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A UNIQUENESS RESULT FOR AN INVERSE

PROBLEM OF THE STEADY STATE

CONVECTION-DIFFUSION EQUATION

VALTER POHJOLA

Abstract. We consider the inverse boundary value problem for
the steady state convection diffusion equation. We prove that a ve-
locity field V , is uniquely determined by the Dirichlet-to-Neumann
map, when V ∈ C0,γ(Ω), 2/3 < γ ≤ 1, i.e. when V is a Hölder
continuous vector field with 2/3 < γ ≤ 1.

1. Introduction

The steady state convection-diffusion equation

(−∆+ V · ∇)u = 0, in Ω,(1.1)

u|∂Ω = f,

can be seen as a time independent model for transport phenomena in
a fluid due to a diffusion process and convection caused by the fluid
velocity V . One specific model is heat transfer in a fluid, in which
case u is taken as the temperature. In the following we will consider
this problem assuming that1 f ∈ H1/2(∂ Ω) and V ∈ C0,γ(Ω,Rn), with
2/3 < γ ≤ 1 and where the set Ω ⊂ R

n, n ≥ 3 will be a bounded
open set with Lipschitz boundary. Recall that the space of Hölder
continuous functions, C0,γ(Ω), 0 < γ ≤ 1 is defined as

C0,γ(Ω) =
{
g ∈ C(Ω) : |g|C0,γ(Ω) := sup

x,y∈Ω,x 6=y

|g(x)− g(y)|
|x− y|γ <∞

}
,

equipped with the norm

‖g‖C0,γ(Ω) := ‖g‖L∞(Ω) + |g|C0,γ(Ω).

A physical formulation of the inverse problem we are about to con-
sider, is to think of u as the temperature in the region Ω, we then
ask if it is possible to determine the velocity field V in the region Ω
by controlling the temperature on the boundary and by measuring the
heat flux on the boundary.

The boundary measurements are mathematically modeled by the so
called Dirichlet to Neumann map (DN-map for short). This is the map

Key words and phrases. Inverse boundary value problem; Convection-Diffusion;
Advection-Difffusion;Magnetic Schrödinger operator.

1Here Hs(Ω) refers to the L2 based Sobolev space with smoothness index s.
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ΛV taking f to ∂n u := (n · ∇u)|∂Ω, where n is the outward pointing
unit normal to ∂ Ω. The unique solvability of the Dirichlet problem
(1.1) in H1(Ω) (see Theorems 8.1 and 8.3 in [4]) shows that the DN-
map well defined. The normal derivative ∂n u needs, however in this
case to be understood in a distributional sense, because of the non-
smooth solutions we consider. The DN-map can then be defined in a
weak sense, as the operator ΛV : H1/2(∂ Ω) → H−1/2(∂ Ω) given by

〈ΛV f, ϕ〉 :=
∫

Ω

(∇u · ∇φ+ V · ∇u φ)dx,

where LV u := (−∆ + V · ∇)u = 0, in Ω, u|Ω = f and ϕ ∈ H1/2(∂ Ω),
φ ∈ H1(Ω), with φ|∂Ω = ϕ. Here 〈·, ·〉 denotes the distribution duality
on ∂ Ω. Notice also that the definition is independent of the choice of
an extension φ of ϕ.

The mathematical form of the inverse problem is then the question,
if the DN-map of the Dirichlet problem (1.1) determines the velocity
field V . The main result of this paper is the following theorem.

Theorem 1.1. Let Vj ∈ C0,γ(Ω,Rn), j = 1, 2 with 2/3 < γ ≤ 1.
Assume that ΛV1 = ΛV2, then V1 = V2 in Ω.

The first uniqueness result for the above inverse problem was given by
Cheng, Nakamura and Sommersalo in [1], where they prove the unique
determination of the velocity field V , for V ∈ C∞(Ω), and ∂ Ω ∈ C∞.
Salo improved this in [8], where it is shown that the result also holds
when V is Lipschitz continuous, i.e. V ∈ C0,1(Ω). This was in turn
improved by Knudsen and Salo in [6] where they prove that V can be
any Hölder continuous function provided that ∇ · V ∈ L∞. Theorem
1.1 improves on this by showing that the restriction ∇ · V ∈ L∞, is
unnecessary for Hölder continuous vector fields V ∈ C0,γ(Ω), when
2/3 < γ ≤ 1.

The inverse problem of the closely related magnetic Schrödinger
equation, was first studied by Sun in [11]. There have been several
improvements of this result by various authors. The sharpest and most
recent result is given by Krupchyk and Uhlmann in [7] where they prove
that the inverse problem is solvable for an electric potential q ∈ L∞

and a magnetic potential A ∈ L∞.
A first remark on Theorem 1.1 concerns its relations to the celebrated

Calderon problem (see e.g. [12]). The Calderon problem asks if one can
determine the conductivity in the interior of an object by measuring
the current on the boundary, when one controls the voltage on the
boundary (or vice versa), or in more mathematical terms if the DN-
map corresponding to a Dirichlet problem of the conductivity equation
∇·(σ∇u) = 0, where σ is the conductivity, determines the conductivity.
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Writing the conductivity equation in non-divergence form we get that

∆u+∇ log(σ) · ∇u = 0.

This shows that the (1.1) is a more general and therefore a more difficult
problem then the Calderon problem.

As a second remark on Theorem 1.1 we point out that the over all
method of proving Theorem 1.1 is to reduce it to an inverse problem for
the magnetic Schrödinger equation, which is a self-adjoint first order
perturbation of the Laplacian. We will more specifically be utilizing the
method of proving uniqueness for the inverse problem of the magnetic
Schrödinger equation given in [7]. One of the main ideas is that one can
still use the methods of [7] for electric potentials with worse regularity of
a specific distributional form, provided one assumes that the magnetic
potentials are more regular.

The paper is organized as follows. In section 2 we reduce Theorem
1.1 to a claim about the magnetic Schrödinger operator. Section 3 is
devoted to constructing complex geometric optics solutions. In section
4 we prove the unique determination of the magnetic field and in section
5 we prove the unique determination of the electric potential.

2. Reduction to the Magnetic Schrödinger case

The purpose of this section is to reduce Theorem 1.1 to a similar
statement concerning the magnetic Schrödinger operator. The argu-
ment is formulated by Cheng, Nakamura and Sommersalo in [1] and
by Salo in [8]. The magnetic Schrödinger operator is formally given by

LA,qu = −∆u − iA · ∇u− i∇ · (Au) + (A2 + q)u.

We are going to consider the case where A ∈ C0,γ(Ω,Rn) and q =
∇ · F + p, with F ∈ C0,γ(Ω,Rn) and p ∈ L∞(Ω,C). Hence we need
to understand LA,q in a distributional sense, as an operator LA,q :
H1(Ω) → H−1(Ω), given by

〈LA,qφ, ψ〉 :=
∫

Ω

∇φ·∇ψ+iA·(φ∇ψ−ψ∇φ)+(A2+p)φψ−F ·∇(φψ) dx,

where φ ∈ H1(Ω) and ψ ∈ H1
0 (Ω).

The inverse problem for the magnetic Schrödinger operator we are
about to consider comes from the Dirichlet Problem

LA,qu = 0, in Ω,

u|∂Ω = f,

where f is in the Sobolev space H1/2(∂ Ω). The normal component of
the magnetic gradient on the boundary, (∂n+in·A)u|∂ Ω, here n denotes
the outward pointing unit normal vector on ∂Ω, is in our case defined,
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following [7], as the bounded linear map NA,q : H
1(Ω) → H−1/2(∂ Ω)

given by

〈NA,qu, ϕ〉 =
∫

Ω

∇u ·∇φ+ iA ·(u∇φ−φ∇u)+(A2+p)uφ−F ·∇(uφ) dx

for any u ∈ H1(Ω) such that LA,qu = 0 and any ϕ ∈ H1/2(∂ Ω),
such that φ|∂Ω = ϕ. The definition is independent of the choice of an
extension φ of ϕ.

We shall consider the more general notion of a Cauchy data set,
instead of the DN-map when dealing with the magnetic Schrödinger
equation. The Cauchy data sets are the sets of boundary data of solu-
tions, i.e.

CA,q := {(u|∂Ω, NA,qu) : u ∈ H1(Ω) and LA,qu = 0 in Ω}.
The magnetic field corresponding to a potential A is given by the

2-form dA, which is defined as

dA =
∑

1≤j<k≤n

(∂j Ak − ∂k Aj)dxj ∧ dxk,(2.1)

this definition should be understood in the sense of non-smooth differ-
ential forms (a.k.a. currents).

Our aim is now to reduce Theorem 1.1 to the following Proposition,
after which the rest of the paper is devoted to proving this Proposition.

Proposition 2.1. Let Ω ⊂ Rn be a bounded domain with Lipschitz

boundary. Assume that A1, A2, F1, F2 ∈ C0,γ(Ω,Rn), 2/3 < γ ≤ 1,
with A1 = A2 and F1 = F2 on ∂ Ω, and let p1, p2 ∈ L∞(Ω,C). Assume

that CA1,q1 = CA2,q2, then dA1 = dA2 and ∇ · F1 + p1 = ∇ · F2 + p2 in

Ω.

The above result is a variation of the main result in [7]. It differs from
this by being applicable to lower regularity electric potentials (i.e. of
the special distributional form), but it also by requires more regularity
on the magnetic potentials.

Another more general point concerning the above result is that, we
cannot in general hope to recover the magnetic potential A. This is
because of the gauge invariance of the Cauchy data sets. If ψ ∈ C1,γ(Ω)
and ψ|∂ Ω = 0, then CA,q = CA+∇ψ,q, i.e. it is possible to change the
magnetic potentials without disturbing the boundary data (see Propo-
sition 6.1 in the appendix).

At several points we will need extensions of Hölder continuous func-
tions to a larger set containing Ω. The following basic extension result
on Hölder continuous functions will be used for this (see Theorem 3 on
page 174 in [10] and Theorem 16.11 on page 342 in [2]).

Lemma 2.2. Let Ω ⊂ Rn be open set with Lipschitz boundary. Then

there exists a continuous linear extension operator E,

E : C0,γ(Ω) → C0,γ
0 (Rn),
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for 0 ≤ γ ≤ 1. More precisley there exists a constant C = C(Ω) > 0,
such that for every f ∈ C0,γ(Ω), supp(E(f)) is compact,

E(f)|Ω = f

and one has the norm estimate

‖E(f)‖C0,γ(Rn) ≤ C‖f‖C0,γ(Ω).

We will also need the following boundary reconstruction result from
[8] (see Theorem 1.9 in [8]).

Theorem 2.3. Let Ω ⊂ Rn be open set with Lipschitz boundary and

n ≥ 3. Assume V1, V2 ∈ C0,γ(Ω,Rn), 0 < γ ≤ 1. If ΛV1 = ΛV2, then
V1|∂ Ω = V2|∂ Ω.

Next we show how Theorem 1.1 follows from Proposition 2.1. We
follow the argument given in [8]. The rest of the paper will focus on
proving Proposition 2.1.

Proof of Theorem 1.1. By Theorem 2.3 we know that V1 = V2 on
∂ Ω. Lemma 2.2 allows us then to extend Vj to a ball B, Ω ⊂⊂ B so
that Vj ∈ C0,γ(B,Rn), Vj|∂ B = 0 and V1 = V2 on B \ Ω. Lemma 6.2
below shows that the above extension does not alter the DN-maps, i.e.
ΛBV1 = ΛBV2. We may thus assume that that Ω = B and that V1 = V2 = 0
on ∂ Ω = ∂ B.

We now consider the magnetic Schrödinger operators LAj ,qj , j = 1, 2
that coincide with LVj . That is we choose

Aj := iVj/2 and qj := V 2
j /4−∇ · Vj/2,

which gives that LAj ,qj = LVj .

Next we want to show that CAj ,qj = {(f,ΛVjf) | f ∈ H1/2(∂ B)}. We
need only to show that NAj ,qjuj = ΛVjuj, j = 1, 2. Let uj ∈ H1(B)

be such that LAj ,qjuj = 0 and assume that ϕ ∈ H1/2(∂ B) and that
φ ∈ H1(B) is an extension of ϕ, i.e. φ|∂ B = ϕ. Then by definition and
because Vj = 0 on ∂ B

〈NAj ,qjuj, ϕ〉 =
∫

B

(∇uj · ∇φ− 1

2
Vj · (uj∇φ− φ∇uj) +

1

2
Vj · ∇(ujφ)) dx

=

∫

B

(∇uj · ∇φ+ Vj · ∇ujφ) dx

= 〈ΛVjuj, ϕ〉.
The assumption that ΛV1 = ΛV2, implies therefore that CA1,q1 = CA2,q2.

We can now apply Proposition 2.1, which gives that dV1 = dV2. By
the Poincaré Lemma (see Theorem 8.3 in [2]), there exists an ψ ∈
C1,γ(B), s.t. V1−V2 = ∇ψ, since ∇ψ = 0 outside supp(V1)∪ supp(V2),
we have that ψ is constant near ∂ B. We may hence add a constant to
ψ, so that ψ = 0 near ∂ B.
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The second consequence of Proposition 2.1 is that q1 = q2, so that
V 2
1 /2 − ∇ · V1 = V 2

2 /2 − ∇ · V2. This together with the fact that
V2 = ∇ψ − V1, gives the equation

∆ψ − V1 · ∇ψ +
1

2
(∇ψ)2 = 0 in B,(2.2)

Next we prove that ψ ∈ C2(B). Because of (2.2) we have that ψ ∈
C0(B) satisfies

∆ψ = f in B,

with f = V1 · ∇ψ− 1
2
(∇ψ)2 ∈ C0,γ(B). By interior Schauder estimates

(see Theorem 7.18 in [13]) we know that ψ ∈ C2,γ(V ), for every open
V ⊂⊂ B. It follows that ψ ∈ C2(B).

We may now apply the maximum principle to ψ (see Theorem 10.1
in [4]). From this it follows that ψ = 0 in B, since ψ|∂ B = 0. We may
thus conclude that V1 = V2.

✷

3. Complex geometric optics solutions and remainder
estimates

In this section we shortly review the construction of complex geomet-
ric optics (CGO for short) solutions and then derive some remainder
estimates related to these. We follow by large the construction given
in [7]. We are however dealing with more regular magnetic potentials,
which allows us to get the better remainder estimates that are needed.
This and the more irregular electric potentials require us to make some
modifications to the argument in [7].

Smooth approximations of the potentials will be an important tool
in the following. Our smoothing procedure will consist of an extension
followed by a convolution with a mollifier. More specifically, given an
A ∈ C0,γ(Ω,Cn), we consider an open bounded set Ω′, s.t. Ω ⊂⊂ Ω′.
By Lemma 2.2 there is an extension of A to Rn, A′ ∈ C0,γ(Rn,Cn), s.t.
A = A′ in Ω, A′|Rn\Ω′ = 0 and

‖A′‖C0,γ(Rn,Cn) ≤ C‖A‖C0,γ(Ω,Cn).(3.1)

Moreover let Ψ belong to C∞
0 (Rn) with 0 ≤ Ψ(x) ≤ 1 for all x ∈ R

n,
suppΨ ⊂ {x ∈ Rn : |x| ≤ 1} and

∫
Rn Ψ dx = 1. Define Ψθ(x) =

θnΨ(θx) for θ ∈ (0,∞) and x ∈ Rn. We define A♯ for any A′ ∈
C0,γ

0 (Rn,Cn), as

A♯ := Ψθ ∗ A′.

Notice also that (3.1) implies that ‖A♯‖C0,γ (Rn,Cn) ≤ C‖A‖C0,γ(Ω,Cn),
where C is independent of θ.

The following Lemma gives some basic and well known estimates for
the above approximation scheme (see [5]).
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Lemma 3.1. Assume that A ∈ C0,γ(Ω,Cn), with 0 < γ ≤ 1 and let A′

be the above extension of A to Rn. Then

‖A′ −A♯‖L∞(Rn,Cn) ≤ Cθ−γ ,(3.2)

‖ ∂αA♯‖L∞(Rn,Cn) ≤ Cθ|α|−γ,(3.3)

as θ → ∞, for any multi-index α, with |α| ≥ 1.

Proof. Let Ψ be as above. Assume that x ∈ Rn. For the first estimate
we use (3.1) and have that

|A′(x)−A♯(x)| =
∣∣
∫

Rn

A′(x)Ψ(y) dy −
∫

Rn

A′(x− y)θnΨ(θy) dy
∣∣

≤
∫

Rn

|A′(x)Ψ(y)−A′(x− y/θ)Ψ(y)| dy

≤ C‖A‖C0,γ(Ω,Cn)θ
−γ

∫

Rn

|y|γ|Ψ(y)| dy

≤ Cθ−γ.

To derive the second estimate (3.3) notice firstly that
∫

Rn

∂αΨ(y)dy = 0,

for all multi indexes α, with |α| ≥ 1. Let x ∈ Rn, then using the above
observation, we have that

| ∂αA♯(x)| =
∣∣
∫

Rn

A′(y)θn+|α|(∂αΨ)
(
θ(x− y)

)
dy

∣∣

=
∣∣
∫

Rn

A′(x− y/θ)θ|α|(∂αΨ)(y) dy
∣∣

=
∣∣
∫

Rn

(
A′(x− y/θ)−A′(x)

)
θ|α|(∂αΨ)(y) dy

∣∣

≤ ‖A‖C0,γ(Ω,Cn)θ
|α|

∫

Rn

|y/θ|γ
∣∣(∂αΨ)(y)

∣∣dy

≤ Cθ|α|−γ.

�

Remark. In the rest of this section we will consider A to be extended
as A′ outside Ω, i.e. we use A to denote the extension A′.

We will now show how to construct so called complex geometric
optics solutions following the argument in [7]. It is natural to formulate
this in terms of certain semiclassical norms that are defined as follows

‖u‖2H1
scl

(Ω) := ‖u‖2L2(Ω) + ‖h∇u‖2L2(Ω),

‖v‖H−1

scl
(Ω) := sup

06=ψ∈C∞
0

(Ω)

|〈v, ψ〉Ω|
‖ψ‖H1

scl
(Ω)

.
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The construction of CGO solutions is based on the solvability result
below. The solvability result is in turn a consequence of a perturbed
Carleman estimate, Proposition 7.2 in the appendix. The argument
that shows how to obtain the solvability result from the Carleman
estimate is standard and we refer to the proof of Proposition 2.3 in [7].

Proposition 3.2. Let A, F ∈ L∞(Ω,Cn), p ∈ L∞(Ω,C) and q =
∇ ·F + p. Furthermore let ϕ(x) = α · x, α ∈ Rn with |α| = 1. If h > 0
is small enough, then for any v ∈ H−1(Ω), there is a solution of the

equation

eϕ/hh2LA,q(e
−ϕ/hu) = v, in Ω,

which satisfies

‖u‖H1
scl

(Ω) ≤
C

h
‖v‖H−1

scl
(Ω).(3.4)

The CGO solutions u ∈ H1(Ω) considered here solve

LA,qu = 0,

with A, F ∈ C0,γ(Ω,Cn), 0 < γ ≤ 1, p ∈ L∞(Ω,C) and have the form

(3.5) u(x; ζ, h) = ex·ζ/h(a(x; ζ, h) + r(x; ζ, h)),

where ζ ∈ Cn with ζ · ζ = 0 and |ζ | ∼ 1; h is a small semiclassical
parameter; a is a smooth amplitude and r is a reminder term.

We begin by assuming that ζ ∈ Cn, ζ = ζ0 + ζ1 is such that

ζ · ζ = 0, ζ0 is constant with respect to h, ζ1 = O(h),(3.6)

as h→ 0 and |Re ζ0| = | Im ζ0| = 1.

Abbreviate the conjugated operator multiplied by h2, with

Lζ := e−ζ·x/hh2LA,q(e
ζ·x/h).

Then in order to construct u(·; ζ, h) of the form (3.5), it is enough to
prove the existence of a r(·; ζ, h) ∈ H1(Ω) solving

(3.7) Lζr = −Lζa,
in Ω for a suitable a. The a ∈ C∞(Rn) is picked as the solution to

(3.8) ζ0 · ∇a + iζ0 · A♯a = 0, in R
n,

so that left hand side of (3.7) becomes, using (3.6), (3.8) and (3.10)
given below,

−Lζa =h2∆a+ ih2A · ∇a− h2mA(a)− h2(A2 + p)a + 2hζ1 · ∇a
(3.9)

+ 2hiζ0 · (A−A♯)a+ 2hiζ1 · Aa− h2m∇·F (a).



9

Here mA and m∇·F are the bounded linear operators from H1(Ω) to
H−1(Ω) defined by

〈mA(φ), ψ〉 :=
∫

Ω

iφA · ∇ψ dx,

〈m∇·F (φ), ψ〉 := −
∫

Ω

F · ∇(φψ) dx,

for all φ ∈ H1(Ω) and all ψ ∈ H1
0 (Ω). It easy to see that

e−ζ·x/h ◦ h2mA ◦ eζ·x/h = −hiζ · A+ h2mA,(3.10)

e−ζ·x/h ◦ h2m∇·F ◦ eζ·x/h = h2m∇·F .

If we look for solutions to (3.8) in the form a = eΦ
♯
, it will be enough

that Φ♯(·; ζ0, θ) satisfies
(3.11) ζ0 · ∇Φ♯ + iζ0 · A♯ = 0

in Rn. The fact that Re ζ0 · Im ζ0 = 0 and |Re ζ0| = |Im ζ0| = 1, implies
that Nζ0 := ζ0 ·∇ is a ∂−operator in suitable coordinates. The Cauchy
operator N−1

ζ0
, defined by

(N−1
ζ0
f)(x) :=

1

2π

∫

R2

f(x− y1Re ζ0 − y2 Im ζ0)

y1 + iy2
dy1dy2,

for f ∈ C0(R
n), is the inverse of the ∂−operator and gives thus that

Φ♯ = N−1
ζ0

(−iζ0 · A♯) ∈ C∞(Rn).

We will also use the following basic continuity result for the Cauchy
operator (see [8], Lemma 7.4).

Lemma 3.3. Let f ∈ W k,∞(Rn), k ≥ 0, with supp(f) ⊂ B(0, R).
Then we have that

‖N−1
ζ0
f‖W k,∞(Rn) ≤ C‖f‖W k,∞(Rn),(3.12)

where C = C(R).

Using now Lemma 3.1 and Lemma 3.3, we have that

‖ ∂αΦ♯‖L∞(Rn) ≤ Cθ|α|−γ(3.13)

for θ ∈ (1,∞) and a multi-indexes α, |α| ≥ 1. Moreover, defining
Φ(·; ζ0) := (ζ0 · ∇)−1(−iζ0 · A) ∈ L∞(Rn), solves analogously

(3.14) ζ0 · ∇Φ + iζ0 · A = 0

and satisfies

‖Φ(·; ζ0)‖L∞(Rn) ≤ C‖A‖L∞(Rn).(3.15)

Lemma 3.3 and estimate (3.2) imply that the functions Φ♯ converge to
Φ in L∞(Ω) or more explicitly that∥∥Φ♯(·, ζ0, θ)− Φ(·; ζ0)

∥∥
L∞(Rn)

≤ Cθ−γ.



10

With the a at hand the solvability result, Proposition 3.2 guarantees
the existence of a solution r, to equation (3.7), such that

‖r‖H1
scl

(Ω) ≤
C

h
‖Lζa‖H−1

scl
(Ω).(3.16)

Now we determine how the left hand side of the above estimate depends
on h, i.e. we estimate the H−1

scl (Ω)-norm of the terms in equation (3.9).
This gives us the behaviour of the H1

scl
(Ω)-norm of the remainder term

r in the parameter h.
Let 0 6= ψ ∈ C∞

0 (Ω). Then using (3.13), the fact that ζ1 = O(h) and
the Cauchy–Schwarz inequality we get that

|〈h2∆a, ψ〉Ω| ≤ O(h2θ2−γ)‖ψ‖L2(Ω) ≤ O(h2θ2−γ)‖ψ‖H1
scl

(Ω),

|〈ih2A · ∇a, ψ〉Ω| ≤ O(h2θ1−γ)‖ψ‖H1
scl

(Ω),

|〈2hζ1 · ∇a, ψ〉Ω| ≤ O(h2θ1−γ)‖ψ‖H1
scl

(Ω),

|〈2hiζ1 ·Aa, ψ〉Ω| ≤ O(h2)‖ψ‖H1
scl

(Ω),

|〈h2(A2 + p)a, ψ〉Ω| ≤ O(h2)‖ψ‖H1
scl

(Ω).

By Lemma 3.1 we have on the other hand that

|〈2hiζ0 · (A− A♯)a, ψ〉Ω| ≤ O(h)‖a‖L∞(Ω)‖A− A♯‖L2(Ω)‖ψ‖L2(Ω)

≤ O(h)θ−γ‖ψ‖H1
scl

(Ω).

Again by Lemma 3.1 and estimate (3.13) we have that

|〈h2mA(a),ψ〉Ω| ≤
∣∣∣∣
∫

Ω

ih2A♯a · ∇ψdx
∣∣∣∣ +

∣∣∣∣
∫

Ω

ih2(A− A♯)a · ∇ψdx
∣∣∣∣

≤
∣∣∣∣
∫

Ω

ih2(∇ · (A♯a))ψdx
∣∣∣∣+O(h)‖A− A♯‖L2(Ω)‖h∇ψ‖L2(Ω)

≤ (O(h2θ1−γ) +O(h)θ−γ)‖ψ‖H1
scl

(Ω).

Similarly with the help of Lemma 3.1 and estimate (3.13) we have that

|〈h2m∇·F (a),ψ〉Ω| ≤
∣∣∣∣
∫

Ω

ih2F ♯ · ∇(aψ)dx

∣∣∣∣+
∣∣∣∣
∫

Ω

ih2(F − F ♯) · ∇(aψ)dx

∣∣∣∣

≤
∣∣∣∣
∫

Ω

ih2∇F ♯ · aψdx
∣∣∣∣ +

∣∣∣∣
∫

Ω

ih2(F − F ♯) · ∇(aψ)dx

∣∣∣∣
≤ Ch2θ1−γ‖ψ‖H1

scl
(Ω) + Ch2‖F − F ♯‖L2(Ω)‖∇a‖L∞(Ω)‖ψ‖L2(Ω)

+ Ch‖F − F ♯‖L2(Ω)‖a‖L∞(Ω)‖h∇ψ‖L2(Ω)

≤ C(h2θ1−γ + h2θ1−2γ + hθ−γ)‖ψ‖H1
scl

(Ω).

Combining the above estimates gives that

‖Lζa‖H−1

scl
(Ω) ≤ C(h2θ2−γ + hθ−γ)
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By choosing θ = h−1/2, we get hence by estimate (3.16) that

‖r‖H1
scl

(Ω) ≤ Chγ/2

We have thus derived the following Proposition.

Proposition 3.4. Let Ω ⊂ R
n, n ≥ 3, be a bounded open set with Lip-

schitz boundary. Let A, F ∈ C0,γ(Ω,Rn), 0 < γ ≤ 1, p ∈ L∞(Ω,Cn),
with q := ∇ · F + p and let ζ ∈ Cn satisfy (3.6). Then for all h > 0
small enough, there exists a solution u(x, ζ ; h) ∈ H1(Ω) of

LA,qu = 0, in Ω

of the form u(x, ζ ; h) = ex·ζ/h(eΦ
♯(x,ζ0;h) + r(x, ζ ; h)). The function

Φ♯(·, ζ0; h) ∈ C∞(Rn) ∩ L∞(Rn) satisfies

‖ ∂αΦ♯‖L∞(Rn) ≤ Cαh
γ−|α|

2 ,(3.17)

for all α, |α| ≥ 1, and Φ♯(·, ζ0; h) converges in the L∞-norm to Φ(·, ζ0) :=
N−1
ζ0

(−iζ0 ·A) ∈ L∞(Rn). More precisely
∥∥Φ♯(·, ζ0, h)− Φ(·; ζ0)

∥∥
L∞(Rn)

≤ Chγ/2.(3.18)

The remainder r is such that

‖r‖H1
scl

(Ω) ≤ Chγ/2,(3.19)

as h→ 0.

4. Uniqueness of the magnetic field

This section contains a proof of the first part of Proposition 2.1, i.e. we
show that dA1 = dA2. We begin by stating an integral identity, which
readily follows from the assumption that CA1,q1 = CA2,q2. The proof
can be found in [7] and only minor modifications are needed to make
it work with electric potentials used here.

Proposition 4.1. Let Ω ⊂ Rn, n ≥ 3, be a bounded open set with Lip-

schitz boundary. Assume that p1, p2 ∈ L∞(Ω,C) and A1, A2, F1, F2 ∈
C0,γ(Ω,Cn), with 0 < γ ≤ 1. If CA1,q1 = CA2,q2, then the following

integral identity
∫

Ω

i(A1 − A2) · (u1∇u2 − u2∇u1) + (A2
1 − A2

2 + p1 − p2)u1u2

−(F1 − F2) · (u1∇u2 + u2∇u1) dx = 0(4.1)

holds for any u1, u2 ∈ H1(Ω) satisfying LA1,q1u1 = 0 in Ω and LA2,q2
u2 =

0 in Ω, respectively.

The idea is then to choose specific CGO solutions and insert them
into the integral identity and then show that this reduces, in the limit
h → 0 to a specific Fourier transform. The CGO will be chosen as
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follows. Let ξ, µ1, µ2 ∈ Rn be such that |µ1| = |µ2| = 1 and µ1 · µ2 =
µ1 · ξ = µ2 · ξ = 0. Define

ζ1 =
ihξ

2
+ µ1 + i

√
1− h2

|ξ|2
4
µ2,

ζ2 = −ihξ
2

− µ1 + i

√
1− h2

|ξ|2
4
µ2,(4.2)

so that ζj · ζj = 0, j = 1, 2, and

(ζ1 + ζ2)/h = iξ.(4.3)

Here h > 0 is a small enough. Moreover, ζ1 = µ1 + iµ2 + O(h) and
ζ2 = −µ1 + iµ2 +O(h) as h→ 0.

For all h > 0, that are small enough there exists, by Proposition 3.4
a solution u1(x, ζ1; h) ∈ H1(Ω) to the equation LA1,q1u1 = 0 in Ω, of
the form

(4.4) u1(x, ζ1; h) = ex·ζ1/h(eΦ
♯
1
(x,µ1+iµ2;h) + r1(x, ζ1; h)),

where Φ♯1(·, µ1 + iµ2; h) ∈ C∞(Rn) ∩ L∞(Rn) is given by

(4.5) Φ♯1(·, µ1 + iµ2; h) := N−1
µ1+iµ2

(
− i(µ1 + iµ2) ·A♯1

)

and Φ♯1(·, µ1 + iµ2; h) → Φ1(·, µ1 + iµ2) in L
∞(Rn) as h→ 0, where Φ1

is given by Proposition 3.4.
Similarly, for all h > 0 small enough, there exists a solution u2(x, ζ2; h) ∈

H1(Ω) to the equation LA2,q2
u2 = 0 in Ω, of the form

(4.6) u2(x, ζ2; h) = ex·ζ2/h(eΦ
♯
2
(x,−µ1+iµ2;h) + r2(x, ζ2; h)),

where Φ♯2(·,−µ1 + iµ2; h) ∈ C∞(Rn) ∩ L∞(Rn) is given by

(4.7) Φ♯2(·,−µ1 + iµ2; h) := N−1
−µ1+iµ2

(
− i(−µ1 + iµ2) · A♯2

)

and Φ♯2(·,−µ1 + iµ2; h) → Φ2(·,−µ1 + iµ2) in L
∞(Rn) as h→ 0, where

Φ2 is given by Proposition 3.4.
Notice also that we have by estimates (3.17) and (3.19), of Proposi-

tion 3.4, that

‖∇Φ♯j‖L∞(Rn) ≤ Ch
γ−1

2 ,(4.8)

‖rj‖H1
scl

(Ω) ≤ Chγ/2,(4.9)

for j = 1, 2.
The next step is to insert the u1 and u2 specified above into (4.1),

multiply by h and let h → 0, in an attempt to obtain a Fourier trans-
form of the magnetic field. This is done in the next Lemma. The proof
is based on the argument found in [7]. The difference is however in
how the electric potential is estimated. The crucial observation is that
the last term in (4.1) containing the electric potentials, goes to zero,
in h when multiplied with an extra factor of h, even though it closely
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resembles the first term with the magnetic potentials, for which this
does not happen.

Lemma 4.2. For A1, A2, µ1, µ2 and ξ as above we have that

(4.10) (µ1 + iµ2) ·
∫

Rn

(A1 −A2)e
ix·ξeΦ1+Φ2dx = 0.

Proof. We use the abbreviations A := A1 − A2, F := F1 − F2 and
p := p1 − p2. First we multiply (4.1) by h. For the non-gradient terms
in (4.1) we have by (4.9) that

∣∣∣h
∫

Ω

(A2
1 −A2

2 + p)u1u2 dx
∣∣∣

=
∣∣∣h

∫

Ω

(A2
1 − A2

2 + p)eix·ξ(eΦ
♯
1
+Φ♯

2 + eΦ
♯
1r2 + r1e

Φ♯
2 + r1r2) dx

∣∣∣

≤ Ch‖A2
1 −A2

2 + p‖L∞

(
‖eΦ♯

1
+Φ♯

2‖L∞ + ‖eΦ♯
1‖L∞‖r2‖L2

+ ‖r1‖L2‖eΦ♯
2‖L∞ + ‖r1‖L2‖r2‖L2

)

≤ Ch→ 0,

as h → 0. For our specific CGO solutions, u1 and u2, we hence have
that

h
∣∣∣
∫

Ω

iA · (u1∇u2 − u2∇u1) dx− h

∫

Ω

F · (u1∇u2 + u2∇u1) dx
∣∣∣ = O(h),

(4.11)

as h→ 0.
We continue by estimating the first integral in (4.11). Since the

solutions u1 and u2 are of the CGO form one gets the following by
expanding

hu1∇u2 =ζ2eix·ξ(eΦ
♯
1
+Φ♯

2 + eΦ
♯
1r2 + r1e

Φ♯
2 + r1r2)(4.12)

+ heix·ξ(eΦ
♯
1∇eΦ♯

2 + eΦ
♯
1∇r2 + r1∇eΦ

♯
2 + r1∇r2).

The first term in the first parantheses in (4.12) gives

ζ2 ·
∫

Ω

iAeix·ξeΦ
♯
1
+Φ♯

2dx→ −(µ1 + iµ2) ·
∫

Ω

iAeix·ξeΦ1+Φ2dx.(4.13)

as h → 0. This is because ζ2 = −µ1 − iµ2 + O(h) and by (3.18) we
have that
∣∣∣∣(µ1 + iµ2) ·

∫

Ω

Aeix·ξ
(
eΦ

♯
1
+Φ♯

2 − eΦ1+Φ2
)
dx

∣∣∣∣ ≤ C
∥∥eΦ♯

1
+Φ♯

2 − eΦ1+Φ2

∥∥
L∞(Ω)

≤ Chγ/2 → 0
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as h→ 0. For the next three terms in (4.12), we can use estimate (4.9)
and Cauchy–Schwarz to conclude that

∣∣∣∣
∫

Ω

iA · ζ2eix·ξ(eΦ
♯
1r2 + r1e

Φ♯
2 + r1r2)dx

∣∣∣∣

≤ C‖A‖L∞(
∥∥eΦ♯

1

∥∥
L2‖r2‖L2 + ‖r1‖L2

∥∥eΦ♯
2

∥∥
L2 + ‖r1‖L2‖r2‖L2)(4.14)

≤ Chγ/2 → 0,

as h → 0. For the last part of (4.12) containing the factor h, we have
using estimates (4.9) and (4.8) that

∣∣∣∣
∫

Ω

hiA · eix·ξ(eΦ♯
1∇eΦ♯

2 + eΦ
♯
1∇r2 + r1∇eΦ

♯
2 + r1∇r2)dx

∣∣∣∣(4.15)

≤ Ch
(
h(γ−1)/2 + h−1hγ/2 + hγ/2h(γ−1)/2 + hγh−1

)
→ 0,

as h→ 0. Expanding the u2∇u1 term in (4.11) gives

hu2∇u1 =ζ1eix·ξ(eΦ
♯
1
+Φ♯

2 + eΦ
♯
1r2 + r1e

Φ♯
2 + r1r2)(4.16)

+ heix·ξ(∇eΦ♯
1eΦ

♯
2 +∇eΦ♯

1r2 +∇r1eΦ
♯
2 +∇r1r2).

Again −ζ1 = −µ1 − iµ2 + O(h). The terms in (4.12) and (4.16) are
of the same form. Doing the analogous estimates for (4.16) gives then
that

h

∫

Ω

iA · (u1∇u2 − u2∇u1) dx→ −2i(µ1 + iµ2) ·
∫

Rn

Aeix·ξeΦ1+Φ2dx,

as h→ 0.
We end the proof by showing that

h

∫

Ω

F · (u1∇u2 + u2∇u1)dx→ 0,(4.17)

as h→ 0. Using (4.12) and (4.16) gives that

h(u1∇u2 + u2∇u1) = (ζ2 + ζ1)e
ix·ξ

(
eΦ

♯
1
+Φ♯

2 + eΦ
♯
1r2 + r1e

Φ♯
2 + r1r2

)

+ heix·ξ
(
eΦ

♯
1∇eΦ♯

2 + eΦ
♯
1∇r2 + r1∇eΦ

♯
2 + r1∇r2(4.18)

+∇eΦ♯
1eΦ

♯
2 +∇eΦ♯

1r2 +∇r1eΦ
♯
2 +∇r1r2

)
.

The second term on the right hand side is of the same form as the second
term on the right hand side of (4.12) and (4.16). The contribution of
these terms are therefore zero in the limit h→ 0.

For the first term on the right hand side of (4.18) we get, using (4.3)
and (4.9), the estimate

∣∣∣∣h
∫

Ω

iξ · F (eix·ξ(eΦ♯
1
+Φ♯

2 + eΦ
♯
1r2 + r1e

Φ♯
2 + r1r2)) dx

∣∣∣∣
≤ O(h)(1 + hγ/2 + hγ/2 + hγ) → 0,
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as h→ 0. This shows that (4.17) holds. �

It turns out that the eΦ1+Φ2 term can be dropped from (4.10). This
is guaranteed by Proposition 3.3 in [7] (see also [3] and [11]). Using
the abbreviation A := A1 − A2 we thus obtain

(µ1 + iµ2) ·
∫

Rn

Aeix·ξdx = (µ1 + iµ2) · Â(−ξ) = 0,

where Â stands for the Fourier transform of A. Moreover for any

µ ∈ Rn, with µ · ξ = 0, we have therefore that µ · Â = 0. It follows that
the Fourier transform of the component functions of (2.1) are zero. To
see this notice that the above implies that

ξjÂk − ξkÂj = (ξjek − ξkej) · Â = 0,

since ξ · (ξjek − ξkej) = 0, where ek denote the standard basis vectors
of Rn. We have thus proved that dA1 = dA2.

Remark. Notice that, we only need the condition 0 < γ ≤ 1 in
recovering the magnetic potentials, instead of 2/3 < γ ≤ 1.

5. Uniqueness of the electric potential

To finish the proof of Proposition 2.1, we need to show that q1 =
∇ · F1 + p1 = ∇ · F2 + p2 = q2. Lemma 2.2 and the assumption that
A1 = A2, F1 = F2 on ∂ Ω and that ∂ Ω is Lipschitz, allows us to extend
Aj and Fj , j = 1, 2 to a ball B, with Ω ⊂ B, so that A1 = A2 and
F1 = F2 in B \ Ω, Fj = Aj = 0 on ∂ B and Aj, Fj ∈ C0,γ(B), for
j = 1, 2.

In the previous section we proved that d(A1−A2) = 0. The Poincaré
Lemma implies now that there is a ψ ∈ C1,γ(B) s.t. A1 − A2 = ∇ψ
in B (see [2]). We can moreover choose ψ so that ψ|∂ B = 0, since
A1 = A2 = 0 in B \ Ω. By Lemma 6.3 and Proposition 6.1 below, we
have that

CB
A1,q1

= CB
A2,q2

= CB
A2+∇ψ,q2

= CB
A1,q2

.

Proposition 4.1 gives then that
∫

B

(−F · ∇(u1u2) + pu1u2) dx = 0,(5.1)

for any u1, u2 ∈ H1(B), satisfying LA1,q1u1 = 0, LA2,q2
u2 = 0 in B and

where F := F1 − F2 and p := p1 − p2.
We now suppose, as in section 4 that u1 and u2 are given by (4.4)

and (4.6) (when Ω = B), with A1 = A2 and consider the limit of (5.1)
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as h→ 0. Expanding (5.1), using (4.3) gives

∫

B

−F · iξeix·ξ(eΦ♯
1
+Φ♯

2 + eΦ
♯
1r2 + r1e

Φ♯
2 + r1r2) dx

+

∫

B

−F · eix·ξ∇(eΦ
♯
1
+Φ♯

2 + eΦ
♯
1r2 + r1e

Φ♯
2 + r1r2) dx(5.2)

+

∫

B

pu1u2 dx = 0.

We begin by showing that the second integral in (5.2) tends to zero, in
the limit h→ 0.

We simplify (5.2) firstly by writing F̃ := Feix·ξ. Notice also that

F̃ ∈ C0,γ(B). The second simplification comes from the fact that

eΦ
♯
1
+Φ♯

2 = 1. To show this notice first that the Cauchy operator has the
following properties

N−1
ζ f = N−1

ζ
f, N−1

−ζ f = −N−1
ζ f.

Applying these to the definitions (4.5) and (4.7) together with the fact
that we are now considering the case with A1 = A2 yields

Φ♯1 + Φ♯2 = N−1
µ1+iµ2

(
− i(µ1 + iµ2) · (A♯1 −A♯2)

)
= 0,

so that

eΦ
♯
1
+Φ♯

2 = 1.(5.3)

Split the second integral in (5.2) into pieces by taking the absolute
value and applying the triangle inequality. Consider first the first term
of the second integral in (5.2). By (5.3) we have immediately that

∣∣∣
∫

B

F̃ · ∇eΦ♯
1
+Φ♯

2 dx
∣∣∣ = 0.(5.4)

Next we consider the terms ∇(eΦ
♯
1r2) and ∇(r1e

Φ♯
2), coming from the

second integral in (5.2). Notice firstly that F̃ |∂ B = 0, since F |∂ B = 0.

Letting F̃ ♯ := Ψθ ∗ F̃ , where Ψθ is defined as in the beginning of section
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3 and using the estimates of Proposition 3.4 and Lemma 3.1 we get that

∣∣∣
∫

B

F̃ · ∇
(
eΦ

♯
1r2

)
dx

∣∣∣ =
∣∣∣
∫

B

F̃ ·
(
∇eΦ♯

1r2 + eΦ
♯
1∇r2

)
dx

∣∣∣

. ‖F̃ · ∇eΦ♯
1‖∞‖r2‖2 +

∣∣∣
∫

B

F̃ · eΦ♯
1∇r2 dx

∣∣∣

. h(γ−1)/2hγ/2 +
∣∣∣
∫

B

F̃ · eΦ♯
1∇r2 dx

∣∣∣

. hγ−1/2 +
∣∣∣
∫

B

∇ ·
(
F̃ ♯eΦ

♯
1

)
r2 dx

∣∣∣(5.5)

+
∣∣∣
∫

B

(
F̃ − F̃ ♯

)
· eΦ♯

1∇r2 dx
∣∣∣

. hγ−1/2 + θ1−γhγ/2 + ‖F̃ − F̃ ♯‖∞‖∇r2‖2

. hγ−1/2 + θ1−γhγ/2 + θ−γhγ/2−1.

The last term from the second integral in (5.2) is handled as follows

∣∣∣
∫

B

F̃ · ∇(r1r2) dx
∣∣∣ .

∣∣∣
∫

B

∇ · F̃ ♯r1r2 dx
∣∣∣+

∣∣∣
∫

B

(
F̃ − F̃ ♯

)
· ∇(r1r2) dx

∣∣∣

. ‖∇ · F̃ ♯‖∞‖r1‖2‖r2‖2
+ ‖F̃ − F̃ ♯‖∞

(
‖∇r1‖2‖r2‖2 + ‖r1‖2‖∇r2‖2

)
(5.6)

. θ1−γhγ/2hγ/2 + θ−γh−1hγ/2hγ/2

. θ1−γhγ + θ−γhγ−1.

Combining (5.4), (5.5) and (5.6) and then choosing θ = h−1, gives for
the second integral in (5.2) that

∣∣∣
∫

B

F · eix·ξ∇(eΦ
♯
1
+Φ♯

2 + eΦ
♯
1r2 + r1e

Φ♯
2 + r1r2) dx

∣∣∣

. θ1−γhγ/2 + θ−γhγ/2−1 + hγ−1/2

= 2h(3γ−2)/2 + hγ−1/2 → 0,

as h→ 0, since we require that γ > 2/3.
We now return to the first integral in (5.2). It can be estimated using

(4.9) and the Cauchy–Schwarz inequality as follows

∣∣∣
∫

B

− F · iξeix·ξ(eΦ♯
1r2 + r1e

Φ♯
2 + r1r2) dx

∣∣∣

.
∥∥eΦ♯

1

∥∥
∞

∥∥r2
∥∥
2
+
∥∥r1

∥∥
2

∥∥eΦ♯
2

∥∥
∞
+
∥∥r1

∥∥
2

∥∥r2
∥∥
2

. hγ/2 → 0,
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as h → 0. Estimating the third integral in (5.2) in a simliar fashion
and using (5.3) we thus conclude that (5.2) reduces to∫

B

(−F · iξeix·ξ + peix·ξ) dx = 0,

in the limit h → 0. This implies that F
(
∇ · F + p

)
(−ξ) = 0 in

the distributional sense, which in turn implies that 0 = ∇ · F + p =
(∇ · F1 + p1)− (∇ · F2 + p2), finishing the proof of Proposition 2.1.

6. Appendix A – Gauge invariance and Boundary data

Gauge invariance plays an important role when working with the
magnetic Schrödinger equation. Here we state the basic result con-
cerning the gauge invariance of the Cauchy data sets. This section also
includes two results on when the equality of the boundary data on a
smaller set implies the equality of the boundary data on a bigger set.

Proposition 6.1. Let Ω ⊂ Rn, n ≥ 3, be a bounded open set with

Lipschitz boundary. Assume A, F ∈ C0,γ(Ω,Cn), 0 < γ ≤ 1, p ∈
L∞(Ω,C), ψ ∈ C1,γ(Ω,C) and let q = ∇ · F + p . Then we have

e−iψ ◦ LA,q ◦ eiψ = LA+∇ψ,q.(6.1)

If furthermore, ψ|∂Ω = 0 then

CA,q = CA+∇ψ,q.(6.2)

Proof. Let ψ ∈ C1,γ(Ω). By direct computation we know that for LA,p,
we have

e−iψ ◦ LA,p ◦ eiψ = LA+∇ψ,p.

Furthermore we have that

e−iψ ◦ (∇ · F ) ◦ eiψ = ∇ · F,
since for u, v ∈ C∞

0 (Ω), we have that

〈
e−iψ ◦ (∇ · F ) ◦ eiψu, v

〉
= −

∫

Ω

F · ∇(e−iψueiψv) dx

= −
∫

Ω

F · ∇(uv) dx,

where 〈·, ·〉 stands for the distributional duality. Thus recalling that
q = ∇ · F + p it follows that

e−iψ ◦ LA,q ◦ eiψ = LA+∇ψ,q,

which proves (6.1).
In order to prove (6.2), assume that ψ|∂ Ω = 0. Let u ∈ H1(Ω) be a

solution to
LA,qu = 0, in Ω.

By (6.1) we know that e−iψu ∈ H1(Ω) satisfies

LA+∇ψ,q(e
−iψu) = 0, in Ω.
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Moreover we have that e−iψu|∂Ω = u|∂Ω. It remains hence to show that

NA+∇ψ,q(e
−iψu) = NA,qu, on ∂ Ω.

To that end let ϕ ∈ H1/2(∂ Ω) and let φ ∈ H1(Ω) be such that φ|∂Ω =
ϕ. Then

〈
NA+∇ψ,q(e

−iψu), ϕ
〉
=

〈
NA+∇ψ,q(e

−iψu), eiψϕ
〉

=

∫

Ω

∇(e−iψu) · ∇(eiψφ) + i(A+∇ψ) · (e−iψu∇(eiψφ)

−∇(e−iψu)eiψφ) + ((A+∇ψ)2 + p)uφ− F · ∇(uφ) dx

=

∫

Ω

∇u · ∇φ+ iA · (u∇φ−∇uφ) + (A2 + p)uφ

− F · ∇(uφ) dx

=
〈
NA,qu, ϕ

〉
.

�

The next Lemma is a slight modification of Lemma 4.2 in [8], we
include the proof for the convenience of the reader. The Lemma shows
that two DN-maps that coincide on small set, give two DN-maps that
coincide on a bigger if we extend the potentials so that they are identical
outside the smaller set.

Lemma 6.2. Assume that Ω,Ω′ ⊂ Rn be bounded open sets with Lips-

chitz boundaries, such that Ω ⊂ Ω′ and let V1, V2 ∈ L∞(Ω′,Cn). Denote
by ΛΩ

Vj
the DN-map corresponding to the Dirichlet problem on the set

Ω. Assume that V1 = V2 in Ω′ \ Ω. If ΛΩ
V1

= ΛΩ
V2

then ΛΩ′

V1
= ΛΩ′

V2
.

Proof. Given u′1 ∈ H1(Ω′), solving LV1u
′
1 = 0, in Ω′ we need to find

an u′2 ∈ H1(Ω′) solving LV2u
′
2 = 0, in Ω′ with u′2|∂ Ω′ = u′1|∂Ω′ and

∂n u
′
2|∂ Ω′ = ∂n u

′
1|∂ Ω′.

The function u1 := u′1|Ω solves LV1u1 = 0, in Ω. Let u2 ∈ H1(Ω)
be such that LV2u2 = 0 in Ω and u2|∂ Ω = u1|∂ Ω. We know that
∂n u2|∂ Ω = ∂n u1|∂Ω, since ΛΩ

V1
= ΛΩ

V2
. Thus u1 − u2 ∈ H1

0 (Ω). Define

u′2 := u′1 − (u1 − u2), in Ω′,

where we extended by u1 − u2 by zero into Ω′. Clearly u′2 ∈ H1(Ω′),
u′2|∂Ω′ = u′1|∂ Ω′ and ∂n u

′
2|∂Ω′ = ∂n u

′
1|∂ Ω′.
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It remains to check that LV2u
′
2 = 0, in Ω′ in a weak sense. Let

ϕ ∈ C∞
0 (Ω′), then

〈LV2u′2, ϕ〉Ω′ =

∫

Ω′

∇u′2 · ∇ϕ+ V2 · ∇u′2ϕ

=

∫

Ω

∇u′2 · ∇ϕ+ V2 · ∇u′2ϕ+

∫

Ω′\Ω

∇u′2 · ∇ϕ+ V2 · ∇u′2ϕ

=

∫

Ω

∇u2 · ∇ϕ+ V2 · ∇u2ϕ+

∫

Ω′\Ω

∇u′1 · ∇ϕ+ V1 · ∇u′1ϕ

=

∫

Ω′

∇u′1 · ∇ϕ+ V1 · ∇u′1ϕ

= 〈LV1u′1, ϕ〉Ω′

= 0,

where we use the fact that u2|∂ Ω = u1|∂ Ω, u1 = u′1|Ω and ΛΩ
V1

= ΛΩ
V2

to
get the fourth equality. �

We need a similar result concerning the magnetic Schrödinger oper-
ator.

Lemma 6.3. Let Ω,Ω′ ⊂ Rn be bounded open sets with Lipschitz

boundaries, such that Ω ⊂ Ω′. Let A1, A2, F1, F2 ∈ C0,γ(Ω′,Cn), 0 <
γ ≤ 1, p1, p2 ∈ L∞(Ω′,Cn) and let qj := ∇ · Fj + pj. Denote by CΩ

Aj ,qj

the Cauchy data for LAj ,qj in the set Ω, j = 1, 2. Assume that

(6.3) A1 = A2, F1 = F2 and p1 = p2, in Ω′ \ Ω.
If CΩ

A1,q1
= CΩ

A2,q2
then CΩ′

A1,q1
= CΩ′

A2,q2
.

Proof. Given u′1 ∈ H1(Ω′), solving LA1,q1u
′
1 = 0, in Ω′ we need to find

an u′2 ∈ H1(Ω′) solving LA2,q2u
′
2 = 0, in Ω′ with u′2|∂ Ω′ = u′1|∂ Ω′ and

NA2,q2u
′
2 = NA1,q1u

′
1. This implies that CΩ′

A1,q1
⊂ CΩ′

A2,q2
, from which the

claim follows.
Let u1 := u′1|Ω. Then LA1,q1u1 = 0, in Ω. Let u2 ∈ H1(Ω) be such

that LA2,q2u2 = 0, in Ω and u2|∂ Ω = u1|∂ Ω. Because CΩ
A1,q1

= CΩ
A2,q2

,
we know that NA2,q2u2 = NA1,q1u1, on ∂ Ω.

In particular we have that ϕ := u2 − u1 ∈ H1
0 (Ω) ⊂ H1

0 (Ω
′). Define

u′2 := u′1 + ϕ, in Ω′,

where we extended by u1 − u2 by zero into Ω′. Clearly u′2 ∈ H1(Ω′),
u′2|∂Ω′ = u′1|∂ Ω′. We need thus to check that LA2,q2u

′
2 = 0, in Ω′ and

that NA2,q2u
′
2 = NA1,q1u

′
1.

Let ψ ∈ C∞
0 (Ω′), then

〈LA2,q2u
′
2, ψ〉Ω′ =

∫

Ω′

∇(u′1 + ϕ) · ∇ψ + iA2 · ((u′1 + ϕ)∇ψ − ψ∇(u′1 + ϕ))

+ (A2
2 + p2)(u

′
1 + ϕ)ψ − F2 · ∇((u′1 + ϕ)ψ) dx.
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Since u′1 + ϕ = u2 on Ω, we have that

〈LA2,q2u
′
2, ψ〉Ω′ =

∫

Ω

∇u2 · ∇ψ + iA2 · (u2∇ψ − ψ∇u2)

+ (A2
2 + p2)u2ψ − F2 · ∇(u2ψ) dx

+

∫

Ω′\Ω

∇u′1 · ∇ψ + iA1 · (u′1∇ψ − ψ∇u′1)

+ (A2
1 + p1)u

′
1ψ − F1 · ∇(u′1ψ) dx

+

∫

Ω′\Ω

∇ϕ · ∇ψ + iA1 · (ϕ∇ψ − ψ∇ϕ)

+ (A2
1 + p1)ϕψ − F1 · ∇(ϕψ) dx

The last integral is zero, since supp(ϕ) ⊂ Ω. Hence using the assump-
tion that NA2,q2u2 = NA1,q1u1, on ∂ Ω gives

〈LA2,q2u
′
2, ψ〉Ω′ = 〈NA2,q2u2, ψ|Ω〉∂Ω

+

∫

Ω′\Ω

∇u′1 · ∇ψ + iA1 · (u′1∇ψ − ψ∇u′1)

+ (A2
1 + p1)u

′
1ψ − F1 · ∇(u′1ψ) dx

= 〈LA1,q1u
′
1, ψ〉Ω′ = 0.

Thus we see that LA2,q2u
′
2 = 0, in Ω′.

A similar deduction shows that NA2,q2u
′
2 = NA1,q1u

′
1. Hence we have

that CΩ′

A1,q1
⊂ CΩ′

A2,q2
. �

7. Appendix B – A Carleman estimate

In this section we prove a Carleman estimate that implies the solv-
ability result Proposition 3.2, in section 3. The proof is a straight
forward extension of the one in [7], and we give it here for the conve-
nience of the reader. The main concern is how to incorporate the ∇·F
term into the result in [7].

The estimate we are about to prove is a perturbation of the Carleman
estimate for the Laplacian, given in [9] (see also [7]). We state this
result as follows.

Proposition 7.1. Let ϕ(x) = α · x, α ∈ Rn, |α| = 1 and let ϕε =
ϕ+ h

2ε
ϕ2. Then for 0 < h≪ ε≪ 1 and s ∈ R, we have

h√
ε
‖u‖Hs+2

scl
(Rn) ≤ C‖eϕε/hh2∆(e−ϕε/hu)‖Hs

scl
(Rn), C > 0,(7.1)

for all u ∈ C∞
0 (Ω).

We now apply this result in the case s = −1 and a fixed ε > 0 that
is sufficiently small.
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Proposition 7.2. Let ϕ(x) = α · x, α ∈ Rn with |α| = 1. Assume

A, F ∈ L∞(Ω,Cn), p ∈ L∞(Ω,C) and q = ∇ · F + p. Then for 0 <
h≪ 1, we have

h‖u‖H1
scl

(Rn) ≤ C‖eϕ/hh2LA,q(e−ϕ/hu)‖H−1

scl
(Rn),(7.2)

for all u ∈ C∞
0 (Ω).

Proof. Let ϕε = ϕ + h
2ε
ϕ2 be the convexified weight, with ε > 0 and

0 < h ≪ ε ≪ 1. Then in the proof Proposition 2.2 in [7], it is shown
that

‖eϕε/hh2A ·D(e−ϕε/hu) + eϕε/hh2D · (Ae−ϕε/hu)‖H−1

scl
(Rn) ≤ O(h)‖u‖H1

scl
(Rn),

(7.3)

where D := i−1∇. Here the implicit constant depends on ‖A‖L∞(Ω),
‖ϕ‖L∞(Ω) and ‖Dϕ‖L∞(Ω) (see (2.4) in [7]).

Furthermore, we have for all 0 6= ψ ∈ C∞
0 (Ω) that

∣∣〈eϕε/hh2∇ · F (e−ϕε/hu), ψ〉
∣∣ ≤ h2

∫

Rn

|F∇ · (eϕε/hue−ϕε/hψ)|

≤ h‖F‖L∞(Rn)

(
‖h∇u‖L2(Rn)‖ψ‖L2(Rn)

+ ‖u‖L2(Rn)‖h∇ψ‖L2(Rn)

)

≤ O(h)‖u‖H1
scl

(Rn)‖ψ‖H1
scl

(Rn).

It follows from the definition of the H−1
scl -norm that

‖eϕε/hh2∇ · F (e−ϕε/hu)‖H−1

scl
(Rn) ≤ O(h)‖u‖H1

scl
(Rn).(7.4)

By choosing a small fixed ε > 0 that is independent of h, we conclude
from estimates (7.1),(7.3) and (7.4) that

∥∥eϕε/h(−h2∆)(e−ϕε/hu) + eϕε/hh2A ·D(e−ϕε/hu)

+ eϕε/hh2D · (Ae−ϕε/hu) + eϕε/hh2∇ · F (e−ϕε/hu)
∥∥
H−1

scl
(Rn)

≥ h

C
‖u‖H1

scl
(Rn).

Moreover we have that

‖h2(A2 + p)u‖H−1

scl
(Rn) ≤ O(h2)‖u‖H1

scl
(Rn).

Combining the two previous estimates gives then that

C‖eϕε/hh2LA,q(e
−ϕε/hu)‖H−1

scl
(Rn) ≥

h

C
‖u‖H1

scl
(Rn),

where C > 0. By using e−ϕε/hu = e−ϕ/he−ϕ
2/(2ε)u, we obtain (7.2). �
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