq be those non-terminals that were k-infertile, non-pk`1q-eggs in Bq but
became pk`1q-eggs in Sq. The number of terminals molted by I symbols while they were k-infertile,

non-pk ` 1q-eggs is at most 2|I| ` pr ´ 1qp2
`

i‹´2
2

˘

` i‹ ´ 2q.

Proof. Lemma 6.6 implies that on a path from Bq to the root of T we encounter nodes v1 “

Bq, v2, . . . , vl, not necessarily adjacent, such that, for each symbol a P I, the set of blocks in which
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a is k-infertile and not a quill is some prefix of Bpv1q, . . . ,Bpvlq, where l ď i‹ ´ 2. Call an a P I
type pÑ, f, gq if it molted a terminal to the right in both Bpvf q and Bpvgq, where 1 ď f ă g ď l.
Call it type pÐ, f, gq, where 1 ď f ď g ď l, if it molted a terminal to the left in both Bpvf q and

Bpvgq, or two terminals to the left if f “ g. There are 2
`

l
2

˘

` l distinct types. There cannot be r
symbols of one type, for this would imply that Z is not Permdbl

r,4-free. (The argument is the same
as in the proof of Lemma 6.4.) Since every symbol that molts more than two terminals is of at
least one type, the total number of terminals molted by I while being k-infertile, non-pk ` 1q-eggs
is 2|I| ` pr ´ 1qp2

`

i‹´2
2

˘

` i‹ ´ 2q.

We set φin
k ´ φeg

k`1 “ 2, so the total number of terminals unaccounted for, over all q ă m̂ and
k ă r, is at most m̂ ¨ rpr ´ 1qpi‹ ´ 2qs2, which is covered by the last term of Recurrence 6.1. Given
the constraints we have established on potentials it suffices to set φ “ φeg

1 “ 7pr ´ 1q ` 1, since
|φeg
k ´ φ

fe
k | “ 5, |φfe

k ´ φ
in
k | “ |φ

in
k ´ φ

eg
k`1| “ 2, and φeg

r “ 3.

Remark 6.8. Observe the asymmetry in the arguments of Lemmas 6.4–6.5 and Lemma 6.7. In
Lemmas 6.4 and 6.5 we are tracking moltings that will happen “in the future” (below the level of
S in T ) whereas in Lemma 6.7 we are accounting for moltings that have already occurred at and
above the level of Ŝ1 in T .

6.4 Wrapping Up the Analysis

Since Λr,2p¨, ¨q and Λdbl
r,2p¨, ¨q are both linear and m̂ ă m, we can simplify Recurrence 6.1 to

Υpn,mq ď
ÿ

1ďqďm̂

Υpňq,mqq `Υpn̂, m̂q ` Crn̂` pi‹q2ms,

for some constant C depending only on r. A straightforward proof by induction shows that for any
i ď i‹ and j minimal such that m ď ai,j , Υpn,mq ď Cipn ` pi‹q2jmq. Putting it all together we
have, for }Z} “ n‹ and JZK “ m‹,

|Z| ď Λdbl
r,3pn

‹,m‹q ď Υpn‹,m‹q ď Ci‹n‹ ` Cpi‹q3j‹m‹. (9)

Eqn. (9) leads to an upper bound of Λdbl
r,3pn,mq “ Opnαpn,mq`mα3pn,mqq, which, by Lemma 3.1,

implies an upper bound of Λdbl
r,3pnq “ Opnα3pnqq. Theorem 6.9 reduces this to Opnαpnqq, which is

asymptotically tight since Λdbl
r,3pnq “ Ωpλ3pnqq.

Theorem 6.9. For any r ě 2, Λdbl
r,3pnq “ Θpnαpnqq and Λdbl

r,3pn,mq “ Θpnαpn,mq `mq.

Proof. Let S be a Permdbl
r,4-free sequence. To bound |S| asymptotically we can assume, using

Lemmas 3.1 and 3.3, that S consists of m ď 2n blocks. (If there are m ą 2n blocks, remove
up to r ´ 1 symbols at block boundaries to make it r-sparse. If the sequence is r-sparse, we can
discard a constant fraction of occurrences to partition the sequence into 2n blocks.) Choose i to
be minimal such that m ď ai,j , where j “ maxt3, rn{msu. Partition S “ S1 ¨ ¨ ¨Sm̂ into m̂ “ rm{i2s

intervals, each consisting of i2 blocks. Define Ŝ, Ŝ1, Šq, etc. as usual. Applying Eqn. (9) with
i‹ “ i, we have |Ŝ1| ď Cpin̂ ` i3jm̂q ď Cpipn̂ ` jmqq “ Opinq. Since each Śq, S̀q, and S̄q is
Permdbl

r,3-free and Λdbl
r,2pnq,mqq “ Opnq ` mqq is linear, it follows that |Ŝ| “ Opin ` mq “ Opinq.

We now apply Eqn. (9) to local symbols with i‹ “ 1, that is, for each index q ď m̂, j is chosen
to be minimal such that mq ď a1,j . Since a1,j “ 2j , j “ rlogmqs ď rlog i2s. It follows that
|Š| “

ř

q |Šq| ď
ř

q Cpňq `mq logmqq “ Opň `m logpi2qq “ Opn log iq. Since i “ αpn,mq ` Op1q,

|S| “ |Ŝ| ` |Š| “ Opnαpn,mqq “ Opnαpnqq.
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Figure 8: An example of a canonical derivation tree for S. Dashed boxes isolate the base case trees
that assign a, b P ΣpSq their crowns and heads.

Theorem 6.9 and Lemma 1.2 immediately give us asymptotically sharp bounds on the extremal
functions for certain doubled forbidden sequences.

Corollary 6.10. (See Nivasch [16, Rem. 5.1], Pettie [20], Geneson, Prasad, and Tidor [8], and
Klazar [13, p. 13].)

λdbl
3 pnq “ ΘpΛdbl

2,3pnqq “ Θpnαpnqq,

Expdblpabcacbcq, nq “ ΘpΛdbl
4,3pnqq “ Θpnαpnqq, See [20]

Expdblpabcabcaq, nq “ ΘpΛdbl
3,3pnqq “ Θpnαpnqq, See [16]

and, more generally,

Expdblp1 ¨ ¨ ¨ k 1 ¨ ¨ ¨ k 1q, nq “ ΘpΛdbl
r,3pnqq “ Θpnαpnqq,

where r “ pk ´ 1q3 ` 1.

7 Double Davenport-Schinzel Sequences

Recall from Section 5.1 that the canonical derivation tree T ‹pSq is obtained by decomposing S
in the least aggressive way possible, choosing m̂ “ rJSK{2s whenever JSK ą 2. Figure 8 gives an
example of such a tree.

The structure of the canonical derivation tree is, in many respects, simpler than general deriva-
tion trees. For example, all wing nodes in any projection tree T|a, where a P ΣpSq, have either
one or two children. Those with two children (branching nodes) are associated with precisely one
quill and therefore one feather,16 so counting the number of feathers is tantamount to counting
branching wing nodes.

16Recall that a feather of T|a is the rightmost descendant of a dove quill or leftmost descendant of a hawk quill.
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Nesting was a concept introduced in [22] to analyze odd-order DS sequences. Here we generalize
it to deal with double DS sequences.

Definition 7.1. (Nesting) Let B be a block of S containing a, b P ΣpSq. If S contains either

a b b B b b a or b a a B a a b

then a and b are called double-nested in B.

Lemma 7.2 can be thought of as a generalization of [22, Lem. 4.3] to deal with double-nestedness.
Whereas [22, Lem. 4.3] assumed any derivation tree, Lemma 7.2 refers to the canonical derivation
tree T ‹pS1q as this makes the proof slightly simpler. This assumption is actually without much
loss of generality since any derivation tree obtained with uniform block partitions is “contained”
in the canonical derivation tree, that is, its blocks are subsequences of the corresponding blocks in
the canonical tree.

Lemma 7.2. Consider a sequence S1, its canonical derivation tree T ‹pS1q, and a leaf v for which
a, b P Bpvq. Let S be obtained from S1 by substituting, for each leaf u ‰ v, a sequence Spuq
containing at least two copies of each symbol in Bpuq. (The block Bpvq appears verbatim in S.) If
v is neither a wingtip nor feather in both T ‹

|a and T ‹
|b then, in S, a and b are double-nested in Bpvq.

Proof. Without loss of generality we can assume that v is a dove in T ‹
|a and cr|b is ancestral to

cr|a. Because v is neither a wingtip nor feather in T ‹
|a, it must be distinct from the leftmost and

rightmost leaf descendants of wi|apvq, namely lt|a and fe|apvq. Moreover, since v is a dove in T ‹
|a it

descends from the right child of wi|apvq, namely qu|apvq. Partition S into four intervals

I1 : everything preceding Bplt|aq.
I2 : everything from I1 to the beginning of Bpvq.
I3 : everything from the end of Bpvq to the end of Bpfe|apvqq.
I4 : everything following I3.

If b appeared in both I1 and I4 then a, b P Bpvq would clearly be double-nested in S. Therefore it
suffices to consider two cases, (1) I1 contains no bs, and (2) I4 contains no bs. Figures 9 and 10
illustrate the two cases.

Case 1. The wingtip lt|b must be in interval I2, though it may be identical to lt|a. Since wi|apvq
is ancestral to both lt|b and v, and is a strict descendant of cr|b, it follows that v is a dove in T ‹

|b

and that wi|bpvq is a descendant of wi|apvq. The rightmost descendant of wi|bpvq in T|b is fe|bpvq,
which is distinct from v. Since wi|apvq is a descendant of lh|a, any descendant of rh|a, such as rt|a,
lies to the right of fe|bpvq, in interval I4. By the same reasoning, rt|b lies in I4.

Regardless of whether lt|a and lt|b are identical or distinct, Bpvq is preceded, in S, by either
abb or baa. In the first case lt|a, lt|b, v, fe|bpvq, rt|a certify that a, b are double-nested in Bpvq; see
Figure 9. In the latter case lt|b “ lt|a, v, fe|apvq, rt|b certify that a, b are double-nested in Bpvq.
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Figure 9: In Case 1 interval I1 contains no bs. Contrary to the depiction, lt|a and lt|b are not
necessarily distinct, nor are wi|apvq and wi|bpvq or cr|a and cr|b. In this depiction qu|apvq, the right
child of wi|apvq, happens to be identical to wi|bpvq.

Figure 10: In Case 2 interval I4 contains no bs. Contrary to the depiction, rt|b and fe|apvq are not
necessarily distinct.
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Case 2. The wingtip rt|b must lie in I3, so v and rt|b are both descendants of qu|apvq, the right
child of wi|apvq. It follows that v is a hawk in T ‹

|b and that no descendants of wi|bpvq are in interval

I1. Since fe|bpvq is the leftmost descendant of wi|bpvq in T ‹
|b , and fe|bpvq ‰ v, the distinct nodes

lt|a, fe|bpvq, v, rt|b, rt|a certify that a, b are double-nested in Bpvq. See Figure 10.

Recurrence 7.3 gives a significantly simpler method for bounding the number of feathers, com-
pared to [22, Recs. 5.1 and 7.6]. Whereas [22] considered feathers in an arbitrary derivation tree,
Recurrence 7.3 only considers the canonical derivation tree.

Recurrence 7.3. Let S be an m-block, order-s DS sequence over an n-letter alphabet and T “
T ‹pSq be its canonical derivation tree. Define Φspn,mq to be the maximum number of feathers of
one type (dove or hawk) in such a sequence, where feather is with respect to T . For any s ě 2,

Φspn, 2q “ 0

Φ2pn,mq ă m

and for any uniform block partition tmqu1ďqďm̂ and alphabet partition tn̂u Y tňqu1ďqďm̂,

Φspn,mq ď
m̂
ÿ

q“1

Φspňq,mqq ` Φspn̂, m̂q ` Φs´1pn̂,mq ` n̂

Proof. Suppose we only wish to bound dove feathers. If there are only two blocks then all oc-
currences are wingtips and feathers are not wingtips. This gives the first equality. In the most
extreme case every non-wingtip is a dove feather, so Φspn,mq ď λspn,mq ´ 2n. In particular,
Φ2pn,mq ď λ2pn,mq ´ 2n ă m. Decompose S into Ŝ, Ŝ1, Śq, S̀q, S̄q in the usual way with respect
to the given uniform block partition. Let T̂ “ T ‹pŜ1q be the canonical derivation tree of the con-
tracted global sequence Ŝ1. It follows that Śq is an order-ps´ 1q DS sequence. Define T́q “ T ‹pŚqq
to be its canonical derivation tree. The branching nodes on the left wing of T|a, where a P ΣpŚqq,

consist of (i) the branching nodes on the left wing of T̂|a, (ii) the branching nodes on the left wing

of pT́qq|a, and (iii) the crown ćr|a of pT́qq|a, which is on the left wing of T|a but not pT́qq|a. Each
branching node is identified with one feather in T|a. The total number of branching nodes/feathers

covered by (i), summed over all a P ΣpŜq, is at most Φspn̂, m̂q. The total number covered by (ii),
summed over all q ď m̂ and a P ΣpŜqq, is

ř

q Φs´1pńq,mqq ď Φs´1pn̂,mq. The number covered by
(iii) is clearly n̂, which gives the last inequality.

Recurrence 7.4 generalizes [16, Rec. 3.1] and [22, Recs. 3.3, 5.2, and 7.7], from DS sequences to
double DS sequences. When s “ 3 or s ě 4 is even, Recurrence 7.4 is substantively no different
than Recurrence 4.3 for Permdbl

r,s`1-free sequences.

Recurrence 7.4. Let s, n, and m be the order, alphabet size, and block count parameters. Let
tmqu1ďqďm̂ be a uniform block partition, where m̂ ě 2, and tn̂uYtňqu1ďqďm̂ be an alphabet partition.
When m̂ “ 2, for any s ě 3,

λdbl
s pn,mq ď

ÿ

qPt1,2u

λdbl
s pňq,mqq ` λ

dbl
s´1p2n̂,mq ` 2n̂.
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Figure 11: Counting dove feathers in T|a is tantamount to counting branching nodes on the left
wing of T|a.

When m̂ ą 2 and either s “ 3 or s ě 4 is even,

λdbl
s pn,mq ď

ÿ

q

λdbl
s pňq,mqq ` λ

dbl
s pn̂, m̂q ` 2 ¨ λdbl

s´1pn̂,mq ` λ
dbl
s´2pλspn̂, m̂q,mq ` 2 ¨ λspn̂, m̂q,

and when s ě 5 is odd,

λdbl
s pn,mq ď

m̂
ÿ

q“1

λdbl
s pňq,mqq ` λ

dbl
s pn̂, m̂q ` 2 ¨ λdbl

s´1pn̂,mq ` λ
dbl
s´2p2 ¨ Φspn̂, m̂q,mq ` 4 ¨ Φspn̂, m̂q

` λdbl
s´3pλspn̂, m̂q,mq ` 2 ¨ λspn̂, m̂q

Proof. First consider the case when s ě 5 is odd. Let S be an order-s double DS sequence,
decomposed into Ŝ and tŠqu as usual. The contribution of local symbols is

ř

q λ
dbl
s pňq,mqq. If

a global symbol occurs exactly once in an Ŝq this occurrence is a singleton. Let 9S ă Ŝ be the
subsequence of singletons and :S ă Ŝ be the subsequence of non-singletons. By definition 9S is
partitioned into m̂ blocks, so | 9S| ď λdbl

s pn̂, m̂q. Symbols in Σp :Sqq are classified as first, last, and
middle if they appear, in :S, after :Sq but not before, before :Sq but not after, and both before and
after :Sq, respectively. In the worst case these three criteria are exhaustive. However, it may be
that all non-singleton occurrences of a symbol appear exclusively in Σp :Sqq. In this case we call the
symbol first if it appears after interval q in 9S and last if it is not first and appears before interval
q in 9S. Define Śq, S̀q, S̄q ă :Sq to be the subsequences of first, last, and middle occurrences in :Sq.
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If we remove the last occurrence of each letter from Śq, or the first occurrence of each letter
from S̀q, the resulting sequence is an order-ps ´ 1q double DS sequence. The contribution of first
and last non-singletons is therefore at most

ÿ

q

”

λdbl
s´1pńq,mqq ` ńq ` λ

dbl
s´1pǹq,mqq ` ǹq

ı

ď 2pλdbl
s´1pn̂,mq ` n̂q.

Obtain :S1 “ B1 ¨ ¨ ¨Bm̂ from :S by contracting each interval :Sq into a single block Bq. Since
occurrences in :S1 each represent at least two occurrences in :S, we can conclude17 that | :S1| ď
λspn̂, m̂q.

Let :T “ T ‹p :S1q be the canonical derivation tree of :S1. Define S̃1 to be the subsequence of :S1

consisting of feathers with respect to :T (both dove and hawk) and let S̃ be the subsequence of :S
begat by symbols in S̃1. It follows that |S̃1| ď 2 ¨Φspn̂, m̂q since Φs only counts feathers of one type
(dove or hawk). Define S̊1 ă :S1 to be the subsequence of non-feather, non-wingtips with respect to
:T , and define S̊ ă :S analogously. Since S̃ consists solely of middle symbols, removing the first and
last occurrence of each letter in S̃q leaves an order-ps´ 2q double DS sequence, hence

|S̃| “
ÿ

q

|S̃q| ď
ÿ

q

pλdbl
s´2pñq,mqq ` 2ñqq

ď λdbl
s´2

˜

ÿ

q

ñq,m

¸

` 2
ÿ

q

ñq

ď λdbl
s´2p|S̃

1|,mq ` 2p|S̃1|q

ď λdbl
s´2p2 ¨ Φspn̂, m̂q,mq ` 4 ¨ Φspn̂, m̂q

We have accounted for every part of S except for S̊. Fix an interval q and a, b P ΣpS̊qq. Since
a, b P Bq are neither feathers nor wingtips in :T , Lemma 7.2 implies that :S contains a b b :Sq b b a.
Suppose we remove the first and last occurrence of each letter in S̊q. (These letters are underlined
below.) The resulting sequence must be an order-ps´ 3q double DS sequence, for if it contained a
doubled alternating sequence with length s´ 1, which is even, we would see either

a b b

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

s´1 alternations
hkkkkkkkkkikkkkkkkkkj

a a b b ¨ ¨ ¨ a a b b

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

b b a

or

a b b

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

s´1 alternations
hkkkkkkkkkikkkkkkkkkj

b b a a ¨ ¨ ¨ b b a a

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

b b a,

17This is not quite true. As discussed in Remark 4.2, we can make this inference when bounding λdbl
s asymptotically.
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contradicting the fact that S is an order-s double DS sequence. We can therefore bound |S̊| by
ÿ

q

|S̊q| ď
ÿ

q

pλdbl
s´3p̊nq,mqq ` 2n̊qq

ď λdbl
s´3

˜

ÿ

q

n̊q,m

¸

` 2
ÿ

q

n̊q

ď λdbl
s´3p|S̊

1|,mq ` 2|S̊1|

ď λdbl
s´3p|

:S1| ´ 2n̂,mq ` 2p| :S1| ´ 2n̂q

ď λdbl
s´3pλspn̂, m̂q ´ 2n̂,mq ` 2pλspn̂, m̂q ´ 2n̂q

This establishes the recurrence for odd s ě 5. When s “ 3 or s ě 4 is even, we ignore the distinction
between feathers and non-feathers and bound |S̄| by λdbl

s´2pλspn̂, m̂q ´ 2n̂,mq ` 2pλspn̂, m̂q ´ 2n̂q.
When S “ S1S2 consists of m̂ “ 2 intervals, no symbols are classified as middle, so it suffices
to account for first, last, and local occurrences only. After discarding the last occurrence of each
symbol from Ŝ1 and the first from Ŝ2, what remains are order-ps ´ 1q double DS sequences, so
|Ŝ| ď 2n̂` λdbl

s´1pn̂,m1q ` λ
dbl
s´1pn̂,m2q ď 2n̂` λdbl

s´1p2n̂,mq.

Recurrence 7.5 is similar to [22, Rec. 5.2] but presented in the style of Recurrence 7.4. The
proof is essentially the same as that of Recurrence 7.4 except that we do not need to distinguish
singletons from non-singletons, nor do we need to remove symbols from Śq, S̀q, S̃q, S̊q, or S̄q in order
to make them double DS sequences with order s´ 1 or s´ 2 or s´ 3, as the case may be.

Recurrence 7.5. Let s, n, and m be the order, alphabet size, and block count parameters. Let
tmqu1ďqďm̂ be a uniform block partition, where m̂ ě 2, and tn̂uYtňqu1ďqďm̂ be an alphabet partition.
When m̂ “ 2, for any s ě 3,

λspn,mq ď
ÿ

qPt1,2u

λspňq,mqq ` λs´1p2n̂,mq.

When m̂ ą 2 and either s “ 3 or s ě 4 is even,

λspn,mq ď
ÿ

q

λspňq,mqq ` 2 ¨ λs´1pn̂,mq ` λs´2pλspn̂, m̂q ´ 2n̂,mq

and when s ě 5 is odd,

λspn,mq ď
m̂
ÿ

q“1

λspňq,mqq ` 2 ¨ λs´1pn̂,mq ` λs´2p2 ¨ Φspn̂, m̂q,mq ` λs´3pλspn̂, m̂q,mq

Lemma 7.6 states some bounds on Φs, λs, and λdbl
s in terms of coefficients tφs,i, δs,i, δ

dbl
s,i u and

the ith row-inverse of Ackermann’s function, for any i ě 1. Refer to [22, Appendices B and C] for
proofs of similar lemmas, and to the discussion following Lemma 4.4.

Lemma 7.6. Fix parameters i ě 1, s ě 3, and c ě s´2 and let n,m be the alphabet size and block
count. Let j be minimal such that m ď pai,jq

c. Then Φs, λs, and λdbl
s are bounded by

Φspn,mq ď φs,i
`

n`Oppcjqs´2mq
˘

λspn,mq ď δs,i
`

n`Oppcjqs´2mq
˘

λdbl
s pn,mq ď δdbls,i

`

n`Oppcjqs´2mq
˘
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where tφs,i, δs,i, δ
dbl
s,i u are defined as follows.

φ2,i “ 0 all i

φs,1 “ φs´1,1 ` 1 s ě 3

φs,i “ φs,i´1 ` φs´1,i ` 1 s ě 3, i ě 2

δ1,i “ 1 all i

δ2,i “ 2 all i

δdbl1,i “ 2 all i

δdbl2,i “ 5 all i

δs,1 “ 2δs´1,1 “ 2s´1 s ě 3

δdbls,1 “ 2pδdbls´1,1 ` 1q “ 2s`1 ´ 2s´2 ´ 2 s ě 3

δs,i “

#

2δs´1,i ` δs´2,ipδs,i´1 ´ 2q

2δs´1,i ` 2δs´2,iφs,i´1 ` δs´3,iδs,i´1

s “ 3 or even s ě 4

odd s ě 5

δdbls,i “

#

δdbls,i´1 ` 2δdbls´1,i ` pδ
dbl
s´2,i ` 2qδs,i´1

δdbls,i´1 ` 2δdbls´1,i ` 2pδdbls´2,i ` 2qφs,i´1 ` pδ
dbl
s´3,i ` 2qδs,i´1

s “ 3 or even s ě 4

odd s ě 5

When applying Lemma 7.6, the tightest bounds are obtained by setting i “ αpn,mq ` Op1q,
which is αpnq `Op1q whenever j “ Op1q. Lemma 7.7 gives closed form bounds on the coefficients
tδs,i, δ

dbl
s,i , φs,iu, which immediately yield sharp bounds on the extremal functions λspn,mq and

λdbl
s pn,mq for DS and double DS sequences partitioned into blocks.

Lemma 7.7. (Closed Form Bounds) For all s ě 3, i ě 1, we have

φs,i “

ˆ

i` s´ 2

s´ 2

˙

´ 1

δ3,i “ 2i` 2

δdbl3,i “ Θpi2q

δ4,i, δ
dbl
4,i “ Θp2iq

δ5,i, δ
dbl
5,i “ Θpi2iq

δs,i, δ
dbl
s,i ď 2p

i`Op1q
t q where t “ t s´2

2 u.

Proof. The expression for φs,i holds in the base cases, when s “ 2 or i “ 1. By Pascal’s identity it
holds in general since

φs,i “ φs,i´1 ` φs´1,i ` 1 “

ˆ

i` s´ 3

s´ 2

˙

`

ˆ

i` s´ 3

s´ 3

˙

´ 1 “

ˆ

i` s´ 2

s´ 2

˙

´ 1.

When s P t3, 4u, δs,i and δdbls,i are identical to πs,i and πdbl
s,i , and therefore satisfy the same bounds

from Lemma 4.5. Define C4 such that δ4,i ď 2i`C4 . Assuming inductively that for some sufficiently
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large C5, δ5,i´1 ď pi´ 1q2pi´1q`C5 , we have

δ5,i ď 2δ4,i ` 2δ3,iφ5,i´1 ` δ2,iδ5,i´1

ď 2i`C4`1 ` 2p2i` 2q ¨
`

i`2
3

˘

` 2 ¨ pi´ 1q2i´1`C5

ď i2i`C5 .

We claim that there are constants tCsu such that, for all s ą 5, δs,i ď 2p
i`Cs
t q. When s ą 4 is even,

δs,i ď 2δs´1,i ` δs´2,iδs,i´1

ď 2p
i`Cs´1
t´1 q`1

` 2p
i`Cs´2
t´1 q2p

i´1`Cs
t q

ď 2p
i`Cs
t q, for some Cs ą Cs´1 ą Cs´2.

When s ą 5 is odd, whether s´ 2 “ 5 or not, δs´2,i ď i2p
i`Cs´2
t´1 q by the inductive hypothesis, so

δs,i ď 2δs´1,i ` 2δs´2,iφs,i´1 ` δs´3,iδs,i´1

ď 2p
i`Cs´1

t q`1
` i2p

i`Cs´2
t´1 q`1

¨
`

i`s´3
s´2

˘

` 2p
i`Cs´3
t´1 q2p

i´1`Cs
t q

ď 2p
i`Cs´1

t q`1
` i2p

i`Cs´2
t´1 q`1

¨
`

i`s´3
s´2

˘

` 2´pCs´Cs´3q2p
i`Cs
t´1 q`p

i´1`Cs
t q (10)

ď 2p
i`Cs
t q. (11)

Inequality (10) follows since t ´ 1 ě 1 and Inequality (11) follows since, for Cs sufficiently large,

2p
i`Cs
t q dominates both polypiq ¨ 2p

i`Cs´2
t´1 q and 2p

i`Cs´1
t q`1. It is straightforward to show the same

bounds hold on δdbls,i , for s ě 4, with respect to different constants tDsu. That is, δdbls,i ď 2p
i`Ds
t q

when s ‰ 5 and δdbl5,i ď i2i`D5 .

Choosing i “ αpn,mq `Op1q, Lemmas 7.6 and 7.7 imply that

λ3pn,mq “ Oppn`mqαpn,mqq

λdbl
3 pn,mq “ Oppn`mqα2pn,mqq

λ4pn,mq, λ
dbl
4 pn,mq “ Oppn`mq2αpn,mqq

λ5pn,mq, λ
dbl
5 pn,mq “ Oppn`mqαpn,mq2αpn,mqq

λspn,mq, λ
dbl
s pn,mq “ Oppn`mq2α

tpn,mq{t!`Opαt´1pn,mqqq

When m “ Opnq these bounds are all sharp, with the exception of λdbl
3 , which was already handled

in Section 6. Using the best transformations from 2-sparse to blocked sequences from Lemma 3.1,
we obtain all the bounds on λs and λdbl

s claimed in Theorem 1.3, except at s “ 5, where we only
get λ5pnq “ Opαpαpnqqq ¨ λ5pn, 3nq and λdbl

5 pnq “ Opαpαpnqqq ¨ λdbl
5 pn, 3nq. Refer to [22, §7.3] for an

ad hoc method to eliminate this αpαpnqq factor.

8 Generalized Constructions of Nonlinear Sequences

Recall from Section 2.1 that the difference between postshuffling and preshuffling is in how blocks
of one sequence are merged with copies of another. In Usub 5 Ubot symbols from Usub are inserted
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at the end of blocks in copies of Ubot whereas in Usub 4 Ubot they are inserted at the beginning
of blocks. It is not immediately clear why these two shuffling strategies should yield sequences
with different properties. Consider the projection of symbols R “ ta, . . . , zu in a common block
B of Utop, where all symbols in R are middle occurrences in B. If Utop was constructed via a
series of composition and postshuffling operations, the projection of Utop onto R, ignoring repe-
titions, is ab ¨ ¨ ¨ zpzy ¨ ¨ ¨ aqzy ¨ ¨ ¨ a, whereas if preshuffling were used the projection onto R would
be ab ¨ ¨ ¨ zpab ¨ ¨ ¨ zqzy ¨ ¨ ¨ a. In a subsequent composition event Usub “ Utop ˝Umid, the canonical
ordering of R in UmidpBq is identical to their ordering in Utop, in the case of preshuffling, or the
reversal of that ordering in the case of postshuffling.

In this section we explore the complexity of sequences avoiding “zig-zagging” patterns, which
can be viewed as one natural generalization of Davenport-Schinzel sequences. Recall the definitions
of Nk,Mk, and Zk.

Nk “ 12 ¨ ¨ ¨ pk ` 1qk ¨ ¨ ¨ 12 ¨ ¨ ¨ pk ` 1q

Mk “ 12 ¨ ¨ ¨ pk ` 1qk ¨ ¨ ¨ 12 ¨ ¨ ¨ pk ` 1qk ¨ ¨ ¨ 1

Zk “ 12 ¨ ¨ ¨ pk ` 1qk ¨ ¨ ¨ 12 ¨ ¨ ¨ pk ` 1qk ¨ ¨ ¨ 12 ¨ ¨ ¨ pk ` 1q

Note that N1 “ abab,M1 “ ababa, and Z1 “ ababab generalize order-2, -3, and -4 Davenport-
Schinzel sequences. Klazar and Valtr [14] and Pettie [20] proved that ExpNk, nq “ Θpλ2pnqq “ Θpnq
and that for any k ě 1, ExptMk, abababu, nq “ Θpλ3pnqq “ Θpnαpnqq. (That is, avoiding both Mk

and ababab are equivalent to just avoiding M1.) One might guess that zig-zagging patterns, in
general, mimic the behavior of the corresponding order-s DS sequences.

We prove two results that, taken together, are rather surprising. Theorems 8.5 and 8.6 state
the following in a more precise fashion.

(1) For all t, there exists a k such that ExpMk, nq “ Ωpnαtpnqq.

(2) For all t, there exists a k such that ExpZk, nq “ Ωpn2p1`op1qqα
tpnq{t!q.

Overview. We define two classes of non-linear sequences. Class I sequences have lengths Θpnαtpnqq
and Class II sequences have length n2p1`op1qqα

tpnq{t!, for any t ě 1. Both Class I and Class II se-
quences are parameterized by a binary pattern π “ π1π2 ¨ ¨ ¨π|π| P tä,åu˚. The diagonals in π have
the following interpretation. Consider any set ta1, . . . , alu of symbols in a sequence Tπ of type π. A
maximally intertwined configuration is one in which each pair of symbols in ta1, . . . , alu alternate
the maximum number of times. In Tπ all maximally intertwined configurations will take the form
Aπ1Aπ2 ¨ ¨ ¨Aπ|π| , where Aä “ a1 ¨ ¨ ¨ al and Aå “ al ¨ ¨ ¨ a1. Class I and II sequences are defined in
Sections 8.1 and 8.2 and their forbidden sequences analyzed in Section 8.3.

8.1 Class I Sequences

The sequence Tπpi, jq consists of a mixture of live and dead blocks. It is parameterized by a pattern
π, which always begins with ä. The base cases for Tπ are given below. (Recall that live blocks are
indicated with parentheses and dead blocks with angular brackets.)
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Täåpi, jq “ p12 ¨ ¨ ¨ jq 〈j ¨ ¨ ¨ 21〉 one live block, one dead, for any i

Tääpi, jq “ p12 ¨ ¨ ¨ jq 〈12 ¨ ¨ ¨ j〉 one live block, one dead, for any i

Tπp1, jq “

"

p12 ¨ ¨ ¨ jq 〈j ¨ ¨ ¨ 21〉
p12 ¨ ¨ ¨ jq 〈12 ¨ ¨ ¨ j〉

if π|π| “ å and |π| ą 2

if π|π| “ ä and |π| ą 2

Tπpi, 0q “ p q
2 two empty live blocks, any π

Note that Tπp1, jq is identical to either Täåp¨, jq or Tääp¨, jq, depending on the last character of
π. For the inductive case, when i ą 1, j ą 0, and |π| ą 2,

Tπpi, jq “

$

&

%

Tsub 4 Tbot “ pTtop ˝Tmidq4 Tbot

Tsub 5 Tbot “ pTtop ˝Tmidq5 Tbot

if π|π| “ å

if π|π| “ ä

where Tbot “ Tπpi, j ´ 1q

Tmid “ Tπ´pi, LTbot Mq π´ “ π1 ¨ ¨ ¨π|π|´1

Ttop “ Tπpi´ 1, }Tmid}q

The following facts can easily be proved about Tπpi, jq by induction.

1. The first occurrence of every symbol appears in a live block and live blocks consist solely of
first occurrences.

2. All live blocks have length exactly j. The length of dead blocks varies, as does the number
of dead blocks between consecutive live blocks.

3. Each symbol occurs with the same multiplicity, νπ,i, defined below. Hence |T | “ νπ,i}T } “
νπ,i ¨ j ¨ LT M.

The construction of Tπ gives us an inductive expression for the multiplicity νπ,i of symbols in
Tπpi, jq.

νπ,i “ 2 for |π| “ 2 and all i

νπ,1 “ 2 for all π

νπ,i “ νπ,i´1 ` νπ´,i ´ 1 where π´ “ π1 ¨ ¨ ¨π|π|´1

A short proof by induction shows that νπ,i has the closed form

νπ,i “

ˆ

i` |π| ´ 3

|π| ´ 2

˙

` 1 for all i ě 1, |π| ě 2

It can be shown that i “ αpn,mq ` Op1q, where n “ }Tπpi, jq} and m “ JTπpi, jqKq, from
which it follows that Tπpi, jq has length Θpnα|π|´2pn,mqq, and length Θpnα|π|´2pnqq if j “ Op1q.
Theorem 8.1 summarizes two results from [21, 19, 9] using the Tπ notation.
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Theorem 8.1. ([9, 21, 19])

1. ababa, abcaccbc ć Täåä.

2. abaaba, abcacbc ć Tääå.

As a consequence both Expababa, nq and Expabcacbc, nq are Ωpnαpnqq, which is asymptotically tight.

8.2 Class II Sequences

Class II Sequences consist solely of live blocks. They are parameterized by binary patterns, which
are restricted to being even-length palindromes, starting with ä and ending with å. If π “

π1 ¨ ¨ ¨π|π|, its flip flippπq is obtained by flipping the direction of each diagonal and its truncation
π´ is obtained by trimming π1 and π|π|. For example, if π “ äåååäääå, flippπ´q “ äääååå.

The base cases for Uπ are given below. The sequence Uπpi, jq has the property that each block
has length j and each symbol has multiplicity µπ,i, which will be defined below.

Uäåpi, jq “ p12 ¨ ¨ ¨ jq pj ¨ ¨ ¨ 21q two blocks, for any i

Uπp1, jq “ p12 ¨ ¨ ¨ jq pj ¨ ¨ ¨ 21q two blocks, for any π

Uπp0, jq “ p12 ¨ ¨ ¨ jq one block, for any π

Uπpi, 1q “ p1q
µπ,i µπ,i identical blocks

For the inductive case, when i ą 1, j ą 0, and |π| ą 2, we have

Uπpi, jq “

#

Usub 4 Ubot “ pUtop ˝Tmidq4 Ubot if π2π|π|´1 “ äå

Usub 5 Ubot “ pUtop ˝Tmidq5 Ubot if π2π|π|´1 “ åä

where Ubot “ Uπpi, j ´ 1q

Umid “

#

Uπ´pi, JTbotKq if π2π|π|´1 “ äå

Uflippπ´qpi, JTbotKq if π2π|π|´1 “ åä

Utop “ Uπpi´ 1, }Tmid}q

The construction of Uπ is a strict generalization of the Us sequences defined in Section 2, for
even s. Note that when π “ päåqs{2, only postshuffling is used, since flippπ´q “ päåqs{2´1.
The multiplicity µπ,i of symbols in Uπpi, jq is not affected by which shuffling operation is used,

so the analysis from Section 2 still holds: µπ,i “ 2p
i`t´1
t q ě 2i

t{t!, where t “ p|π| ´ 2q{2, and
i “ αp}Uπpi, jq}, JUπpi, jqKq `Op1q.

8.3 Analysis of Tπ and Uπ

Lemmas 8.2 and 8.3 isolate some properties of Tπ useful in the analysis of M -shaped sequences and
comb-shaped sequences.

Lemma 8.2. Let Tsh “ Tπpi, jq, where i and j are arbitrary. Let χ “ π|π| and χ1 “ π|π|´1 be the
last and second to last characters of π, and let Ttop, Tmid, Tsub, and Tbot be the sequences arising in
the formation of Tsh.
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1. If abba ă Tsh or baba ă Tsh then it cannot be that b P ΣpTsubq while a P ΣpT ˚botq.

2. If a ă b share a live block in one of Ttop, Tbot, or Tsh, then this sequence’s projection onto
ta, bu has the form pabqa˚b˚ if χ “ ä and pabqb˚a˚ if χ “ å.

3. If a1 ă ¨ ¨ ¨ ă al share a live block in Tsub, then its projection onto ta1, . . . , alu has the form
pa1 . . . alqA

χ1Aχ where Aä “ a˚1 . . . a
˚
l and Aå “ a˚l ¨ ¨ ¨ a

˚
1 .

Lemma 8.3. Whereas ababa ć Täåä, abaaba ć Tπ, for any π P tääå,äåå,äääu.

Proof. Lemma 8.2(1) implies that ababa cannot be introduced by a shuffling event, but must first
appear in Tsub “ Ttop ˝Tmid from a composition event. Moreover, abaaba could not arise in Tsub

from an occurrence of ababa in Ttop since, in such an occurrence, the middle a would necessarily
be in a dead block and could therefore not beget multiple as in Tsub. It must be that a and b share
a common live block in Ttop, so its projection onto ta, bu is contained in pabqa˚b˚, if π3 “ ä, and
pabqb˚a˚ if π3 “ å. Since Tmid is either Tää or Täå, the projection of Tsub onto ta, bu is one of

pabq 〈ba〉 a˚b˚ or pabq 〈ba〉 b˚a˚ or pabq 〈ab〉 a˚b˚ or pabq 〈ab〉 b˚a˚.

The first is ababa-free while the remaining are abaaba-free.

In Theorem 8.5 we prove that ExpM2k , nq “ Ωpnαk`1pnqq by induction. Lemma 8.4 handles
the base case for M2.

Lemma 8.4. M2 “ abcbabcba ć Tπ, for any of the length-4 patterns π P ätä,åu2ä.

Proof. Since M2 contains ababa, any instance of M2 must first arise in Tsub “ Ttop ˝Tmid from a
composition event, not in Tsh “ Tsub5Tmid from a shuffling event. Here Tmid is defined by any of the
four patterns π´ P ätä,åu2. It must be that a, b, c share a live block in Ttop. If only b and c shared
a live block then the projection of Ttop onto ta, b, cu would have the form a˚pbc or cbqa˚b˚c˚b˚a˚,
violating Lemma 8.2 since neither pbcq and pcbq can be followed by bcb. If only a and b shared a
live block the projection onto ta, b, cu would have the form a˚b˚c˚pba or abqc˚b˚a˚, which violates
the property that live blocks contain only first occurrences.

We have deduced that a, b, and c share a live block B in Ttop, but they do not necessarily appear
in that order. To form a copy of M2, some prefix must arise from substituting the type π´ sequence
TmidpBq for B; the remaining suffix must follow a, b, and c’s live block in Ttop. The split between
prefix and suffix can be (i) abcbab | cba, or (ii) abcbabc | ba, or (iii) abcbabcb | a. In cases (i) and (ii),
b must precede a in B, meaning b ă a in the canonical ordering of TmidpBq. As a consequence,
any occurrence of the prefix abcbab (or abcbabc) in Tmid implies an occurrence of babbab ă Tmid,
contradicting Lemma 8.3. In case (iii) the prefix contains bcbbcb, also contradicting Lemma 8.3.

Theorem 8.5. For any k ě 1, M2k ć Tπ, where π P ätä,åu2äk. As a consequence, ExpM2k , nq “
Ωpnαk`1pnqq.

Proof. The proof is by induction on k; the base case is covered by Lemma 8.4. For succinctness
let K “ 2k. As in the proof of Lemma 8.4 we can restrict our attention to the case where MK , say
over the alphabet a1, . . . , aK`1, arises in Tsub after a composition event. Moreover, we can assume
a1, . . . , aK`1 appear in a common live block B, so the projection of Ttop onto ta1, . . . , aK`1u is
pa1 ¨ ¨ ¨ aK`1qa

˚
1 ¨ ¨ ¨ a

˚
K`1. If substituting TmidpBq for B creates an instance of MK , some prefix
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must come from TmidpBq and the remaining suffix from the sequence a˚1 ¨ ¨ ¨ a
˚
K`1 following B.

There are two cases: either the suffix contains a strict majority of the K ` 1 symbols or a strict
minority. In the former case we have aK{2`1 ă ¨ ¨ ¨ ă aK`1 according to the canonical ordering of
TmidpBq, so any instance of the N -shaped pattern aK`1aK ¨ ¨ ¨ aK{2`1aK{2`2 ¨ ¨ ¨ aK`1aK ¨ ¨ ¨ aK{2`1

in TmidpBq implies that it also contains

MK{2 “ aK{2`1
aK{2`2

. . . aK`1 aK ... aK{2`1
aK{2`2

. . . aK`1 aK ... aK{2`1,

which contradicts the hypothesis that Tmid is MK{2-free. If, on the other hand, the suffix of MK

following B contains a strict minority of ta1, . . . , aK`1u, then TmidpBq must contain an instance of
MK{2 on the alphabet a1, . . . , aK{2`1, also contradicting the inductive hypothesis.

We now turn to the analysis of the forbidden sequences of Uπ.

Theorem 8.6. For any k ě 0, Z3k ć Uπ, where π “ äk`1 åä åk`1. As a consequence, ExpZ3k , nq ą

n ¨ 2p1`op1qqα
k`1pnq{pk`1q!.

Proof. The proof is by induction on k. For succinctness we let K “ 3k. In the base case k “ 0,
ZK “ ababab, and Uπ “ Uäåäå is ababab-free, by Lemma 2.4. In the general case k ě 1 and
π “ äk`1 åä åk`1, so Uπ “ Usub 4 Ubot “ pUtop ˝Umidq4 Ubot is formed by composing Utop with
Umid, a type π´ sequence, then preshuffling it with Ubot. We can assume that any occurrence of
ZK arises from the composition event Usub “ Utop ˝Umid since ababab ă ZK cannot be introduced
by shuffling. Write ZK as

a1
a2

. . . aK`1 aK ... a1
a2

. . . aK`1 aK ... a1
a2

. . . aK`1.

It is easy to verify that if ZK occurs in Usub, it must be that ta1, . . . , aK`1u share a single block
B in Utop. (Note, however, that their canonical orderings in Utop and UmidpBq are not necessarily
a1 ă ¨ ¨ ¨ ă aK`1.) Some prefix of ZK appears before B in Utop, some suffix of ZK after B
in Utop, and the remaining middle portion appears in UmidpBq. Suppose a1 ¨ ¨ ¨ al is the prefix
and al1al1`1 ¨ ¨ ¨ aK`1 the suffix, for some indices l, l1. It follows that a1 ă a2 ă ¨ ¨ ¨ ă al and
aK`1 ă aK ă ¨ ¨ ¨ ă al1 according to the canonical ordering of UmidpBq, which implies l ď l1.18 At
least one of the following must be true

(i) the prefix contains at least K{3`1 symbols and is disjoint from the suffix, that is, l ě K{3`1
and l ă l1.

(ii) the suffix contains at least K{3` 1 symbols and we are not in case (i), that is, l1 ď 2K{3` 1.

(iii) there are at least K{3 ` 1 symbols in neither the prefix nor suffix, that is, l ď K{3 and
l1 ě 2K{3` 2.

Case (iii) is the simplest. To form a copy of ZK in Usub, we would need UmidpBq to contain a copy
of ZK{3 on the alphabet taK{3`1, . . . , a2K{3`1u, contradicting the inductive hypothesis. In Case
(i), UmidpBq must contain aK{3`1 ¨ ¨ ¨ a1 ¨ ¨ ¨ aK{3`1 ¨ ¨ ¨ a1 ¨ ¨ ¨ aK{3`1, which, by the canonical ordering
a1 ă ¨ ¨ ¨ ă aK{3`1, implies UmidpBq also contains a copy of ZK{3, a contradiction. Case (ii) is
symmetric to Case (i).

18Since preshuffling is used, the canonical ordering of middle symbols in B is the same in Utop and UmidpBq, though
the same is not true of symbols making their first appearance in B.
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8.4 Comb-shaped Sequences

The results of [9, 14, 19, 20] show that ababa and abcacbc are the only minimally non-linear 2-sparse
forbidden sequences over a three-letter alphabet, both with extremal function Θpnαpnqq. Just as
ababa can be generalized to M -shaped sequences, C1 “ abcacbc can be generalized to the one-sided
comb-shaped sequences tCkukě1, where

Ck “ 1 2 3
. . .

pk ` 2q

1

pk ` 2q

2

pk ` 2q

3

pk ` 2q
. . . pk ` 1q

pk ` 2q.

Our parameterized sequences let us obtain non-trivial lower bounds on comb-shaped sequences.

Theorem 8.7. For all k ě 1, Ck ć Tπ, where π “ ääåk. Consequently, ExpCk, nq “ Ωpnαkpnqq.

Proof. The proof is by induction on k. Theorem 8.1 (see [19]) takes care of the base case C1 “

abcacbc. We will focus on C2 “ abcdadbdcd, then note why the argument works for any k. De-
fine Ttop, Tsub, Tbot, and Tmid as usual, where Tmid is now a type ääå sequence. We first argue
that ta, b, c, du Ď ΣpTtopq. One may check that the only case that does not immediately violate
Lemma 8.2(1) is that a P ΣpT ˚botq while b, c, d P ΣpTtopq. This means that pbcdqdbdcd ă Tsub, where
the live block pbcdq was shuffled into a’s copy of Tbot. However, Lemma 8.2(3) implies that the
projection of Tsub onto tb, c, du has the form pbcdqd˚c˚b˚d˚c˚b˚, which does not contain pbcdqdbdcd.

One can see that a, b, c, and d must share a live block B in Ttop. If the first two as in C2 ă Tsub

arose from the composition that created Tsub then b, c, and d must have been in a’s live block. If
not then C2 would have already appeared in Ttop. Thus, some prefix of C2 arose from substituting
TmidpBq for B and the remaining suffix followed B in Ttop. Lemma 8.2(2) implies that the suffix
cannot be dcd for otherwise pcdqcd ă Ttop or pdcqdc ă Ttop. This implies that abdadbd “ C1 ă

TmidpBq (a type ääå sequence), which contradicts Theorem 8.1.
For k ą 2 write Ck “ a1a2 ¨ ¨ ¨ ak`1ba1ba2b ¨ ¨ ¨ bak`1b. The same argument from above shows

that ta1, . . . , ak`1, bu are contained in a single block B of Ttop. For Ck to arise in Tsub a prefix of it
must come from TmidpBq and a suffix from the part of Ttop following B. By Lemma 8.2(2) the suffix
cannot be bak`1b, which means the prefix in TmidpBq must contain a1 ¨ ¨ ¨ akba1ba2b ¨ ¨ ¨ bakb “ Ck´1,
contradicting the inductive hypothesis.

9 Conclusions

In Theorem 1.3 we established sharp bounds on the functions Λr,s and Λdbl
r,s, for all values of r and s,

and showed, perhaps surprisingly, that these extremal functions are essentially the same. Moreover,
they match λs and λdbl

s only when s ď 3, or s ě 4 is even, or r “ 2. However, Theorem 1.3 is not
the last word on Λdbl

r,s. In Cibulka and Kynčl’s [3] application of Λdbl
r,spn,mq, s is a fixed parameter

whereas r is variable and cannot be bounded as a function of s. Cibulka and Kynčl require upper
bounds on Λdbl

r,spn,mq that are linear in r whereas the leading constant in our bounds matches that
of Λdbl

r,2pn,mq, currently known to be at most Op6rq. See Lemma 3.3. In other words, we now
have two incomparable upper bounds on Λdbl

r,2pn,mq when r is not treated as a constant, namely
Oppn ` rmqαpn,mqq [3], which is optimal as a function of r, and Op6rpn `mqq, which is optimal
for fixed r. Whether Λdbl

r,2pn,mq “ Opn` rmq or not is an intriguing open question.
We have shown that doubling various forbidden patterns (alternating sequences and catenated

permutations) has no significant effect on their extremal functions. It is an open problem whether
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Expdblpσq, nq is asymptotically equivalent to Expσ, nq for every σ. We conjecture the answer is no
when σ can be a set of forbidden sequences, though it seems plausible the answer is yes for any
single forbidden sequence.

Conjecture 9.1. In general, it is not true that Expdblpσq, nq “ ΘpExpσ, nqq. In particular, whereas
Expdblptababa, abcacbcuq, nq “ Θpnαpnqq, we conjecture Exptababa, abcacbcu, nq “ Opnq.

The main open problem in the realm of generalized Davenport-Schinzel sequences is to charac-
terize linear forbidden sequences, or equivalently, to enumerate all minimally non-linear forbidden
sequences. The number of minimally non-linear sequences (with respect to the partial order ă) is
almost certainly infinite [19], but whether there are infinitely many genuinely different non-linear
sequences is open. Refer to [19] for a discussion of how “genuinely” might be formally defined.

Conjecture 9.2. (Informal) Every nonlinear sequence σ (having Expσ, nq “ ωpnq) contains ababa,
abcacbc, or some sequence morally equivalent to abcacbc.

Our lower bounds on ExpMk, nq are weak, as a function of k, and we have provided no non-trivial
upper bounds. It may be possible to generalize the proof of Theorem 6.9 to show ExpMk, nq “
Opn polypαpnqqq, where the degree of the polynomial depends on k.
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A Proofs

A.1 Proof of Lemma 1.2

Recall that dblpPermr,s`1q “ tdblpσq | σ P Permr,s`1u whereas sequences in Permdbl
r,s`1 are formed

by taking the concatenation of s` 1 sequences, the first and last being a permutation of t1, . . . , ru
and all the rest containing two occurrences of t1, . . . , ru. For example, abc abaccb bca P Permdbl

3,3

whereas abbcc ccbbaa bbcca P dblpPerm3,3q. We restate Lemma 1.2.

Lemma 1.2 The following bounds hold for any r ě 2, s ě 1.

ExpdblpPermr,s`1q, n,mq ď r ¨ Λdbl
r,spn,mq ` 2rn

ExpdblpPermr,s`1q, nq “ OpΛdbl
r,spnqq.

Proof. Let S be a dblpPermr,s`1q-free sequence over an n-letter alphabet. Obtain S1 from S by
discarding the first occurrence and last r occurrences of each letter, then retaining every rth oc-
currence of each letter, discarding the rest. Clearly S1 has the property that each b is preceded
and followed by at least r bs in S, and between two bs in S1 there are at least r ´ 1 bs in S. It
follows that |S1| ě p|S| ´ 2rnq{r. Suppose |S1| contained some sequence σ11 ¨ ¨ ¨σ

1
s`1 P Permdbl

r,s`1.
(Recall that σ11 and σ1s`1 contain one copy of t1, . . . , ru whereas σ12, . . . , σ

1
s contain two copies of

t1, . . . , ru.) This implies that S contains a sequence σ1 ¨ ¨ ¨σs`1 where each σk contains r` 1 copies
of t1, . . . , ru. We claim each σk contains a doubled permutation of t1, . . . , ru, which implies that
S is not dblpPermr,s`1q-free, a contradiction. Find the symbol b in σk whose second occurrence
is earliest, that is, we can write σk “ σ1k b σ

2
k b σ

3
k , where σ1kσ

2
k contains at most one copy of each

symbol. Since σ3k contains at least r copies of the r ´ 1 symbols in t1, . . . , ruztbu we can continue
to find a doubled permutation of t1, . . . , ruztbu by induction. If S is an m-block sequence then S1

is too, giving the first bound. When S is merely r-sparse we can only bound S1 by Λdbl
r,spnq if it,

too, is r-sparse. This is done as follows.
Greedily partition S “ S1S2 . . . Sm into maximal sequences tSqu over alphabets of size exactly

2r2, with }Sm} perhaps smaller. Since each Sq has length at most ExpdblpPermr,s`1q, 2r
2q “ Op1q,

it follows that m “ Ωp|S|q. Obtain T be replacing each Sq with a block consisting of its alphabet
ΣpSqq. If |T | ď 2r2n there is nothing to prove since |S| “ Θp|T |q “ Opnq “ OpΛdbl

r,spnqq, so assume
otherwise. Obtain T 1 from T by discarding the first occurrence and last r occurrences of each letter,
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then retaining every rth occurrence of each letter. It follows that |T 1| ě p|T | ´ 2rnq{r ě |T | r´1
r2

,
that is, the average length of blocks in T 1 is 2pr ´ 1q. Let T 2 be an r-sparse subsequence of T 1

obtained by scanning T 1 from left to right, removing a symbol if it is identical to one of the preceding
r ´ 1 symbols. At most r ´ 1 letters from each block of T 1 can be removed in this process. The
average block length of T 2 is at least 2pr ´ 1q ´ pr ´ 1q ě 1, hence |T 2| ě m “ Ωp|S|q. Since T 2 is
Permdbl

r,s`1-free, we have |S| “ OpΛdbl
r,spnqq.

A.2 Proof of Lemma 3.1

There is no theorem to the effect that Expσ, nq “ OpExpσ, n,Opnqqq. Lemma 3.1 restates the best
known reductions from r-sparse to blocked sequences. Some ad hoc reductions are known to be
superior, for example, those for order-5 DS sequences [22].

Lemma 3.1 (Cf. Sharir [23], Füredi and Hajnal [7], and Pettie [22].) Define γs, γ
dbl
s , γr,s, γ

dbl
r,s :

N Ñ N to be non-decreasing functions bounding the leading factors of λspnq, λ
dbl
s pnq,Λr,spnq, and

Λdbl
r,spnq, e.g., Λdbl

r,s ď γdbl
r,s pnq ¨ n. The following bounds hold.

λspnq ď γs´2pnq ¨ λspn, 2nq λdbl
s pnq ď pγ

dbl
s´2pnq ` 4q ¨ λdbl

s pn, 2nq

λspnq ď γs´2pγspnqq ¨ λspn, 3nq λdbl
s pnq ď pγ

dbl
s´2pγ

dbl
s pnqq ` 4q ¨ λdbl

s pn, 3nq

Λr,spnq ď γr,s´2pnq ¨ Λr,spn, 2nq ` 2n Λdbl
r,spnq ď pγ

dbl
r,s´2pnq `Op1qq ¨ Λ

dbl
s pn, 2nqq

Λr,spnq ď γr,s´2pγr,spnqq ¨ Λr,spn, 3nq ` 2n Λdbl
r,spnq ď pγ

dbl
r,s´2pγ

dbl
r,s pnqq `Op1qq ¨ Λ

dbl
s pn, 3nqq

where the Op1q term in the last two inequalities depends on r and s.

Proof. All the bounds are obtained from the following sequence manipulations, which were first
used by Hart and Sharir [9] and Sharir [23]. Let S be an r-sparse sequence avoiding some set σ
of subsequences over an r-letter alphabet, so |S| ď Expσ, nq. Greedily parse S into m intervals
S1S2 ¨ ¨ ¨Sm by choosing S1 to be the maximum-length prefix satisfying some property P, S2 to
be the maximum-length prefix of the remaining sequence satisfying P, and so on. Form S1 “
ΣpS1qΣpS2q ¨ ¨ ¨ΣpSmq by replacing each interval Si with a single block ΣpSiq containing its alphabet,
listed in order of first appearance. Since S1 is a subsequence of S, |S1| ď Expσ, n,mq. To bound |S|
we only need to determine upper bounds on m and the shrinkage factor |S|{|S1|.

Bounds on λs. If we parse S into maximal order-ps ´ 2q sequences then each Si must contain
either the first or last occurrence of some symbol, hence m ď 2n. The shrinkage factor is |Si|{}Si} ď
γs´2p}Si}q ď γs´2pnq, which gives the first inequality. Now consider parsing S into m maximal
sequences that are both order-ps´ 2q DS sequences and have length at most γspnq. It follows that
m ď 3n: at most n sequences were terminated because they reached length γspnq (by definition
of γs) and the remaining sequences number at most 2n since each must contain the first or last
occurrence of some letter.

Bounds on λdbl
s . Let σs`2 be the alternating sequence with length s ` 2. Order-s double DS

sequences are dblpσs`2q-free. Obtain σ1s`2 by doubling each letter of σs`2, including the first and
last. It is easy to show that Expσ1s`2, nq ď λdbl

s pnq` 4n so we can take γdbl
s pnq` 4 to be the leading
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factor in this extremal function. Consider parsing an order-s double DS sequence S. If we parse S
into maximal σ1s-free sequences then each subsequence must contain the first or last occurrence of
some symbol, so m ď 2n and the shrinkage factor is at most γdbl

s´2pnq ` 4. If, further, we truncate
any subsequence in the parsing at length γdbl

s pnq, then m ď 3n and the shrinkage factor is at most
γdbl
s´2pγ

dbl
s pnqq ` 4.

Bounds on Λr,s and Λdbl
r,s. The argument is the same, except that during the parsing step, we

discard any symbol that triggers the termination of a subsequence. For example, if S is a Permr,s`1-
free sequence we parse it into S1a1S2a2 ¨ ¨ ¨ am´1Smam, where the tSiu are maximal Permr,s´1-free
sequences and taiu the single letters following them, where am might not be present. Since Siai
contains some element of Permr,s´1, Siai must contain the first or last occurrence of some letter,
hence m ď 2n. We form S1 by contracting each Si to a single block, discarding ai, so the shrinkage
factor is at most γr,s´2pnq. It follows that |S| ď γr,s´2pnq ¨Λr,spn, 2nq ` 2n. The procedure for Λdbl

r,s

is a straightforward combination of the procedures described above, for Λr,s and λdbl
s .

A.3 Proof of Lemma 3.2

We restate the lemma.

Lemma 3.2 The extremal functions for order-s (double) Davenport-Schinzel sequences and Perm2,s`1-
free (Permdbl

2,s`1-free) sequences are equivalent up to constant factors. In particular,

λspnq ď Λ2,spnq ă 3 ¨ λspnq ` 2n
λspn,mq ď Λ2,spn,mq ă 2 ¨ λspn,mq ` n
λdbl
s pnq ď Λdbl

2,spnq ă 5 ¨ λdbl
s pnq ` 4n

λdbl
s pn,mq ď Λdbl

2,spn,mq ă 3 ¨ λdbl
s pn,mq ` 2n

Proof. Order-s DS sequences are Perm2,s`1-free, which gives the 1st and 3rd inequalities. Let S be
a 2-sparse Perm2,s`1-free sequence. Form S1 ă S by filtering S as follows.

(i) Discard the 1st occurrence of each letter.

(ii) Discard up to n additional occurrences to restore 2-sparseness.

(iii) Discard every even occurrence of each letter.

(iv) Discard additional occurrences to restore 2-sparseness.

We claim S1 has length at least p|S| ´ 2nq{3. The number of letters removed in steps (i) and (ii) is
at most 2n. The number removed in step (iii) is at most p|S| ´ 2nq{2 and the number removed in
step (iv) is at most 1/3 of that of step (iii). This is because between any two even occurrences of
some letter a, there must be another a and, due to 2-sparseness, at least two other letters. Thus,
each letter removed in step (iv) corresponds to at least three removed in step (iii). Suppose that S1

were not an order-s DS sequence, that it contained an alternating subsequence a ¨ ¨ ¨ b ¨ ¨ ¨ a ¨ ¨ ¨ b ¨ ¨ ¨
with length s ` 2. Together with the first occurrence of b and the missing odd occurrences of a
and b from S, we can form a Perm2,s`1 subsequence in S, a contradiction. This gives the 2nd
inequality. If S is composed of m blocks then we only need to form S1 using steps (i) and (iii). The
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4th inequality follows. The 5th and 7th inequalities follow since order-s double DS sequences are
Λdbl

2,s`1-free. To obtain the 6th inequality, let S be a 2-sparse Λdbl
2,s`1-free sequence and S1 be derived

as follows.

(i) Discard the first and last occurrence of each letter.

(ii) Discard up to 2n additional occurrences to restore 2-sparseness.

(iii) Retain every third occurrence of each letter; discard all others.

(iv) Discard additional occurrences to restore 2-sparseness.

By the same argument as above, the number of letters discarded in step (iii) is at most 2p|S|´4nq{3
and the number discarded in step (iv) at most 1/5th that of step (iii), hence |S1| ě p|S| ´ 4nq{5.
Suppose S1 contained a doubled alternating sequence abbaabb ¨ ¨ ¨ having s ` 2 runs of as and bs.
This implies that S contains aabbbbaaaabbbb ¨ ¨ ¨ , where the underlined letters appear in S but not
S1, and therefore that S contains an instance of Permdbl

2,s`1. The 6th inequality follows. The 8th
follows from the same argument, omitting steps (ii) and (iv) in the construction of S1.

A.4 Proof of Lemma 3.3

Some of the results cited in Lemma 3.3 refer to (or implicitly use) results on forbidden 0-1 matri-
ces. See Füredi and Hajnal [7] and Pettie [19, 18, 20] for more details on the connection between
matrices and sequences.

Lemma 3.3 At orders s “ 1 and s “ 2, the extremal functions λs, λ
dbl
s ,Λr,s, and Λdbl

r,s obey the
following.

λ1pnq “ n λ1pn,mq “ n`m´ 1
λ2pnq “ 2n´ 1 λ2pn,mq “ 2n`m´ 2 (Davenport-Schinzel [4])
λdbl

1 pnq “ 3n´ 2 λdbl
1 pn,mq “ 2n`m´ 2 (Dav.-Sch. [5],Klazar [13])

λdbl
2 pnq ă 8n λdbl

2 pn,mq ă 5n`m (Klazar [11], Füredi-Hajnal [7])
Λr,1pnq “ Λdbl

r,1pnq ă rn Λr,1pn,mq “ Λdbl
r,1pn,mq ă n` pr ´ 1qm (Klazar [10])

Λr,2pnq ă 2rn Λr,2pn,mq ă 2n` pr ´ 1qm (Klazar [10])
Λdbl
r,2pnq ă 6rrn Λdbl

r,2pn,mq ă 2 ¨ 6r´1pn`m{3q (Pettie [20], cf. [14])

Proof. Davenport and Schinzel [4] noted the bounds on λ1pnq and λ2pnq; their extension to blocked
sequences is trivial. In an overlooked note Davenport and Schinzel [4] observed without proof that
λdbl

1 pnq “ 3n ´ 2, which was formally proved by Klazar [13]. Its extension to blocked sequences is
also trivial. Adamec, Klazar, and Valtr [1] proved that λdbl

2 pnq “ Opnq and Klazar [11] bounded
the leading constant between 7 and 8. A blocked sequence S can be represented as a 0-1 incidence
matrix AS whose rows correspond to symbols and columns to blocks, where ASpi, jq “ 1 if and only
if symbol i appears in block j. A forbidden sequence becomes a forbidden 0-1 pattern. The bound
on λdbl

2 pn,mq follows from Füredi and Hajnal’s [7] analysis of a certain 0-1 pattern. The bounds on
Λr,1 and Λr,2 were noted by Klazar [10] and Nivasch [16]. They are straightforward to prove.

Since the N -shaped sequence 12 ¨ ¨ ¨ r rpr´ 1q ¨ ¨ ¨ 1 12 ¨ ¨ ¨ r over r letters is contained in Permr,3,
the linear upper bound on Expdblp12 ¨ ¨ ¨ r rpr ´ 1q ¨ ¨ ¨ 1 12 ¨ ¨ ¨ rq, nq due to Klazar and Valtr [14]
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(see also [20]) immediately extend to Λdbl
r,2pnq. With some care the leading constants of Λdbl

r,2pnq
and Λdbl

r,2pn,mq can be made reasonably small using the 0-1 matrix representation of (forbidden)
sequences from [20]. Consider an m-block, Permdbl

r,3-free sequence S. Without loss of generality
assume the alphabet ΣpSq “ t1, . . . , nu is ordered according to their first appearance in S. Let AS
be an nˆm 0-1 matrix where ASpi, jq “ 1 if and only if symbol i appears in block j. By virtue of
being Permdbl

r,3-free, AS does not contain P as a submatrix,19 where P is defined below. Following
convention [27, 18] we use bullets for 1s and blanks for 0s.

P “

¨

˚

˚

˚

˚

˚

˝

‚ ‚ ‚

‚ ‚ ‚

...
. . .

‚ ‚ ‚

‚ ‚ ‚ ‚

˛

‹

‹

‹

‹

‹

‚

İ

§

§

§

§

§

§

§

§

đ

r

The vertical bars are not part of the pattern; they mark the boundaries of the three components of
a Permdbl

r,3 sequence. The results of [20] imply Λdbl
r,2pn,mq ď ExpP, n,mq ď 2 ¨ 6r´1pn`m{3q, where

ExpP, n,mq is the maximum number of 1s in P -free nˆm matrix. To get a bound on Λdbl
r,2pnq we will

show how to convert an r-sparse, Permdbl
r,3-free sequence S into a blocked one. Greedily partition

S “ S1a1S2a2 ¨ ¨ ¨Sm into maximal Permr,3-free sequences S1, . . . , Sm, separated by single symbols
a1, . . . , am. That is, S1 is Permr,3-free but S1a1 is not; S2 is Permr,3-free but S2a2 is not, and so
on. Each interval Sk must contain the last occurrence of some symbol, hence m ď n. If this were
not the case then S necessarily contains a Permr,4 pattern, each of which is also a Permdbl

r,3 pattern,
contradicting the Permdbl

r,3-freeness of S. Obtain S1 by discarding a1, . . . , am and contracting each
Sk to a single block containing its alphabet ΣpSkq. Since |Sk| ď Λr,2p}Sk}q ă 2r}Sk}, we have
|S| ď 2r|S1| ` n. Being an n-block sequence, |S1| ď Λdbl

r,2pn, nq ă 2 ¨ 6r´1p4n{3q, so |S| ă 6rrn.

19In this context a submatrix is obtained by deleting rows and columns from AS , and possibly flipping some 1s to
0s.
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