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NUMERICAL ANALYSIS OF A HYPERBOLIC HEMIVARIATIONAL

INEQUALITY ARISING IN DYNAMIC CONTACT∗

MIKAËL BARBOTEU†, KRZYSZTOF BARTOSZ‡ , WEIMIN HAN§ ,

AND TOMASZ JANICZKO‡

Abstract. In this paper a fully dynamic viscoelastic contact problem is studied. The contact is
assumed to be bilateral and frictional, where the friction law is described by a nonmonotone relation
between the tangential stress and the tangential velocity. A weak formulation of the problem leads
to a second order nonmonotone subdifferential inclusion, also known as a second order hyperbolic
hemivariational inequality. We study both semidiscrete and fully discrete approximation schemes
and bound the errors of the approximate solutions. Under some regularity assumptions imposed on
the true solution, optimal order error estimates are derived for the linear element solution. This
theoretical result is illustrated numerically.

Key words. hyperbolic hemivariational inequality, dynamic contact, linearly viscoelastic
material, nonmonotone friction law, finite element method, error estimate

1. Introduction. This paper provides error analysis for numerical methods to
solve a hyperbolic hemivariational inequality arising in a dynamic bilateral contact
process for a viscoelastic material. The main mathematical difficulty in the study
of the problem is due to the nonmonotonicity of the friction law, and hence, we
cannot apply the standard techniques based on convex analysis. We formulate the
contact condition corresponding to the friction law by means of an inclusion involving
the Clarke subdifferential of a locally Lipschitz potential. Consequently, we deal
with a second order evolutionary hemivariational inequality as a starting point to the
numerical analysis of the contact problem. For approximation of the hemivariational
inequality, we discuss both the spatially semidiscrete and fully discrete schemes. We
use the finite element method for the spatial discretization and backward difference
to approximate the time derivative. In both cases we derive error estimates that are
of optimal order when the linear elements are used, if the true solution has certain
regularity. Finally we present results of computer simulations on a two-dimensional
contact problem, to show the performance of the numerical methods and to provide
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numerical evidence of the theoretically predicted optimal convergence order of the
linear element solutions.

The problem is on the cutting edge of contact mechanics, the theory, numerical
analysis, and computer simulations of hemivariational inequalities. The mathemat-
ical modeling of contact problems in mechanics has reached a mature level, as is
witnessed by the recent large number of publications on its theory and applications
in engineering and industry. For details concerning classical contact models and their
analysis, we refer to [16, 24, 41], where numerical analysis involving error estimates
is also conducted in the case of quasi-static and dynamic problems. For more recent
mathematical results devoted to contact mechanics we refer also to [42, 43]. The
theory of hemivariational inequalities, which allows us to model nonmonotone and
nonsmooth contact problems, is a relatively new approach. Early comprehensive ref-
erences in the area are [33, 35, 36, 37]. For more recent work, we refer to [30] and
the references cited there. In [17], the finite element method is studied for solving
some hemivariational inequalities. There are, however, still few publications devoted
to the error estimates in the numerical solution of hemivariational inequalities. In [3],
numerical approximation for a static hemivariational inequality is studied. In [15], a
class of variational-hemivariational inequalities is studied, theoretically and numeri-
cally. The numerical analysis presented here is also motivated by techniques used in
[7, 8, 9, 41, 5].

The rest of the paper is structured as follows. In section 2 we introduce the
notation as well as some preliminary material. In section 3 we present the classi-
cal formulation of the frictional contact problem, list assumptions on the data, and
present variational formulations of the problem. In section 4 we introduce and analyze
a spatially semidiscrete scheme for solving the problem, and in section 5 we study a
fully discrete approximation scheme. For both schemes, we derive optimal order error
estimates for the linear element solutions under certain solution regularity assump-
tions. In section 6 we present numerical results in simulations of a two-dimensional
contact problem and provide numerical evidence of optimal order convergence for the
linear element solutions.

2. Notation and preliminaries. In this section we present the notation and
some preliminary material to be used later. For further details we refer the reader to
[14, 16, 21, 35].

We denote by Sd the space of second order symmetric tensors on R
d (d ≤ 3 in

applications), and use “ · ” and “| · |” for the inner product and the Euclidean norm
on R

d and S
d, respectively,

u · v = uivi, |v| = (v · v) 1

2 ∀u,v ∈ R
d,

σ · τ = σijτij , |τ | = (τ · τ ) 1

2 ∀σ, τ ∈ S
d.

Here and below the indices i and j run between 1 and d, and the summation convention
over repeated indices is adopted.

Let Ω ⊂ R
d be a bounded domain with a Lipschitz boundary Γ. The unit out-

ward normal vector ν is defined a.e. on Γ. We introduce the following function spaces:

H = L2(Ω;Rd) = {u = (ui) | ui ∈ L2(Ω)}, Q = {σ = (σij) | σij = σji ∈ L2(Ω)},
H1 = {u ∈ H | ε(u) ∈ Q}, Q1 = {σ ∈ Q | Divσ ∈ H}.

Here ε:H1 → Q and Div :Q1 → H are the deformation and divergence operators, de-
fined by

ε(u) = (εij(u)), εij(u) =
1

2
(ui,j + uj,i), Div σ = (σij,j),
2



respectively, where the index following a comma indicates the partial derivative with
respect to the corresponding component of the independent variable. The spaces
H , Q, H1, and Q1 are real Hilbert spaces endowed with the canonical inner products
given by

(u,v)H =
∫

Ω
uivi dx, (σ, τ )Q =

∫

Ω
σijτij dx,

(u,v)H1
= (u,v)H + (ε(u), ε(v))Q, (σ, τ )Q1

= (σ, τ )Q + (Divσ,Div τ )H .

The associated norms on these spaces are denoted by ‖ · ‖H , ‖ · ‖Q, ‖ · ‖H1
and ‖ · ‖Q1

,
respectively.

Let HΓ = H1/2(Γ;Rd) and let γ̄ : H1 → HΓ be the trace operator. For every
element v ∈ H1, we use the same symbol v to denote the trace γ̄v of v on Γ, and we
denote by vν and vτ the normal and tangential components of v on the boundary Γ
given by

vν = v · ν, vτ = v − vνν.

Let H∗
Γ be the dual of HΓ and let 〈·, ·〉H∗

Γ
×HΓ

denote the duality pairing between H∗
Γ

and HΓ. For every σ ∈ Q1 there exists an element σν ∈ H∗
Γ such that

(σ, ε(v))Q + (Divσ, v)H = 〈σν, γ̄v〉H∗

Γ
×HΓ

∀v ∈ H1.

Moreover, if σ is a smooth (say, C1) function, then

〈σν, γ̄v〉H∗

Γ
×HΓ

=

∫

Γ

σν · v dΓ ∀v ∈ H1.

We denote by σν and στ the normal and tangential traces of σ,

σν = (σν) · ν, στ = σν − σνν.

Next recall the definitions of classical (one-sided) directional derivative and its
generalization in the sense of Clarke. Let X be a Banach space and X∗ its dual. For
a function ϕ : X → R, the directional derivative of ϕ at x ∈ X in the direction v ∈ X
is defined by

ϕ′(x; v) = lim
λ↓0

ϕ(x+ λv) − ϕ(x)

λ

whenever this limit exists. The Clarke generalized directional derivative of a locally
Lipschitz function ϕ : X → R at the point x ∈ X in the direction v ∈ X is defined by

ϕ0(x; v) = lim sup
y→x,λ↓0

ϕ(y + λv)− ϕ(y)

λ
.

The Clarke subdifferential of ϕ at x is a subset of X∗ given by

∂ϕ(x) = {ζ ∈ X∗ : ϕ0(x; v) ≥ 〈ζ, v〉X∗×X ∀v ∈ X}.

A locally Lipschitz function ϕ : X → R is said to be regular (in the sense of Clarke) at
x ∈ X if for all v ∈ X , the directional derivative ϕ′(x; v) exists and ϕ′(x; v) = ϕ0(x; v).
The function ϕ is regular (in the sense of Clarke) on X if it is regular at every point
x ∈ X .

We will need the following discrete Gronwall inequality [16, Chapter 7].
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Lemma 2.1. Let T > 0 be given. For a positive integer N we define k =
T/N . Assume that {gn}Nn=1 and {en}Nn=1 are two sequences of nonnegative numbers
satisfying

en ≤ c̄gn + c̄

n
∑

j=1

kej, n = 1, . . . , N,

for a positive constant c̄ independent of N or k. Then there exists a positive constant
c, independent of N or k, such that

max
1≤n≤N

en ≤ c max
1≤n≤N

gn.

3. Mechanical problem and variational formulations. We start with a
description of the mechanical problem. A linearly viscoelastic body occupies an open
bounded connected set Ω ⊂ R

d with a Lipschitz boundary Γ that is partitioned into
three parts Γ1, Γ2, and Γ3 with Γ1, Γ2, and Γ3 being relatively open and mutually
disjoint, and meas (Γ1) > 0. Let [0, T ] be a time interval of interest, T > 0.

We assume that the body is clamped on Γ1 and thus the displacement field van-
ishes there. A volume force of density f0 acts in Ω and a surface traction of density
f2 acts on Γ2. The body is in frictional contact with an obstacle on Γ3. We assume
the contact is bilateral, i.e., there is no loss of contact during the process. Thus, the
normal displacement uν vanishes on Γ3. We model the friction by a nonmonotone
friction law. The dynamic process is considered.

The classical formulation of the mechanical problem is the following.
Problem PM . Find a displacement u : Ω × [0, T ] → R

d and a stress field σ :
Ω× [0, T ] → S

d such that

σ = Aε(u̇) + Bε(u) in Ω× (0, T ),(3.1)

ρ ü = Divσ + f0 in Ω× (0, T ),(3.2)

u = 0 on Γ1 × (0, T ),(3.3)

σν = f2 on Γ2 × (0, T ),(3.4)

uν = 0 on Γ3 × (0, T ),(3.5)

|στ | ≤ μ(0)S if u̇τ = 0, −στ = μ(|u̇τ |)S
u̇τ

|u̇τ |
if u̇τ �= 0 on Γ3 × (0, T ),(3.6)

u(0) = u0, u̇(0) = u1 in Ω.(3.7)

Here, (3.1) is the linearly viscoelastic constitutive law [14, 16], (3.2) is the equa-
tion of motion, where ρ is the mass density, (3.3) is the homogeneous displacement
boundary condition on Γ1, (3.4) is the traction boundary condition on Γ2, (3.5) rep-
resents the bilateral contact condition, and (3.7) provides the initial displacement
and velocity conditions. In (3.6), μ(|u̇τ |)S represents the magnitude of the limiting
friction traction at which slip begins, S ≥ 0 being given. The friction coefficient μ is
allowed to depend on the tangential speed |u̇τ |. The strict inequality in (3.6) holds
in the stick zone and the equality holds in the slip zone. This physical model of
slip-dependent friction was introduced in [38] for geophysical context of earthquake
modeling and it also was studied in [18, 19, 20, 25, 26, 29, 40].

In the study of the contact problem we need the following assumptions on its data:
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H(A): The viscosity operator A : Ω× [0, T ]× S
d → S

d satisfies

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(a) A(·, ·, ε) is measurable on Ω× [0, T ] ∀ ε ∈ Sd;

(b) A(x, t, ·) is continuous on S
d for a.e. (x, t) ∈ Ω× [0, T ];

(c) |A(x, t, ε)| ≤ a0(x, t) + a1|ε| ∀ ε ∈ S
d,

a.e. (x, t) ∈ Ω× [0, T ], with a0 ∈ L2(Ω× (0, T )), a0 ≥ 0 and a1 > 0;

(d) A(x, t, ε) : ε ≥ α|ε|2 ∀ ε ∈ S
d, a.e. (x, t) ∈ Ω× [0, T ] withα > 0;

(e) (A(x, t, ε1)−A(x, t, ε2)) : (ε1 − ε2) ≥ mA|ε1 − ε2|2

∀ ε1, ε2 ∈ S
d, a.e. (x, t) ∈ Ω× [0, T ] with mA > 0;

(f) |A(x, t, ε1)−A(x, t, ε2)| ≤ LA|ε1 − ε2|
∀ ε1, ε2 ∈ S

d, a.e. (x, t) ∈ Ω× [0, T ] with LA > 0.

H(B): The elasticity operator B : Ω×S
d → S

d is a bounded, symmetric, nonneg-
atively definite fourth order tensor, i.e.,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(a) Bijkl ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d;

(b) Bσ · τ = σ · Bτ ∀σ, τ ∈ S
d, a.e. in Ω;

(c) Bτ · τ ≥ 0 ∀ τ ∈ S
d, a.e. in Ω.

H(f): The force and the traction densities satisfy

f0 ∈ L2(0, T ;L2(Ω;Rd)), f2 ∈ L2(0, T ;L2(Γ2;R
d)).

H(μ): The friction bound μ : [0,∞) → R satisfies

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(a) μ is continuous;

(b) |μ(s)| ≤ c(1 + s) ∀ s ≥ 0, c > 0;

(c) μ(s1)− μ(s2) ≥ −λ(s1 − s2) ∀ s1 > s2 ≥ 0 with λ > 0.

Remark 3.1. If A(·, ·, ε) is linear in ε, then H(A)(d) and H(A)(e) are equivalent
with α = mA, and H(A)(f) implies H(A)(c) with a0 = 0 and a1 = LA.

Since μ corresponds to the physical resistance force, it is nonnegative. However,
in mathematical analysis of the contact problem, we do not need to impose this
condition. The condition (c) is the so-called one-side Lipschitz condition, which allows
the function to decrease at a rate not faster than λ.

Using the Clarke subdifferential (cf. [11]), we can express the friction condition
(3.6) in another form. Indeed, define a function j : Rd → R by

(3.8) j(ξ) = S

∫ |ξ|

0

μ(s) ds ∀ ξ ∈ R
d.

Then, assuming H(μ)(a) − (b), the condition (3.6) is equivalent to the following
subdifferential inclusion:

−στ ∈ ∂j(u̇τ ) on Γ3 × (0, T ),

where ∂j(ξ) denotes the Clarke subdifferential of j at the point ξ ∈ R
d.
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Properties of the function j are summarized in the next lemma.
Lemma 3.2. If the assumptions H(μ)(a)–(b) hold, then the function j defined by

(3.8) is regular in the sense of Clarke, it is locally Lipschitz, and

|η| ≤ Sc(1 + |ξ|) ∀ ξ ∈ R
d,η ∈ ∂j(ξ).

If furthermore the assumption H(μ)(c) holds, then we have

(3.9) (η1 − η2) · (ξ1 − ξ2) ≥ −Sλ|ξ1 − ξ2|2 ∀ ξ1, ξ2 ∈ R
d, ηi ∈ ∂j(ξi), i = 1, 2.

Proof. We will show that j is regular in the sense of Clarke. First observe that
for ξ �= 0 we have ∂j(ξ) = {Sμ(|ξ|)ξ/|ξ|} and so j is regular at ξ [12, Proposition
5.6.15]. Next, consider the case ξ = 0. Let v ∈ R

d. Using H(μ)(a) we have

j′(0;v) = lim
λ↓0

1

λ
S

∫ |λv|

0

μ(t) dt = S μ(0) |v|.

By definition,

j0(0;v) = lim sup
ξ→0,λ↓0

S

λ

∫ |ξ+λv|

|ξ|

μ(s) ds.

Since μ ∈ C([0,∞)),

j0(0;v) = S μ(0) lim sup
ξ→0,λ↓0

|ξ + λv| − |ξ|
λ

= S μ(0) lim sup
ξ→0,λ↓0

2 ξ ·v + λ |v|2
|ξ + λv|+ |ξ|

= S μ(0) lim sup
ξ→0

ξ

|ξ| ·v

= S μ(0) |v|.

So j is regular at 0.
The other properties then follow straightforwardly.
To introduce a weak formulation of the mechanical problem PM , we first define

a closed subspace of H1,

V = {v ∈ H1 | v = 0 on Γ1, vν = 0 on Γ3}.

Since meas (Γ1) > 0, Korn’s inequality holds [34, p. 79]: for some constant CK > 0,
depending only on Ω and Γ1,

(3.10) ‖ε(v)‖Q ≥ CK‖v‖H1
∀v ∈ V.

On V , we use the inner product given by

(3.11) (u,v)V = (ε(u), ε(v))Q ∀u, v ∈ V

and let ‖ · ‖V be the associated norm, i.e.,

(3.12) ‖v‖V = ‖ε(v)‖Q ∀v ∈ V.
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It follows from (3.10) and (3.12) that ‖ · ‖H1
and ‖ · ‖V are equivalent norms on

V and therefore (V, ‖ · ‖V ) is a real Hilbert space. The duality pairing between V
and V ∗ is denoted by 〈·, ·〉. Identifying H with its dual, we have an evolution triple
V ⊂ H ⊂ V ∗ with dense, continuous, and compact embeddings. We denote by
i : V → H the identity mapping and by i∗ : V ∗ → H its adjoint mapping. By the
Sobolev trace theorem and by (3.10) there exists a constant C0 depending only on
the domain Ω, Γ1, and Γ3 such that

(3.13) ‖v‖L2(Γ3)d ≤ C0‖v‖V ∀v ∈ V.

By (3.13) there exists a continuous trace operator γ : V → L2(Γ3;R
d) and for the

function v ∈ V we still denote by v its trace γv. In what follows we need the spaces
V = L2(0, T ;V ), H = L2(0, T ;H), and W = {v ∈ V | v̇ ∈ V∗}, where the time
derivative involved in the definition of W is understood in the sense of vector valued
distributions. Equipped with the norm ‖v‖W =

(

‖v‖2V + ‖v̇‖2V∗

)1/2
the space W

becomes a separable Hilbert space. We also have W ⊂ V ⊂ H ⊂ V∗. It is well known
that the embeddings W ⊂ C([0, T ];H) and {w ∈ V | ẇ ∈ W} ⊂ C([0, T ];V ) are
continuous. Next we define operators A : (0, T )× V → V ∗ and B : V → V ∗ by

〈A(t,u),v〉 = (A(t, ε(u)), ε(v))Q for u, v ∈ V and t ∈ (0, T ),(3.14)

〈Bu,v〉 = (Bε(u), ε(v))Q for u, v ∈ V,(3.15)

a functional J : L2(Γ3;R
d) → R by

(3.16) J(v) =

∫

Γ3

j(v) dΓ for v ∈ L2(Γ3;R
d),

and a function f : (0, T ) → V ∗ by

(3.17) 〈f(t),v〉 =
∫

Ω

f0(t) · v dx+

∫

Γ2

f2(t) · v dΓ for v ∈ V, a.e. t ∈ (0, T ).

Assuming H(A), we have the following properties for the operator A : [0, T ]×
V → V ∗:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(a) A(·,v) is measurable on (0, T ) ∀v ∈ V ;

(b) A(t, ·) is pseudomonotone on V for a.e. t ∈ (0, T );

(c) ‖A(t,v)‖V ∗ ≤ a0(t) + a1‖v‖V ∀v ∈ V, a.e. t ∈ (0, T )

with a0 ∈ L2(0, T ), a0 ≥ 0, and a1 > 0;

(d) 〈A(t,v),v〉 ≥ α‖v‖2V ∀v ∈ V, a.e. t ∈ (0, T ) with α > 0;

(e) 〈A(t,v1)−A(t,v2),v1 − v2〉 ≥ mA‖v1 − v2‖2V
∀v1,v2 ∈ V, a.e. t ∈ (0, T ) with mA = mA > 0;

(f) ‖A(t,v1)−A(t,v2)‖V ∗ ≤ LA‖v1 − v2‖V
∀v1,v2 ∈ V, a.e. t ∈ (0, T ) with LA = LA > 0.

Under the assumption H(B), the operator B ∈ L(V, V ∗) is self-adjoint and monotone.
Under the assumption H(μ), the functional J : L2(Γ3;R

d) → R is locally Lipschitz,
and we have the following inequalities:
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‖η‖L2(Γ3;Rd) ≤ SC(1 + ‖v‖L2(Γ3;Rd)) ∀η ∈ ∂J(v),(3.18)

〈η1 − η2,v1 − v2〉L2(Γ3;Rd) ≥ −Sλ‖v1 − v2‖2L2(Γ3;Rd) ∀ηi ∈ ∂J(vi), i = 1, 2,(3.19)

where C =
√
2 cmax

{

1,
√

measd−1(Γ3)
}

. The assumption H(f) implies

f ∈ V∗.

For the initial values, we will assume the following:
H0: u0 ∈ V , u1 ∈ H .
Proceeding in a standard way [16, 30], we obtain the following variational formu-

lation of the frictional Problem PM .

Problem PV . Find a displacement field u ∈ V with u̇ ∈ W and a friction density
ξτ ∈ L2(0, T ;L2(Γ3;R

d)) such that

〈ρ ü(t) +A(t, u̇(t)) +Bu(t)− f (t),v〉 =
∫

Γ3

ξτ (t)·vτ dΓ ∀v ∈ V, a.e. t,(3.20)

− ξτ ∈ ∂j(u̇τ ) a.e. on Γ3 × (0, T ),(3.21)

u(0) = u0, u̇(0) = u1.

Here and below, “a.e. t” means “a.e. t ∈ (0, T ).” The above problem can be
expressed equivalently as follows.

Problem PV,1. Find a displacement field u ∈ V with u̇ ∈ W such that

〈ρ ü(t) +A(t, u̇(t)) +Bu(t)− f (t),v〉+
∫

Γ3

j0(u̇τ (t);vτ ) dΓ ≥ 0 ∀v ∈ V, a.e. t,

u(0) = u0, u̇(0) = u1.

Problem PV,1 is called a boundary hemivariational inequality. Next we define an
auxiliary problem.

Problem PV,2. Find a displacement field u ∈ V with u̇ ∈ W such that

ρ ü(t) +A(t, u̇(t)) +Bu(t) + γ∗∂J(γu̇τ (t)) ∋ f (t) a.e. t ∈ (0, T ),

u(0) = u0, u̇(0) = u1,

where γ is the trace operator on Γ3 and γ∗ its adjoint, and γu̇τ means (γu̇)τ .
A function u ∈ V is a solution of Problem PV,2 if and only if u̇ ∈ W and there

exists η ∈ L2(0, T ;L2(Γ3;R
d)) such that

ρ ü(t) +A(t, u̇(t)) +Bu(t) + η(t) = f(t) a.e. t ∈ (0, T ),

η(t) ∈ γ∗∂J(t, γu̇τ (t)) a.e. t ∈ (0, T ),

u(0) = u0, u̇(0) = u1.

The hemivariational inequality corresponding to Problem PV,2 reads as follows.
Problem PV,3. Find a displacement field u ∈ V with u̇ ∈ W such that

〈ρ ü(t) +A(t, u̇(t)) +Bu(t)− f(t),v〉+ J0(γu̇τ (t); γvτ ) ≥ 0 ∀v ∈ V, a.e. t,

u(0) = u0, u̇(0) = u1.

We complete this section with a result on solution existence and uniqueness for
Problem PV,2.

Theorem 3.3. Assume H(A), H(B), H(μ), H(f), H0, and

(3.22)
α

2
> S C C2

0 , mA > SλC2
0 .

8



Then Problem PV,2 has a unique solution u, and the following bound holds:

(3.23) ‖u‖C(0,T ;V ) + ‖u̇‖W ≤ C̃ (1 + ‖u0‖V + ‖u1‖H + ‖f‖V∗)

with a positive constant C̃.

The proof of this result follows from the arguments used in the proof of Theorem
5.15 (for existence and uniqueness of a solution) and of Lemma 5.8 (for the bound
(3.23)) of [30].

Since j is regular (cf. Lemma 3.2), Problems PV , PV,1, PV,2, and PV,3 are equiv-
alent [28, Remark 4]. In particular, under the assumptions stated in Theorem 3.3,
Problem PV has a unique solution.

4. Spatially semidiscrete approximation. In this section we introduce and
analyze a spatially semidiscrete approximation for Problem PV .

Let V h be a finite dimensional subspace of V , where h > 0 denotes a spatial
discretization parameter. Let uh

0 ,u
h
1 ∈ V h be suitable approximations of u0 and u1,

characterized by

(4.1) (uh
0 − u0,v

h)V = 0, (uh
1 − u1,v

h)H = 0 ∀vh ∈ V h.

It is easy to observe that

(4.2) ‖uh
0‖V ≤ ‖u0‖ and ‖uh

1‖H ≤ ‖u1‖H .

Then we have the following semidiscrete approximation of Problem PV .

Problem Ph
V . Find a displacement field uh ∈ L2 (0, T ;V h) with u̇h, üh ∈

L2(0, T ;V h), and a friction density ξhτ ∈ L2(0, T ;L2(Γ3;R
d)) such that

〈ρ üh(t) +A(t, u̇h(t)) + Buh(t)− f (t),vh〉(4.3)

=

∫

Γ3

ξhτ (t) · vh
τ dΓ ∀vh ∈ V h, a.e. t,

− ξhτ (t) ∈ ∂j(u̇h
τ (t)) a.e. on Γ3 × (0, T ),(4.4)

uh(0) = uh
0 , u̇h(0) = uh

1 .(4.5)

Under the assumptions of Theorem 3.3, we also have the existence and uniqueness
of a solution to Problem Ph

V . Moreover, similar to (3.23), and thanks to (4.2), we
have the bound

(4.6) ‖uh‖C(0,T ;V ) + ‖u̇h‖W ≤ C̃ (1 + ‖u0‖V + ‖u1‖H + ‖f‖V∗)

with a positive constant C̃.
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We provide a result on the error estimates between the solutions of Problems PV

and Ph
V .

Theorem 4.1. Assume that H(A), H(B), H(μ), H(f), H0, and (3.22) hold.
Let u and uh be solutions of Problems PV and Ph

V , respectively. Then there exists
a positive constant c depending only on the data of the problem, such that for any
vh ∈ L2(0, T ;V h) ∩W,

‖u− uh‖2C(0,T ;V ) + ‖u̇− u̇h‖2C(0,T ;H) + ‖u̇− u̇h‖2V(4.7)

≤ c
(

‖u0 − uh
0‖2V + ‖u1 − uh

1‖H‖u1 − vh(0)‖H
+‖u̇− vh‖2V + ‖ü− v̇h‖2V∗ + ‖u̇τ − vh

τ ‖L2(0,T ;L2(Γ3;Rd))

)

.

Proof. Let us define the functions w(t) = u̇(t) and wh(t) = u̇h(t) for all t ∈ [0, T ].
Then,

u(t) = (Iw)(t) = u0 +

∫ t

0

w(s) ds,(4.8)

uh(t) = (Ihwh)(t) = uh
0 +

∫ t

0

wh(s) ds,

and we can express (3.20)–(3.21) and (4.3)–(4.4) as follows:

〈ρ ẇ(t) +A(t,w(t)) +B(Iw)(t) − f(t),v〉(4.9)

=

∫

Γ3

ξτ (t)·vτ dΓ ∀v ∈ V, a.e. t,

− ξτ ∈ ∂j(wτ ) a.e. on Γ3 × (0, T ),(4.10)

w(0) = u1,(4.11)

〈ρ ẇh(t) + A(t,wh(t)) +B(Ihwh)(t) − f(t),vh〉(4.12)

=

∫

Γ3

ξhτ (t)·vh
τ dΓ ∀vh ∈ V h, a.e. t,

− ξhτ ∈ ∂j(wh
τ ) a.e. on Γ3 × (0, T ),(4.13)

wh(0) = uh
1 .(4.14)

For any vh ∈ V h, we have from (4.9) and (4.12) that for a.e. t ∈ (0, T ),

ρ〈ẇ(t)− ẇh(t),vh〉+ 〈A(t,w(t))− A(t,wh(t)),vh〉(4.15)

+ 〈B(Iw)(t) −B(Ihwh)(t),vh〉+
∫

Γ3

(ξhτ (t)− ξτ (t)) · vh
τ dΓ = 0.

Note that

(4.16) 〈ẇ(t)− ẇh(t),w(t)−wh(t)〉 = 1

2

d

dt
‖w(t)−wh(t)‖2H .

From the strong monotonicity of A, we have

(4.17) mA‖w(t)−wh(t)‖2V ≤ 〈Aw(t)−Awh(t),w(t)−wh(t)〉.

By the symmetry of B, we have
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〈B(Iw)(t)−B(Ihwh)(t),w(t)−wh(t)〉(4.18)

= 〈Bu(t)−Buh(t), u̇(t)− u̇h(t)〉

=
1

2

d

dt
〈Bu(t)−Buh(t),u(t)− uh(t)〉.

From (4.10), (4.13), (3.9), and (3.13), we obtain

(4.19)

∫

Γ3

(ξhτ (t)− ξτ (t)) · (wτ (t)−wh
τ (t)) dΓ ≤ SλC2

0‖w(t)−wh(t)‖2V .

Denote c0 = mA − SλC2
0 . From (4.16)–(4.19) we obtain

(4.20)

1

2
ρ
d

dt
‖w(t)−wh(t)‖2H + c0‖w(t)−wh(t)‖2V +

1

2

d

dt
〈Bu(t)−Buh(t),u(t)− uh(t)〉

≤ ρ〈ẇ(t)− ẇh(t),w(t)−wh(t)〉+ 〈A(t,w(t)) −A(t,wh(t)),w(t)−wh(t)〉
+ 〈B(Iw)(t)−B(Ihwh)(t),w(t)−wh(t)〉

+

∫

Γ3

(ξhτ (t)− ξτ (t)) · (wτ (t)−wh
τ (t)) dΓ

= ρ〈ẇ(t)− ẇh(t),w(t)− vh(t)〉+ 〈A(t,w(t)) −A(t,wh(t)),w(t)− vh(t)〉
+ 〈B(Iw)(t)−B(Ihwh)(t),w(t)− vh(t)〉

+

∫

Γ3

(ξhτ (t)− ξτ (t)) · (wτ (t)− vh
τ (t)) dΓ,

where vh(t) ∈ V h for a.e. t ∈ (0, T ) is arbitrary and the last equality follows from
(4.15). For t ∈ (0, T ), assuming vh ∈ W we perform integration by parts [13, Propo-
sition 8.4.14]:

∫ t

0

〈ẇ(s)− ẇh(s),w(s)− vh(s)〉 ds=
(

w(t)−wh(t),w(t)− vh(t)
)

H

−
(

w(0)−wh(0),w(0)− vh(0)
)

H

−
∫ t

0

〈

w(s)−wh(s), ẇ(s)− v̇h(s)
〉

ds.

Thus,

∫ t

0

〈ẇ(s)− ẇh(s),w(s)− vh(s)〉 ds(4.21)

≤ ‖w(t)−wh(t)‖H‖w(t)− vh(t)‖H + ‖u1 − uh
1‖H‖u1 − vh(0)‖H

+

∫ t

0

〈

w(s)−wh(s), ẇ(s)− v̇h(s)
〉

ds

≤ 1

4
‖w(t)−wh(t)‖2H + ‖w(t)− vh(t)‖2H + ‖u1 − uh

1‖H‖u1 − vh(0)‖H

+ ε‖w −wh‖2V +
1

4ε
‖ẇ − v̇h‖2V∗ .
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Using the Lipschitz continuity of A,

∫ t

0

〈A(s,w(s))−A(s,wh(s)),w(s)− vh(s)〉 ds(4.22)

≤
∫ t

0

LA‖w(s)−wh(s)‖V ‖w(s)− vh(s)‖V ds

≤ ε‖w −wh‖2V +
LA

4ε
‖w − vh‖2V .

Using the properties of B,

∫ t

0

〈B(Iw)(s)−B(Ihwh)(s),w(s)− vh(s)〉(4.23)

≤
∫ t

0

‖B‖L(V,V ∗)‖u(s)− uh(s)‖V ‖w(s)− vh(s)‖V

≤ ε‖u− uh‖2V +
‖B‖L(V,V ∗)

4ε
‖w − vh‖2V

≤ ε2T ‖u0 − uh
0‖2V + ε2T ‖w−wh‖2V +

‖B‖L(V,V ∗)

4ε
‖w − vh‖2V .

It remains to bound the last term of (4.20). From (3.18) and (3.23), we have

(4.24)
∫ t

0

∫

Γ3

(ξhτ (s)− ξτ (s)) · (wτ (s)− vh
τ (s)) dΓ ds

≤
∫ t

0

(

‖ξhτ (s)‖L2(Γ3;Rd) + ‖ξτ (s)‖L2(Γ3;Rd)

)

‖wτ (s)− vh
τ (s)‖L2(Γ3;Rd) ds

≤
∫ t

0

SC
(

2 + C0(‖w(t)‖V + ‖wh(t)‖V )
)

‖wτ (s)− vh
τ (s)‖L2(Γ3;Rd) ds

≤ 2SC
(√

T + C0(‖w‖V + ‖wh‖V)
)

‖wτ − vh
τ‖L2(0,T ;L2(Γ3;Rd))

≤ 2SC
(√

T + 2C̃(1 + ‖u0‖V + ‖u1‖H + ‖f‖V∗)
)

‖wτ − vh
τ‖L2(0,T ;L2(Γ3;Rd)).

Denote

r= ‖u0 − uh
0‖2V + ‖u1 − uh

1‖H‖u1 − vh(0)‖H + ‖w − vh‖2V
+ ‖ẇ − v̇h‖2V∗ + ‖wτ − vh

τ‖L2(0,T ;L2(Γ3;Rd)).

We integrate (4.20) and apply (4.21)–(4.24) to get

(4.25)
1

2
ρ‖w(t)−wh(t)‖2H + 2 (c0 − (2 + 2T )ε)

∫ t

0

‖w(s)−wh(s)‖2V ds ≤ c1r,

where the constant c1 depends only on the data of the problem. Since t ∈ (0, T ) is
arbitrary, with ε small enough, we obtain from (4.25) that

(4.26) ‖w −wh‖2C(0,T ;H) + ‖w −wh‖2V ≤ c2r
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with c2 > 0. For any t ∈ (0, T ),

‖u(t)− uh(t)‖V ≤ ‖u0 − uh
0‖V +

∫ T

0

‖w(t)−wh(t)‖V dt

≤ ‖u0 − uh
0‖V +

√
T‖w −wh‖V .

Thus,

(4.27) ‖u− uh‖2C(0,T ;V ) ≤ 2‖u0 − uh
0‖2 + 2

√
T‖w −wh‖2V ≤ c3r

with a positive constant c3. From (4.26)–(4.27) we obtain the result (4.7).
Remark 4.2. It follows from (3.23) and (4.6) that u,uh ∈ C(0, T ;V ). Since

the embedding W ⊂ C(0, T ;H) is continuous, again from (3.23) and (4.6), we have
u̇, u̇h ∈ C(0, T ;H). Thus it is reasonable to estimate the norms ‖u−uh‖C(0,T ;V ) and

‖u̇− u̇h‖C(0,T ;H) in (4.7).

Theorem 4.1 is valid for any finite dimensional subspace V h of V . In applications,
V h is usually taken to be a finite element space. As a particular example, assume Ω
is a polygonal/polyhedral domain and let {T h} be a regular family of finite element
triangulations of Ω into triangles (d = 2) or tetrahedrons (d = 3). For an element
T ∈ T h, denote by P1(T ) the space of polynomials of a total degree less than or equal
to one in T . Then we can use the linear element space of continuous piecewise affine
functions:

(4.28)
V h = {vh ∈ [C(Ω)]d : vh|T ∈ [P1(T )]

d ∀T ∈ T h, vh = 0 on Γ1, v
h
ν = 0 on Γ3}.

In the numerical simulations presented in section 6, this linear element space with
d = 2 is used.

Corollary 4.3. Keep the assumptions stated in Theorem 4.1. Assume Ω is
a polygonal/polyhedral domain, and let {V h} be the family of linear element spaces
defined by (4.28), corresponding to a regular family of finite element triangulations of
Ω into triangles or tetrahedrons. Let u and uh be solutions of Problems PV and Ph

V ,
respectively. Assume u0 ∈ H2(Ω;Rd), u1 ∈ H1(Ω;Rd), and take uh

0 ,u
h
1 ∈ V h to be

projections of u0 and u1, defined by (4.1). Under the regularity condition

u̇ ∈ L2(0, T ;H2(Ω;Rd)), ü ∈ L2(0, T ;H2(Ω;Rd)), u̇τ ∈ L2(0, T ;H2(Γ3;R
d)),

we have the optimal order error estimate

(4.29) ‖u− uh‖C(0,T ;V ) + ‖u̇− u̇h‖C(0,T ;H) + ‖u̇− u̇h‖V ≤ c h

for a constant c independent of h.
Proof. Note that under the stated regularity assumptions, for a.e. t ∈ [0, T ], u̇(t),

ü(t) are continuous on Ω, and u̇τ (t) is continuous on Γ3. Let vh(t) = Πhu̇(t) ∈ V h

be the finite element interpolant of u̇(t), a.e. t ∈ [0, T ]. Note that vh
τ (t) = (Πhu̇(t))τ

is the continuous piecewise linear interpolant of u̇τ (t) on Γ3. Moreover, v̇h(t) is the
continuous piecewise linear interpolant of ü(t). Then by the standard finite element
interpolation error estimates [2, 6, 10], we have the following approximation properties:

‖u̇(t)− vh(t)‖V ≤ ch‖u̇(t)‖H2(Ω;Rd),

‖ü(t)− v̇h(t)‖V ∗ ≤ ch‖ü(t)‖H2(Ω;Rd),

‖u̇τ (t)− vh
τ (t)‖L2(Γ3;Rd) ≤ ch2‖u̇τ‖H2(Γ3;Rd)
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and

‖u0 − uh
0‖V ≤ ch ‖u0‖H2(Ω;Rd),

‖u1 − uh
1‖H ≤ ch ‖u1‖H1(Ω;Rd).

It follows that

‖u̇− vh‖V ≤ ch‖u̇‖L2(0,T ;H2(Ω;Rd)),

‖ü− v̇h‖V∗ ≤ ch‖ü‖L2(0,T ;H2(Ω;Rd)),

‖u̇τ − vh
τ‖L2(0,T ;L2(Γ3;Rd)) ≤ ch2‖u̇τ‖L2(0,T ;H2(Γ3;Rd)).

Then the error bound (4.29) follows from (4.7).
Note that for other choices of the finite element space V h, Theorem 4.1 can be

applied similarly to derive error estimates of the finite element solutions, under certain
corresponding regularity assumptions on the true solution u.

5. Fully discrete error estimates. In this section we introduce a fully discrete
approximation of Problem PV and bound the error of the fully discrete solutions. For
simplicity in exposition, we assume

(5.1) A(·,v) ∈ C(0, T ;V ∗) ∀v ∈ V, f ∈ C(0, T ;V ∗).

In addition to the finite dimensional subspace V h ⊂ V for spatial discretization,
we need temporal discretization. We define a uniform partition of [0, T ] denoted
by 0 = t0 < t1 < · · · < tN = T . Let k = T/N be a time step size and for a
continuous function g we denote gn = g(tn). For a sequence {zn}Nn=0, we denote by
δzn = (zn − zn−1)/k for n = 1, . . . , N the backward divided difference. With the
backward Euler scheme for the time derivative, the fully discrete approximation of
the Problem PV is the following.

Problem Pkh
V . Find a velocity field {whk

n }Nn=0 ⊂ V h and a friction density
{ξhkn }Nn=0 ⊂ L2(Γ3;R

d) such that

〈ρ δwhk
n +A(tn,w

hk
n ) +Buhk

n − fn,v
h〉 =

∫

Γ3

ξhkn τ · vh
τ dΓ ∀vh ∈ V h,(5.2)

−ξhkn τ ∈ ∂j(whk
n τ ) a.e. on Γ3, n = 1, . . . , N,(5.3)

and

(5.4) whk
0 = uh

1 ,

where the discrete displacement field {uhk
n }Nn=0 ⊂ V h is given by

(5.5) uhk
n = uh

0 +

n
∑

j=1

kwhk
j .

Under the assumptions of Theorem 3.3, there exists a unique solution of Problem
Pkh
V . The following boundedness property on the numerical solution will be needed

in error estimation.
Theorem 5.1. Assume H(A), H(B), H(μ), H(f), H0, and (3.22). Then for

some constant C > 0,

(5.6) k

N
∑

n=1

‖whk
n ‖2 ≤ C.
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Proof. Taking vh = whk
n in (5.2) and using (5.5) we have

ρ(whk
n −whk

n−1,w
hk
n )H + k〈A(tn,whk

n ),whk
n 〉+ 〈Buhk

n ,uhk
n − uhk

n−1〉(5.7)

= k〈fn,w
hk
n 〉+ k

∫

Γ3

ξhkn τ ·whk
nτ dΓ.

Note that

(whk
n −whk

n−1,w
hk
n )H =

1

2
‖whk

n ‖2H − 1

2
‖whk

n−1‖2H +
1

2
‖whk

n −whk
n−1‖2H .

From the property (d) of the operator A, we get

(5.8) 〈A(tn,whk
n ),whk

n 〉 ≥ α‖whk
n ‖2V .

From the properties of B, we obtain

〈Buhk
n ,uhk

n − uhk
n−1〉 =

1

2
〈Buhk

n ,uhk
n 〉 − 1

2
〈Buhk

n−1,u
hk
n−1〉(5.9)

+
1

2
〈B(uhk

n − uhk
n−1),u

hk
n − uhk

n−1〉

≥ 1

2
〈Buhk

n ,uhk
n 〉 − 1

2
〈Buhk

n−1,u
hk
n−1〉.

Moreover,

(5.10) 〈fn,w
hk
n 〉 ≤ ‖fn‖V ∗‖whk

n ‖V ≤ α

4
‖whk

n ‖2V +
1

α
‖fn‖2V ∗ .

From (5.3) and (3.18), we get

(5.11)

∫

Γ3

ξ
hk
n τ ·whk

nτ dΓ ≤ 1

α
SCC2

0 +
(

SCC2
0 +

α

4

)

‖whk
n ‖2V .

Using (5.7)–(5.11) we obtain, with c0 = α/2− SCC2
0 ,

ρ
1

2
‖whk

n ‖2H + ρ
1

2
‖whk

n −whk
n−1‖2H + c0k ‖whk

n ‖2V +
1

2
〈Buhk

n ,uhk
n 〉

≤ k
1

α
‖fn‖2V ∗ + k

1

α
SCC2

0 + ρ
1

2
‖whk

n−1‖2H +
1

2
〈Buhk

n−1,u
hk
n−1〉.

Summing up the last inequality for n = 1, . . . , N we obtain

ρ
1

2
‖whk

N ‖2H + ρ
1

2

N
∑

n=1

‖whk
n −whk

n−1‖2H + c0k

N
∑

n=1

‖whk
n ‖2V

≤ 1

α
‖f‖2V∗ + T

1

α
SCC2

0 + ρ
1

2
‖uh

1‖2H +
1

2
〈Buh

0 ,u
h
0 〉.

From the last inequality and (3.22) we obtain (5.6).
Now we state a result on error estimation.
Theorem 5.2. Assume H(A), H(B), H(μ), H(f), H0, and (3.22), and for the

solution u of Problem PV ,

(5.12) u ∈ C2(0, T ;H) ∩ C1(0, T ;V ), u̇τ ∈ C(0, T ;L2(Γ3;R
d)).
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Let {whk
n }Nn=0 be the solution of Problem Pkh

V and let {uhk
n }Nn=0 be given by (5.5).

Then the following bound holds for all {vh
j }Nj=1 ⊂ V h:

max
1≤n≤N

{

‖wn −whk
n ‖2H +

n
∑

j=1

k‖wj −whk
j ‖2V

}

(5.13)

≤ c

[

k
N
∑

j=1

(

‖ẇj − δwj‖2H + ‖wj − vh
j ‖2V

)

+ max
1≤n≤N

‖wτn − vh
τn‖L2(Γ3;Rd)

+
1

k

N−1
∑

j=1

‖(wj − vh
j )− (wj+1 − vh

j+1)‖2H + max
1≤n≤N

‖wn − vh
n‖2H

+ ‖u0 − uh
0‖2V + k2‖u‖2H2(0,T ;V ) + ‖w0 − uh

1‖2H
]

.

Proof. Taking the same vh ∈ V h in (3.20) and (5.2) we obtain for n = 1, . . . , N ,

(

ρ(ẇn − δwhk
n ),vh

)

H
+ 〈An(wn)−An(w

hk
n ),vh〉(5.14)

+ 〈B(un − uhk
n ),vh〉+

∫

Γ3

(ξhkn τ − ξnτ ) · vh
τ dΓ = 0.

From (5.14) we get

(

ρ(ẇn − δwhk
n ),wn −whk

n

)

H
+ 〈An(wn)−An(w

hk
n ),wn −whk

n 〉

+ 〈B(un − uhk
n ),wn −whk

n 〉+
∫

Γ3

(ξhkn τ − ξnτ ) · (wnτ −whk
n τ ) dΓ

=
(

ρ(ẇn − δwhk
n ),wn − vh

)

H
+ 〈An(wn)−An(w

hk
n ),wn − vh〉

+ 〈B(un − uhk
n ),wn − vh〉+

∫

Γ3

(ξhkn τ − ξnτ ) · (wnτ − vh
τ ) dΓ.

After some reformulation we obtain

(5.15)
(

ρ(δwn − δwhk
n ),wn −whk

n

)

H
+ 〈An(wn)−An(w

hk
n ),wn −whk

n 〉

+

∫

Γ3

(ξhkn τ − ξnτ ) · (wnτ −whk
n τ ) dΓ =

(

ρ(δwn − δwhk
n ),wn − vh

)

+
(

ρ(ẇn − δwn), (wn − vh) + (whk
n −wn)

)

H
+ 〈An(wn)−An(w

hk
n ),wn − vh〉

+ 〈B(un − uhk
n ), (wn − vh) + (whk

n −wn)〉+
∫

Γ3

(ξhkn τ − ξnτ ) · (wnτ − vh
τ ) dΓ.

Using the formula 2(a − b, a)H = ‖a − b‖2H + ‖a‖2H − ‖b‖2H for a = wn − whk
n and

b = wn−1 −whk
n−1 we obtain

(5.16)
1

2k

(

‖wn −whk
n ‖2H − ‖wn−1 −whk

n−1‖2H
)

≤
(

ρ(δwn − δwhk
n ),wn −whk

n

)

H
.

By the Lipschitz continuity of A,

(5.17) 〈An(wn)−An(w
hk
n ),wn − vh〉 ≤ LA‖wn −whk

n ‖V ‖wn − vh‖V .
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From (3.18) and (3.13) we also have

(5.18)

∫

Γ3

(ξhkn τ−ξnτ )·(wnτ−vh
τ ) dΓ ≤ C(1+‖wn‖V +‖whk

n ‖V )‖wnτ−vh
τ‖L2(Γ3;Rd).

In further estimations we use (5.16), strong monotonicity of A and (3.19) for the
left-hand side of (5.15) and (5.17), (5.18), the properties of B, the inequalities ab ≤
2a2 + 2b2 or ab ≤ ǫa2 + b2/4ǫ, for a, b, ǫ > 0, and (3.23) for its right-hand side. Thus
we get, with c0 = mA − SλC2

0 > 0 and ǫ < c0,

1

2k

(

‖wn −whk
n ‖2H − ‖wn−1 −whk

n−1‖2H
)

+ c0‖wn −whk
n ‖2V(5.19)

≤ C
(

‖ẇn − δwn‖2H + ‖wn − vh‖2V + ‖un − uhk
n ‖2V

)

+ (1 + ‖wn‖V + ‖whk
n ‖V )‖wn τ − vh

τ‖L2(Γ3;Rd)

+ ǫ‖wn −whk
n ‖2V +

(

ρ(δwn − δwhk
n ),wn − vh

)

H
.

We replace n by j in the relation (5.19) and sum over j from 1 to n to obtain

(5.20)

‖wn −whk
n ‖2H + 2k (c0 − ǫ)

n
∑

j=1

‖wj −whk
j ‖2V

≤ ‖w0 −whk
0 ‖2V + Ck

n
∑

j=1

(

‖ẇj − δwj‖2H + ‖wj − vh
j ‖2V + ‖uj − uhk

j ‖2V
)

+ Ck

n
∑

j=1

(1 + ‖wj‖V + ‖whk
j ‖V )‖wjτ − vh

jτ‖L2(Γ3;Rd)

+ 2k
n
∑

j=1

(

ρ(δwj − δwhk
j ),wj − vh

j

)

H

for all {vh
j }nj=1 ⊂ V h. We also have

n
∑

j=1

k
(

ρ(δwj − δwhk
j ),wj − vh

j

)

H
(5.21)

=

n
∑

j=1

(

ρ(wj −whk
j − (wj−1 −whk

j−1)),wj − vh
j

)

H

≤ ǫ‖wn −whk
n ‖2H + C‖wn − vh

n‖2H + c‖w0 −wh
0‖2H + c‖w1 − vh

1‖2H

+

n−1
∑

j=1

ρ‖wj −whk
j ‖H ‖wj − vh

j − (wj+1 − vh
j+1)‖H

≤ ǫ‖wn −whk
n ‖2H + C‖wn − vh

n‖2H + c‖w0 −wh
0‖2H + c‖w1 − vh

1‖2H

+

n−1
∑

j=1

4ρk‖wj −whk
j ‖2H +

1

k

n−1
∑

j=1

‖wj − vh
j − (wj+1 − vh

j+1)‖2H .

Taking (4.8) at time t = tj and subtracting it from (5.5) we find that

(5.22) ‖uj − uhk
j ‖V ≤ ‖u0 − uh

0‖V +

j
∑

l=1

k‖wl −whk
l ‖V + Ij ,
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where Ij is the integration error given by

Ij =

∥

∥

∥

∥

∥

∫ tj

0

w(s) ds−
j

∑

l=1

kwl

∥

∥

∥

∥

∥

V

.

We know that [16]

Ij ≤ k‖u‖H2(0,T ;V ).

From (5.22) we get

‖uj − uhk
j ‖2V ≤ C

(

‖u0 − uh
0‖2V + j

j
∑

l=1

k2‖wl −whk
l ‖2V + k2‖u‖2H2(0,T ;V )

)

;

using inequality j ≤ n ≤ N and the fact that Nk = T we estimate

n
∑

j=1

k‖uj − uhk
j ‖2V ≤ CT

(

‖u0 − uh
0‖2V + k2‖u‖2H2(0,T ;V )

)

(5.23)

+ T

n
∑

j=1

k

j
∑

l=1

‖wl −whk
l ‖2V .

Denote en := ‖wn −whk
n ‖2H +

∑n
j=1 k‖wj −whk

j ‖2V and

gn:= ‖w0 −whk
0 ‖2V + k

n
∑

j=1

(

‖ẇj − δwj‖2H + ‖wj − vh
j ‖2V

)

+ Ck
n
∑

j=1

(

1 + ‖wj‖V + ‖whk
j ‖V

)

‖wjτ − vh
jτ‖L2(Γ3;Rd)

+ ‖u0 − uh
0‖2V + k2‖u‖2H2(0,T ;V ) + ‖wn − vh

n‖2H + ‖w0 −wh
0‖2H

+ ‖w1 − vh
1‖2H +

1

k

n−1
∑

j=1

‖wj − vh
j − (wj+1 − vh

j+1)‖2H .

Then, from (5.20), (5.21), and (5.23),

(5.24) en ≤ Cgn +

n
∑

j=1

kej for n = 1, . . . , N

with C > 0. Note that from (5.6),

k

n
∑

j=1

(1 + ‖wj‖V + ‖whk
j ‖V )= nk + k

n
∑

j=1

‖wj‖V + k

n
∑

j=1

‖whk
j ‖V(5.25)

≤ T + T ‖w‖C(0.T ;V ) +
√
T

√

√

√

√k

N
∑

j=1

‖whk
j ‖2V

≤ C.
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From (5.24), Lemma 2.1, and (5.25) we obtain (5.13) which completes the proof of
the theorem.

Similar to Theorem 4.1, Theorem 5.2 can be used to produce convergence order
error estimates for the fully discrete approximations with particular choices of the
finite dimensional subspace V h. As a sample result, we consider using the linear
element spaces {V h} of (4.28).

Corollary 5.3. Keep the assumptions stated in Theorem 5.2. Assume Ω is
a polygonal/polyhedral domain, and let {V h} be the family of linear element spaces
defined by (4.28), corresponding to a regular family of finite element triangulations of
Ω into triangles or tetrahedrons. Let u and {whk

n }Nn=0 be solutions of Problems PV

and Pkh
V , respectively. Assume u0 ∈ H2(Ω;Rd), u1 ∈ H1(Ω;Rd), and let uh

0 ,u
h
1 ∈ V h

be defined by (4.1). Let {uhk
n }Nn=0 be defined by (5.5). Under the regularity conditions

u ∈ C1(0, T ;H2(Ω;Rd)) ∩H3(0, T ;H), u̇τ ∈ C(0, T ;H2(Γ3;R
d)),

we have the optimal order error estimate

(5.26) max
1≤n≤N

{‖un − uhk
n ‖V + ‖wn −whk

n ‖H} ≤ c(h+ k).

Proof. Let vh
j ∈ V h be the finite element interpolant of uj , t ∈ [0, T ], 1 ≤ j ≤ N .

Note that [16]

k

N
∑

j=1

‖ẇj − δwj‖2H ≤ ck2‖u‖2H2(0,T ;H),

1

k

N−1
∑

j=1

‖(wj − vh
j )− (wj+1 − vh

j+1)‖2H ≤ ch2‖u‖2H2(0,T ;V ).

Then similar to the proof of Corollary 4.3, we obtain (5.26) from (5.13).

6. Numerical simulations. The aim of this section is to present some numer-
ical results to illustrate the behavior of the solution of the frictional contact problem
Problem PV . We pay particular attention to the numerical convergence order.

The numerical solution of Problem PV is based on the backward Euler divided
difference for the time discretization and the finite element approximation using the
linear element space (4.28) for the spatial discretization. To solve the discrete prob-
lems, we use a “convexification” iterative procedure [3, 4], which leads to a sequence of
convex programming problems. For each “convexification” iteration, the coefficient of
friction μ(|u̇τ |) is fixed to a given value depending on the tangential velocity solution
u̇τ found in the previous iteration. Then, the resulting nonsmooth convex iterative
problems are solved. The frictional bilateral condition is treated by using an aug-
mented Lagrangian approach. For details about this numerical method, we refer the
reader to [1, 3, 4, 45]. For practical implementation of the method, we use additional
fictitious nodes for the Lagrange multiplier in the initial mesh. Construction of these
nodes depends on the contact elements used for the geometrical discretization of the
interface Γ3. In our numerical example, the discretization is based on “node-to-rigid”
contact element, which is composed of one node of Γ3 and one Lagrange multiplier
node. To keep this paper to a reasonable length, we skip the details of the numerical
algorithms and implementation; details on the discretization step and computational
contact mechanics, including algorithms similar to that used here, can be found in
[22, 23, 27, 45]. Different numerical methods in the study of such frictional problems,
including the proximal bundle methods, also can be found in [17, 31, 32, 44].
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Fig. 1. Reference configuration of the two-dimensional example.

Numerical example. We consider the physical setting shown in Figure 1. There,
Ω = (0, L1)× (0, L2) ⊂ R

2 with L1, L2 > 0 and

Γ1 = {0} × [0, L2], Γ2 = ([0, L1]× {L2}) ∪ ({L1} × [0, L2]), Γ3 = [0, L1]× {0}.

The domain Ω represents the cross section of a three-dimensional linearly viscoelastic
body subjected to the action of tractions in such a way that a plane stress hypothesis
is valid. On Γ1 = {0}×[0, L2] the body is clamped, i.e., the displacement field vanishes
there. Vertical compressions act on the part [0, L1] × {L2} of the boundary and the
part {L1} × [0, L2] is traction free. No body forces are assumed to act on the elastic
body during the process. The body is in frictional bilateral contact with an obstacle
on the part Γ3 = [0, L1] × {0} of the boundary. The friction follows a nonmonotone
law in which the friction coefficient depends on the tangential velocity |u̇τ |. For the
coefficient of friction we choose a function μ : Rd → R of the form

(6.1) μ(|u̇τ |) = (a− b) e−α |u̇τ | + b

with a, b, α > 0, a ≥ b. Note that the friction law (3.6) with (6.1) describes the slip
weakening phenomenon which appears in the study of geophysical problems; see [39]
for details. The coefficient of friction decreases with the slip rate from the value a to
the limit value b. For this reason, the corresponding friction law is nonmonotone.

The compressible material response is governed by a linearly viscoelastic consti-
tutive law in which the viscosity tensor A and the elasticity tensor B are given by

(Aτ )αβ = μ1(τ11 + τ22)δαβ + μ2ταβ , 1 ≤ α, β ≤ 2, ∀ τ ∈ S
2,

(Bτ )αβ =
Eκ

(1 + κ)(1 − 2κ)
(τ11 + τ22)δαβ +

E

1 + κ
ταβ , 1 ≤ α, β ≤ 2, ∀ τ ∈ S

2,

where μ1 and μ2 are viscosity constants, E and κ are Young’s modulus and Poisson’s
ratio of the material, and δαβ denotes the Kronecker symbol.
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Fig. 2. Evolution of deformed meshes and frictional contact forces during the dynamic com-

pression process.

For computation we use the following data:

L1 = 1m, L2 = 0.5m, ρ = 1000 kg/m3, T = 1.1 s,

μ1 = 50N/m2, μ2 = 100N/m2, E = 2000N/m2, κ = 0.3,

f0 = (0,−10−5)N/m2, f2 =

{

(0, 0)N/m on {L} × [0, L],
(0,−600 t)N/m on [0, L1]× {L2},

a = 1, b = 0.1, α = 200.

Our results are presented in Figures 2, 3, and 4 and are explained below.

Mechanical behavior of the solution. In Figure 2 we plot the deformed
configuration as well as the interface forces on Γ3 during the dynamic compression
process at times t = 0.3 s, t = 0.5 s, t = 0.8 s, and t = 1.1 s. At the beginning of the
process, the contact nodes are in status of stick, and then at the end of the process, on
the right side of Γ3, a large proportion of contact nodes switches to status of slip when
the compression of the domain is stronger. There, the friction bound has decreased
with respect to the evolution of μ(|u̇τ |) and is reached.

In Figure 3 we plot the deformed meshes and the interface forces on Γ3 for two
different values of the coefficients a and b, respectively. Note that in the case a = 1
and b = 0.1 considered in Figure 2 the coefficient of friction is a nonmonotone function
with respect to the slip rate, while in the cases a = b = 0.1 and a = b = 1 it is a
constant. In the case a = b = 0.1 we note that all the contact nodes are in slip contact
since, there, the friction bound is low and, therefore, is reached. In contrast, in the
case a = b = 1 the friction bound is higher and, as a consequence, all the contact
nodes are in stick status.
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Fig. 3. Deformed meshes and interface forces on Γ3 corresponding to different values of the

coefficients a and b.
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Fig. 4. Numerical errors.

Numerical convergence order. In order to check the convergence of the dis-
crete scheme and to illustrate the optimal error estimate obtained in section 5, we
computed a sequence of numerical solutions by using uniform discretizations of the
problem domain according to the spatial discretization parameter h and time step k.
For instance, the deformed configuration and the interface forces plotted in Figure 2
correspond to the choices h = 1/128 and k = 1/128.

The numerical error ‖u−uhk‖V is computed for several discretization parameters
of h and k. Here, the boundary Γ of Ω is divided into 1/h equal parts. We start
with h = 1/2 and k = 1/2, which are successively halved. The numerical solution
corresponding to h = 1/256 and k = 1/256 was taken as the “exact” solution, used to
compute the errors of the numerical solutions; this fine discretization corresponds to
a problem with 133, 896 degrees of freedom at each time level. The numerical results
are presented in Figure 4, where the dependence of the error estimate ‖u − uhk‖V
with respect to h and k is plotted. A first order convergence is clearly observed,
providing numerical evidence of the theoretical optimal order error estimate obtained
in section 5.
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