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LOCALLY INERTIAL APPROXIMATIONS OF BALANCE LAWS
ARISING IN (1+1)-DIMENSIONAL GENERAL RELATIVITY

LAURENT GOSSE∗

Abstract. An elementary model of 1+1-dimensional general relativity, known as “R = T ” and
mainly developed by Mann et al. [44, 45, 48, 50, 51, 56, 63], is set up in various contexts. Its formu-
lation, mostly in isothermal coordinates, is derived and a relativistic Euler system of self-gravitating
gas coupled to a Liouville equation for the metric’s conformal factor is deduced. First, external field
approximations are carried out: both a Klein-Gordon equation is studied along with its correspond-
ing density, and a Dirac one inside an hydrostatic gravitational field induced by a static, piecewise
constant mass repartition. Finally, the coupled Euler-Liouville system is simulated, by means of a
locally inertial Godunov scheme: the gravitational collapse of a static random initial distribution
of density is displayed. Well-balanced discretizations rely on the treatment of source terms at each
interface of the computational grid, hence the metric remains flat in every computational cell.

Key words. 1+1 general relativity; Dirac and Klein-Gordon equations; Intrinsic finite-differences;
Locally inertial scheme: Relativistic hydrodynamics; Structure-Preserving andWell-balanced schemes.

AMS subject classifications. 65M06, 35Q75, 58D30.

1. Introduction. Amajor obstacle in studying Einstein’s Field Equations (EFE)
is their huge complexity and high dimensionality: for instance, the (1+3)-dimensional
formalism leads to a set of 10 coupled, nonlinear, hyperbolic-elliptic partial differential
equations, see e.g. [21, 43, 59]. Thus, for both theoretical and practical purposes (left
aside a development of quantum gravity), simpler, lower-dimensional gravity models
[8] were sought during a long time. The Einstein-tensor Gαβ vanishes identically for
a (1 + 1)-dimensional spacetime. Hence, setting up the usual Einstein equations,

Gαβ
.
= Rαβ −

(R
2

− Λ

)

gαβ = 8πTαβ , Rαβ the Ricci tensor of the metric gαβ ,

R its Ricci scalar, and Tαβ the stress-energy tensor, is meaningless, as explained
by e.g. Collas [13], because Gαβ vanishes identically for Λ = 0. The “cosmological
constant” Λ was initially meant to cope with a static universe, nowadays, it stands
for a residual energy in an otherwise empty spacetime. A reasonable alternative was
proposed in 1 + 1 dimensions, the “Jackiw-Tetelboim (JT) model” [29], at the price
of introducing an auxiliary scalar field Φ into the Einstein-Hilbert action,

S2D =

∫

Φ(x)
√

− det g(R− Λ)d2x, R− Λ = 0,

which was studied especially by Desloge [17]. This reduced “empty universe” model
was later improved by R.B. Mann et al. during the nineties, see e.g. [7, 35, 44, 45,
50, 63] in order to include matter. It was delicate to justify the inclusion of the trace
T = gαβTαβ of the stress-energy tensor, while keeping the field equation coming from
a variational principle. This was solved by means of another auxiliary field ψ,

S̃2D =

∫
√

− det g

(

ψR+
1

2
gαβ∇αψ ∇βψ + Λ+ 2Lmatter

)

d2x, R− Λ = T ,
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2 L. Gosse

and ∇ standing for the covariant derivative with respect to the metric g (see e.g.
[48, page 43], or [39, 56]). Viewed as a particular case of “dilatonic gravity”, it
appears to be the unique one where the dilaton decouples for the gravity field equation
[66, 46]: it is also endowed with remarkable features like a well-defined Newtonian
limit, gravitational collapse, black hole radiation, and simple cosmologies [9, 14, 11].
Covariant conservation laws for the stress-energy tensor, ∇αT

αβ = 0, actually follow
from a consideration of the behavior of the dilaton equation, as shown in [47, 48, 49].

Remark 1. A rather natural approach to derive a gravity action in 1 + 1 di-
mensions is to dimensionally reduce the 1 + 3-dimensional Einstein-Hilbert action.
Implementing spherical symmetry, by imposing the 1 + 3-dimensional line element,

ds2 = gαβdx
µdxν − φ2(dϑ2 + sin2 ϑ · dϕ2), Λ = 0,

with µ, ν ∈ {0, 1}2, the auxiliary field φ being restricted to positive values, and inte-
grating over both angle coordinates ϑ, ϕ, one derives the 1 + 1-dimensional action,

S̃2D =

∫
√

− det g

(
φ2

4
R+

1

2
gαβ∇αφ ∇βφ− 1

2

)

d2x,

This leads in particular to Scharzchild-type solutions, [33]. Thus, (1+1)-dimensional
gravity is sometimes assumed to hold, in first approximation, at Earth’s surface [52].

The paper is organized as follows: in Section 2, quantitative features of 1 + 1-
dimensional relativity are presented, especially we show that in the conformal gauge,
the expression of R yields a Liouville wave equation [16, 30, 32]. This allows to
derive, in Section 2.2 a model of coupled Euler-Louville self-gravitating fluid which
meets with a special case of a more general one obtained assuming planar Gowdy
symmetry [5, 25, 37]. We recover both an hydrostatic and a simple FRW model by
simplifying it in Section 2.3. In Section 3, we first work entirely in the “external-field
approximation”, that is, we take the classical perturbed metric to be given and study
time-evolution of remaining fields in this static background [2, 55, 53, 51, 56, 64, 70].
A Klein-Gordon equation is derived for spinless scalar fields, along with its (sign-
indefinite) continuity equation acting on ρ, J . Its time-evolution is displayed numer-
ically by means of an energy-preserving scheme, following methods of [20]. Later, a
Dirac equation is considered in a curved space-time induced by the hydrostatic repar-
tition of a piecewise constant mass. There, numerical results are obtained by means
of the schemes proposed in [24]. Numerical study of Dirac equation on a curved
space-time can be useful for graphene applications [57], too. Section 4 deals with
the more ambitious nonlinearly coupled Euler-Liouville system formerly derived: a
well-balanced [23], naturally locally inertial, Godunov scheme is carefully derived for
subsonic, non-resonant, relativistic flows (see also [34, 36]). The source terms aris-
ing from the variations in both space and time of the metric’s conformal factor are
handled by both well-balanced and time-splitting processes, respectively, in such a
manner that they don’t impose supplementary time-step restrictions, other than the
usual, homogeneous, CFL condition. Substantial differences exist with respect to the
Godunov scheme presented in [68, 69], especially in the treatment of the geometrical
source terms (here, there’s no need for any staggering process). This is illustrated
by means of an elementary gravitational collapse starting from random initial data
with null velocity and isothermal pressure law. Finally, an Appendix contains basic
facts about conservation laws on smooth curved surfaces, the link with well-balanced
approximations is explained and numerical absorbing boundary conditions for a 1D
Liouville equation are derived. Besides, in the spirit of [43], we skip as much as pos-
sible tensorial notations and Einstein’s convention of repeated indexes summation.
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2. A short synthesis on 1 + 1-dimensional “R = T relativity”. Within a
two-dimensional space-time, the Einstein curvature tensor vanishes identically: the
general theory of relativity induces an empty space-time with no dynamical equations.

2.1. An extension of Newtonian gravity. Let us start with a smooth surface
embedded in R

3 and a general (pseudo-)Riemannian metric expressed in a system of
curvilinear coordinates t, x such that the line element reads:

ds2 = E(t, x)dt2 + 2F (t, x)dxdt+G(t, x)dx2,

where E,F,G are smooth. By rescaling the time variable t→ t̃(t, x) according to an
“integrating factor” denoted σ(t, x), [13], F can be (locally) eliminated because,

∂t̃

∂t
dt+

∂t̃

∂x
dx

def
= dt̃ = σ(t, x)

(
E(t, x)dt+ F (t, x)dx

)
,

∂(σE)

∂x
=
∂(σF )

∂t
,

the second condition expressing that we have an exact differential form. Such an
integrating factor σ exists when the differential equation E(t, x)dt+F (t, x)dx = 0 has
a (local) solution, which happens as soon as F

E (or E
F ) is sufficiently smooth. Hence

the line element is ds2 = dt̃2

Eσ2 + (G − F 2

E )dx2 in these orthogonalized coordinates.
Accordingly we hereafter restrict ourselves to metrics written in diagonal form1, that
is, for which the 2× 2 matrix involved in the first fundamental form reduces to:

g =

(
E 0
0 G

)

. (2.1)

A standard result implies that the Gaussian curvature in orthogonal coordinates is,

K = − 1

2
√

|EG|

[

∂t

(

∂tG
√

|EG|

)

+ ∂x

(

∂xE
√

|EG|

)]

=
R
2
, (2.2)

with R standing for the Ricci curvature scalar. Even in such a seemingly elementary
framework, we may have to face the strongly nonlinear wave equation (2.2) in order
to get the space-time curvature: Collas [13] chose E = exp(2ν), G = exp(2λ), so

K =
1

exp(λ+ ν)

[

∂t
(
exp(λ− ν)∂tλ

)
− ∂x

(
exp(ν − λ)∂xν

)]

.

In some cases, the metric may be even simpler: following Mann et al. [44, 45, 50, 63],
we can select in (2.1), E(t, x) = α(t, x) = − 1

G(t,x) where α 6= 0 is a Lipschitz function:

g =

(
−α 0
0 1

α

)

, R = ∂tt

(
1

α

)

− ∂xx(α). (2.3)

Let’s now admit2 that the trace of the stress-energy tensor is given by T = p − ρ,
where ρ, p stands for the density and pressure of the matter, respectively. A very
elementary example is the static point mass M concentrated at x = 0, [19], yielding

∂xx(α) =Mδ(x), p = 0, α(x) = |x|+ C1x+ C2,

1In the ADM formalism, the “shift factor” is F = 0; E,G are called “lapse” and “metric” factors.
2It will be shown in §5 that this expression actually holds.
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C1, C2 being arbitrary constants. Vanishing pressure is usually associated with dust.
The metric element α(x) thus identifies with the classical Newtonian gravity potential.
Newton’s law of motion with an absolute time leads to a geodesic equation,

dt

dτ2
= 0,

d2x

dτ2
+ Γx

tt

(
dt

dτ

)2

=
d2x

dt2
+

dα

dx
= 0. (2.4)

Hence “Newton spacetime” may have a metric such that F = 0, G is constant and
Γx
tt =

dα
dx = −∂xE

2 . The metric (2.3) is expressed in so–called Schwarzschild gauge.

Remark 2. The metric (2.3) leads to a quasi-linear wave equation, that is,

∂t(
1

α
) = ∂xβ, ∂tβ = ∂xα+

∫ x

T ,

an inhomogeneous, isothermal p-system “à la Nishida” which (in general) admits
discontinuous BV entropy solutions, “Gauge shocks” [1, 3]. Consequently, Christoffel
symbols will display Dirac masses at the corresponding shock locations, bringing non-
conservative products [38] into covariant matter dynamics equations.

2.2. Derivation of the 1 + 1 coupled Euler-Liouville system.

2.2.1. Liouville field equation in isothermal coordinates. Thanks to the
property of any 2D smooth manifold to be conformally flat, one can work in the
conformal gauge, with t, x such that the Lorentzian metric tensor reads :

g = exp(2φ)

(
1 0
0 −1

)

:= exp(2φ)η, η the Minkowski metric, (2.5)

where the function 2φ(t, x) is usually called the “conformal factor”. Yet 2D scalar
curvature R (Ricci curvature tensor’s trace) equals twice Gaussian curvature K, and
completely characterizes a surface’s curvature. In isothermal coordinates [4],

R = 2K = − exp(−2φ)

(
∂2(2φ)

∂t2
− ∂2(2φ)

∂x2

)

,

meaning that the curvature of a 1+1-Lorentzian space-time can be computed through
the Liouville equation which displays a weaker nonlinearity compared to (2.2). Since
the Ricci scalar equals the trace T = tr(T ) of the stress-energy tensor, we finally get:

∂2(2φ)

∂t2
− ∂2(2φ)

∂x2
= −T exp(2φ).

For later use, Christoffel symbols (A.2) with D = det g = − exp(4φ) and F = 0 read:

Γt =

(
∂tφ ∂xφ
∂xφ ∂tφ

)

, Γx =

(
∂xφ ∂tφ
∂tφ ∂xφ

)

. (2.6)

Remark 3. The property of 2D surfaces being conformally flat [7, 31] doesn’t
say much about curvature; pick for instance the 2-sphere S

2, for which K = 1
R2 , R

being its radius. Their geodesic flow can be integrable, see [60] and Appendix D.
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2.2.2. A model of self-gravitating perfect fluid. To finalize our model, we
still need 2 things: the trace of the (symmetric) stress-energy tensor T to be inserted
in the Liouville equation, and then the expression of the covariant divergence of T .

• a standard form of T for a perfect fluid is, in tensorial notation, [7, p.329]

Tαβ = (ρ+ p)uαuβ − p gαβ , uαuα = (gαβ uβ)uα = −1.

One must define a (local) Lorentz factor γ and a scalar 1D velocity v:

γ =
1√

1− v2
, u := (1, v) exp(−φ)γ.

Component-wise, since gαβ is the inverse matrix of g, this means:






T tt = (ρ+ p)utut − p gtt = exp(−2φ)
[
(ρ+ p)γ2 − p

]
,

T tx = (ρ+ p)utux − p gtx = exp(−2φ)(ρ+ p)γ2v,
T xx = (ρ+ p)uxux − p gxx = exp(−2φ)

[
(ρ+ p)(γv)2 + p

]
.

(2.7)

At steady-state, there is no x-component in u, we recover v = 0, γ = 1 and
T = exp(−2φ)

(
ρ 0
0 p

)
like in [7]. The trace of T reads T = gαβ T

αβ :

T =

(
exp(2φ)

− exp(2φ)

)

·
(

exp(−2φ)
[
(ρ+ p)γ2 − p

]

exp(−2φ)
[
(ρ+ p)(γv)2 + p

]

)

= (ρ+ p)γ2(1− v2)− 2p = ρ− p.

The Liouville equation describing the curvature/conformal factor reads:

∂2(2φ)

∂t2
− ∂2(2φ)

∂x2
= −(ρ− p) exp(2φ) (2.8)

• the covariant divergence of an “order 2 tensor”, in tensorial notation,

divg(T ) = Tαβ
;β = ∇βT

αβ =
∂k(

√
− det g Tαk)√
− det g

+ Γα
lmT

lm

= 1√
exp(4φ)

(
∂t(exp(2φ)T

tt) + ∂x(exp(2φ)T
tx)

∂t(exp(2φ)T
tx) + ∂x(exp(2φ)T

xx)

)

+

(
Γt
ttT

tt + 2Γt
txT

tx + Γt
xxT

xx

Γx
ttT

tt + 2Γx
txT

tx + Γx
xxT

xx

)

,

(2.9)
a 2-component vector. As Euler perfect fluid equations read Tαβ

;β = 0, one
can multiply the former expression by exp(2φ) in order to get:

{
∂tτ + ∂xS + 2S ∂xφ+ (τ +Σ) ∂tφ = 0,
∂tS + ∂xΣ+ (τ +Σ) ∂xφ+ 2S ∂tφ = 0,

(2.10)

thanks to the simple expressions (2.6) and with some easier notations,






τ = exp(2φ)T tt = (ρ+ p)γ2 − p,
S = exp(2φ)T tx = (ρ+ p)γ2v,

Σ(τ, S) = exp(2φ)T xx = (ρ+ p)(γv)2 + p.

Within those notations, the field equation (2.8) rewrites as follows:

∂2(2φ)

∂t2
− ∂2(2φ)

∂x2
+ (τ − Σ) exp(2φ) = 0.
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Our 1 + 1-dimensional model of relativity in isothermal coordinates is the Euler-
Liouville system (2.8)–(2.10). It is endowed with several (interesting) properties:

1. it is a particular case of the “Gowdy models” [25] studied in [5, 37]
2. our equations are time-dependent generalizations of the ones derived in [7]
3. theoretical results on time-dependent Liouville equation (alone) are available

in [16, 32], its numerical analysis can be done following [20, 58]
4. it isn’t clear that this model supports gravitational waves in vacuum, [15].

2.3. Two well-known 1 + 1 relativistic gravity models. Static or homoge-
neous gravity field models will prove useful in a first set of numerical experiments,
that is, for simulating dynamics of elementary particles on curved space-times.

2.3.1. Hydrostatic 1 + 1 “stellar model”. A first case of interest, evoked in
[51, 63, 64], involves a (static) metric (2.1), in unitary gauge, which elements satisfy

ds2 = −B(x)2dt2 + dx2, E = −B(x)2, G ≡ 1.

The scalar velocity v ≡ 0, so γ ≡ 1 and the stress-energy tensor is now,

Tαβ = (ρ+ p)uαuβ + p gαβ , uαuα = − 1

B2
|ut|2 = −1.

The field equation R = T implies that the lapse factor B 6= 0 solves:

T =

(
ρ/B2 0
0 p

)

, R = 2K = − 1

|B|∂x
(
∂x(|B|2)

|B|

)

= T = −ρ+ p,

which gives finally that 2∂xx|B| = |B|(ρ − p). Yet, since matter is at steady-state,
there is an hydrostatic balance law that is deduced from the second equation in (2.9).

As v ≡ 0, the only useful Christoffel symbols are Γx
tt =

∂x(B
2)

2 and Γx
xx = 0; thus,

0 =
∂x
(√

− det g T xx
)

√
− det g

+ Γx
ttT

tt =
1

B
∂x(pB) +

ρ

2

∂x(B
2)

B2
.

Given an equation of state p = p(ρ), the field and matter laws for ρ(x), B(x) rewrite:

2∂xx|B| = |B|(ρ− p), ∂xp+ ∂x(log |B|)(ρ+ p) = 0. (2.11)

An example of such a metric appears in [64], with B(x) = tanhx, as the analytic
continuation of a black hole (torsion-free) to a Lorentz signature, see also [66]. Other
examples are either B(x) = sinhx, or B(x) = coshx, the so–called “anti-de Sitter
solution”, which can be recast in the Schwarzschild gauge by defining r = sinhx,

ds2 = − cosh2 xdt2 + dx2 = − cosh2 xdt2 +
dr2

cosh2 x
= −(1 + r2)dt2 +

dr2

1 + r2
.

A key feature is the presence of an horizon in x = 0 for B(x) = sinhx, [19, 54]. Its

geodesic flow is retrieved from symbols Γx
tt =

∂x(B
2)

2 , Γt
tx = ∂x log |B(x)|, if B 6= 0:

d

dτ

(

|B| dt
dτ

)

= 0,
d2x

dτ2
= −Γx

tt

∣
∣
∣
∣

dt

dτ

∣
∣
∣
∣

2

= −C ∂x(B
2)

2B2
= −C∂x log |B(x(τ))|.
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2.3.2. Friedmann-Robertson-Walker (FRW) homogeneous model. The
1+1-dimensional FRW metric is, with a(t) the metric, or scale factor and k ∈ {±1, 0},

ds2 = −dt2 + a(t)2
dx2

1− kx2
, E ≡ −1, G = a(t)2.

In one space dimension, one can rescale the x coordinate into sin−1(
√
kx)√

k
or sinh−1(

√
kx)√

k
in order to eventually absorb the x-dependence of the original metric. Hence only
k = 0 is a meaningful case to study, [41, 62]. The field equation R = T reads:

K =
1

2|a|∂t
(
∂t|a|2
|a|

)

=
R
2

=
T
2
, 2∂tt|a| = |a|T .

From the first equation in (2.9), relevant Christoffel symbols are Γt
tt = 0 and Γt

xx =
∂t|a|2

2 . The second equation in (2.9) yields ∂x(p/a) = 0 because Γx
tt = 0 = Γx

xx, so p
depends only on t. The equation of state p = p(ρ) leads to ρ = ρ(t). The stress-energy
tensor Tαβ = (ρ+ p)uαuβ + p gαβ with a comoving 2-velocity u = (1, 0) gives:

T =

(
ρ 0
0 p/a2

)

, 2∂tt|a| = |a|T = |a|(p− ρ), (2.12)

along with the first fluid dynamics equation in (2.9) which yields:

∂t(|a|ρ)
|a| +

∂t|a|2
2

p

|a|2 = 0, ∂tρ+ (ρ+ p)∂t log |a| = 0. (2.13)

Both (2.12) and (2.13) form a coupled system of nonlinear ODE in time for the
unknowns |a(t)|, ρ(t). The pressure p(t) is deduced thanks to the equation of state.

3. External field approximation: waves in a fixed gravity. Accordingly,
one may consider as a first (and less difficult) step the treatment of an evolution equa-
tion like the Dirac equation for relativistic fermions in a space-time curved by a time-
independent metric [64] (not in isothermal coordinates, though): the corresponding
Christoffel symbols induce a so–called “spin connection” bringing new source terms.

3.1. Klein-Gordon model including gravitational effects. Following e.g.
[48] (see also 1+ 1 versions of Birkhoff’s theorem relying on the existence of a Killing
vector [41, 62]), the inclusion of microscopic particles of mass m in an existing gravi-
tational background induces the following modification of the field equation:

R = T + T micro, T micro = m2|ϕ|2. (3.1)

We shall assume that the stress-energy tensor T results from a “big” mass M ≫
m, hence the perturbation term m2|ϕ|2 results as being negligible so the evolution
equation for the scalar field ϕ safely decouples from the former gravitational equation.

3.1.1. Klein-Gordon (KG) model for scalar spinless fields. In tensorial
notation and with the summation convention, the usual relativistic KG equation reads:

�gϕ+m2ϕ =
−1√
− det g

∂µ

(√

− det g gµν∂νϕ
)

︸ ︷︷ ︸

intrinsic box operator

+m2ϕ = 0,
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where m ≥ 0 is a parameter standing for the mass of the scalar field ϕ. Now, in our
1+ 1-dimensional context, and for a diagonal metric of the type (2.1), it rewrites like

−∂t
(√

|EG|
E

∂tϕ

)

− ∂x

(√

|EG|
G

∂xϕ

)

+m2ϕ
√

|EG| = 0.

As m ≪ 1, it is reasonable to assume that the dynamics of the scalar field ϕ(t, x)
cannot perturb the already existing gravitational field induced by the metric g. So
both E,G are considered to be static functions of x only, some simplification occurs:

∂ttϕ+
E(x)
√

|EG|
∂x

(√

|EG|
G(x)

∂xϕ

)

− Em2ϕ = 0.

Since a smooth 2D surface is conformally flat, it follows that the metric g has only one
degree of freedom, which is given by the conformal factor in isothermal coordinates.
We have therefore two main examples of static metrics, given by (2.3) and the stellar
model (2.11) respectively. As the choice (2.3) was already studied in e.g. [48, 51], we
switch to (2.11), and the resulting equation reads:

∂ttϕ− |B(x)|∂x (|B(x)|∂xϕ) +m2|B(x)|2ϕ = 0. (3.2)

The KG equation doesn’t generally preserve the L2 norm: it is however endowed with
a continuity equation for a quantity denoted by ρ(t, x) which hasn’t a definite sign.
Starting from (3.2), one proceeds by subtracting the two following equations,

ϕ∗[∂ttϕ− |B(x)|∂x (|B(x)|∂xϕ)
]
= −m2|B(x)|2|ϕ|2 ,

ϕ
[
∂ttϕ

∗ − |B(x)|∂x (|B(x)|∂xϕ∗)
]
= −m2|B(x)|2|ϕ|2 ,

(ϕ∗ standing here for the complex conjugate of ϕ), in order to produce,

ϕ∗∂ttϕ− ϕ∂ttϕ
∗

|B(x)| +
(
ϕ∂x (|B(x)|∂xϕ∗)− ϕ∗∂x (|B(x)|∂xϕ)

)
= 0.

Now, standard computations yield a ρ(t, ·) with no definite sign:

i
ϕ∗∂ttϕ− ϕ∂ttϕ

∗

|B(x)| = ∂t

(

i · ϕ
∗∂tϕ− ϕ∂tϕ

∗

|B(x)|

)
def
= ∂tρ. (3.3)

It vanishes if ϕ ∈ R. The mass flux is obtained by observing that:

∂x(ϕ(|B(x)|∂xϕ∗)) = ∂xϕ · |B(x)|∂xϕ∗ + ϕ · ∂x(|B(x)|∂xϕ∗),

∂x(ϕ
∗(|B(x)|∂xϕ)) = ∂xϕ

∗ · |B(x)|∂xϕ+ ϕ∗ · ∂x(|B(x)|∂xϕ),

so cross-products cancel in the difference. The corresponding mass flux J(t, x) reads,

J(t, x) = −i |B(x)| (ϕ∗∂xϕ− ϕ∂xϕ
∗) ,

and there holds ∂tρ + ∂xJ = 0, implying that d
dt

∫
ρ(t, x)dx ≡ 0 formally. This

conservation property should hold numerically in order to validate the results.
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3.2. Structure-Preserving discretization of Klein-Gordon equation. An
energy estimate for (3.2) is easily derived by multiplying it by ∂tϕ and integrating:

∫

R

∂tϕ · ∂ttϕ− ∂t(|B|ϕ) · ∂x(|B|∂xϕ) +m2|B|2 ∂t|ϕ|
2

2
dx = 0.

By observing that, if |B(x)|∂xϕ→ 0 as |x| → ±∞, an integration by parts yields:

−
∫

R

∂t(|B|ϕ) · ∂x(|B|∂xϕ) dx =

∫

R

∂t
(
∂x(|B|∂xϕ)

)
· ∂x(|B|∂xϕ) dx.

And this leads to the property of the (non-definite) energy conservation,

d

dt

∫

R

[
|∂tϕ|2 + |B(x)|2

(
|∂xϕ|2 +m2|ϕ|2

)]
dx ≡ 0.

We intend to follow ideas of [20] in order to derive a numerical process able to main-
tain this property at the discrete level without stringent restrictions as time grows.
Accordingly, we denote by E the associated “conserved energy”,

E =

∫

R

|∂tϕ|2 + G(x, ϕ, ∂xϕ) dx, G(x, ϕ, ∂xϕ)
def
= |B(x)|2

(
|∂xϕ|2 +m2|ϕ|2

)
,

and Liouville equation (2.8) rewrites in a form inspired by the “gradient flow” PDE’s:

∂2ϕ

∂t2
+
δG
δϕ

= 0,
δG
δϕ

=
∂G
∂ϕ

− ∂

∂x

(
∂G

∂(∂xϕ)

)

,

see [20, pp. 27–31]. The procedure involves the following steps:
1. Defining a discrete G, a discrete analogue of G: for j, n ∈ Z× N,

Gn
j

def
=

|B(xj)|2
2

(∣
∣
∣
∣

ϕn
j+1 − ϕn

j

∆x

∣
∣
∣
∣

2

+

∣
∣
∣
∣

ϕn
j − ϕn

j−1

∆x

∣
∣
∣
∣

2

+ 2m2|ϕn
j |2
)

.

2. Computing its discrete variation in such a way that E ≃ E is constant,

En+ 1
2

def
= ∆x

∑

j∈Z

∣
∣
∣
∣
∣

ϕn+1
j − ϕn

j

∆t

∣
∣
∣
∣
∣

2

+G
n+ 1

2
j , G

n+ 1
2

j =
1

2

(
Gn+1

j +Gn
j

)
.

3. Deducing the numerical scheme as a time-marching process: namely, we aim
at linearizing, for any n ∈ N, the difference En+ 1

2 − En− 1
2 = 0 in order to

derive an energy-preserving algorithm. Indeed, the time-difference yields:

0 =
∑

j∈Z

(
ϕn+1
j − ϕn−1

j

)










ϕn+1
j − 2ϕn

j + ϕn−1
j

∆t2
+

G
n+ 1

2
j −G

n− 1
2

j

ϕn+1
j − ϕn−1

j
︸ ︷︷ ︸

δGn
j /δϕ










,

and it remains to express the quantity
δGn

j

δϕ . Toward this end, let us define
the following notation:

∀j, n ∈ Z× N, δj+ 1
2
(ϕn)

def
=

ϕn
j+1 − ϕn

j

∆x
.
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The difference of the time-average values G
n+ 1

2
j −G

n− 1
2

j rewrites:

G
n+ 1

2
j −G

n− 1
2

j =
|B(xj)|2

4

[

|δj+ 1
2
(ϕn+1)|2 − |δj+ 1

2
(ϕn−1)|2

+2m2
(
|ϕn+1

j |2 − |ϕn−1
j |2

)

+|δj− 1
2
(ϕn+1)|2 − |δj− 1

2
(ϕn−1)|2

]

=
|B(xj)|2

4

[

δj+ 1
2
(ϕn+1 + ϕn−1) · δj+ 1

2
(ϕn+1 − ϕn−1)

+2m2
(
ϕn+1
j + ϕn−1

j

)
·
(
ϕn+1
j − ϕn−1

j

)

+δj− 1
2
(ϕn+1 + ϕn−1) · δj− 1

2
(ϕn+1 − ϕn−1)

]

.

We need to let ϕn+1
j −ϕn−1

j appear hence a summation by parts is convenient:

∑

j∈Z

G
n+1

2
j −G

n−

1
2

j

ϕn+1
j −ϕn−1

j

= −∑j∈Z

[
|B(xj+1)|2+|B(xj)|2

4∆x δj+ 1
2
(ϕn+1 + ϕn−1)

−m2|B(xj)|2
2

(
ϕn+1
j + ϕn−1

j

)

− |B(xj)|2+|B(xj−1)|2
4∆x δj− 1

2
(ϕn+1 + ϕn−1)

]

.

Gathering all these results, we obtain the following (implicit) numerical scheme:

ϕn+1
j −2ϕn

j +ϕn−1
j

∆t2
= 1

2

[

|B(xj+1)|2+|B(xj)|2
2

(
ϕn+1

j+1 −ϕn+1
j

∆x2 +
ϕn−1

j+1 −ϕn−1
j

∆x2

)

− |B(xj)|2+|B(xj−1)|2
2

(
ϕn+1

j −ϕn+1
j−1

∆x2 +
ϕn−1

j −ϕn−1
j−1

∆x2

)]

−m2|B(xj)|2
(

ϕn+1
j +ϕn−1

j

2

)

.

(3.4)
If one imposes periodic boundary conditions at the edges of the (finite) computational
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 −0.41
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 0.41 

Fig. 3.1. Position densities ρ in (x, t)-plane, 0 ≤ t ≤ 40 for m2 = 1, 2, 4.

domain, the scheme (3.4) can easily put in matrix form, and if ϕn stands for the
vector with components ϕn

j at each tn = n∆t, one finds Aϕn+1 = 2ϕn−Aϕn−1, with
A strictly diagonal-dominant, hence invertible. We set up a slight variation of the
aforementioned example, where B(x) = 1 + tanh(x/5) in x ∈ (−10, 10), and 28 grid
points. By prescribing Gaussian-type initial data,

ϕ(t = 0, x) = exp(−ikx− (x/σ)2), ∂tϕ(t = 0, ·) = 0, k = 0.2,

with σ = 3, we get the results on Fig. 3.1 for increasing masses and ∆t = 0.95∆x
(in all figures, color coding is always in increasing order of magnitude). For such a
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benchmark, the position density ρnj (3.3) is defined at each step as,

ρnj = i

(

(ϕn
j )

∗ϕ
n
j − ϕn−1

j

∆t
− ϕn

j

(ϕn
j − ϕn−1

j )∗

∆t

)

and the deviation of
∑

j ρ
n
j as times grow remains of the order of 10−12. The metric’s

isolines are superimposed onto the values of ρ. The main effect of the curvature
induced by the stellar model (2.11) is to produce smooth oscillations of the quantum
particle satisfying (3.2). Moreover, increasing its mass m, Fig. 3.1 reveals that their
frequency grows whereas their amplitude decreases, which is the expected behavior.

3.3. Dirac equation for fermions in a curved space-time. Here again, we
follow [48] in assuming that including the microscopic term T micro = m|Ψ|2 induces
only a negligible contribution thanks to the smallness of m. Hence we postulate
that the Dirac equation decouples from the gravitational field one. Such a model
of fermions dynamics can be seen as rendering either gravitational effects and local
curvature [42, 55, 56, 64] or effects of impurities/dislocations in a graphene sheet [57].

3.3.1. Inertial coordinates and Zweibeine. As we did for the Klein-Gordon
equation, we hereafter assume that the fermions dynamics aren’t able to perturb the
existing gravitational field in a sensible manner. A time-dependent 2-spinor in curved
spacetime with metric (2.3) was studied in detail in [56], see equations (20)–(21).

A more challenging situation is the one where a 2-spinor moves in the gravity field
resulting of a static, uniform density source, for which one substitutes the point mass
concentrated in x = 0 by a discontinuous function ρ(x) =Mχ(|x| < x0), χ being the
standard indicator function. In order to set up our framework, we need to compute
hydrostatic solutions φ, p of the Euler-Liouville system (2.8)–(2.10) and then to derive
the 1 + 1 Dirac equation corresponding to the resulting gravity field.

• Following [7, 62], let us compute, in isothermal coordinates, the hydrostatic
solution corresponding to a uniform density of limited extent. The 2-velocity
reads ut = exp(−φ), ux = 0 because the scalar velocity v ≡ 0 and γ ≡ 1. The
resulting stress-energy tensor is deduced by inserting these values in (2.7).
By examining remaining terms in (2.10) and (2.8), the hydrostatic and field
equations read, for the pressure p(x) and the conformal factor φ(x):

∂xp+ (ρ+ p)∂xφ = 0, ∂xxφ =
1

2
(ρ− p) exp(2φ), ρ(x) =Mχ(|x| < x0).

Let’s first deal with the interval x ∈ (−x0, x0), where ρ(x) ≡ M : the first
equation is a logarithmic derivative, which can be handled like

−∂xφ =
∂xp

p+M
, φ(x) = φ(0)− log

∣
∣
∣
∣

p(x) +M

p(0) +M

∣
∣
∣
∣
.

The hydrostatic pressure rewrites:

p(x) = (p(0) +M) exp(−(φ(x)− φ(0)))−M,

and this leads to the following differential equation for φ,

2∂xxφ = 2M exp(2φ(x))− (p(0) +M) exp(φ(x)− φ(0)).
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As the density is even ρ(−x) = ρ(x), we can normalize the pressure p(0) = 1
and the coformal factor like φ(0) = 0, φ′(0) = 0 in order to get:

φ(x) = − log

(
M(1− coshx) + (1 + coshx)

2

)

, p(0) = 1.

This expression easily yields exp(−φ(x)) from which one deduces the pressure

p(x) =
1

2

(
(1 +M2) + (1−M2) coshx

)
,

along with the value x0, which is such that p(x0) = 0, so

p(x0) = 0, x0 = log

∣
∣
∣
∣

M + 1

M − 1

∣
∣
∣
∣
, M > 1.

Concerning the interval x 6∈ (−x0, x0), the density vanishes thus we are in
vacuum. The static field equation gives ∂xxφ ≡ 0, with an even solution
which moreover must be continuous in x0. So we get that for x 6∈ (−x0, x0),

φ(x) = A|x|+B, A|x0|+B = φ(x0) = − log
M

1 +M
.

A second constraint comes from the hydrostatic equation posed in x0,

∂xφ(x0) +
∂xp(x0)

ρ(x0)
= ∂xφ(x0) +

1−M2

M
sinhx0, ∂xφ(x0) = 1 = A.

Finally, the (hydrostatic) gravitational field rewrites:

0−2 2−3 −1 1 3−2.5 −1.5 −0.5 0.5 1.5 2.5
0

2

1

0.2

0.4

0.6

0.8

1.2

1.4

1.6

1.8

Hydrostatic gravitational field
Hydrostatic pressure

Fig. 3.2. Illustration of hydrostatic solution for M = 1.5, so x0 = log(5).

φ(x) =







|x|+ log
(
M−1
M

)
, x 6∈

(

− log
∣
∣
∣
M+1
M−1

∣
∣
∣ , log

∣
∣
∣
M+1
M−1

∣
∣
∣

)

,

− log
(

M+1−(M−1) cosh x
2

)

, x ∈
(

− log
∣
∣
∣
M+1
M−1

∣
∣
∣ , log

∣
∣
∣
M+1
M−1

∣
∣
∣

)

.

(3.5)
• Following for instance [55, 56], we now derive the corresponding expression of
the Dirac equation for the 2-spinor Ψ(t, x) ∈ C

2 in this static spacetime. In
order to express properly this equation on a curved surface S, it is necessary
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to introduce the so–called Dyad (or Zweibein), which, given any point p ∈ S,
is a linear map from the tangent space TpS onto the Minkowski flat space
which preserves the inner product. In tensorial notation, it comes:

∀x, y ∈ (TpS)2, gµνx
µyν = ηab(e

a
αx

α)(ebβy
β).

Since we chose to work in conformally flat (isothermal) coordinates, the metric
g = exp(2φ)η and the dyads read simply: eaα(x) = exp(φ)δaα, where δ

a
α = 1

for α = a, and 0 if α 6= a. For the “stellar” and the FRW metrics,

[eaα]
stellar =

(
|B(x)| 0

0 1

)

, [eaα]
FRW =

(
1 0
0 |a(t)|

)

.

Relying on [64], the Dirac equation on curved spacetime reads, in tensorial notation:

iγa
[

Eµ
a ∂µ(Ψ) +

1

2
√
− det g

∂µ

(√

− det g Eµ
a

)

Ψ

]

= mΨ, (3.6)

wth Eµ
a = exp(−φ)δµa standing for the inverse of eaµ. Here, the matrices γ0, γ1 are:

γ0 =

(
0 1
1 0

)

, γ1 =

(
0 −1
1 0

)

,

like in [56], but other choices are possible, see [55, 64]. We can rewrite (3.6) as:

−imΨ = γ0
[

exp(−φ)∂tΨ+ 1
2 exp(2φ)∂t

(
exp(2φ) exp(−φ)

)
Ψ
]

+γ1
[

exp(−φ)∂xΨ+ 1
2 exp(2φ)∂x

(
exp(2φ) exp(−φ)

)
Ψ
]

.

As the static conformal factor φ(x) is independent of t, there are simplifications:

γ0∂tΨ+ γ1
(

∂xΨ+
∂xφ

2
Ψ

)

︸ ︷︷ ︸

intrinsic space−derivative

+im exp(φ)Ψ = 0.

It is advantageous to introduce a rescaled spinor Ψ̃ = exp(φ/2)Ψ, so it comes

γ0∂tΨ̃ + γ1∂xΨ̃ + im exp(φ)Ψ̃ = 0. (3.7)

By standard computations, one recovers the L2 conservation law:

∂t

(

|Ψ̃+|2 + |Ψ̃−|2
)

+ ∂x

(

|Ψ̃+|2 − |Ψ̃−|2
)

= 0, Ψ̃± = exp(φ/2)Ψ±.

3.3.2. L2-preserving WB numerical scheme. A recent numerical scheme
was studied in [24] for the simulation of the Dirac equation within an x-dependent
scalar potential. Such a framework matches the one derived in the former subsection:

1. the mass term m exp(φ(x)) isn’t a constant if the spacetime is curved,
2. there is no supplementary scalar potential, Vt(x), appearing in (3.7).

Thus, with preceding notations, (3.7) rewrites:

∂tψ̃±(t, x)± ∂xψ̃± + im exp(φ)ψ̃∓ = 0, ψ̃ = (ψ̃−, ψ̃+) ∈ C
2.
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Clearly, we intend to proceed like in §B.2, that is to say by localizing the right-hand
side by means of a lattice of Dirac masses adapted to the computational grid:

∂tψ̃±(t, x)± ∂xψ̃± + im∆x
∑

j∈Z

(

exp(φ)ψ̃∓ · δ(x− xj− 1
2
)
)

= 0.

A Godunov scheme is deduced by integrating the preceding (modified) equation on
each numerical elementary domain,

Dn
j = (xj− 1

2
, xj+ 1

2
)× (tn, tn+1), j, n ∈ Z× N.

A piecewise-constant approximation can be defined as follows:

ψ̃∆x = ψ̃∆x
± ∈ C

2, ψ̃∆x
± (t, x) = ψ̃n

j,±, (t, x) ∈ Dn
j .

Because of the Dirac masses, “scattering states” ψ̃n
j− 1

2 ,±
appear at the discrete level,

which are obtained out of the stationary equations ±∂xψ̃± + im exp(φ)ψ̃∓ = 0:

ψ̃n+1
j,+ = ψ̃n

j,+ − ∆t
∆x

(

ψ̃n
j,+ − ψ̃n

j− 1
2 ,+

)

ψ̃n+1
j,− = ψ̃n

j,− + ∆t
∆x

(

ψ̃n
j+ 1

2 ,−
− ψ̃n

j,−

)







It was noticed in [24] that this scheme rewrites in the following (vectorial) form:
(

ψ̃n+1
j,+

ψ̃n+1
j−1,−

)

=

(

1− ∆t

∆x

)(
ψ̃n
j,+

ψ̃n
j−1,−

)

+
∆t

∆x
Sj− 1

2

(
ψ̃n
j−1,+

ψ̃n
j,−

)

, (3.8)

where Sj− 1
2
is a “local 2× 2 scattering matrix” which reads:

Sj− 1
2
=

1

coshω

(
1 −i sinhωj− 1

2

−i sinhωj− 1
2

1

)

, ωj− 1
2
= m∆x exp(φ(xj− 1

2
)).

As usual, it relates the scattering states to the “incoming states”:
(
ψ̃n
j− 1

2 ,+

ψ̃n
j− 1

2 ,−

)

= Sj− 1
2

(
ψ̃n
j−1,+

ψ̃n
j,−

)

.

It is clear from (3.8) that numerical dissipation is minimized when ∆t = ∆x, so that
the Courant number is 1: the L2 norm, a particular entropy, is conserved as time
grows, and this is equivalent to the preservation of the probability of presence of rela-
tivistic quantum particles. The scheme (3.8) is applied to the equation (3.7) endowed
with the conformal factor (3.5) in the interval x ∈ (−3, 3) and periodic boundary
conditions (which hardly play any role because particles don’t reach borders). There
are 27 points in space, ∆t = ∆x, and initial data read (before normalization):

ψ±(t = 0, x) = exp
(
−2(x± 0.6)2

)
.

Corresponding results show up on Fig. 3.3 on the (curved) x, t spacetime, namely
position densities ρ(t, ·) = |ψ+(t, ·)|2 + |ψ−(t, ·)|2, 0 ≤ t ≤ 25, for several masses
m = 3

4 ,
3
2 , 3. The scheme works in Ψ̃ variables, but results appear in the original ones.

Metric’s isolines are displayed together with the numerical values of ρ. As expected,
the space-time’s (static) curvature induced by (3.5) produces oscillating dynamics for
the quantum particle. Moreover, increasing its mass m in (3.7) restricts noticeably
the spreading of its density of presence (see Fig. 3.3, from left to right).
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Fig. 3.3. Spinor’s position densities in (x, t)-plane for increasing masses m = 0.75, 1.5, 3.

4. Dynamical coupling: a model of self-gravitating perfect fluid. Oppo-
site to both the preceding sections where we considered microscopic particles moving
into an existing gravitational field induced by a much more massive object, hence
allowing for a decoupling of their dynamics from the feedback of the R = T equation,
we shall consider hereafter the numerical resolution of a fully coupled problem where a
(relativistic) perfect gas moves according to the gravity it creates. In some sense, this
is a very elementary 1+1-dimensional illustration of J.A. Wheeler’s famous sentence:
“Matter tells spacetime how to curve, and curvature tells matter how to move”.

4.1. Locally inertial numerical discretization. Here, we follow [26, pp. 18–
20] and work on a uniform Cartesian grid with cells centered around tn, xj , where
n, j ∈ N× Z. Those computational cells are such that φ ≡ φnj ≃ φ(tn, xj), i.e. φ is a
constant in each cell, meaning that it is a local inertial reference frame (in the sense
that the metric is flat inside each cell): the conformal factor jumps at each interface

4.2. Structure-Preserving discretization for Liouville equation. By mul-
tiplying (2.8) by ∂t(2φ), assuming that ∂t(ρ− p) ≡ 0 and integrating on R, one gets:

d

dt

∫

R

[

|∂tφ|2 + |∂xφ|2 +
(ρ− p)(x)

2
exp(2φ)

]

· dx ≡ 0.

Thus it appears convenient to follow again [20] in order to develop a numerical dis-
cretization able to keep constant a discrete approximation of this energy functional.
An alternative, less costly, would be to use the simpler scheme recalled in e.g. [58],

φn+1
j = 2φnj

(

1− ∆t2

∆x2

)

−φn−1
j +

∆t2

∆x2
(φnj+1+φ

n
j−1)−

∆t2

2
(ρnj −pnj ) exp(φnj+1+φ

n
j−1).

(4.1)
One issue is to find a correct manner to initialize (4.1): one manner is to prescribe
constant initial data, another is to derive a “pseudo-static” conformal factor, i.e. an
approximation of the solution to (with appropriate boundary/decay conditions),

−∂xxφ0(x) +
ρ0(x)− p(ρ0(x))

2
exp(2φ0(x)) = 0. (4.2)

4.3. Well-balanced Godunov scheme for (2.9) with p(ρ) = σ2ρ.

4.3.1. Riemann problem for relativistic Euler system. Hereafter, we quickly
recall elementary properties of the system (2.9) when the pressure law is “isothermal”:
according to [26, page 22], the choice σ2 = 1

3 is especially meaningful. The first ob-
servation is the very easy inversion relating both sets of variables τ, S,Σ 7→ ρ, v:

ρ =
τ − Σ

1− σ2
, v =

(1− σ2)S

(1 + σ − σ2)τ − σΣ
.
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Moreover, the value of v can be easily deduced from τ, S 6= 0 as follows:

s =
S

τ
, v =

(1 + σ2)−
√

(1 + σ2)2 − 4σ2s2

2σ2s
.

Following [26], characteristic velocities are found to be,

λ± = v ± σ, λ− < λ+,

thus system (2.9) with the aforementioned pressure law is unconditionally strictly
hyperbolic as soon as the sound speed σ > 0. Since |v| < 1, the homogeneous CFL
stability restriction is simply (1+σ)∆t ≤ ∆x. More importantly, if one assumes that
the system is to remain in subsonic regime, then the CFL lightens into 2σ∆t ≤ ∆x.
Sonic points are such that |v| = σ and Riemann invariants read:

W±(ρ, v) =
1

2

[

ln

(
1 + v

1− v

)

± σ

1 + σ2
ln ρ

]

=
1

2
ln

[(
1 + v

1− v

)

ρ
± σ

1+σ2

]

. (4.3)

It is convenient to set up a subsonic (approximate) Riemann solver based only on
rarefaction curves by imposing that each Riemann invariant must remain constant
across its corresponding simple wave: given left/right states ρL, vL, and ρR, vR, both
not in vacuum, one seeks an intermediate state ρ∗, v∗ such that,

W+(ρL, vL) = W+(ρ∗, v∗), W−(ρ∗, v∗) = W−(ρR, vR). (4.4)

These 2 equations are straightforwardly solved and it comes:

ρ∗ = exp

(
1 + σ2

σ
(W+ −W−)

)

,

v∗ =
exp(W+ +W−)− 1

exp(W+ +W−) + 1
= tanh

(W+ +W−
2

)

, (4.5)

in particular, v∗ ∈ (−1, 1).The corresponding Godunov scheme reads accordingly,

τn+1
j = τnj − ∆t

∆x

(

Sn
j+ 1

2

− Sn
j− 1

2

)

,

Sn+1
j = Sn

j − ∆t
∆x

(

Σn
j+ 1

2

− Σn
j− 1

2

)

,






(4.6)

where the numerical fluxes Sn
j± 1

2

,Σn
j± 1

2

are deduced from both (4.5) and the definition

of S,Σ. At each interface xj+ 1
2
= (j + 1

2 )∆x, one considers the elementary Riemann

problem separating ρnj , v
n
j and ρnj+1, v

n
j+1, which yields the intermediate state (4.5).

4.3.2. Inclusion of zero-waves for source terms in ∂xφ. Here we shall follow
the ideas of [23, 28] and choose to solve the “augmented Riemann problem” for

∂tτ + ∂xS + 2S∂xφ = 0,
∂tS + ∂xΣ+ (τ +Σ)∂xφ = 0,

∂tφ = 0,






(4.7)

where the last (static) equation reflects the “locally inertial” nature of the numerical
process. Indeed, in each computational cell, the metric is flat φ ≡ φnj and ∂tφ ≡ 0.
The characteristic velocities for (4.7) are now λ± and 0, hence in order to preserve
strict hyperbolicity, one must restrict v for preventing crossing of eigenvalues λ± = 0
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which induces very intricate “nonlinear resonance” phenomena [28]. Accordingly we
shall again assume in the sequel that (4.7) remains in subsonic regime, |v| < σ < 1
(for σ = 1, p = ρ and (2.8) gives that the conformal factor φ decouples from matter).

Besides, the supplementary (static) jump relations generated by the terms in ∂xφ
are integral curves of the stationary equations, so another advantage of limiting |v| is
their simplification. More precisely, let’s assume |v| small enough so that one writes:

∂xΣ = −(τ +Σ)∂xφ ≃ −(τ∗ +Σ)∂xφ, τ∗ =
ρ∗(1 + σ2v2∗)

1− v2∗
,

and ρ∗, v∗ are given by (4.5). Accordingly, stationary equations of (4.7) become

∂xS + 2S∂xφ = 0, ∂xΣ = −(τ∗ +Σ)∂xφ. (4.8)

Since it degenerates correctly when φ+ − φ− → 0, the approximation involving τ∗ is
justified because the Liouville equation (2.8) doesn’t create shocks. So, by refining
the grid if necessary, the amplitude of the zero-waves decrease and so their truncation
errors. Integral curves of the (approximate) static discontinuities read accordingly:

S(x) exp(2φ(x)) = S(0) exp(2φ(0)),
Σ(x) = Σ(0) exp(φ(0)− φ(x))− τ∗[1− exp(φ(0)− φ(x))],

(4.9)

so the Riemann problem for (4.7) involves 2 genuinely nonlinear waves corresponding
to the Riemann invariants W± and the very linearly degenerate (static) discontinuity
induced by the jump of φ. Such a Riemann solver, when inserted inside a Godunov
scheme, displays many advantages as long as nonlinear resonance doesn’t occur:

• the resulting scheme is truly “locally inertial” in the sense that the metric
is a constant inside each computational cell. Discontinuities are resolved at
each interface xj+ 1

2
involving the jump of the conformal factor, too;

• by construction, if φ remains constant between two computational cells, the
Godunov scheme degenerates onto (4.6);

• including source terms by means of a supplementary static jump relation
doesn’t have consequences on the CFL restriction, in subsonic regime stability
holds for 2σ∆t ≤ ∆x;

• an hydrostatic equilibrium, that is to say a stationary state in which pressure
balances gravity with a null velocity v ≡ 0 is automatically preserved at
the discrete level because the approximate equations (4.8) are exact, and the
Riemann problem for (4.7) is solved by means of the supplementary wave
only (in general, this is referred to as the “well-balanced” (WB) property).

The corresponding Godunov scheme for (4.7) reads accordingly,

τn+1
j = τnj −∆t

numer. intrinsic space−derivative
︷ ︸︸ ︷
(
Sn
j+ 1

2 ,−
− Sn

j− 1
2 ,+

∆x

)

Sn+1
j = Sn

j −∆t

(
Σn

j+ 1
2 ,−

− Σn
j− 1

2 ,+

∆x

)

︸ ︷︷ ︸

numer. intrinsic space−derivative







(4.10)

where now Sn
j+ 1

2 ,∓
,Σn

j+ 1
2 ,∓

are the left/right states in the Riemann fan which are

separated by the static discontinuity induced by the jump φnj+1 − φnj of the metric’s
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conformal factor located at the interface xj+ 1
2
. These left/right states are derived

from the values ρ±, v± appearing in the Riemann problem:

(
ρL
vL

)
W+,φ≡C→

(
ρ−
v−

) S exp(2φ),
Σ[...] ≡C

→
(
ρ+
v+

)
W

−
,φ≡C→

(
ρ−
v−

)

,

where the quantities constant across each simple wave are written over each arrow.
We have the following relations, for W− = W−(ρL, vL) and W+ = W+(ρR, vR):
• on the left side of the static discontinuity,

ρ− =

(
(1− v−) exp(2W+)

1 + v−

) 1+σ2

σ

⇒







S− = (1+σ2)v
−

1−v2
−

(
(1−v

−
) exp(2W+)
1+v

−

) 1+σ2

σ

Σ− =
σ2+v2

−

1−v2
−

(
(1−v

−
) exp(2W+)
1+v

−

) 1+σ2

σ

• analogously, on the right side of the static discontinuity,

ρ+ =

(
1 + v+

(1− v+) exp(2W−)

) 1+σ2

σ

⇒







S+ = (1+σ2)v+

1−v2
+

(
1+v+

(1−v+) exp(2W
−
)

) 1+σ2

σ

Σ+ =
σ2+v2

+

1−v2
+

(
1+v+

(1−v+) exp(2W
−
)

) 1+σ2

σ

• and both these states must satisfy:

S+ exp(2φ+) = S− exp(2φ−),
Σ+ exp(φ+) = Σ− exp(φ−)− τ∗[exp(φ+)− exp(φ−)].

(4.11)

The system (4.11) is a set of two nonlinear algebraic equations for v±, which can be
solved numerically, by prescribing an starting value of v+ = v− = v∗, corresponding
to φ+ = φ−. Then, having at hand both values v±, ρ± are deduced thanks to (4.4):

W+(ρL, vL) = W+(ρ−, v−), W−(ρR, vR) = W−(ρ+, v+).

If φ+ = φ−, the metric remains flat inside 2 consecutive computational cells, (4.11)
implies automatically that S+ = S−, Σ+ = Σ−, so it yields the v∗ value found in
(4.5), along with ρ+ = ρ− = ρ∗. Inversion of this nonlinear algebraic system allows
to compute all the numerical fluxes of the locally inertial Godunov scheme (4.10).

4.3.3. Inclusion of time-splitting for source terms in ∂tφ. It remains to
treat the source terms depending on ∂tφ inside (2.9); according to [22], one may choose
to treat them by means of a time-splitting algorithm involving the aforementioned
approximation in order to integrate the differential system, for t ∈ (n∆t, (n+ 1)∆t),

∂tτ(t) = −(τ +Σ)∂tφ ≃ −(τ +Σn)∂tφ, ∂tS(t) + 2S∂tφ = 0,

where Σn stands for a “frozen” value of Σ(t) at the time tn = n∆t. More precisely,
given, for some time-index n ∈ N and any space-index j ∈ Z, both approximate values
τnj ≃ τ(tn, xj), S

n
j ≃ S(tn, xj), this ODE step reads:

τ̃n+1
j = τnj exp

(
−(φn+1

j − φnj )
)
− Σn

j

[
1− exp

(
−(φn+1

j − φnj )
)]
,

S̃n+1
j = Sn

j exp
(
−2(φn+1

j − φnj )
)
,

(4.12)
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where φn+1
j − φnj is the time-variation of the metric’s conformal factor, computed by

means of the Structure-Preserving scheme or (4.1) for the Liouville equation (2.8).
Remark 4. Since ρ ≥ p(ρ), φ(t, ·) decreases in time by (2.8); yet τ + Σ ≥ 0, so

τ(t, ·), hence ρ(t, ρ), always grows. This may perturb gravitational self-interactions,
so we imposed at each time-step that the arithmetic mean of φ remains constant.
Inserting a “cosmological constant” Λ > 0 in (2.8), modeling a neutralizing background
may appear as being necessary for global stability.

4.4. Summary of the time-marching scheme for (2.8)–(2.9). Given ini-
tial data for φn=−1

j , φn=0
j , and ρn=0

j , vn=0
j , j ∈ Z, our numerical process consists in

advancing first the conformal factor by means of e.g. (4.1), then compute all the
jumps in space φn=1

j − φn=1
j−1 , solve (4.11) at each interface in order to compute corre-

sponding Godunov fluxes Sn=0
j− 1

2 ,±
,Σn=0

j− 1
2 ,±

, then update each couple τn=0
j , Sn=0

j , and

finally apply the time-splitting correction (4.12) in order to derive τn=1
j , Sn=1

j . This

sequence applies iteratively until a prescribed stopping time, tN , N ∈ N, is reached.

4.4.1. Self-gravitating relativistic isothermal gas cloud. As an illustrative
example, we consider a classical problem consisting in a gravitational collapse of
randomly distributed dust. This meets with the initial data,

ρ0(xj) = randomj ∈ (0, 1), vj ≡ 0, j ∈ {1, 2, ..., J},

and φn=−1
j = φn=0

j = 0 (the flat Minkowski metric), with transparent boundary
conditions (see Appendix C). On a finite computational domain, boundary conditions
must be specified at each time tn, in j = 0 and j = J + 1: we imposed that v = 0 =
∂xρ. Clearly, this is enough to compute the Godunov fluxes at the edges of the
computational domain by means of (4.5). On Fig. 4.1, we display the results in
T = 10 of such a simulation on the domain x ∈ (−5, 5), with 100 grid points, so
∆x = 0.1 and a constant CFL number 2σ∆t ≤ ∆x. The isothermal pressure law is
fixed by σ2 = 1

3 ; gravitational effects decrease with the sound speed 0 < σ < 1. On
the top, left, the conformal factor φ(t = 10, ·) indicates that the accumulated mass in
the center of the computational domain curved the spacetime’s metric. Corresponding
isolines of exp(2φ) are superimposed onto numerical values of ρ (t is vertical): the
picture on top, right in1dicates that densities pass from a very disordered state to a
more ordered one. The final states (in t = 10) of ρ and v are displayed on the bottom,
together with the random fluctuations of ρ(t = 0, ·). The 1D scalar velocity v nearly
vanished around x ≃ 0, that is where matter accumulated. Red lines indicate sonic
speeds ±σ: crossing them during the simulation makes the numerical process break
down because of nonlinear resonance [28] and loss of strict hyperbolicity in (4.7).

Remark 5. A conformally flat metric (2.5) cannot hold a simulation of complete
gravitational collapse as φ would blow up close to the event horizon [31]; notice that
as σ2 = 1

3 , could such a simulation be achieved, the final object would be a “black
membrane” according to [65]. Instead, as the pressure law is barotropic, a polytrope
likely emerged as an isothermal self-gravitating configuration of gas. Its structure is
similar to the one of a collisionless system of stars, like a (low-dimensional caricature
of a) globular cluster; see [27, 61] for polytropes arising in gravitational collapse.

4.4.2. Random perturbation of a 1 + 1 polytrope. Another interesting
benchmark consists in simulating the effects of an initially Gaussian mass distribution,
which is perturbed by random (scalar) velocity fluctuations:

ρ0(x) = 0.15 + 4.35 exp(−x2), v(t = 0, xj) = 0.9σ(randomj − 0.5).
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Fig. 4.1. Numerical φ(t = 10, ·) (left), ρ (right, in (x, t)-plane, t ≤ 10); initial and final states
ρ(t = 10, ·), v(t = 10, ·) (bottom) for a gravitational collapse of random initial data with σ2 = 1

3
.

Initial data for the conformal factor was chosen as a stationary distribution satisfying
(4.2) with ∂tφ(t = 0, ·) = 0. Numerical results (with identical grid parameters) at
time t = 10 are displayed on Fig. 4.2. The initial mass repartition is shaken, an
oscillatory movement takes place for a short time, but dynamics stabilize later onto a
new mass distribution, less massive, with residual mass flowing outside, toward each
boundary of the computational domain. The scalar velocity around x = 0 at t = 10
is close to zero, thanks to the well-balanced property of our discretization. As in
the former simulation, a (less piked) polytrope emerged, with a density distribution
strongly condensed at its center, in accordance with the infinite polytropic index.

5. Conclusion and outlook. In the realm of 1 + 1-dimensional general rela-
tivity, several numerical computations were achieved, first within the “external field
approximation”, keeping the space-time metric static despite the dynamics of matter,
and then by assuming the time-dependent metric given in a conformal gauge (2.5),
resulting in a nonlinear coupled Euler-Liouville system (2.10)–(2.8). The result of
the gravitational collapse displayed on Fig. 4.1 isn’t a black hole as such a metric
g cannot have an “event horizon” [31]. Instead, the Schwarzschild gauge defined in
(2.3) would be well-suited for such a delicate computation, at the price of handling
stronger nonlinearities and coordinate shocks, see Remark 2. Hereafter we summarize
quickly the coupled system which expresses the dynamics of a perfect fluid in such a
time-dependent metric, starting with Christoffel symbols (compare with (2.6)),

Γt =
1

2α

(
∂tα ∂xα
∂xα ∂t(1/α)

)

, Γx =
α

2

(
∂xα ∂t(1/α)

∂t(1/α) ∂x(1/α)

)

.
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Fig. 4.2. Numerical φ(t = 10, ·) (left), ρ (right, in (x, t)-plane, t ≤ 10); initial and final states
ρ(t = 10, ·), v(t = 10, ·) (bottom) for a random perturbation of Gaussian mass with σ2 = 1

3
.

The Lorentz factor allows to define a slight variant of the scalar velocity v, so

γ =
1√

1− v2
, u := γ

(
1√
α
,
√
αv

)

.

According to this normalization, the mass-energy tensor rewrites, [50, 63],






T tt = (ρ+ p)utut + p gtt = (ρ+ p)γ
2

α − p
α ,

T tx = (ρ+ p)utux + p gtx = (ρ+ p) γ2v,
T xx = (ρ+ p)uxux + p gxx = α(ρ+ p)(γv)2 + pα,

so that T = p− ρ, and relying again on (2.9), Euler equations read now,
{

∂t(T
tt) + ∂x(T

tx) + 1
2α

[
2T tx∂xα+ (T tt − Txx

α2 )∂tα
]

= 0,

∂t(T
tx) + ∂x(T

xx) + α
2 (T

tt − Txx

α2 )∂xα+ T tx∂t(1/α) = 0.
(5.1)

By multiplying (5.1) by (α, 1/α), a quasi-conservative form is derived:







∂t(αT
tt) + ∂x(αT

tx) = V · ∂t(log
√
α),

∂t(T
tx/α) + ∂x(T

xx/α) = V · ∂x log(1/
√
α),

V = (ρ+ p)γ2(1 + v2), T = p− ρ,
∂tt

(
1

α

)

− ∂xxα = T (5.2)

supplemented by a quasilinear wave equation for the metric components, see (2.3).

Appendix A. Intrinsic derivative and WB scheme on a curved surface.
Here, we recall both the geometric objects of constant use in relativistic applica-

tions and some numerical tools which are well-adapted to their treatment.
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A.1. Scalar law on a static Riemannian surface of R3. In order to under-
stand a simple model of 1D flow on a curved surface S of (time-independent, smooth)
elevation x 7→ a(x), we introduce the following parametrization:

S : ~r(t, x) =
(
t, x, a(x)

)
, ~rt = (1, 0, 0), ~rx = (0, 1, a′).

The standard scalar product of R3 is denoted by “·”: the first fundamental form (the
Riemannian metric) is the bilinear form which relates tangent vectors of S and their
corresponding scalar product. Its 2× 2 matrix reads in standard notation:

g =

(
E F
F G

)

, E = ‖~rt‖2 = 1, F = ~rt · ~rx = 0, G = ‖~rx‖2 = 1 + |a′|2.

At each point p ∈ S corresponding to Cartesian coordinates t, x ∈ R
2, we define a

vector field Y (t, x) in the tangent plane TpS spanned by ~rt(t, x), ~rx(t, x):

Y (t, x) = (u(t, x),F(t, x)), F a smooth function of u.

Denoting “divg” the Riemannian divergence operator induced by the metric g, the
scalar conservation law we consider is simply,

∀(t, x) ∈ R
2, divg(Y )(t, x) = 0. (A.1)

In order to compute this divergence, we need the covariant derivative operators on S,
thus we first recall the expression of Christoffel symbols (matrices) Γt, Γx:







Γt =

(
Γt
tt Γt

tx

Γx
tt Γx

tx

)

= 1
2D

(
G −F
−F E

)

×
(

∂tE ∂xE
2∂tF − ∂xE ∂tG

)

Γx =

(
Γt
xt Γt

xx

Γx
xt Γx

xx

)

= 1
2D

(
G −F
−F E

)

×
(
∂xE 2∂xF − ∂tG
∂tG ∂xG

) (A.2)

where D = EG− F 2 = G = 1 + |a′|2 stands for the determinant of the metric g.

Γt = 0, Γx =

(
0 0

0 ∂xG
2G

)

, Γx
xx =

∂xG

2G
=

1

2
∂x (log |G|) = ∂x

(

log
√
G
)

.

Geodesic second-order differential equations easily follow, since G = G(x):

d2t

dτ2
= 0,

d

dτ

(√
G
dx

dτ

)

=
d

dt

(√
G
dx

dt

)

= 0.

Now we can compute both the covariant derivatives, denoted by ∇t and ∇x:







∇tY = (~rt, ~rx)

[(
∂tu
∂tF

)

+ Γt

(
u
F

)]

= ∂tu ~rt + ∂tF ~rx

∇xY = (~rt, ~rx)

[(
∂xu
∂xF

)

+ Γx

(
u
F

)]

= ∂xu ~rt + (∂xF + Γx
xxF) ~rx.

Finally, the scalar law on S rewrites as follows:

divg(Y ) = ∂tu+ ∂xF + Γx
xxF

︸ ︷︷ ︸

intrinsic derivative

= 0.
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Now we can insert all the available values at hand:

∂tu+ ∂xF = −F ∂x

(

log
√

1 + |a′|2
)

. (A.3)

This is a balance law for which one can deduce a conservative expression:

∂tu+ ∂xF + F ∂x
√
G√
G

= 0 = ∂t

(

u
√

1 + |a′|2
)

+ ∂x

(

F
√

1 + |a′|2
)

, (A.4)

because G is a function of x only. The conservation law (A.4) is a particular case of a
well-known formula3. Yet we can look at the behavior of numerical schemes on these
2 writings (A.3) and (A.4) of the same geometric conservation law (A.1).

Appendix B. Numerical approximation in non-resonant regime.
Let the flux term F create ony convection from left to right only (for instance,

pick F = αu, α ≥ c > 0). As usual, call unj ≃ u(tn, xj), t
n = n∆t, xj = j∆x.

B.1. Conservative equation. The most natural discretization for (A.4) reads

(u
√
G)n+1

j = (u
√
G)nj − ∆t

∆x

[

(F
√
G)nj − (F

√
G)nj−1

]

,

where one can divide by
√
Gj =

√

G(xj) > 1 in order to get:

un+1
j = unj − ∆t

∆x

[

Fn
j −Fn

j−1

√
Gj−1√
Gj

]

. (B.1)

B.2. WB scheme for the balance law. Based on e.g. [23], the way a WB
scheme approximates the balance law (A.3) usually involves a modified state in the
upwind direction, which results from the integration of the stationary equation:

un+1
j = unj −∆t

[Fn
j −Fn

j− 1
2

∆x

]

︸ ︷︷ ︸

approx. intrinsic space−derivative

. (B.2)

The stationary part of (A.3) rewrites ∂x logF = −∂x log
√
G, hence we have the

expression of the numerical flux at each interface xj− 1
2
of the computational grid:

Fn
j− 1

2
= F(∆x) = F(0)

√

G(0)
√

G(∆x)
= Fn

j−1

√
Gj−1√
Gj

.

Hence the WB discretization (B.2) is identical to (B.1). On the particular ex-
ample of the scalar law (A.1) posed on the static, smoothly curved, surface S for which
the metric g depends only on x, the WB scheme for (A.3) delivers a finite-difference
approximation of the “intrinsic derivative” appearing in ∇xY which is consistent
with the conservative form (A.4). This isn’t true for a time-split approximation.

Appendix C. Absorbing boundaries for 1 + 1 Liouville equation.
Besides the general framework [18], one can derive numerical transparent bound-

ary for the 1D Liouville equation (2.8) by means of rather easy considerations.

3See http://en.wikipedia.org/wiki/List of formulas in Riemannian geometry
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C.1. Formal continuous computation. Let’s consider the issue of solving a
1D, possibly semi-linear, wave equation in a bounded portion x ∈ (−ℓ, ℓ) of an infinite
domain, typically the whole real line, x ∈ R,

∂ttφ− ∂xxφ+ f(t, x, φ) = 0, φ(t = 0, ·), ∂tφ(t = 0, ·) given.

To ensure overall consistency of the computational approximation, its outgoing sig-
nals in x = ±ℓ must not be reflected inside the bounded interval (−ℓ, ℓ). Since the
characteristics’ slope is ±1 independently of f(t, x, ·), incoming and outgoing waves
can be separated by defining left- and right-going components,

φ<(t, x) = ∂tφ+ ∂xφ, φ>(t, x) = ∂tφ− ∂xφ, (C.1)

for which it comes easily that, always neglecting the forcing term,

∂tφ< − ∂xφ< = �φ = 0, ∂tφ> + ∂xφ> = �φ = 0.

Transparent boundary conditions mean that, in practice, one requires:

∀t > 0, φ<(t, x = ℓ) = 0, φ>(t, x = −ℓ) = 0. (C.2)

C.2. Algorithmic implications. Implementing these local expressions (C.2) is
quite straightforward as it boils down to approximate (C.1) by finite-differences while
maintaining consistency with (4.1). The wave equation is reversible, so centered-
differences are well-suited, and a convenient discretization of φ< reads,

∀n ∈ N, (φ<)
n
j ≃

φn+1
j − φn−1

j

2∆t
+
φnj+1 − φnj−1

2∆x
.

Imposing that this quantity vanishes on the right of the computational domain, say
ℓ = J∆x, yields a value for φnJ+1, which can be inserted further inside (4.1),

φn+1
J =

2φnJ + (a− 1)φn−1
J − 2a2(φnJ − φnJ−1)−∆t2f(tn, ℓ, φnJ )

1 + a
, a =

∆t

∆x
,

together with a similar expression for the condition on the left side, x = −ℓ.
Appendix D. Geodesics of an empty spacetime in conformal gauge.
As the space-time is empty, T = 0 and the metric g(t, x) is in the conformal

gauge, with φ(t, x) its conformal factor, its Ricci scalar R yieds a 1D wave equation,

R =
∂2φ

∂t2
− ∂2φ

∂x2
= 0, φ(t, x) = φ(t− x). (D.1)

Geodesics, parametrized by arc-length (proper time) τ satisfy the second-order ODE’s,
(where < ·, · > stand for the R

2 scalar product)

d2t

dτ2
+

〈

Γt(
dt

dτ
,
dx

dτ
), (

dt

dτ
,
dx

dτ
)

〉

= 0,
d2x

dτ2
+

〈

Γx(
dt

dτ
,
dx

dτ
), (

dt

dτ
,
dx

dτ
)

〉

= 0, (D.2)

Thanks to the simple structure of Christoffel symbols (2.6),

Γt

(
dt/dτ
dx/dτ

)

=

(
∂tφ · dt/dτ + ∂xφ · dx/dτ
∂xφ · dt/dτ + ∂tφ · dx/dτ

)

=

(
dφ(t, x)/dτ

...

)

,
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and similarly,

Γx

(
dt/dτ
dx/dτ

)

=

(
∂xφ · dt/dτ + ∂tφ · dx/dτ
∂tφ · dt/dτ + ∂xφ · dx/dτ

)

=

(
...

dφ(t, x)/dτ

)

.

Geodesic equations (D.2) rewrite accordingly,

0 =
d2t

dτ2
+

dt

dτ
· dφ
dτ

+
dx

dτ
(...), 0 =

d2x

dτ2
+

dx

dτ
· dφ
dτ

+
dt

dτ
(...). (D.3)

Following [60], we now switch to “null coordinates”, ζ = t + x, ζ̂ = t − x. At this
level, φ being solution of (D.1) satisfy ∂xφ = −∂tφ, and

(...) = φ′(t− x)
d(t− x)

dτ
= φ′(ζ̂)

dζ̂

dτ
.

Adding and subtracting both equations in (D.3) yield:

d2ζ̂

dτ2
+

dζ̂

dτ
· (dφ

dτ
− dφ

dτ
)

︸ ︷︷ ︸

=0

= 0,
d2ζ

dτ2
+ 2

dφ(ζ̂)

dτ
· dζ̂
dτ

= 0.

The first equation gives that ζ̂(τ) = Aτ + B, with A,B ∈ R
2 some integration

constants. Since dζ̂/dτ ≡ A, the second one can be integrated once:

dζ

dτ
+ 2Aφ(ζ̂) + C =

dζ

dτ
+ 2Aφ(Aτ +B) + C = 0.

Let Φ be an antiderivative of φ,

ζ̂(τ) = Aτ +B, ζ(τ) = −2Φ(Aτ +B) + Cτ +D.

Since τ = ζ̂−B
A , an unparameterized expression follows,

ζ = −2Φ(ζ̂) + αζ̂ + β, α, β ∈ R
2.
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