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THE STRUCTURE OF GLOBAL ATTRACTORS FOR DISSIPATIVE

ZAKHAROV SYSTEMS WITH FORCING ON THE TORUS

M. B. ERDOĞAN, J. L. MARZUOLA, K. NEWHALL AND N. TZIRAKIS

Abstract. The Zakharov system was originally proposed to study the propagation of

Langmuir waves in an ionized plasma. In this paper, motivated by the work of the first

and third authors in [7], we numerically and analytically investigate the dynamics of the

dissipative Zakharov system on the torus in 1 dimension. We find an interesting family of

stable periodic orbits and fixed points, and explore bifurcations of those points as we take

weaker and weaker dissipation.

1. Introduction

In this paper we study the dissipative Zakharov system with forcing:

(1)































iut + uxx + iγu = nu+ f, x ∈ T = R/(2πZ), t ∈ [0,∞),

ntt − nxx + δnt = (|u|2)xx,

u(x, 0) = u0(x) ∈ H1(T),

n(x, 0) = n0(x) ∈ L2(T), nt(x, 0) = n1(x) ∈ H−1(T), f ∈ H1(T).

The original Zakharov system (γ = δ = f = 0) was proposed in [19] as a model for the

collapse of Langmuir waves in an ionized plasma. The complex valued function u(x, t)

denotes the slowly varying envelope of the electric field with a prescribed frequency and the

real valued function n(x, t) denotes the deviation of the ion density from the equilibrium.

Smooth solutions of the Zakharov system obey the following conservation laws:

(2) ‖u(t)‖L2(T) = ‖u0‖L2(T)

and

(3) E(u, n, ν)(t) =

∫

T

|∂xu|
2dx+

1

2

∫

T

n2dx+
1

2

∫

T

ν2dx+

∫

T

n|u|2dx = E(u0, n0, n1)
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where ν is such that nt = νx and νt = (n + |u|2)x. These conservation laws identify

H1×L2×H−1 as the natural energy space for the system. Local and global well-posedness

in the energy space was established by Bourgain [3]. Lower regularity optimal results were

obtained by Takaoka in [16]. The well-posedness theory extends to the dissipative and

forced system without difficulty [7].

In [7], the first and third authors established a smoothing property for the Zakharov

system, and as a corollary they proved the existence and smoothness of a global attractor

in the energy space. For a discussion of basic facts about global attractors see [17] and [7].

The problem with Dirichlet boundary conditions had been considered in [8] and [9] in more

regular spaces than the energy space. The regularity of the attractor in Gevrey spaces with

periodic boundary conditions was considered in [14].

Here, we primarily focus on the dynamics of solutions to (1). For large dissipation we

prove that the global attractor is a single point consisting of a unique stable stationary

solution of the system. Then, we proceed to investigate numerically the case of smaller

dissipation in the spirit of the numerical exploration of damped-forced Korteweg-de Vries

equation in [4] and for the Waveguide Array Mode-Locking Model in [18]. In particular, we

explore equilibrium and periodic solutions, the branching of solutions, bifurcation points,

period doubling and other interesting dynamical structures that arise.

The paper is organized as follows. In Section 2, we obtain preliminary estimates on the

solutions and study the existence and uniqueness of stationary solutions. In Section 3, we

prove that in the case of large dissipation, the global attractor consists of the unique sta-

tionary solution. In the remaining sections we study the small dissipation case numerically

using nonlinear continuation methods.
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Wilkening, Roy Goodman, Gideon Simpson for helpful discussions throughout the prepara-

tion of this work. Simpson’s comments especially assisted in successful the implementation

of AUTO and Wilkening’s assisted in implementing a preliminary version of the Adjoint

Continuation Method.

2. Existence of Stationary Solutions and Preliminary Estimates

We start by obtaining a simple bound on the L2 norm of the solution. By multiplying

the u-equation with u and integrating on T and then taking the imaginary part, we obtain

d

dt
‖u‖22 + 2γ‖u‖22 = 2ℑ

∫

fu.

This implies by Gronwall’s and Cauchy-Schwarz inequalities that for sufficiently large t

(depending only on the L2 norm of the initial data), we have

(4) ‖u‖2 ≤ 2
‖f‖2
γ

.

We now study the stationary solutions of the system (1). Recall that n is real, and

throughout the paper we assume that n and nt are mean zero. Let (v,m) be a stationary

solution of (1). Taking ut = nt = ntt = 0 leads to

(5)







vxx + iγv = mv + f, x ∈ T,

−mxx = (|v|2)xx,

The second line of (5) implies that m = −|v|2 + ax+ b. Therefore, the periodicity and the

mean zero assumption lead to m = −|v|2 + 1
2π‖v‖

2
2. Substituting to the first equation, it

suffices to study

(6)
[ ∂2

∂x2
+ iγ −

1

2π
‖v‖22 + |v|2

]

v = f, x ∈ T.

Lemma 2.1. Fix f ∈ L2 and γ > 0. Any solution v of (6) satisfies the following a priori

estimates

‖v‖2 ≤
1

γ
‖f‖2,(7)

‖vx‖2 ≤ Cmax(γ−3‖f‖32, γ
−2‖f‖22, γ

−1/2‖f‖2).(8)
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Proof. By multiplying (6) with v and integrating on T and then taking the imaginary part

of the equation we obtain that

γ‖v‖22 = ℑ

∫

T

fvdx.

This implies (7) by Cauchy-Schwarz inequality.

On the other hand, taking the real part we obtain
∫

|vx|
2dx = ‖v‖4L4 −

1

2π
‖v‖42 −ℜ

∫

fvdx.

By the Gagliardo-Nirenberg and Cauchy-Schwarz inequalities, we have

‖vx‖
2
2 ≤ C

(

‖vx‖2‖v‖
3
2 + ‖v‖42 + ‖f‖2‖v‖2

)

.

This and (7) imply (8). �

We now prove the existence of an H1 solution v of (6) for large γ and/or small ‖f‖H1

which is unique in a fixed ball in H1. Uniqueness in the whole space will follow from

Theorem 3.1 below.

Proposition 2.2. Given f ∈ H1(T) if γ > 0 is sufficiently large, or for given γ > 0 if

‖f‖H1 is sufficiently small, then we have a unique solution of (6) in the ball B := {v :

‖v‖H1 ≤
2‖f‖

H1

γ }. Moreover v ∈ H3(T).

Proof. First note that by Kato-Rellich theorem the operator ∂2

∂x2 − 1
2π‖v‖

2
2 + |v|2 is self

adjoint on L2(T) for v ∈ L∞(T) ⊂ H1(T). Therefore the operator

Rγ,v :=
∂2

∂x2
−

1

2π
‖v‖22 + |v|2 + iγ

is invertible on L2(T) and we have

(9) ‖R−1
γ,v‖L2→L2 ≤

1

γ
.

Let

Tγ,f (v) := R−1
γ,vf.

It suffices to prove that Tγ,f has a fixed point in H1. To do that we will prove that Tγ,f is

a contraction on the ball B.

By the resolvent identity,

S−1 − T−1 = S−1(T − S)T−1,
4



we have

R−1
γ,vf =

( ∂2

∂x2
+ iγ

)−1
f −

( ∂2

∂x2
+ iγ

)−1(
−

1

2π
‖v‖22 + |v|2

)

R−1
γ,vf.

Therefore, we obtain

‖R−1
γ,vf‖H1 ≤

‖f‖H1

γ
+C〈γ−1/2〉γ−1/2

∥

∥

(

−
1

2π
‖v‖22 + |v|2

)

R−1
γ,vf

∥

∥

L2(10)

≤
‖f‖H1

γ
+ C〈γ−1/2〉γ−1/2

∥

∥−
1

2π
‖v‖22 + |v|2

∥

∥

L∞

∥

∥R−1
γ,vf

∥

∥

L2

≤
‖f‖H1

γ
+ C

〈γ−1/2〉

γ3/2
‖v‖2H1‖f‖2 ≤

‖f‖H1

γ

(

1 + C
〈γ−1/2〉

γ1/2
‖v‖2H1

)

.

Note that in the second to last inequality we used (9). Let M = 2
γ ‖f‖H1 . The inequality

above implies that for sufficiently large γ or for sufficiently small ‖f‖H1 , Tγ,f maps B =

{v ∈ H1 : ‖v‖H1 ≤ M} into itself. Thus it suffices to prove that Tγ,f is a contraction. Again

by the resolvent identity and (10), we have (for u, v ∈ B)

‖R−1
γ,uf −R−1

γ,vf‖H1 =
∥

∥R−1
γ,u

(

|v|2 − |u|2 +
‖u‖22 − ‖v‖22

2π

)

R−1
γ,vf

∥

∥

H1

≤
‖
(

|v|2 − |u|2 +
‖u‖2

2
−‖v‖2

2

2π

)

R−1
γ,vf‖H1

γ

(

1 + C
〈γ−1/2〉

γ1/2
‖u‖2H1

)

≤
∥

∥|v|2 − |u|2 +
‖u‖22 − ‖v‖22

2π

∥

∥

H1

‖f‖H1

γ2

×
(

1 + C
〈γ−1/2〉

γ1/2
‖v‖2H1

)(

1 + C
〈γ−1/2〉

γ1/2
‖u‖2H1

)

≤ CM
(

1 + C
〈γ−1/2〉

γ1/2
M2

)2 ‖f‖H1

γ2
‖u− v‖H1 .

Therefore Tγ,f is a contraction on B for small ‖f‖H1 or large γ. Finally by the following

calculation the fix point v ∈ B is in H3(T),

‖v‖H3 = ‖Tγ,f (v)‖H3 ≤ 〈γ−1〉‖f‖H1 + 〈γ−1〉
∥

∥−
1

2π
‖v‖22 + |v|2

∥

∥

H1‖R
−1
γ,vf‖H1(11)

≤ 〈γ−1〉‖f‖H1 + C〈γ−1〉‖f‖3H1γ
−3,

using the standard elliptic estimate ‖
(

∂2

∂x2 + iγ
)−1

f‖H3 ≤ 〈γ−1〉‖f‖H1 . �
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3. Attractor in the Case of Large Dissipation

Recall that the energy space is X = H1 × L2 × Ḣ−1. We will prove under some

conditions on γ, δ, ‖f‖H1 that all solutions of (1) converge to the stationary solution

(v,−|v|2 + 1
2π‖v‖

2
2, 0) in X as t → ∞. This also implies the uniqueness of the station-

ary solution v under these conditions.

Theorem 3.1. Given ‖f‖H1 and δ > 0, the following statement holds if γ is sufficiently

large. Consider (u(0), n(0), nt(0)) ∈ X where n(0) and nt(0) are mean-zero. Then, the

solution (u, n, nt) of (1) converges to the stationary solution (v,−|v|2 + 1
2π‖v‖

2
2, 0) in X as

t → ∞.

Proof. Given solution (u, n, nt) of (1), let

(w, z, zt) = (u− v, n + |v|2 −
1

2π
‖v‖22, nt).

Note that z and zt are mean-zero. The equation for (w, z, zt) is the following

(12)







iwt + wxx + iγw = z(w + v)− |v|2w + 1
2π‖v‖

2
2w, x ∈ T, t ∈ [0,∞),

ztt − zxx + δzt = (|w + v|2 − |v|2)xx.

Fix ǫ > 0 and let

H =
∥

∥∂−1
x (zt + ǫz)

∥

∥

2

2
+ ‖z‖22 + 2‖wx‖

2
2 + 2

∫

T

z(|w + v|2 − |v|2) + ‖w‖22.

The above quantity H was introduced in [8] to obtain bounds in the energy space. We note

that H is bounded by a constant multiple of the energy norm for any fixed ǫ.

We have

d

dt

∥

∥∂−1
x (zt + ǫz)

∥

∥

2

2
= 2

∫

∂−1
x (zt + ǫz)∂−1

x (ztt + ǫzt)

= 2

∫

∂−1
x (zt + ǫz)∂−1

x [(z + |w + v|2 − |v|2)xx + (ǫ− δ)zt]

= −2

∫

(zt + ǫz)(z + |w + v|2 − |v|2)− 2(δ − ǫ)

∫

∂−1
x (zt + ǫz)∂−1

x zt

= −
d

dt
‖z‖22 − 2ǫ‖z‖22 − 2

∫

zt(|w + v|2 − |v|2)− 2ǫ

∫

z(|w + v|2 − |v|2)

− 2(δ − ǫ)‖∂−1
x zt‖

2
2 − 2ǫ(δ − ǫ)

∫

∂−1
x z∂−1

x zt.

6



Using
∥

∥∂−1
x (zt + ǫz)

∥

∥

2

2
=

∥

∥∂−1
x zt

∥

∥

2

2
+ ǫ2‖∂−1

x z‖22 + 2ǫ

∫

∂−1
x z∂−1

x zt,

we obtain the following energy-type identity

d

dt

∥

∥∂−1
x (zt + ǫz)

∥

∥

2

2
+

d

dt
‖z‖22 = −2ǫ‖z‖22 − 2

∫

zt(|w + v|2 − |v|2)(13)

− 2ǫ

∫

z(|w + v|2 − |v|2)− (δ − ǫ)‖∂−1
x zt‖

2
2

− (δ − ǫ)
∥

∥∂−1
x (zt + ǫz)

∥

∥

2

2
+ (δ − ǫ)ǫ2‖∂−1

x z‖22.

Now consider the derivative of the remaining terms in the definition of H:

2
d

dt
‖wx‖

2
2 = −4ℜ

∫

wxxwt = −4γ‖wx‖
2
2 − 4ℑ

∫

wxx

[

z(w + v)− |v|2w
]

,(14)

and

2
d

dt

∫

z(|w + v|2 − |v|2) = 2

∫

zt(|w + v|2 − |v|2) + 4ℜ

∫

zwt(w + v)(15)

= 2

∫

zt(|w + v|2 − |v|2) + 4ℑ

∫

zwxx(w + v)

− 4γℜ

∫

zw(w + v) + 4ℑ

∫

zvw
[

|v|2 −
1

2π
‖v‖22

]

.

We also have

(16) ∂t‖w‖
2
2 = −2γ‖w‖22 + 2ℑ

∫

zwv.

Combining (13)-(16), we observe

d

dt
H = −2ǫ‖z‖22 − 2ǫ

∫

z(|w + v|2 − |v|2)− (δ − ǫ)‖∂−1
x zt‖

2
2 − (δ − ǫ)

∥

∥∂−1
x (zt + ǫz)

∥

∥

2

2

+ (δ − ǫ)ǫ2‖∂−1
x z‖22 − 4γ‖wx‖

2
2 + 4ℑ

∫

wwxx|v|
2 − 4γℜ

∫

zw(w + v)

+ 4ℑ

∫

zvw
[

|v|2 −
1

2π
‖v‖22

]

− 2γ‖w‖22 + 2ℑ

∫

zwv.

Hence,

d

dt
H = −ǫH − ǫ‖z‖22 − (δ − ǫ)‖∂−1

x zt‖
2
2 − (δ − 2ǫ)

∥

∥∂−1
x (zt + ǫz)

∥

∥

2

2
− (2γ − ǫ)‖w‖22

+ 2ℑ

∫

zwv + (δ − ǫ)ǫ2‖∂−1
x z‖22 − (4γ − 2ǫ)‖wx‖

2
2 − 4ℑ

∫

wwx(|v|
2)x

− 4γℜ

∫

zw(w + v) + 4ℑ

∫

zvw
[

|v|2 −
1

2π
‖v‖22

]

.

7



Let ǫ = min( 1
2δ ,

δ
2 , γ). Since z is mean-zero, the choice of ǫ implies

(δ − ǫ)ǫ2‖∂−1
x z‖22 ≤

ǫ

2
‖z‖22.

Therefore, we have

d

dt
H ≤ −ǫH −

ǫ

2
‖z‖22 − γ‖w‖22 − 2γ‖wx‖

2
2 + 2

∣

∣

∣

∫

zwv
∣

∣

∣
+ 4

∣

∣

∣

∫

wwx(|v|
2)x

∣

∣

∣

+ 4γ
∣

∣

∣

∫

zw(w + v)
∣

∣

∣
+ 4

∣

∣

∣

∫

zvw
[

|v|2 −
1

2π
‖v‖22

]∣

∣

∣

≤ −ǫH −
ǫ

2
‖z‖22 − γ‖w‖22 − 2γ‖wx‖

2
2

+ C
[

‖z‖2‖w‖2‖v‖H1 + ‖w‖2‖wx‖2‖v‖
2
H2 + ‖z‖2‖w‖2‖v‖

3
H1

+ γ‖z‖2‖w‖H1‖w + v‖2

]

= −ǫH −
ǫ

2
‖z‖22 − γ‖w‖22 − 2γ‖wx‖

2
2

+
[

I + II + III + IV
]

.

Note that by (4) we have

‖w + v‖2 ≤ 2
‖f‖2
γ

for sufficiently large t. Using this, we can bound term IV by

2C‖f‖2‖z‖2‖w‖H1 ≤
ǫ

10
‖z‖22 +

C1‖f‖
2
2

ǫ
‖w‖2H1

≤
ǫ

10
‖z‖22 +

C1‖f‖
2
2

ǫ
‖w‖22 +

C1‖f‖
2
2

ǫ
‖wx‖

2
2 ≤

ǫ

10
‖z‖22 +

γ

10
‖w‖22 +

γ

10
‖wx‖

2
2,

provided that ǫγ ≫ ‖f‖22. Summands I −III can be bounded by the same right hand side

provided that

ǫγ ≫ ‖v‖2H1 + ‖v‖6H1 , and γ ≫ ‖v‖2H2 .

By the estimates on v, we see that for fixed δ and ‖f‖H1 , if γ is sufficiently large, we have

for sufficiently large t,
d

dt
H ≤ −ǫH.

This implies that H goes to zero as t → ∞.

Observe that

∣

∣

∣

∫

T

z(|w + v|2 − |v|2)
∣

∣

∣ ≤ C‖z‖2‖w‖H1(‖w‖2 + ‖v‖2),

8



and that, by (4) and (7), (for large γ and t) we have ‖w‖2 + ‖v‖2 ≪ 1. Therefore, we have

H ≥ C
(

‖zt‖
2
H−1 + ‖z‖22 + ‖w‖2H1

)

.

This completes the proof. �

4. Numerical Methods for solving forward in time

In this section we briefly describe the numerical method we use for the Schrödinger-Dirac

model (see, e.g., [7]). We chose this method as it is accurate to a higher order in time,

and yet uses the structure of the Dirac and Schrödinger equations to drive the solution. In

particular, we apply the time-splitting method of [10] as applied to the soliton dynamics in,

for instance, [13]. Let us recall the equivalent system to (1) derived in [7], which is


















(i∂t + ∂2
x + iγ)u = α1ℜ(n)u+ f,

(i∂t − d+ iδ)n = α2d(|u|
2),

(u(x, 0), n(x, 0)) = (u0, n0) ∈ H1 × L2,

(17)

where d = (−∂xx)
1

2 where generally α1,2 are taken to be 1. We include the parameters α1,2

here to mention that another possibly interesting approach to the nonlinear continuation

arguments would be to begin from a linear, decoupled model since there exists an exact

solution for α1,2 = γ = 0 when f = sinx given by (u, n) = (− sinx, 0). However, we will

not pursue this family of branches here and instead will focus on the behavior in γ and η

for fixed values of α1,2.

Note that the system (17) can be re-written as

∂t





u

n



 = L





u

n



+N(u, n, f),

where

L =





i∂2
x − γ 0

0 −id− δ





and

N =





−iℜ(n)u− if

−id(|u|2)



 .

9



The algorithm takes place as a pseudospectral method on the Fourier side, though it im-

plements integrating factor, time-splitting, fourth-order Runge-Kutta schemes and contour

integration all at once. The key idea is to look at the evolution over a time step, h, as the

integral




um+1

nm+1



 = eLh





um

nm



+ eLh
∫ h

0
e−LsN(u(tm + s), n(tm + s), f(tm + s))ds,

which can be approximated using a Runge-Kutta method (see Cox-Matthews [5]) as





um+1

nm+1



 = eLh





um

nm



+ h−2L−3 ×

([

−4− Lh+ eLh(4− 3Lh+ (Lh)2)
]

N(um, nm, f(tm))+

+2
[

2 + Lh+ eLh(−2 + Lh)
]

(N(am,1, am,2, f(tm + h/2))

+N(bm,1, bm,2, f(tm + h/2)))

+
[

−4− 3h− (Lh)2 + eLh(4− Lh)
]

N(cm,1, cm,2, f(tm + h))
)

,

where

am = eLh/2





um

nm



+ L−1(eLh/2 − Id)N(um, nm, f(tm)),

bm = eLh/2





um

nm



+ L−1(eLh/2 − Id)N(am,1, am,2, f(tm + h/2)),

cm = eLh/2am + L−1(eLh/2 − Id)(2N(bm,1, bm,2, f(tm + h/2)) −N(um, nm, f(tm)).

However, such an algorithm can have problems if L has eigenvalues near 0. To avoid such

problems the algorithm is slightly modified by evaluating contour integrals over whole discs,

which are approximated by appropriate Riemann sums.

Using the forward in time solving numerical methods described in this section, we are

able to locate stable equilibrium solutions for γ sufficiently large with respect to η in several

cases. Then, this equilibrium solution can be fed into a nonlinear continuation method

such as AUTO or the Adjoint Continuation Method of [18] to begin solving with particular

values of η, γ, α1 and α2.
10



5. Numerical Results in the Case of Small Dissipation

To begin, in an attempt to model the non-trivial dynamics in the Zakharov system, we

follow some of the ideas in [4] to analyze a series of numerically integrated solutions of

(17). In our numerical experiments we observe a great deal of energy exchange between

the Schrödinger and Dirac solutions, hence we will focus on relatively small energy initial

data in order to justify that our numerics are valid on long time scales. If the Fourier

modes become too large at the edges of the spectrum, we do not consider the solution to

be appropriately accurate, hence all simulations included here will have small contributions

at high frequency. The time scale on which we integrate is generally T = 50.0 with the

time step h ∼ 1e− 4. For the forward solver, we will begin by taking 32 Fourier modes on

which to evolve. In addition, our contour integrals in the numerical evaluation of L−1 will

be taken as a mean of 64 equidistributed points along the disc.

For a range of η, given γ sufficiently large, we observe that the dynamics tend to a fixed

equilibrium solution as in Section 3. However, for γ much smaller (or η large), we observe

much richer dynamics in the phase space, particularly in the form of periodic orbits, multiple

equilibrium solutions, and period doubling bifurcations. Though our AUTO solutions are

pseudospectral in nature, the orbits we find are still stable under forward integration over

many periods and are in that sense quite numerically stable.

To observe the changes in behavior as we vary γ from the case of the trivial attractor,

we use two different nonlinear continuation methods, namely we use AUTO, [6], and the

adjoint-continuation method (ACM) of Ambrose-Wilkening from [1, 18]. We use AUTO

to numerically continue the solution for a wide range of γ keeping both 16 and 32 modes

per component of the Zakharov system. We thus observe branching of the equilibrium

points, periodic orbits, period doubling, invariant tori, etc, see Figures 1 and 2. We use a

pseudospectral implementation of the right hand side with 32 Fourier modes per component.

For more on implementing the spectral method in AUTO, see for instance [11,12]. As one

may expect, the nature of our orbits can change as we vary γ or η, which accounts for

movement in the bifurcation diagram presented in Figures 1 and 2.

We also implemented a simple version of the ACM method similar to that in [18] in

Matlab in order to move along an equilibrium branch and detect a Hopf bifurcation to high

11



gamma
0 0.2 0.4 0.6 0.8 1 1.2

L-
2 

N
or

m

3

4

5

6

7

8

9

10

11

12

13
Stdy St
Bf Pt
Hopf Bf
Periodic St
Period Dbling Bpt
Period Dbling St

gamma
0.3 0.35 0.4 0.45 0.5 0.55

L-
2 

N
or

m

10.5

11

11.5

12

12.5

13
Stdy St
Bf Pt
Hopf Bf
Periodic St
Period Dbling Bpt
Period Dbling St

Figure 1. Using AUTO, we plot equilibrium, periodic and period doubling

branches for a range of γ = 0 to γ = 2.0 with η = 1.0, α1,2 = 1. The

y-axis is the L2 norm in the case of stationary solutions and the average L2

norm measured over one period for the periodic solutions. The periodic and

period doubling branches come from Hopf bifurcations and period doubling

bifurcations for a pseudospectral implementation of (17) using 32 Fourier

modes on both u and n.

accuracy. It will be further work developing this method to efficiently study bifurcations in

general, but may be worth pursuing should one wish to use many more Fourier modes and

resolve more complicated types of potential orbits. Indeed, the spatial resolution one can

achieve with ACM is the primary reason to pursue other potential nonlinear continuation

methods, see for instance [1]. Using a fast version of this method, we plot the spectrum

of the operator linearized around the computed equilibrium solutions along a branch using

the ACM method in Figure 3. Here, we have taken η = 1.0, α1 = 0.5, α2 = 1.0 and solved

over various values of γ.

The other figures present a phase plane representation of the natural energies for the

Schrödinger and Dirac components throughout the evolution of particular solutions. Specif-

ically, we plot the evolution of solutions in Figure 4 for various values of η corresponding

to periodic branches and period doubling branches in Figure 2 for γ = 0.4, α1 = α2 = 1.0.

We also present a solution from the period doubling branch in Figure 1 with η = 1.0,

α1 = α2 = 1.0. We plot these orbits in the energy phase plane given by (‖u‖H1(t), ‖n‖L2(t)),

which we refer to as the Schrödinger Energy vs. Dirac Energy phase plane coordinates mo-

tivated by (3).
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Figure 2. Top Left: Plot of the equilibrium branches and part of two pe-

riodic branches stemming from two encountered Hopf bifurcations over a

range of η from .2 to 14 versus the L2 norm of the total solution for γ = .225,

α1 = α2 = 1. Instead of period doubling bifurcations, we observe invariant

tori bifurcations at this small value of γ. Top Right: Plot of the equilibrium

branch, a periodic branch stemming from a Hopf bifurcation and a period

doubling branch over a range of η from .2 to 14 versus the L2 norm of the

total solution for γ = .4, α1,2 = 1. Bottom: Blow up of the Top Right near

the branching point. The solutions are found using AUTO.

Many people have studied numerical continuation of nonlinear states and periodic or-

bits in the context of NLS in the past by using shooting methods and finite difference

approximations to turn infinite dimensional systems into large systems of ODEs. See for

instance [2,15] and references to them and therein. In the recent thesis of Lee-Thorpe [11],

the author implemented a spectral method in AUTO, which we have similarly implemented

here for the Zakharov system in order to take non-local operators into consideration.
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Figure 3. Plot of the lowest equilibrium branch constructed using the ad-

joint continuation method (top left) of [1] with η = 1, α1 = 0.5, α2 = 1.0

along with two plots of the spectrum of the linearized forward problem, for

γ > .25 (top right) and γ < .25 (bottom). The fact that the spectrum moves

to the positive real part is evidence of a branch bifurcation happening near

γ = .25 in the numerical continuation.

6. Discussion

We have analytically and numerically observed rich dynamics in the dissipative periodic

Zakharov system with forcing. Open problems for future consideration include understand-

ing the large exchange of energy from Schrödinger to Dirac, classifying dynamics for a larger

range of energies, finding more bifurcation points, etc. For small γ values, we observe nu-

merically that there is a great deal of energy transfer from the Schrödinger equation into

the Dirac equation at the outset of the dynamics. We have, using pseudospectral nonlinear

continuation methods, discovered Hopf bifurcations, period doubling, branching of periodic
14
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Figure 4. Top Left: Plot of the Dirac Final Energy versus Schrödinger

Final Energy in the case of a periodic solution from the branch of periodic

solutions in Figure 2 with γ = .4. Top Right: Plot of the Dirac Final Energy

versus Schrödinger Final Energy in the case of a solution from the period

doubling branch in Figure 2 with γ = .4. Bottom: Plot of the Dirac Final

Energy versus Schrödinger Final Energy in the case of a solution from the

period doubling branch in Figure 1 with γ = .373.

orbits, and invariant tori. However, we mention that using the orbits we have shadowed

here, it is likely that further development of the adjoint continuation methods in [1] could

allow one to construct nearby periodic solutions with great accuracy and hence move along

the solution branches in a more robust manner. This will be a topic of future work.
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[7] M. B. Erdoğan and N. Tzirakis, Long time dynamics for the forced and weakly damped Zakharov system

on the torus, Anal. & PDE 6-3 (2013), 723–750.

[8] I. Flahaut, Attractors for the dissipative Zakharov system, Nonlinear Anal. (1991), 599–633.

[9] O. Goubet and I. Moise, Attractor for dissipative Zakharov system, Nonlinear Analysis, 7 (1998),

823–847.

[10] A.-K. Kassam and L.N. Trefethen, Fourth-order time-stepping for stiff PDEs, SIAM J. Sci. Comput.

26, (2005), 1214–1233.

[11] J. Lee-Thorpe, Spectral continuation study of the temporally periodic solitons of the damped-driven

nonlinear Schrödinger equations, Diss. Univ. of Cape Town (2012).

[12] T. Pang, An Introduction to Computational Physics, Cambridge University Press, New York (1997).

[13] T. Potter, Effective dynamics for N-Solitons of the Gross-Pitaevskii equation, J. Nonlin. Sci. 22, No.

3 (2001), 351–370.

[14] A. S. Shcherbina, Gevrey regularity of the global attractor for the dissipative Zakharov system, Dynam-

ical Systems, Vol. 18, 3 (2003), 201–225.

[15] K.H. Spatschek, H. Pietsch, E.W. Laedke, and T. Eickerman, Chaotic behavior in time in Nonlinear-

Schrödinger systems, Proc. Int. Workshop on Nonlinear and Turbulent Processes in Physics, Kiev

(1989).

[16] H. Takaoka, Well-posedness for the Zakharov system with periodic boundary conditions, Differential

and Integral Equations, Vol. 12, 6 (1999), 789–810.

[17] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Applied Mathematical

Sciences 68, Springer, 1997.

[18] M.O. Williams, J. Wilkening, E Shlizerman, and J.N. Kutz, Continuation of periodic solutions in the

waveguide array mode-locked laser, Physica D 240 (2011), 1791-1804.

[19] V. E. Zakharov, Collapse of Langmuir waves, Soviet Journal of Experimental and Theoretical Physics,

35 (1972), 908–914.

Department of Mathematics, University of Illinois, Urbana, IL 61801

E-mail address: berdogan@math.uiuc.edu

16



Department of Mathematics, UNC-Chapel Hill, CB#3250 Phillips Hall, Chapel Hill, NC

27599

E-mail address: marzuola@math.unc.edu

Department of Mathematics, UNC-Chapel Hill, CB#3250 Phillips Hall, Chapel Hill, NC

27599

E-mail address: knewhall@email.unc.edu

Department of Mathematics, University of Illinois, Urbana, IL 61801

E-mail address: tzirakis@math.uiuc.edu

17



2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

Dirac Energy

S
ch

rö
di

ng
er

 E
ne

rg
y


	1. Introduction
	1.1. Acknowledgments

	2. Existence of Stationary Solutions and Preliminary Estimates
	3. Attractor in the Case of Large Dissipation
	4. Numerical Methods for solving forward in time
	5. Numerical Results in the Case of Small Dissipation
	6. Discussion
	References

