
RECURSIVE ALGORITHMS FOR DISTRIBUTED
FORESTS OF OCTREES

TOBIN ISAAC∗, CARSTEN BURSTEDDE† , LUCAS C. WILCOX‡ , AND OMAR GHATTAS∗

§¶

Abstract. The forest-of-octrees approach to parallel adaptive mesh refinement and coarsening
(AMR) has recently been demonstrated in the context of a number of large-scale PDE-based applica-
tions. Efficient reference software has been made freely available to the public both in the form of the
standalone p4est library and more indirectly by the general-purpose finite element library deal.II,
which has been equipped with a p4est backend.

Although linear octrees, which store only leaf octants, have an underlying tree structure by
definition, it is not fully exploited in previously published mesh-related algorithms. This is because
tree branches are not explicitly stored, and because the topological relationships in meshes, such
as the adjacency between cells, introduce dependencies that do not respect the octree hierarchy. In
this work we combine hierarchical and topological relationships between octants to design efficient
recursive algorithms that operate on distributed forests of octrees.

We present three important algorithms with recursive implementations. The first is a parallel
search for leaves matching any of a set of multiple search criteria, such as leaves that contain points or
intersect polytopes. The second is a ghost layer construction algorithm that handles arbitrarily refined
octrees that are not covered by previous algorithms, which require a 2:1 condition between neighboring
leaves. The third is a universal mesh topology iterator. This iterator visits every cell in a partition,
as well as every interface (face, edge and corner) between these cells. The iterator calculates the
local topological information for every interface that it visits, taking into account the nonconforming
interfaces that increase the complexity of describing the local topology. To demonstrate the utility of
the topology iterator, we use it to compute the numbering and encoding of higher-order C0 nodal
basis functions used for finite elements.

We analyze the complexity of the new recursive algorithms theoretically, and assess their perfor-
mance, both in terms of single-processor efficiency and in terms of parallel scalability, demonstrating
good weak and strong scaling up to 458k cores of the JUQUEEN supercomputer.

Key words. forest of octrees, parallel adaptive mesh refinement, Morton code, recursive
algorithms, large-scale scientific computing

AMS subject classifications. 65M50, 68W10, 65Y05, 65D18

1. Introduction. The development of efficient and scalable parallel algorithms
that modify computational meshes is necessary for resolving features in large-scale
simulations. These features may vanish and reappear, and/or evolve in shape and
location, which stresses the dynamic and in-situ aspects of adaptive mesh refinement
and coarsening (AMR). Both stationary and time-dependent simulations benefit from
flexible and fast remeshing and repartitioning capabilities, for example when using
a-posteriori error estimation, building mesh hierarchies for multilevel solvers for partial
differential equations (PDEs), or tracking of non-uniformly distributed particles by
using an underlying adaptive mesh.

Three main algorithmic approaches to AMR have emerged over time, which
we may call unstructured (U), block-structured (S), and hierarchical or tree-based
(T) AMR. Just some examples that integrate parallel processing are (U) [16,21,30],
(S) [7, 12, 17, 18], and (T) [22, 27, 28]. While these approaches have been developed
independently of one another, there has been a definite crossover of key technologies.

∗Institute for Computational Engineering and Sciences, The University of Texas at Austin, USA
†Institut für Numerische Simulation, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany
‡Department of Applied Mathematics, Naval Postgraduate School, USA
§Jackson School of Geosciences, The University of Texas at Austin, USA
¶Department of Mechanical Engineering, The University of Texas at Austin, USA

1

ar
X

iv
:1

40
6.

00
89

v3
 [

cs
.D

C
]

 2
0

A
ug

 2
01

5

2 T. Isaac et.al.

The graph-based partitioning algorithms traditionally used in UAMR have for instance
been supplemented by fast algorithms based on coordinate partitioning and space-
filling curves (SFCs) [9]. Hierarchical ideas and SFCs have also been applied in
SAMR packages to speed up and improve the partitioning [8, 10]. Last but not
least, the unstructured meshing paradigm can be employed to create a root mesh of
connected trees when a nontrivial geometry needs to be meshed by forest-of-octrees
TAMR [3,6, 26].

The three approaches mentioned above differ in the way that the mesh topology
information is passed to applications. With UAMR, the mesh is usually stored in
memory as an adjacency graph, and the application traverses the graph to compute
residuals, assemble system matrices, etc. This approach has the advantages that
local graph traversal operations typically have constant runtime complexity and that
the AMR library can remain oblivious of the details of the application, but the
disadvantages of less efficient global operations, such as locating the cell containing a
point, and of unpredictable memory access. On the other hand, the SAMR approach
allows for common operations to be optimized and to use regular memory access
patterns, but requires more integration between the AMR package and the application,
which may not have access to the topology in a way not anticipated by the AMR
package.

Tree-based AMR can be integrated with an application for convenience [24], but
can also be kept strictly modular [28]. Most TAMR packages implement logarithmic-
complexity algorithms for both global operations, such as point location, and local
operations, such as adjacency queries. The paper [6] introduces the p4est library,
which implements distributed forest-of-octree AMR with an emphasis on geometric and
topological flexibility and parallel scalability, and connects with applications through
a minimal interface.

The implementation of p4est does not explicitly build a tree data structure, so
tree-based, recursive algorithms are largely absent from the original presentation in [6].
Many topological operations on octrees and quadtrees, however, are naturally expressed
as recursive algorithms, which have simple descriptions and often have good, cache-
oblivious memory access patterns. In this paper, we present, analyze, and demonstrate
the efficiency of algorithms for important hierarchical and topological operations:
searching for leaves matching multiple criteria in parallel, identifying neighboring
(ghost) domains from minimal information, and iterating over mesh cells and interfaces.
We include an example algorithm that uses this iteration to create a high-order finite
element node numbering. Each algorithm has a key recursive component that gives it
an advantage over previously developed non-recursive algorithms, such as improved
efficiency, coverage of additional use cases, or both. We demonstrate the per-process
efficiency of these algorithms, as well as their parallel scalability, on the full size of
JUQUEEN [15], a Blue Gene/Q [13] supercomputer.

2. Forest of octree types and operations. Here we present the important
concepts on which we build our algorithms. We review the data structures for octants
and distributed forests of octrees that were presented in [6]. We also define a data
type to handle both octants and octant boundaries that will allow us to describe
the topology of forests of octrees.1 The definitions in this section are summarized
in Table 2.1. For the sake of correctness, the definitions in this section are given
formally, but the reader may find that the figures are just as helpful in understanding

1This data type is a notational convenience for this work, not part of the p4est interface.

Recursive Algorithms for Distributed Forests of Octrees 3

Table 2.1
A summary of Section 2 and the locations of the definitions in the text.

§ 2.1 Octants and points

octant o, dom(o) Data type and the cube in Rd it represents (2.1)

root(t) Root of the t-th octree: side length 2lmax (2.2)

atom a level-lmax octant: side length 1

{domb(o)}b∈B∪{v0} Octant boundary domains and their indices Fig. 2.1

point c = (o, b) Common data type for octants and interfaces

dom(c) A point’s n-dim. (n ≤ d) hypercube domain (2.3)

dim(c) Topological dimension of a point

level(c) Refinement level for points (2.4)

§ 2.2 Hierarchical and topological relationships

desc(c) Descendants of point c (2.5)

child(c) Children of point c (Table 2.2, 3rd column) (2.6)

part(c) Child partition of point c (”, 4th column) (2.7)

clos(c) Closure set of point c (2.9)

bound(c) Boundary set of point c (”, 2nd column) (2.10)

supp(c) Support set of point c (”, 5th column) (2.11)

atom supp(c) Atomic support set of 0-point c (2.12)

§ 2.3 Forests of octrees

T := {(T t, ϕt)}0≤t<K Conformal macro mesh of Ω (2.13)

Dom(c) Point domain mapped by ϕt into Ω (2.14)

O :=
⊔

0≤t<K Ot Non-conformal mesh via octree refinement (2.15)

§ 2.4 Distributed forests of octrees

o ≤ r SFC-based total octant order Alg. 2.1

Op :=
⊔

0≤t<K Ot
p Sorted arrays of leaves owned by p for each tree (2.16)

Ωp, Ωt, Ωt
p Subdomains of Op, Ot, Ot

p (2.17)

locate(a) Process q such that Dom(a) ⊆ Ωq for atom a (2.18)

(fq, lq) := range(q) First and last atoms located in Ωq (2.19)

(fo, lo) := range(o) First and last atoms in octant o’s descendants (2.20)

f := {fq}0≤q<P Sorted array of the first atoms of all processes (2.21)

Fp := (T ,Op, f) Distributed forest of octrees (2.22)

our concepts, as they often correspond to geometrically intuitive ideas.

Remark 2.1 (Notation). If we have defined an operation op(·) for every a ∈ A,
then op(A) := {op(a) : a ∈ A}. |A| is the cardinality of set A. If {Ai}i∈I are disjoint,
their union is written

⊔
i∈I Ai. For a subset A of a manifold, A, ∂A, and A◦ are the

closure, boundary, and interior of A. We distinguish variable types with fonts:

• standard lower-case for integers and index sets (a, b, c, . . .), except for K, N,
and P, which are the number of octrees, octants, and processes,

• typewriter for compound data types (a, b, c, . . .),
• Fraktur for MPI processes (a, b, c, . . .),
• upper-case for subsets of Rd and manifolds (A,B,C, . . .),
• calligraphic for finite sets (A,B, C, . . .), and
• bold for finite sets represented as indexable arrays (A,B,C, . . .).

4 T. Isaac et.al.

~ı

~

~k

r.x

2
lmax

o.x

2
lmax−2

a.x

1

~ı

~

~k

c2

c6

f0
f3

f4

v0

e1

e3

e4

e6

e10

c0
c1

c3

c4
c5

c7

f1f2

f5

e0

e2

e5

e7

e8 e9

e11

Fig. 2.1. (left) An illustration of the domains of a root octant r, a level-2 octant o, and an atom
a. (right) The correlation between the boundary indices in B (see the definition at the bottom of this
page) and the lower-dimensional hypercubes—squares, line segments, and vertices—in the boundary
of an octant, with the central cube labeled with the volume index, v0 (adapted with permission
from [6, Fig. 2]). These indices are used to define points.

2.1. Octants and points. Here we define the octant data type, which we will
use in our algorithms, and some special octants, which are illustrated in Figure 2.1.

An octant (d = 3) or quadrant (d = 2) o has the following data fields:
• o.t ∈ N—o’s tree index, relevant to forests of octrees (see Section 2.3);2

• o.l ∈ {0, 1, . . . , lmax}—o’s level of refinement (or just level);
• o.x ∈ Zd—o’s coordinates, whose components must be multiples of 2lmax−o.l.

The fields o.l and o.x encode an open cube in Rd—o’s domain—with sides of length
2lmax−o.l,

dom(o) := {X ∈ Rd : o.xi < Xi < o.xi + 2lmax−o.l, 0 ≤ i < d}. (2.1)

For every tree index t, the root is the level-0 octant whose domain is (0, 2lmax)d:

root(t).t := t, root(t).l := 0, root(t).x := (0)d. (2.2)

An atom a is a smallest-possible octant, which has a.l = lmax and sides of length 1.
The algorithms we present involve both the hierarchical aspect of octrees and

the topological aspect of their domains. Here we define a data type, which we will
call a point, that encompasses both octants and their interfaces. We will then define
topological and hierarchical operations for points in Section 2.2. We present these
definitions in the context of a single octree. Minor modifications will be necessary for
a forest of octrees, which we will discuss in Section 2.3 (see Remark 2.9).

The boundary of a cube in Rd has a standard partition into lower-dimensional
hypercubes, which contains 2d−n(d

n

)
n-dimensional hypercubes for 0 ≤ n < d: since

(2 + 1)d =
∑d

n=0

(
d
n

)
2d−n1n, there are 3d − 1 in all. We index these hypercubes with a

set of boundary indices B. The boundary domain domb(o), b ∈ B, is the corresponding
hypercube in the boundary of dom(o). For d = 3, B is made of eight corner indices
{ci}0≤i<8, twelve edge indices {ei}0≤i<12, and six face indices {fi}0≤i<6, which are
all illustrated in Figure 2.1. For convenience, we define one additional index, the
volume index v0 corresponding to the volume of an octant, which defines an alias of
an octant’s domain, domv0(o) := dom(o).

2In p4est, the tree index is always available from context, not stored with the octant.

Recursive Algorithms for Distributed Forests of Octrees 5

A point is a tuple (o, b), where o is an octant and b ∈ B ∪ {v0}. The domain of a
point c = (o, b) is

dom(c) := domb(o). (2.3)

Two points are equal if and only if their domains are equal. The dimension dim(c) of
a point c is the topological dimension of its domain. If dim(c) = n, c is an n-point.
The level of a point c is the minimum refinement level of all octants in the vicinity of
c that appear in a point tuple equal to c,

level(c) := min{o.l : ∃b ∈ B ∪ {v0}, (o, b) = c}. (2.4)

If dim(c) > 0, there is no need to use the minimum refinement level in the definition of
level(c), because all octants that have c as a boundary point have the same refinement
level: (c = (o, b))⇔ (level(c) = o.l). A 0-point, however, may be a corner point for
octants with different refinement levels: by choosing the minimum we make a 0-point’s
level match that of the biggest neighboring octant.

Remark 2.2. We consider octants to be points: when an operation on a point is
applied to an octant o, one should understand (o, v0).

2.2. Hierarchical and topological relationships. Here we define the hierar-
chical and topological relationships used in our algorithms and proofs below. We show
what these relationships look like in Table 2.2.

The hierarchical relationships between points are determined by set inclusion
of their domains. The descendants of a point c are all of the points with the same
dimension whose domains are contained in the domain of c,

desc(c) := {e : dim(e) = dim(c), dom(e) ⊆ dom(c)}. (2.5)

The children of a point c are descendants that are more refined than c by one level,

child(c) := {h : h ∈ desc(c), level(h) = level(c) + 1}. (2.6)

The requirement that an octant o’s coordinates must be multiples of 2lmax−o.l has
the consequence that the domains of two distinct points with the same level do not
overlap, and that every point’s domain is tiled by the domains of its children (a collection
U of subsets of a set S in a topological space tiles S if S ⊆

⋃
U∈U U and (U, V ∈

U , U 6= V)⇒ (U ∩ V = ∅)).
Proposition 2.3. If dim(c) > 0, then |child(c)| = 2dim(c) and dom(child(c))

tiles dom(c).
A point’s domain is tiled by its children’s domains, but it is not partitioned by

them, as they are open sets. To define a partition, we must add lower-dimensional
points between them. The child partition is the set of all points whose domains are
contained in dom(c) and whose levels are greater by one,

part(c) := {h : level(h) = level(c) + 1, dom(h) ⊂ dom(c)}. (2.7)

Proposition 2.4. If dim(c) > 0, then |part(c)| = 3dim(c) and part(c) defines a
partition, dom(c) =

⊔
dom(part(c)).

The two basic topological sets we need for a point c are the lower-dimensional
points that surround c—its boundary points—and the octants that surround c—its

6 T. Isaac et.al.

Table 2.2
For d = 3, illustrations of the boundary sets (bound(c)), children (child(c)), child partition sets

(part(c)), and support sets (supp(c)) of octants and lower-dimensional n-points. The closure set,
not illustrated, is the union of the point with its boundary set. For a 0-point, the atomic support set
atom supp(c) looks like the support set, only scaled down.

n c bound(c) child(c) part(c) supp(c)

0
(corner)

∅ ∅ ∅

1

(edge)

2

(face)

3

(octant)

support octants. To define boundary points, we first define closure points. The closure
set of an octant o is the set of all points in which o may appear in a point tuple,

clos(o) := {(o, b) : b ∈ B ∪ {v0}}. (2.8)

The closure set of a point c is the intersection of all octant closure sets containing c,

clos(c) :=
⋂
{clos(o) : c ∈ clos(o)}. (2.9)

The boundary set of a point c is its closure less itself,

bound(c) := clos(c)\{c}. (2.10)

Proposition 2.5 (Point closure matches Rd closure). The domains of points in
c’s closure set clos(c) partition the closure of its domain, dom(c) =

⊔
dom(clos(c)).

The support set of a point c is the set of octants with the same refinement level
as c whose closures include c,

supp(c) := {o : c ∈ clos(o), o.l = level(c)}. (2.11)

Recursive Algorithms for Distributed Forests of Octrees 7

Proposition 2.6 (Rd intersection implies support intersection). If o is an octant,
c is a point, and dom(o) ∩ dom(c) 6= ∅, then there exists s ∈ supp(c) such that
s ∈ desc(o) or o ∈ desc(s).

The following proposition shows the duality between clos(·) and supp(·).
Proposition 2.7. If dim(c) > 0, then (o ∈ supp(c))⇔ (c ∈ clos(o)).
For 0-points, this duality does not hold because a 0-point can be in the closure set

of an octant with a more refined level. In fact, every 0-point is in the closure of an
atom. The atomic support set of a 0-point c is the set of atoms whose closures include
c,

atom supp(c) := {a : c ∈ clos(a), a.l = lmax}. (2.12)

The support and atomic support sets of a 0-point contain and are contained in all
neighboring octants, respectively.

Proposition 2.8. If dim(c) = 0, o is a octant, and c ∈ clos(o), then there are
a ∈ atom supp(c) and s ∈ supp(c) such that a ∈ desc(o) and o ∈ desc(s).

2.3. Forests of octrees. A forest of quadtrees (d = 2) or octrees (d = 3) is a
mesh of a d-dimensional domain Ω with two layers, a macro layer and a micro layer.
The macro layer is a geometrically conformal mesh3 of K mapped cells (quadrilaterals
(d = 2) or hexahedra (d = 3)),

T := {(T t, ϕt)}0≤t<K , (2.13)

where each T t has an associated map ϕt : dom(root(t))→ T t, which is a continuous
bijection between the domain of the root octant and T t. We define the mapped domain
of a point c = (o, b) by its image under the map for o’s tree index,

Dom(c) := ϕo.t(domb(o)). (2.14)

Remark 2.9 (Modifications to definitions for forests). In Section 2.1 we defined
points in the context of a single octree. In the forest-of-octrees context, we consider two
points equal if their mapped domains are equal. If one substitutes mapped domains
for unmapped domains in the definitions and propositions in Section 2.2, they hold
in the forest-of-octrees context. If a point c’s mapped domain is on the boundary
between macro-layer cells, then c’s support set supp(c) no longer has the regular
shape shown in Table 2.2, but depends on the macro layer topology. A face on the
boundary of Ω, for example, has only one support octant. We emphasize that the sets
defined in Section 2.2 do not depend on the exact nature of the maps {ϕt}0≤t<K , but
can be constructed, in time proportional to their sizes, from the point data of their
arguments and the mesh topology of T , i.e., which cells are neighbors, which of their
faces correspond, and how those faces are oriented relative to each other. These issues
are covered in [6, Section 2.2].

For each 0 ≤ t < K, the tree-t leaves Ot ⊂ desc(root(t)) are a set of N (t) octants
whose domains tile dom(root(t)). The micro layer O is the union of these sets, and
its size is N ,

O :=
⊔

0≤t<K

Ot, N := |O| =
∑

0≤t<K

N (t). (2.15)

3By “geometrically conformal mesh” we mean that {T t}0≤t<K are the cells of a CW complex (a
generalization of simplicial complex to other polytopes, where C stands for closure-finite and W for
weak topology; see e.g. [19, Chapter 10]): informally, each T t is open, {T t}0≤t<K tiles Ω, and if the

intersection T s ∩ T t has dimension (d− 1), then it is equal to a whole face of T s and a whole face of
T t.

8 T. Isaac et.al.

root(s)

fp fq

root(t)

fr

Os Ot Op Oq Or f

Ω

T s

T t

ϕs(~ı)

ϕs(~)

ϕt(~ı)

ϕt(~)

Fig. 2.2. (Adapted with permission from [6, Fig. 2.1].) A d = 2 example of the relationship
between the implicit tree structure (left) and the domain tiling (right) of a forest of octrees with
two trees s and t. The bijections ϕs and ϕt map the implicit coordinate systems of the unmapped
octant domains onto the cells T s and T t. The left-to-right traversal of the leaves (black “zig-zag”
line) demonstrates the total order (Algorithm 2.1). In this example the forest is partitioned among
three processes p, q and r by sectioning the leaves into Op, Oq, and Or. Color conveys this partition,
while the node shapes convey the division of the leaves into the trees Os and Ot. The small, brightly
colored nodes represent the first atoms located in each process’s subdomains (2.21).

The mapped domains of the micro layer octants tile Ω, but this tiling is not a
geometrically conforming mesh: when neighboring octants have different levels, their
faces (and edges if d = 3) do not conform to each other. If neighboring octants differ
by at most one level, the forest is said to satisfy a 2:1 balance condition [14,24].

We call Ot the leaves of octree t because one could build a tree structure, starting
with root(t) and using the child(·) operation, whose leaves would be Ot. The p4est

library does not store this tree structure in memory. Storing just Ot is an approach
known as a linear octree representation [27].

2.4. Distributed forests of octrees. In p4est, the macro layer T is static and
replicated on each process, while the micro layer O is dynamic—it may be adaptively
refined, coarsened, and repartitioned frequently over the life of a forest—and distributed,
with each process owning a distinct subset of leaves. We describe the distribution
method here, and illustrate it in Figure 2.2.

The partitioning of leaves between processes and the layout of leaves in memory is
determined by the total order induced by the comparison operation in Algorithm 2.1.
The comparison of coordinates in line 2 is defined by a space-filling curve; the p4est

library uses the so-called z-ordering which corresponds to the Morton curve [20].

Algorithm 2.1: o ≤ r (octant o, octant r)

1: if o.t 6= r.t then return (o.t ≤ r.t) [If s < t, all of octree s’s leaves come before t’s.]
2: if o.x 6= r.x then return (o.x ≤ r.x) [Coordinates are ordered by SFC index.]
3: return (o.l ≤ r.l) [Ancestors precede descendants (preordering).]

Remark 2.10. When we index a sorted array of octants (A[i]), children
(child(o)[i]), or a support set (supp(c)[i]), we mean the ith octant with respect to the
total order.

Using this total order, each process is assigned a contiguous (with respect to the
total order) section of leaves in MPI-rank order. For each 0 ≤ t < K and 0 ≤ p < P ,

the subset of Ot assigned to process p is in an array Ot
p, which has size N

(t)
p ; these

Recursive Algorithms for Distributed Forests of Octrees 9

arrays form a partition, Ot =
⊔

0≤p<P Ot
p. The set of all leaves assigned to p is

Op :=
⊔

0≤t<K

Ot
p; (2.16)

its size is Np := |Op| =
∑

0≤t<K N
(t)
p > 0.4 The subdomain of Ω tiled by Dom(Ot

p) is
the interior of its closure,

Ωt
p :=

(⋃
Dom(Ot

p)

)◦
; (2.17)

the subdomains Ωt and Ωp are analogously defined.
Because the leaves are partitioned, process p cannot determine (without communi-

cation) if an octant o, whose mapped domain Dom(o) is outside Ωp, is a leaf. We do,
however, want p to be able to locate the subdomains that overlap Dom(o). To allow
this, each process in p4est has some information about other processes’ subdomains,
which we describe here. We start from the fact that an atom’s mapped domain is
located in the subdomain of only one process’s subdomain,

(locate(a) := q)⇔ (Dom(a) ⊆ Ωq). (2.18)

Note that q = locate(a) does not imply a ∈ Oq: a could be a descendant of a leaf in
Oq. To test whether q = locate(a) for an arbitrary atom a, it is only necessary to
precompute a process’s range: a tuple of its first atom fq and its last atom lq with
respect to the total order of octants,

fq := min{a : a.l = lmax, Dom(a) ⊆ Ωq},
lq := max{a : a.l = lmax, Dom(a) ⊆ Ωq},

range(q) := (fq, lq).

(2.19)

Proposition 2.11. (q = locate(a))⇔ (fq ≤ a ≤ lq).

Proposition 2.12 (A range describes a subdomain). Ωq =
⋃

Dom([fq, lq]),
where [fq, lq] is the set of all atoms a such that fq ≤ a ≤ lq.

We also apply the range operator to individual octants: the range of an octant o

is a tuple of the first and last atoms, fo and lo, in its descendants,

fo := min{a : a.l = lmax, a ∈ desc(o)},
lo := max{a : a.l = lmax, a ∈ desc(o)},

range(o) := (fo, lo).

(2.20)

Proposition 2.13. (Dom(o) ⊆ Ωq)⇔ (q = locate(fo) = locate(lo)).
To locate atoms, it is not necessary to store both fq and lq: lq can be computed

from fq+1. In p4est, we store a sorted array called the first-atoms array f , where

f [p] := fp, 0 ≤ p < P, (2.21)

and f [P] is a phony “terminal” octant whose tree index is K. This array is shown in
Figure 2.2. The first atom fq is independent of the leaves in Oq, so f is up-to-date

4In p4est partitions may be empty, but for simplicity we assume here that they are all non-empty.

10 T. Isaac et.al.

even if other processes have refined or coarsened their leaves. Using f , a process can
compute locate(a) in O(logP) time and test (q = locate(a)?) in O(1) time.

For the purposes of this paper, we have described all components of a distributed
forest of octrees, which is, for process p, the combination of macro layer (2.13), local
leaves (2.16), and the first-atoms array (2.21),

Fp := (T ,Op, f). (2.22)

Remark 2.14. Fp is an assumed argument of the algorithms we present.

3. Parallel multiple-item search via array splitting. We can optimize the
search for a leaf that matches a given condition if we begin at the root of an octree
and recursively descend to all children that could possibly be a match. This is a
lazy exclusion principle which is motivated by a practical consideration: Often an
over-optimistic approximate check can be significantly faster than an exact check,
which applies to bounding-box checks in computational geometry or to checking the
surrounding sphere of a nonlinearly warped octant volume in space.

3.1. Searching in a single octree and in a forest. We assume that the user
has a set of arbitrary matching queries indexed by Q: For each q ∈ Q, matchq()
returns true or false for any given octant o ∈ O. We also pass a boolean parameter
to matchq() that specifies whether o is a leaf or not. This may be used to execute
over-optimistic, cheap matches for non-leaves and strict matches for leaves. This
approach is more general than searching for a single leaf that matches each query: Our
framework encompasses, for example, the search for all the leaves that intersect a set
of polytopes (indexed by Q) embedded in Ω. More generally, it is entirely legal that
one leaf matches multiple queries, or one query matches multiple leaves.

In Search (Algorithm 3.1), we use recursion and lazy exclusion to track multiple
simultaneous queries during one traversal. At each recursion into children we only
retain the queries that have returned a possible match on the previous level. We
implement this by passing as a callback a user-defined lazy matching function Match,
which is a boolean operator that takes as arguments an octant o, a boolean isLeaf
that indicates if o ∈ O, and a query index q ∈ Q and satisfies the following properties:

• Match(o, isLeaf, q) returns true if there is a leaf r ∈ O that is a descendant of
o such that matchq(r) = true, and is allowed to return a false positive (i.e.,
true even if matchq(r) is false for all descendant leaves of o);

• if isLeaf = true, then the return value of Match is irrelevant. The functionality
of the algorithm resides in the action of the user-defined callback, which is
expected to execute appropriate code for strictly matched leaves.

To extend the action of Search to the whole forest, it can be called once for each
tree index 0 ≤ t ≤ K with Ot

p and root(t) as arguments. The resulting algorithm
is communication-free and every leaf is queried on only one process, although the
ancestors of leaves may appear as arguments to Match for multiple processes.

3.2. Array splitting. Search requires an algorithm Split array that we have
not yet specified. Split array takes a sorted array of leaves A and an octant a such
that each leaf A[j] is a descendant of a and partitions A into sorted arrays H[0], H[1],
. . . , H[2d − 1] such that H[i] contains the descendants of child(a)[i].

Because A is sorted, the subarrays can be indicated by a non-decreasing sequence
of indices 0 = k[0] ≤ k[1] ≤ ... ≤ k[2d] = |A|, such that H[i] = A[k[i], . . . ,k[i+ 1]− 1].
If child(a)[i] has no descendants in A, this is indicated by k[i] = k[i+ 1].

Recursive Algorithms for Distributed Forests of Octrees 11

Algorithm 3.1:
Search (octant array A, octant a, index set Q, callback Match)

Input : A is a sorted subset of leaves, A ⊆ O;
a is an ancestor of A[j] for each j, A ⊆ desc(a).

Result : ∀q ∈ Q, matchq(o) is called for all leaves o
whose ancestors a have also returned true from matchq(a).

1: if A = ∅ then return
2: boolean isLeaf ← (A = {a})
3: index set Qmatch ← ∅ [queries that pass the lazy criteria at a]
4: for all q ∈ Q do
5: if Match (a, isLeaf, q) then Qmatch ← Qmatch ∪ {q} [Match runs user action for leaves]

6: if Qmatch 6= ∅ and not isLeaf then
7: H← Split array (A, a) [divide A between the children of a: see Section 3.2]

8: for all 0 ≤ i < 2d do Search (H[i], child(a)[i], Qmatch, Match)

Let us assume that the children of a have level l. If we know that an octant
o is a descendant of child(a)[i] for some i, then we can compute i from o.x using
Algorithm 3.2, which works because we use the Morton order as our space-filling
curve. We call this algorithm Ancestor id, because it is a simple generalization of
the algorithm Child id [6, Algorithm 1].

Algorithm 3.2: Ancestor id (octant o, integer l)

Input : 0 < l ≤ o.l
Result : i such that if a.l = l − 1 and o ∈ desc(a), then o ∈ desc(child(a)[i])

1: h← 2lmax−l [the (lmax − l)th bits of the coordinates o.x describe the ancestor with level l]
2: i← 0
3: for all 0 ≤ j < d do
4: i← i | ((o.xj & h) ? 2j : 0) [“ | ” and “ & ” are bitwise OR and AND]

5: return i

If we applied Ancestor id to each octant in A, we would get a monotonic sequence
of integers, so if we search A with the key i and use Ancestor id to test equality,
the lowest matching index will give the first descendant of child(a)[i] in A. The split
operation, however, is used repeatedly, both by Search and by the algorithm Iterate

we will present in Section 5. To make this procedure as efficient as possible, we combine
these searches into one algorithm Split array (Algorithm 3.3), which is essentially
an efficient binary search for a sorted list of keys.

4. Constructing ghost layers for unbalanced forests. As discussed in Sec-
tion 2.4, there is no a-priori knowledge on any given process about what leaves might
be in a neighboring process’s partition. This knowledge, however, is necessary to deter-
mine the local neighborhoods of leaves that are adjacent to inter-process boundaries,
which is crucial to many application-level algorithms. If a forest of octrees obeys a 2:1
balance condition, it is known that a leaf’s neighbors in other partitions can differ by
at most one refinement level. The previously presented algorithm Ghost [6, Algorithm
20] uses this fact to identify neighboring processes and communicate leaves between
them. Ghost is short and effective, but not usable for an unbalanced forest. Here
we present an algorithm for ghost layer construction that works for all forests. Its
key component is a recursive algorithm that determines when a leaf’s domain and a
process’s subdomain are adjacent to each other.

12 T. Isaac et.al.

Algorithm 3.3: Split array (octant array A, octant a)

Input : A is sorted; a is a strict ancestor of A[j] for each j, A ⊆ desc(a)\{a}.
Result : ∀0 ≤ i < 2d, H[i] is a sorted array containing desc(child(a)[i]) ∩A.

1: k[0]← 0 [invariant 1 ∀i: if j ≥ k[i], . . .]

2: for all 1 ≤ i ≤ 2d do k[i]← |A| [. . . then Ancestor id (A[j], a.l + 1) ≥ i]

3: for i = 1 to 2d − 1 do
4: m← k[i− 1] [invariant 2: if j < m, then Ancestor id (A[j], a.l + 1) < i]
5: while m < k[i] do
6: n← m + b(k[i]−m)/2c [k[i− 1] ≤ m ≤ n < k[i]]
7: c← Ancestor id (A[n], a.l + 1) [A[n] ∈ desc(child(a)[c])]
8: if c < i then [A[n] is a descendant of a previous child]
9: m← n + 1 [increase lower bound to maintain invariant 2]

10: else [A[n] is a descendant of the cth child, c ≥ i]
11: for all i ≤ j ≤ c do k[j]← n [decrease k[j] to maintain invariant 1]

12: for all 0 ≤ i < 2d do H[i]← alias A[k[i], . . . ,k[i + 1]− 1]
13: return H

4.1. Ghost layer construction using intersection tests. A leaf o 6∈ Oq is in
the full ghost layer for process q if its boundary intersects the subdomain’s closure,
∂Dom(o) ∩ Ωq 6= ∅. This definition includes leaves whose intersection with Ωq is
a single vertex. Some applications, such as discontinuous Galerkin finite element
methods, only require a ghost layer to include leaves whose intersections with Ωq have
codimension 1. The boundary set bound(o) (2.10) allows us to define a ghost layer
parametrized by codimension. For 1 ≤ k ≤ d, the p-to-q ghost layer Gk

p→q is a sorted
array containing the subset of the leaves Op whose boundaries intersect q’s subdomain
at a point with codimension less than or equal to k,

Gk
p→q := {o ∈ Op : ∃ c ∈ bound(o), dim(c) ≥ d− k, Dom(c) ∩ Ωq 6= ∅}. (4.1)

The k-ghost layer Gk
p for process p is the sorted union of all q-to-p ghost layers,

Gk
p :=

⊔
0≤q<P, q6=p

Gk
q→p. (4.2)

To construct all Gk
p→q according to (4.1), process p would have to perform

intersection tests between the boundary set of every leaf in Op and every other
process’s subdomain. We can reduce the number of intersection tests by noting that if
Dom(c)∩Ωq 6= ∅, then by a corollary to Proposition 2.6, Ωq must overlap some octant
s in the support set supp(c) that surrounds c. Locating the first and last process
subdomains that overlap Dom(s) for s ∈ supp(c) takes O(logP) time and typically
reduces the number of intersection tests per point from O(P) to O(1). We give
pseudocode for computing which p-to-q ghost layers contain a leaf o in Algorithm 4.1.

Recursive Algorithms for Distributed Forests of Octrees 13

Algorithm 4.1: Add ghost (octant o, integer k)

Input : octant o ∈ Op; 1 ≤ k ≤ d.
Result : the set Q of processes q such that o ∈ Gk

p→q (4.1).

1: Q ← ∅
2: for all c ∈ bound(o) such that dim(c) ≥ d− k do
3: for all s ∈ supp(c)\{o} do
4: (fs, ls)← range(s)
5: (qfirst, qlast)← (locate(fs), locate(ls)) [overlapping processes]
6: for all qfirst ≤ q ≤ qlast, q 6= p do

7: (fq, lq)← range(q) [Ωq =
⋃

Dom([fq, lq])]

8: (f, l)← (max{fs, fq}, min{ls, lq}) [
⋃

Dom([f, l]) = Ωq ∩Dom(s)]

9: if
⋃

Dom([f, l]) ∩Dom(c) 6= ∅ then Q ← Q∪ {q}

10: return Q

4.2. Finding a range’s boundaries recursively. The kernel of Algorithm 4.1
is the intersection test on line 9,(⋃

Dom([f, l]) ∩Dom(c) = ∅?
)
, (4.3)

where c is a point, [f, l] is the range between two atoms, and f and l are both
descendants of an octant s in the support set supp(c). We must specify how this
intersection test is to be performed. Because s ∈ supp(c) implies c ∈ bound(s) (see
Propositions 2.7 and 2.8), the point c must be equal to (s, b) for some boundary index
b ∈ B, so we can rephrase the test as (

⋃
Dom([f, l])∩Dom((s, b)) = ∅?). This test is a

specific case of the problem of constructing the range-boundary intersection B∩(f, l, s),
the set of all boundary indices b such that Dom((s, b)) intersects the range,

B∩(f, l, s) := {b ∈ B :
⋃

Dom([f, l]) ∩Dom((s, b)) 6= ∅}. (4.4)

If the range [f, l] contains only descendants of some child of s, say child(s)[i], then
the range-boundary intersection must be a subset of the child-boundary intersection
Bi∩, which is the subset of B corresponding to points in bound(s) intersected by
Dom(child(s)[i]),

Bi∩ := {b ∈ B : Dom(child(s)[i]) ∩Dom((s, b)) 6= ∅}. (4.5)

The child-boundary intersections {Bi∩}0≤i<2d (Figure 4.1, right) are the same for all
(non-atom) octants. The following proposition, illustrated in Figure 4.1 (left), shows
how the child-boundary intersection Bi∩ relates B∩(f, l, child(s)[i]) to B∩(f, l, s).

Proposition 4.1 (Range-boundary intersection recursion). If f and l are atoms,
f ≤ l, and both are descendants of child(s)[i], then

(b ∈ B∩(f, l, s))⇔ (b ∈ B∩(f, l, child(s)[i]) ∩ Bi∩). (4.6)

This result allows us to construct B∩(f, l, s) by partitioning [f, l] into ranges for
all of the overlapping children,

[f, l] =
⊔
i∈I

[fi, li], I := {i : ∃a ∈ desc(child(s)[i]), f ≤ a ≤ l}, (4.7)

and constructing the range-boundary intersection for those children,

B∩(f, l, s) =
⋃
i∈I
B∩(fi, li, child(s)[i]) ∩ Bi∩. (4.8)

14 T. Isaac et.al.

f0
f3

f4

e1
e4

e10

c2

s

f0
f3

f4
e1e4

e10

c2

child(s)[2]

B0
∩ {c0, e0, e4, e8, f0, f2, f4}
B1
∩ {c1, e0, e5, e9, f1, f2, f4}
B2
∩ {c2, e1, e4, e10, f0, f3, f4}
B3
∩ {c3, e1, e5, e11, f1, f3, f4}
B4
∩ {c4, e2, e6, e8, f0, f2, f5}
B5
∩ {c5, e2, e7, e9, f1, f2, f5}
B6
∩ {c6, e3, e6, e10, f0, f3, f5}
B7
∩ {c7, e3, e7, e11, f1, f3, f5}

Fig. 4.1. (left) An illustration of a specific instance of Proposition 4.1. If the range [f, l]
contains only descendants of child(s)[2], then its domain intersects Dom((s, b)) (left) if and only if
it intersects Dom((child(s)[i], b)) (right) and b ∈ B2

∩. (right) The child-boundary intersections are
enumerated.

This leads to the recursive algorithm Find range boundaries (Algorithm 4.2), which
computes B∩(f, l, s) ∩ Bquery for a set Bquery ⊆ B.

Algorithm 4.2: Find range boundaries (octants f, l, s, index set Bquery)

Input : f and l are atom descendants of s, f ≤ l; Bquery ⊆ B.
Result :B∩(f, l, s) ∩ Bquery (4.4).

1: if Bquery = ∅ or s.l = lmax then return Bquery

2: j ← Ancestor id (f, s.l + 1) [index of first child whose range overlaps [f, l]]
3: k ← Ancestor id (l, s.l + 1) [index of last child whose range overlaps [f, l]]

4: if j = k then return Find range boundaries (f, l, child(s)[j],Bquery ∩ Bj∩)

5: Bmatch ←
⋃

j<i<k Bquery ∩ Bi∩ [boundary touched by wholly-covered children]

6: Bjmatch ← (Bquery ∩ Bj∩)\Bmatch

7: (fj , lj)← range(child(s)[j]) [[f, l] ∩ [fj , lj] = [f, lj]: if f 6= fj , recursion is needed]

8: if f 6= fj then Bjmatch ← Find range boundaries (f, lj , child(s)[j],Bjmatch)

9: Bkmatch ← ((Bquery ∩ Bj∩)\Bmatch)\Bj
match

10: (fk, lk)← range(child(s)[k]) [[f, l] ∩ [fk, lk] = [fk, l]: if l 6= lk, recursion is needed]

11: if l 6= lk then Bkmatch ← Find range boundaries (fk, l, child(s)[k],Bkmatch)

12: return (Bmatch ∪ Bjmatch ∪ B
k
match)

To compute the intersection test (
⋃

Dom([f, l]) ∩ Dom((s, b)) = ∅?) in Algo-
rithm 4.1, we choose Bquery = {b} and use Find range boundaries to check whether
(B∩(f, l, s) ∩ Bquery = ∅?). A proof of the correctness of Algorithm 4.2 is given in
Appendix A. The recursive procedure is also illustrated in Figure 4.2.

4.3. Notes on implementation. Ghost layer construction in Ghost has a few
optimizations not given in the pseudocode in Algorithm 4.1. Most leaves in Op do
not touch the boundary of Ωp, and so cannot be in Gk

p→q for any q 6= p. To avoid the
intersection tests for these leaves, we first check to see if o’s 3× 3 neighborhood (or
“insulation layer” [24]) is owned by p: this can be accomplished with two comparisons,
for the first and last atoms of the neighborhood, against the first-atoms array f (2.21).
We also note that if c is a 0-point then Ωq intersects Dom(c) if and only q = locate(a)
for some atom a in c’s atomic support set (2.12). Because this simpler test is available,
we do not call Find range boundaries for 0-points.

If an instance of Find range boundaries calls two recursive copies of itself, all
future instances will call only one recursive copy. We use this fact to take advantage

Recursive Algorithms for Distributed Forests of Octrees 15

child(s)[j]

child(s)[k]

f

l

j ← Ancestor id(f, s.l + 1)
k ← Ancestor id(l, s.l + 1)

j < i < k

Bmatch ←
⋃

j<i<k Bquery ∩ Bi∩

f

lj

fk

l

Bjquery ← (Bquery ∩Bj
∩)\Bmatch

Bkquery ← (Bquery ∩Bk
∩)\Bmatch

Bjmatch ← B∩(f, lj , child(s)[j]) ∩ Bjquery

Bkmatch ← B∩(fk, l, child(s)[k])∩Bkquery

return Bmatch ∪ Bjmatch ∪ Bkmatch

Fig. 4.2. An illustration of Find range boundaries, listed in Algorithm 4.2. (top left) Solid
red lines indicate the points in bound(s) indexed by Bquery; the children containing f and l are
determined. (top right) The contribution to B∩(f, l, s) ∩ Bquery (double green lines) of children in
the middle of the range is calculated; light blue indicates that this portion of the range [f, l] has been
processed. (bottom left) The arguments for the recursive calls are constructed. (bottom right) The
sets returned by the recursive calls are added to the return set.

of tail-recursion optimization in our implementation. Because |B| < 32 for d = 2 and
d = 3, we can perform the set intersection, unions, and differences in Algorithm 4.2 by
assigning each b ∈ B to a bit in an integer and performing bitwise operations.

5. A universal topology iterator. A forest is first of all a storage scheme for
a mesh refinement topology. Applications use this topological information in ways that
we do not wish to restrict or anticipate. We focus instead on designing an interface
that conveys this information to applications in a complete and efficient manner, with
the main goal of minimizing the points of contact between p4est on the one hand and
the application on the other.

As we will see in our discussion of a specific node numbering algorithm in Section 6,
some applications need to perform operations not just on leaves, but also on their
boundary points. Our algorithm that facilitates this is called Iterate.

Remark 5.1. The algorithm Iterate requires that the leaves in the micro layer O
are 2:1 balanced. This is assumed for the remainder of this section and Section 6. This
assumption is not very limiting: most applications that need topological information
(e.g., finite element or fast multipole calculations) require 2:1 balance, either for
numerical reasons or to avoid the complexity of handling general adjacencies. On the
other hand, extending the algorithm to larger refinement ratios when the need arises
appears to be a practical option since this case is covered by the recursion as well.

16 T. Isaac et.al.

o

c

Fig. 5.1. Suppose process p owns only octant o in this two-dimensional illustration. PΩ is the
set of all points shown: note that because some points in clos(o) are hanging, they are not included.
The set Pp of points that overlap Ωp is shown in blue. The 0-point c shown as a red star is not in
Pp, but is in its closure, Pp.

5.1. Definitions. The algorithm Iterate is distributed and communication-free
(assuming that the ghost layer Gd

p (4.2) has already been constructed): on process p,
it takes a user-supplied callback and executes it once for every leaf and leaf-boundary
point c that is relevant to Op, supplying information about the neighborhood around
c. We define exactly what this means here.

The union of all leaves with their closure sets,
⋃

clos(O), defines a covering of Ω,
Ω =

⋃
Dom(

⋃
clos(O)). This covering may not be a partition, because

⋃
clos(O) may

contain hanging points: n-points of dimension n < d that are in the child partition
sets (2.7) of other points in

⋃
clos(O). We can define a partition by removing these

hanging points. The global partition PΩ is

PΩ :=
⋃

clos(O)\{c : ∃ e ∈
⋃

clos(O), c ∈ part(e)}. (5.1)

If there is just one process, the function Iterate executes a user-supplied callback
function for every point c ∈ PΩ. For a distributed forest, Iterate as called by process
p executes the callback function only for the subset of PΩ that is relevant to Op. In
the p4est implementation, we allow for two definitions of what is relevant. The first
is the locally relevant partition, which is the subset Pp ⊆ PΩ that overlaps Ωp,

Pp := {c ∈ PΩ : ∃ o ∈ Op, Dom(c) ∩Dom(o) 6= ∅}. (5.2)

One potential problem with Pp is that, because of hanging points, it may not
be closed: if c ∈ Pp, there may be e ∈ clos(c) such that e 6∈ Pp. As we will show in
Section 6, closedness is necessary for some applications, so we also define the closed
locally relevant partition Pp,

Pp :=
⋃
{clos(e) : e ∈ Pp}. (5.3)

The sets we have defined thus far—PΩ, Pp, and Pp—are illustrated in Figure 5.1.
If Iterate only supplied the callback with each relevant point c in isolation, its

utility would be limited, because it would say nothing about the neighborhood around
c. We call the neighborhood of adjacent leaves the leaf support set leaf supp(c),

leaf supp(c) := {o ∈ O : Dom(o) ∩Dom(c) 6= ∅}. (5.4)

Note that the leaf support set leaf supp(c) may differ from the support set supp(c)
(2.11), which is independent of the leaves in the micro layer O. Because process p does
not have access to all leaves in O, it can only compute the subset of the leaf support

Recursive Algorithms for Distributed Forests of Octrees 17

set that is contained in the local leaves and in the full ghost layer Gd
p (4.2), which we

call the local leaf support set leaf suppp(c),

leaf suppp(c) := leaf supp(c) ∩ (Op ∪Gd
p). (5.5)

Proposition 5.2. leaf suppp(c) = leaf supp(c) if and only if c ∈ Pp.
The local leaf support set, though it may not contain all of the leaf support set,

is what Iterate supplies to the user-supplied callback to describe the neighborhood
around c. The local leaf support set can be used to determine if c ∈ Pp or c ∈ Pp,
using a function Is relevant (Algorithm 5.1).

Algorithm 5.1: Is relevant (point c, octant set leaf suppp(c))

Input : leaf suppp(c) is the local leaf support set of c (5.5).

Result : true if and only if c is in the relevant set (Pp or Pp).

1: for all s ∈ leaf suppp(c) do
2: if s ∈ Op then return true

3: else [this else-statement is only used if Pp is relevant]
4: for all e ∈ bound(s) such that c ∈ bound(e) do

5: if Dom(e) ∩ Ωp 6= ∅ then return true [intersection test from Section 4.2]

6: return false

For each octant o ∈ leaf suppp(c), the p4est implementation of Iterate sup-
plements the octant data fields o.l, o.x, and o.t with additional data passed to the
callback function. We supply a boolean identifying whether o ∈ Op, so no searching
is necessary to determine if o is local or a ghost. We also supply the index of o

within either Ot
p for t = o.t (which is easily converted to j such that Op[j] = o) or

within the ghost layer Gd
p (4.2). Keeping track of this information does not change

the computational complexity of Iterate, but introduces additional bookkeeping that
we will omit from our presentation of the algorithm.

5.2. Iterating in the interior of a point. A simple implementation of Iterate
might take each leaf o ∈ Op in turn and, for each c ∈ bound(o), compute leaf suppp(c)

by searching through Op and Gd
p to find o’s neighbors that are adjacent to c. A

bounded number of binary searches would be performed per leaf, so the total iteration
time would be O(Np logNp). This is the strategy used by the Nodes algorithm in
p4est [6, Algorithm 21] and by other octree libraries [27]. We note two problems
with this approach. The first is the large number of independent searches that are
performed. The second is that this approach needs some way of ensuring that the
callback is executed for each relevant point only once, such as storing the set of points
for which the callback has executed in a hash table.

Instead, the implementation of Iterate that we present proceeds recursively. We
take as inputs to the recursive procedure a point c and a set of arrays S, where S[i]
contains all leaves that are descendants of the support set octant supp(c)[i]. If c is
in the global partition PΩ and is in the relevant set (Pp or Pp), then the octants in
leaf suppp(c) can be found in the S arrays and the callback function can be executed.
Otherwise, the points of the global partition PΩ that are descendants of c can be
divided between the points in the child partition set part(c) (2.7). Each e ∈ part(c)
takes the place of c in a call to the recursive procedure: to compute the new S arrays
for e, we use the function Split array (described in Section 3.2) on the original arrays
S. This is spelled out in Iterate interior (Algorithm 5.2).

We provide some figures to illustrate the recursion in Iterate interior: Fig-
ure 5.2 shows the cases when dim(c) = d and 0 < dim(c) < d and Figure 5.3 shows

18 T. Isaac et.al.

Algorithm 5.2: Iterate interior (point c, octant arrays S, callback)

Input : S[i] is the sorted array of all leaves o ∈ Op ∪Gd
p such that o ∈ desc(supp(c)[i]).

Result : if c ∈ Pp (or Pp), then leaf suppp(c) (5.5) is computed and passed to callback;

otherwise, callback is called for each e ∈ Pp (or Pp) such that Dom(e) ⊂ Dom(c).

1: if
⋃

S ∩ Op = ∅ then return [stop if there are no local leaves]
2: octant set L ← ∅ [if c ∈ PΩ, then L will equal leaf suppp(c)]

3: boolean stop← false [stop will be true if c ∈ PΩ]
4: if dim(c) > 0 then [see Figure 5.2]
5: for all 0 ≤ i < | supp(c)| do
6: s← supp(c)[i]
7: if S[i] = {s} then [if s is a leaf, . . .]
8: stop← true [then c ∈ PΩ, . . .]
9: L ← L ∪ {s} [and s ∈ leaf supp(c)]

10: else
11: Hi ← Split array(S[i], s) [O(log |S[i]|) (see Section 3.2)]
12: hi ← child(s) [if c ∈ PΩ, then by the 2:1 condition, . . .]
13: b← b such that c = (s, b) [children next to (s, b) = c are in leaf supp(c)]

14: L ← L ∪ {hi[j] : b ∈ Bj∩} [Bj∩ are child-boundary intersection sets (4.5)]

15: else [a 0-point, see Figure 5.3]
16: stop← true [anytime we find a 0-point between leaves, it is in PΩ.]
17: for 0 ≤ i < | supp(c)| do [find leaves surrounding c: use Proposition 2.8]
18: L ← L ∪ {o ∈ S[i] : atom supp(c)[i] ∈ desc(o)} [requires O(log |S[i]|) search]

19: if stop then
20: if Is relevant(c,L) then callback(c,L)
21: else
22: for all e ∈ part(c) do [set up recursion for each point in child partition set (2.7)]
23: for all 0 ≤ i < | supp(e)| do [find descendants of support set octants]
24: Se[i]← Hj [k] such that hj [k] = supp(e)[i] [subarrays created on line 11]

25: Iterate interior(e,Se, callback)

the case when dim(c) = 0. The correctness of Algorithm 5.2 is proved in Appendix B.

Remark 5.3. An instance of Iterate interior may call multiple recursive
copies of itself: one for each point in the child partition set part(c) (see the loop
starting on line 22). We have not yet specified an order for these recursive calls. In our
implementation, we have chosen to order these calls by decreasing point dimension.
This guarantees that, if e ∈ bound(c), then the callback is executed for c before it
is executed for e. We take advantage of this order in designing a node-numbering
algorithm in Section 6.

5.3. Iterating on a forest. To iterate on the complete forest, each process
must call Iterate interior for the closure set of the root of every tree. This
is listed in Iterate (Algorithm 5.3). Asymptotic analysis of the performance of
Iterate is given in Appendix C: it shows that, in general, Iterate executes in
O(((maxo∈O o.l) + Np) logNp) time, but if the refinement pattern of the octrees in
the forest is uniform or nearly so, then it executes in O(logP +Np) time.

5.4. Implementation. The implementation of Iterate in p4est has some dif-
ferences from the presented algorithm to optimize performance. Iterate interior is
implemented in while-loop form to keep the stack from growing: all space needed for
recursion (which is O(lmax)) is pre-allocated on the heap. We noticed in early tests
that Split array can be called with the same arguments multiple times during a
call to Iterate. To avoid some of this recomputation, we keep an O(lmax) fixed-size

Recursive Algorithms for Distributed Forests of Octrees 19

c = supp(c)[0]

S[0]

S[0] = {supp(c)[0]}?

true false

leaf supp(c)[0]

H0[0] H0[1]

H0[2] H0[3]

Legend

Iterate interior (c, S, callback):

c S[i] (leaves in supp(c)[i])

Hi ← Split array (S[i], supp(c)[i])

callback (c, leaf supp(c)):

c leaf supp(c)[i]

supp(c)[0]

S[0]

supp(c)[1]

S[1]c

S[0] = {supp(c)[0]}?

true false

S
[1

]
=
{s

u
p

p
(c

)[
1]
}?

tr
u

e

leaf supp(c)[0] leaf supp(c)[1]

leaf supp(c)[0]

leaf supp(c)[1]

leaf supp(c)[2]

fa
ls

e

leaf supp(c)[0]

leaf supp(c)[1]

leaf supp(c)[2]

H0[1]

H0[3]

H1[0]

H1[2]

Fig. 5.2. Illustrations of Iterate interior for dim(c) = d (top) and 0 < dim(c) < d (bottom).
Dashed red lines indicates the argument point c of Iterate interior. The dotted squares indicate
the arrays S[i] of leaves in O that are descendants of supp(c)[i]. If supp(c)[i] is a leaf (which
is determined by testing whether S[i] = {supp(c)[i]}), then it is in leaf supp(c), which is shown
with the solid color blue; otherwise, S[i] is split using Split array. If a leaf has been found, the
user-supplied callback function is executed, which we indicate with double color green lines; otherwise,
Iterate interior is called for each point in the child partition set part(c): the support sets for these
points are found in the children of the octants in supp(c), and the arrays of leaves contained in them
are found in the sets created by Split array.

20 T. Isaac et.al.

supp(c)[0]

S[0]

supp(c)[1]

S[1]

supp(c)[2]

S[2]

supp(c)[3]

S[3]

c

S[0] S[1]

S[2] S[3]

atom
supp(c)[0]

atom
supp(c)[1]

atom
supp(c)[2]

atom
supp(c)[3]

leaf
supp(c)[0] leaf

supp(c)[1]

leaf
supp(c)[2]

leaf
supp(c)[3]

Fig. 5.3. An illustration of Iterate interior when dim(c) = 0, using the same color con-
ventions as Figure 5.2. The arguments of Iterate interior are in the left panel. The small
squares (middle panel) indicate octants in atom supp(c): these must be descendants of the leaves in
leaf supp(c), so we use atom supp(c)[i] as a key to search for leaf supp(c)[i] in S[i]. Once leaf supp(c)
is found, the callback is executed (right panel).

Algorithm 5.3: Iterate (callback, octant array Gd
p)

Input : Gd
p is the full ghost layer (4.2).

Result : if c ∈ Pp (or Pp), leaf suppp(c) is computed and passed to callback.

1: for all 0 ≤ t < K do
2: Gt ← Gd

p ∩ Ot [subset of the ghost layer for tree t (O(log |Gd
p |))]

3: St ← Ot
p ∪Gt [Ot

p and Gt are already ordered: no sorting is necessary]

4: for all c ∈
⋃

0≤t<K clos(root(t)) do

5: for all 0 ≤ i < | supp(c)| do
6: t← supp(c)[i].t [Each supp(c)[i] is the root of an octree]
7: U[i]← St

8: Iterate interior (c, U, callback)

cache of the array aliases produced by Split array. We allow the user to specify a
separate callback function for each dimension, so that extra recursion can be avoided.
If, for example, the callback only needs to be executed for faces, then an instance of
Interate interior operating on c will only call a recursive copy for e ∈ part(c) if
dim(e) ≥ d− 1.

6. A use case for the iterator: higher-order nodal basis construction.
Thus far, we have developed algorithms for distributed forests with no special regard
for numerical applications. In this section, we use our framework to perform a classic
but complex task necessary for finite element computations, namely the globally
unique numbering of degrees of freedom for a continuous finite element space over
hanging-node meshes. We call it Lnodes in reference to (Gauß-)Lobatto nodes, which
means that some nodes are located on element boundaries and are thus shared between
multiple elements and/or processes, which presents some interesting challenges.

Hanging-node data structures have been discussed as early as 1980 [23] and adapted
effectively for higher-order spectral element computations [11, 25]. Special-purpose
data structures and interface routines have been defined for many discretization types
built on top of octrees, including piecewise linear tensor-product elements [1, 5] and
discontinuous spectral elements [29]. The deal.II finite element software [3] uses yet
another mesh interface [2]. In our presentation of Lnodes, we hope to show that the
Iterate approach is sufficiently generic that it could be used to efficiently construct

Recursive Algorithms for Distributed Forests of Octrees 21

Fig. 6.1. (left) Qn-nodes for n = 3, with one node at each corner, n− 1 nodes on (the interior
of) each edge, (n− 1)2 nodes on each face, and (n− 1)3 nodes in each element. (middle, right) For
both conformal and non-conformal interfaces, each element node corresponds to exactly one global
node. (right) At non-conformal interfaces, an element may reference a global node remotely, as the
small element references the top node.

any of these data structures.

6.1. Concepts. In a hexahedral n-order nodal finite element, the Lagrangian
basis functions and the degrees of freedom are associated with (n + 1)3 Qn-nodes
located on a tensor grid of locations in the element. There is one node at each corner,
(n− 1) nodes in the interior of each edge, (n− 1)2 nodes in the interior of each face,
and (n− 1)3 nodes in the interior of the element, as in Figure 6.1 (left). If we endow
each leaf in a forest of octrees with Qn-nodes, we get N × (n + 1)3 element nodes.
Qn-nodes are numbered lexicographically, and element-local nodes are then numbered
to match the order of their associated leaves. The basis functions associated with the
element nodes span a discontinuous approximation space.

We want to create a nodal basis for a C0-conformal approximation space on Ω
such that the restriction of the space to any leaf is spanned by the Qn-nodes’ basis
functions. The nodes for the continuous basis functions are called global nodes. Each of
the element nodes in the interior of a leaf can be associated with a unique global node,
but on the boundary of a leaf, element nodes from multiple leaves may occupy the
same location: in this case, the two element nodes are associated with the same global
node, as in Figure 6.1 (middle). For non-conformal interfaces, the element nodes of
the smaller leaves are not at the same locations as those of the larger leaf, but they
cannot introduce new degrees of freedom, because every function in the space, when
restricted to the non-conformal interface, must be representable using the larger leaf’s
basis functions. Conceptually, we can place the global nodes at the locations of the
larger leaf’s nodes and associate each element node from the smaller leaves with a
single global node, as shown in Figure 6.1 (right). In reality, the value of a function at
an element node on a non-conformal interface must be interpolated from the values
at multiple global nodes, but the conceptual one-to-one association between a leaf’s
element nodes and global nodes is sufficient, in that it identifies all global nodes whose
basis functions are supported on that leaf.

It is important to note that an element node of a leaf o may reference a global
node that is contained in the domain of a point c that is outside the closure Dom(o),
and that o is therefore not in the set of adjacent leaves leaf supp(c) defined in (5.4).
In this situation, we say that o remotely references the global nodes in c. Formally, a
leaf o remotely references a point c in the global partition set PΩ if

c 6∈ leaf supp(c) and ∃e such that o ∈ leaf supp(e) and c ∈ bound(e). (6.1)

This relationship is also shown in Figure 6.1 (right). From this definition, we can see

22 T. Isaac et.al.

that the global nodes referenced by leaves in Op will be contained in the closed locally
relevant partition Pp (5.3). We note that a point c can be remotely referenced only if
dim(c) < d− 1.

6.2. Data structures. On process p, we can represent the global nodes using
an array Np and the element nodes using a double array Ep, where Ep[j][k] maps the
kth element node of Op[j] to its global node in Np. Np and Ep only reference locally
relevant global nodes and thus implement fully distributed parallelism.

In presenting the Lnodes algorithm, we consider a global node g to have the
following data fields:

• g.i: the globally unique index of this node,
• g.p: the process that owns g for the purposes of scatter/gather communication

of node values,
• g.Sshare: the sharer set of all processes that reference this node.

We include the sharer set Sshare so that, in addition to the scatter/gather communica-
tion paradigm, the global nodes can also be used in the share-all paradigm, wherein
any process that shares a node can send information about that node to all other
processes that share that node.5 If each process generates new information about
a node, the former paradigm requires two rounds of communication for information
to disseminate, one gather and one scatter, while the latter requires one round, but
with an increased number of messages. Each paradigm can be faster than the other,
depending on communication latency, bandwidth, and other factors. We tend to place
the highest weight on latency, hence our added support for share-all.

Remark 6.1. Most applications do not require higher-order finite element nodes,
but the Lnodes data structure can be used in much more general settings. In particular,
the Lnodes data structures for n = 2 assign one unique global index to every point in
Pp, and a map from each leaf to the points in its closure. If one symmetrizes these
mappings, i.e., if one saves the leaf support sets leaf suppp(c) for c ∈ Pp generated
by Iterate, then one has essentially converted the forest-of-octrees data structures
into a graph-based unstructured mesh format with O(1) local topology traversal. This
format is typical of generic finite element libraries. Lnodes can therefore serve as the
initial step in converting a forest of octrees into the format of an external library, with
the remaining steps requiring little or no communication between processes.

6.3. Assigning global nodes. We want global nodes to be numbered indepen-
dently of the number of processes P and the partition of the leaves. For this reason, it
is useful for each global node to be owned by one leaf, because a partition-independent
order is then induced by combining lexicographic ordering of element nodes with the
total octant order (see Algorithm 2.1). This computation is shown in Algorithm 6.1,
which assumes that we have already determined which leaf Op[j] owns each global
node g, and temporarily stored that leaf’s index in the global node’s g.i field.

We need a policy for assigning the ownership of nodes to leaves. We assign point
c ∈ PΩ and its nodes to the first leaf o in leaf supp(c),

owner(c) := min leaf supp(c). (6.2)

In the next subsection, we will show how this assignment policy allows for the global
nodes to be constructed without any more communication between processes than the
communication in Global numbering.

5In p4est, the implementation differs: rather than the per-node lists g.Sshare, we store lists of
nodes that are shared by each process, which is a more useful layout for filling communication buffers.

Recursive Algorithms for Distributed Forests of Octrees 23

Algorithm 6.1: Global numbering (global node array Np, double array Ep)

Input : ∀g ∈ Np, g.p = q such that the leaf that owns g is in Oq; if g.p = p, then g.Sshare is
correct and g.i = j is (temporarily abused as) the index of the leaf that owns g,
Op[j].

Result : correct global node data for all g ∈ Np.

1: integer array M[|Np|] [temporarily stores the local indices of global nodes]
2: m← 0 [the number of global nodes owned by p]
3: for j = 0 to |Op| − 1 do
4: for l = 0 to (n + 1)d − 1 do
5: k ← Ep[j][l] [index in Np of the global node referenced by this element node]
6: if Np[k].p = p and Np[k].i = j then
7: M[k]← m [g’s index among the locally owned nodes]
8: m← m + 1

9: t← Prefix sums(Allgather(m)) [t[q] is the offset to the first node owned by q]
10: for all 0 ≤ k < |Np| do
11: g← Np[k]
12: if g.p = p then
13: g.i←M[k] + t[p] [all fields of g are now complete]
14: send g to each q ∈ g.Sshare [in practice, grouped into one message per process]

15: else
16: receive updated g from g.p

6.4. The Lnodes algorithm. The Lnodes algorithm (Algorithm 6.2) creates the
global nodes and element nodes by iterating a callback Lnodes callback over all points
in the closed locally relevant partition Pp, which sets up a call to Global numbering

(Algorithm 6.1).

Algorithm 6.2: Lnodes (integer n, ghost layer Gd
p)

Input : n > 0, the order of the nodes; the full ghost layer Gd
p (4.2).

Result : a double array Ep of Np × (n + 1)d indices that maps element nodes to global
nodes; an array Np of global nodes.

1: global node array Np ← ∅
2: integer double array Ep[|Op|][(n + 1)d]

3: Iterate (Lnodes callback, Gd
p) [initialize Np, Ep]

4: Global numbering (Np, Ep) [finalize Np]

Given the assumptions of Global numbering, Lnodes callback has to accomplish
the following for each global node g located at a point c ∈ Pp visited by Iterate:

1. determine the process g.p;
2. if g.p = p, determine the index j of owner(c) in Op;
3. if g.p = p, determine the set g.Sshare of processes that share g;
4. complete the entries in Ep that refer to g.

We will not give pseudocode for Lnodes callback here; we only hope to convince
the reader that the information that Iterate supplies to the Lnodes callback—i.e.,
the local leaf support set leaf suppp(c) for each point c in the closed locally relevant

partition Pp—is sufficient to accomplish the above listed tasks.
1. Determine g.p. The policy that defines owner(c) (6.2) guarantees that c and

its nodes will be owned by a leaf in the partition of the first process q such that Ωq

intersects Dom(c). This means that each process p that references c can determine
the processes that own all of the nodes it references, even if leaf suppp(c) is incomplete

24 T. Isaac et.al.

Fig. 6.2. Because of the 2:1 condition, Reconstruct remote (Algorithm 6.4) can use the octants
in leaf supp(c) (left) to reconstruct remotely referencing leaves (right).

(see Algorithm 6.3).

Algorithm 6.3: Determine owner process (point c)

Result : if c ∈ PΩ, the process that owns c and its global nodes.

1: for e ∈ {c} ∪ part(c) such that dim(e) = 0 do [this set always contains one point]
2: return min{locate(a) : a ∈ atom supp(e))}

2. If g.p = p, determine owner(c). Suppose owner(c) = o ∈ Op: o and c intersect,

Dom(o) ∩ Dom(c) 6= ∅. By definition (5.4), c must be in Pp, so by Proposition 5.2,
leaf suppp(c) = leaf supp(c). Therefore, owner(c) will be in leaf suppp(c), and its
index in Op was calculated by Iterate, so we can set g.i equal to that index for each
global node g located at c.

3. If g.p = p, determine g.Sshare. We use both Proposition 5.2 and the 2:1 balance
condition to design an algorithm called Reconstruct remote to reconstruct the octant
data for all leaves that remotely reference (6.1) the point c and its nodes (Algorithm 6.4,
Figure 6.2). By locating the processes that overlap the octants in leaf suppp(c) and the
octants returned by Reconstruct remote(c, leaf suppp(c)), process p can determine
all processes that reference c’s nodes.

Algorithm 6.4: Reconstruct remote (point c, octant set leaf supp(c))

Input : the leaf support set leaf supp(c) (5.4).
Result : the set R of all octants that are leaves that remotely reference c.

1: R← ∅
2: for all e ∈

⋃
bound(leaf supp(c)) do [for every leaf’s boundary point . . .]

3: if c ∈ bound(e) then [. . . that is adjacent to c]
4: for all s ∈

⋃
supp(child(e)) do [for every octant s adjacent to a child of e]

5: if not s ∈
⋃

desc(leaf supp(c)) then [if s is not a descendant of a leaf]
6: R← R∪ {s} [s remotely references c (6.1)]

7: return R

4. Complete the references to g in Ep. For each leaf o ∈ leaf suppp(c) ∩ Op

Iterate provides the index j in Op such that Op[j] = o, so determining the values
of k such that Ep[j][k] refers to the global nodes at point c is a matter of comparing
the orientation of o and c relative to each other. For each leaf r ∈ Op that remotely
references c and its nodes, by definition (6.1) there must be a point e such that

Recursive Algorithms for Distributed Forests of Octrees 25

Fig. 7.1. Example forests of octrees for nontrivial domain topologies. (left) A cutaway of a shell
geometry, composed of 24 mapped octrees. (right) A collection of six rotated and mapped octrees
connected in an irregular topology. Both show adhoc refinement patterns; a 2:1-balance condition
has been enforced in the left hand plot, but not the right. Color indicates the partitions of different
processes.

c ∈ bound(e) and r ∈ leaf supp(e). The instance of Lnodes callback called for the
point e has the index j such that Op[j] = r and can “link” it to c, so that the correct
Ep[j][?] entries can be completed (see Remark 5.3).

The previously presented algorithm Nodes [6, Algorithm 21] produces data struc-
tures equivalent to those produced by Lnodes for n = 1. The ownership rule in
Nodes—associating each node with a unique level-(lmax + 1) octant (i.e., allowing the
octant data structure to be more refined than an atom for storing nodes), and assign-
ing ownership based on the process whose range contains that octant—is similar in
principle to the ownership rule given in (6.2). Nodes does not have symmetric commu-
nication, however, because it does not construct the neighborhood leaf suppp(c) when
it creates a node at c, and so it cannot perform a calculation like Reconstruct remote.
Since it does not deduce the presence of remotely-sharing processes, Nodes requires a
handshaking step, where the communication pattern is determined.

7. Performance evaluation. In this section we evaluate the efficiency and
scalability of the algorithms presented in this work as they have been implemented
in p4est. The parallel scalability is assessed on the Blue Gene/Q supercomputer
JUQUEEN, which is configured with 28,672 compute nodes, each with 16 GB of
memory and 16 cores, for a total of 458,752 cores. Additional concurrency is available
through simultaneous multithreading: each core has two instruction/integer pipelines,
and can issue one instruction to each of these pipelines per cycle, as long as they come
from different threads. Where appropriate, we will compare results for 16, 32, and 64
MPI processes per node (p4est uses only MPI for parallelism). We have compiled the
p4est library and executables with IBM’s XL C compiler in version 12.1.

7.1. Search. To test the performance of Search (Algorithm 3.1), we consider
the problem of identifying the leaves that contain a set of randomly generated points.
We choose a spherical shell domain typical for simulations of earth’s mantle convection,
with inner radius r = 0.55 and outer radius r = 1, as illustrated in Figure 7.1 (left). For
each test, we generate M points at random, independently and uniformly distributed
in the cube containing the shell, and use Search as implemented by the p4est function
p8est search to identify the leaves that contain them.

26 T. Isaac et.al.

64−3 64−1 641 643

64−2

64−1

640

641

M/P

M searches for one point,
runtime in seconds

64−3 64−1 641 643

M/P

One search for M points,
runtime in seconds

P0, D0

P0, D1

P1, D0

P1, D1

P1, D2

P2, D0

P2, D1

P2, D2

Fig. 7.2. Scaling results for searching for M points in a shell domain using Search as imple-
mented by p8est search. We examine various values of M , P , and N . Three different values of P
are used: P0 = 64, P1 = 642, and P2 = 643 = 262144. Three different values of N/P = D are used:
D0 ≈ 15k, D1 ≈ 122k, and D2 ≈ 979k. (left) M separate calls of Search are used to find the M
points. (right) One call of Search is used to find all M points. The dotted lines symbolize linear
weak scaling; points on top of each other demonstrate the independence of the runtime from the local
octant count Di. The largest number of octants reached is 2.568× 1011.

The mappings ϕt for the octrees (2.13) are given analytically for this domain. In
the callback that we provide to Search, we have two tests to determine whether the
mapped domain Dom(o) of an octant o contains a point x, one fast and inaccurate
in the sense of allowing false positive matches, the other slower but accurate. In the
accurate test, the mapping ϕt is inverted to get the preimage ξ of x, and a bounding
box calculation determines whether ξ ∈ dom(o). In the inaccurate test, the image
xo of the octant’s center is computed, as well as an upper bound ro on the radius of
the bounding sphere of Dom(o), and we test whether |x − xo| ≤ ro. In Search the
accurate test is performed only when o is a leaf. We perform our tests on a series of
forests with increasing numbers of leaves N , but with each forest refined so that the
finest leaves are four levels more refined than the coarsest.

In Figure 7.2, we present the scaling results for our tests. Each of the P processes
must determine which of the M points are in its partition. This means that each
process must perform the inaccurate test at least M times. This is why, for fixed
values of P , we see a scaling with O(M). Indeed, the fraction of points that fall in a
given processes partition is on average 1/P , so for large values of P the majority of
the runtime is spent on points that are not in the partition. This is why, in Figure 7.2,
the number of leafs on a node N/P has so little effect on the runtime. When we
take advantage of the algorithm’s ability to search for multiple points simultaneously,
however, the setup costs of the inaccurate test, such as computing the bounding radius
ro, can be amortized over multiple comparisons. Hence we see significant speedup
when searching for multiple points simultaneously: in Figure 7.2, we see that for large
values of P and for M/P ≥ 1 the simultaneous search is roughly 64 times faster than
searching for the same points individually.

7.2. Ghost. We test the performance of ghost layer construction as implemented
by the p4est function p8est ghost, on the irregular geometry shown in Figure 7.1

Recursive Algorithms for Distributed Forests of Octrees 27

101 102 103 104 105 106

10−2

10−1

100

101

5.7k

28k

240k

2M

16M130M 1B 8B 64B510B

P

Ghost runtime in seconds

P , 16-way: 16 128 1024 8192 65536 458752

P , 32-way: 32 256 2048 16384 131072 917504

102 103 104 105 106

1

2

4

N/P

·10−4

Ghost runtime in secs./(N/P)2/3

Fig. 7.3. The scalability of ghost layer construction. The meshes used are described in the text:
the largest number of leaf octants N is 5.1× 1011. (left) Runtime as a function of P : for 16-way
process distribution, we compare strong scaling (solid lines) to ideal O((N/P)2/3) scaling (dotted).
The total number of leaves N in each mesh is indicated. (right) Runtime scaled by (N/P)2/3 as a
function of N/P . Weak-scaling is assessed by comparing the vertical distance between points: each
grid line represents a 25% loss of weak-scaling efficiency relative to the ideal O((N/P)2/3).

(right). We again create a series of meshes with increasing N and four levels of
difference between the coarsest and finest leaves. Our ghost layer construction uses
Find range boundaries (Algorithm 4.2) to determine which processes’ partitions
border an octant o. When a partition Ωp with Np leaves is well-shaped, we expect

O(N
2/3
p) of those leaves to be on the boundary of Ωp, so we consider O((N/P)2/3) to

be ideal scaling. In the algorithm Add ghost (Algorithm 4.1), which is called for each
boundary leaf, log(P) work is performed to determine a set of potentially neighboring
processes; the remaining leaves in the interior of the domain are skipped without
calling Add ghost, and so they should contribute very little to the runtime of Ghost.
We therefore expect our performance to be O((N/P)2/3 logP).

In Figure 7.3, we give plots for assessing the strong- and weak-scalability of ghost
layer construction, relative to the ideal O((N/P)2/3) scaling. (For almost all problems,
assigning 64 processes per node was slower than 32, so we omit this data from the
figure.) We see good strong-scalability for 16 ≤ P ≤ 65k and N/P ≥ 1k. For the full
machine, when P = 459k and P = 918k, the communication latency and the small
amount of O(P) workspace and work in the implementation (two scans of arrays of
32-bit integers) limits the efficiency for N/P ≤ 10k. In the weak-scaling plot, for the
largest values of N/P , we see that the relative efficiency (the efficiency of (8N, 8P)
relative to (N,P)) improves slightly as N and P increase, which suggests that we are
seeing O((N/P)2/3 logP) scaling asymptotically.

7.3. Serial comparison of Lnodes and Nodes. For polynomial degree n = 1,
the data structures constructed by Nodes [6, Algorithm 21] and Lnodes (Algorithm 6.2)
are essentially equivalent. For a general forest of octrees on a single process, both
have O(N logN) runtimes. While Nodes uses repeated binary searches and hash table

28 T. Isaac et.al.

Table 7.1
Serial performance comparison of Nodes (top) and Lnodes (bottom) for n = 1, as implemented

by the p4est functions p8est nodes and p8est lnodes, on a series of single-octree forests.

N runtime (ms) instructions branch misses cache misses

4.6× 103 9.5× 100 4.3× 107 2.1× 105 2.2× 104

1.0× 101 3.7× 107 5.3× 104 1.1× 104

3.9× 104 8.6× 101 4.2× 108 1.7× 106 2.2× 105

4.0× 101 3.1× 108 3.6× 105 5.1× 104

3.2× 105 8.4× 102 3.7× 109 1.3× 107 4.8× 106

3.5× 102 2.5× 109 2.7× 106 4.5× 105

2.6× 106 8.0× 103 3.3× 1010 1.0× 108 6.1× 107

2.8× 103 2.0× 1010 2.2× 107 5.4× 106

queries and insertions, Lnodes uses Iterate (Algorithm 5.3) to recursively split the
forest and operates on subsets of leaves. This divide-and-conquer approach should
make better use of a typical cache hierarchy. In this subsection, we present a small
experiment that confirms this fact.

The experiment is conducted on a single octree using a single process. We again
create a series of meshes with increasing N and four levels of difference between the
coarsest and finest leaves. For each forest in the series, we have three programs:
one that calls Nodes, one that calls Lnodes, and one that calls neither. We use the
Linux utility perf6 to estimate the number of instructions, cache misses, and branch
prediction misses in each program, calling each program 30 times to compensate for
the noise in perf’s sampling. The averages of the events from the program calling
neither routine is subtracted from the other two averages, giving an estimate of the
events that can be attributed to the two routines.

The experiment is performed on a laptop with two Intel Ivy Bridge Core i7-3517U
dual core processors. Each core has a 64 kB on-chip L1 cache, a 256 kB L2 cache, and
each processor has a 4 MB L3 cache: perf counts L3 cache misses. The p4est library
and the executable are compiled by gcc 4.6.4 with -O3 optimization.

The results of the experiment are given in Table 7.1. The table shows that the
advantages of Lnodes over Nodes in terms of the number of instructions and the
number of branch misses do not grow much with N , but the advantage in terms of
cache misses grows from a factor of 2 on the smallest problem size to a factor of 11 on
the largest.

7.4. Parallel scalability of Lnodes. In the previous subsection we compared
the per-process efficiency of Lnodes and Nodes. Here we compare their parallel
scalability on the same series of test forests used to test Ghost above.

In Figure 7.4 (top), we show the runtimes of Lnodes for n = 1. As discussed in
Section 5.4, the implementation of Iterate has been optimized for large values of
N/P : this optimization requires O(lmax) workspace and setup time. The weak-scaling
plot shows that the optimization is effective, in that for N/P ≥ 10k and P ≤ 262k the
weak-scalability is nearly ideal, and that the absolute runtime is small (20 seconds
for 1M leafs/process). The optimization requires redudant work, however, and this

6https://perf.wiki.kernel.org

https://perf.wiki.kernel.org

Recursive Algorithms for Distributed Forests of Octrees 29

101 102 103 104 105 106

10−2

10−1

100

101

102

5.7k

28k

240k

2M

16M130M 1B 8B 64B510B

P

Lnodes (n = 1) runtime in seconds

P , 16-way: 16 128 1024 8192 65536 458752

P , 32-way: 32 256 2048 16384 131072 917504

P , 64-way: 64 512 4096 32768 262144

102 103 104 105 106

2

4

8

16

N/P

·10−5

Lnodes (n = 1) runtime in secs./(N/P)

102 103 104 105 106

101

103

105

0.86 1.05 1.2 1.35 1.45

1.58 0.76 1.07 1.34 1.52

1.4 0.67 0.97 1.3 1.49

1.21 0.63 0.94 1.26 1.46

3.55 0.73 0.95 1.22 1.43

6.77 1.69 1.12 1.22 1.41

N/P

P

Nodes runtime /
Lnodes (n = 1) runtime

103 104

101

103

105

3 3.44 3.65

3.42 3.85 4.21

2.96 3.63 4.03

2.78 5.15 4.1

2.64 3.35 3.98

2.55 4.56 3.84

0.94 2.16 1.9

N/P

P

Lnodes (n = 7) runtime /
Lnodes (n = 1) runtime

Fig. 7.4. The parallel scalability of the Lnodes algorithm, as implemented by the p4est function
p8est lnodes. (top) Runtimes for n = 1. (top left) Runtime as a function of P , comparing strong
scaling (solid lines) to ideal O(N/P) scaling (dotted). The total number of leaves N in each mesh is
indicated. (top right) Runtime scaled by N/P as a function of N/P . Weak-scaling is assessed by
comparing the vertical distance between points: each grid line represents a 25% loss of weak-scaling
efficiency. (bottom left) The speedup of Lnodes versus Nodes as implemented by p8est nodes is
shown for the same meshes as above. The color scale indicates whether Lnodes performs better (blue)
or worse (red) than Nodes. (bottom right) The runtime for n = 7, scaled by the runtime for n = 1,
with an analogue meaning of the colors.

affects the efficiency for N/P < 1k. The strong-scaling plot shows good scalability
for P ≤ 262k and (N/P) > 1k, and in this range the algorithm benefits from 32 and
64 processes per node as well. As in the scaling for ghost layer construction, the
communication latency and the small amount of O(P) work in the implementation
finally limit the scalability for the smallest meshes that were timed on the full machine.

30 T. Isaac et.al.

In the same figure (bottom left) we compare the runtimes for Lnodes for n = 1
to the runtimes of Nodes [6, Algorithm 21]. For most tests, Lnodes is faster than
Nodes: although the relative advantage is smaller on the Blue Gene/Q architecture of
JUQUEEN than on the Ivy Bridge architecture used in the serial test, we still see the
advantage increasing as N/P increases, which is suggestive of better cache performance.
The communication pattern of Lnodes, consisting of one allgather and one round
of point-to-point communication, is more scalable than the communication pattern
of Nodes, which includes a handshake component, hence the better performance of
Lnodes for small values of N/P and large values of P .

Finally, Figure 7.4 also compares the scalability of Lnodes for higher polynomial
orders to the scalability for n = 1 (bottom left). We see that the runtime to construct
7th-order nodes is never more than six times the runtime to construct 1st-order nodes,
even though there are 64 times as many element nodes and roughly 500 times as many
global nodes.7 For large values of P the communication costs, which do not increase
significantly with n, dominate the runtime, so that the cost of constructing high-order
nodes is essentially the same as 1st-order nodes.

8. Conclusion. In this work, we introduce new recursive algorithms that operate
on the distributed forest-of-octrees data structures that the p4est software defines
and uses to support scalable parallel AMR. The algorithms developed here exploit a
recursive space partition from a topological point of view. They constitute p4est’s
high-level reference interface, which is designed to be used directly from third-party
numerical applications.

With the Search algorithm, we demonstrate how to efficiently traverse a linear
octree downward from the root, even though the flat storage of leaves has no explicit
tree structure. This search operation is in some sense purely hierarchical: a similar
search could be performed even if the nodes and leaves of the tree were not interpreted
as a space partition in Rd.

As a component of the Ghost algorithm, we propose a recursive algorithm for
determining the intersections between lower-dimensional boundary cubes and ranges of
leaves that are specified only by the first and last leaves in the range. This algorithm
is notable in that, while the procedure is recursive on the implicit octree structure,
the result that it computes—a set of intersections—is purely topological in nature.

In the Iterate algorithm, we present a method of performing callback-based
iteration over leaves and leaf boundaries that construct local topological information for
the callback on the fly. This procedure combines aspects of the two previous algorithms:
it involves recursion over the octree hierarchy and recursion over topological dimension.
The divide-and-conquer nature of the algorithm makes better use of the cache hierarchy
than approaches to iteration that rely on repeated searches through the array of leaves,
as we demonstrate in practice.

We use Iterate in the construction of fully-distributed higher-order C0 finite
element nodes in the algorithm Lnodes. The topological information provided by
Iterate simplifies the handling of non-conformal interfaces, and provides sufficient
information to allow for node assignments to be made without communication, and for
the communication pattern between referencing processes to be determined without
handshaking. In practice, this gives us good scalability, which we have demonstrated to

7The number of global nodes depends on the forest topology and the refinement pattern. For a
single octree with uniform refinement, the number of global nodes is asymptotically equivalent to
n3N , in which case the number of 7th-order nodes would be 343 times the number of 1st-order nodes.
Because of non-conformal elements, however, we see a higher ratio.

Recursive Algorithms for Distributed Forests of Octrees 31

nearly a half million processes on the JUQUEEN supercomputer. The implementation
has been tuned for granularities of a thousand leaves per MPI process and above,
and in this range we see good scalability, although room for improvement remains for
smaller granularities.

The scalability of Lnodes that we have demonstrated is important for more
applications than just higher-order finite element nodes, because the data structures
returned by the Lnodes algorithm can also serve as the basis for converting a linear
forest of octrees into an unstructured mesh adjacency graph. Lnodes includes all of
the communication necessary for this conversion, so the same scalability should be
achievable by third-party numerical codes that use Lnodes (or a similar approach
based on Iterate) to interface p4est with their own mesh formats.

Reproducibility. The algorithms presented in this article are implemented in the
p4est reference software [4]. p4est, including the programs used in the performance
analysis presented above, is free and freely downloadable software published under the
GNU General Public License version 2, or (at your option) any later version.

Acknowledgments. The first author thanks the U.S. Department of Energy for
support by the Computational Science Graduate Fellowship (DOE CSGF) and by
the Office of Science (DOE SC), Advanced Scientific Computing Research (ASCR),
Scientific Discovery through Advanced Computing (SciDAC) program, under award
number DE-FG02-09ER25914. The second author is supported by the Hausdorff
Center for Mathematics (HCM) at Bonn University and the Transregio 32 research
collaborative, both funded by the German Research Foundation (DFG).

The authors gratefully acknowledge the Gauß Centre for Supercomputing (GCS)
for providing computing time through the John von Neumann Institute for Computing
(NIC) on the GCS share of the supercomputer JUQUEEN at Jülich Supercomputing
Centre (JSC). GCS is the alliance of the three national supercomputing centres
HLRS (Universität Stuttgart), JSC (Forschungszentrum Jülich), and LRZ (Bayerische
Akademie der Wissenschaften), funded by the German Federal Ministry of Education
and Research (BMBF) and the German State Ministries for Research of Baden-
Württemberg (MWK), Bayern (StMWFK) and Nordrhein-Westfalen (MIWF).

The authors are indebted to three anonymous reviewers, whose remarks led to
significant improvements in the final form of this paper, and to Jose A. Fonseca and
Johannes Holke for their editorial help.

REFERENCES

[1] V. Akçelik, J. Bielak, G. Biros, I. Epanomeritakis, A. Fernandez, O. Ghattas, E. J.
Kim, J. Lopez, D. R. O’Hallaron, T. Tu, and J. Urbanic, High resolution forward
and inverse earthquake modeling on terascale computers, in SC03: Proceedings of the
International Conference for High Performance Computing, Networking, Storage, and
Analysis, ACM/IEEE, 2003. Gordon Bell Prize for Special Achievement.

[2] W. Bangerth, C. Burstedde, T. Heister, and M. Kronbichler, Algorithms and data
structures for massively parallel generic adaptive finite element codes, ACM Transactions
on Mathematical Software, 38 (2011), pp. 14:1–14:28.

[3] W. Bangerth, R. Hartmann, and G. Kanschat, deal.II – a general-purpose object-oriented
finite element library, ACM Transactions on Mathematical Software, 33 (2007), p. 24.

[4] C. Burstedde, p4est: Parallel AMR on forests of octrees, last accessed February 27, 2015.
http://www.p4est.org/.

[5] C. Burstedde, G. Stadler, L. Alisic, L. C. Wilcox, E. Tan, M. Gurnis, and O. Ghattas,
Large-scale adaptive mantle convection simulation, Geophysical Journal International, 192
(2013), pp. 889–906.

http://www.p4est.org/

32 T. Isaac et.al.

[6] C. Burstedde, L. C. Wilcox, and O. Ghattas, p4est: Scalable algorithms for parallel
adaptive mesh refinement on forests of octrees, SIAM Journal on Scientific Computing, 33
(2011), pp. 1103–1133.

[7] P. Colella, J. Bell, N. Keen, T. J. Ligocki, M. Lijewski, and B. V. Straalen, Performance
and scaling of locally-structured grid methods for partial differential equations, Journal of
Physics: Conference Series, 78 (2007), pp. 1–13.

[8] P. Colella, D. T. Graves, N. Keen, T. J. Ligocki, D. F. Martin, P. W. McCorquodale,
D. Modiano, P. O. Schwartz, T. D. Sternberg, and B. Van Straalen, Chombo Software
Package for AMR Applications. Design Document., Applied Numerical Algoirthms Group,
NERSC Division, Lawrence Berkeley National Laboratory, Berkeley, CA, May 2007.

[9] K. Devine, E. Boman, R. Heaphy, B. Hendrickson, and C. Vaughan, Zoltan data manage-
ment services for parallel dynamic applications, Computing in Science and Engineering, 4
(2002), pp. 90–97.

[10] J. Dreher and R. Grauer, Racoon: A parallel mesh-adaptive framework for hyperbolic
conservation laws, Parallel Computing, 31 (2005), pp. 913–932.

[11] P. F. Fischer, G. W. Kruse, and F. Loth, Spectral element methods for transitional flows in
complex geometries, Journal of Scientific Computing, 17 (2002), pp. 81–98.

[12] T. Goodale, G. Allen, G. Lanfermann, J. Masso, T. Radke, E. Seidel, and J. Shalf, The
Cactus framework and toolkit: Design and applications, in Vector and Parallel Processing –
VECPAR ’2002, 5th International Conference, Springer, 2003.

[13] R. A. Haring, M. Ohmacht, T. W. Fox, M. K. Gschwind, D. L. Satterfield, K. Sugavanam,
P. W. Coteus, P. Heidelberger, M. A. Blumrich, R. W. Wisniewski, et al., The IBM
Blue Gene/Q compute chip, Micro, IEEE, 32 (2012), pp. 48–60.

[14] T. Isaac, C. Burstedde, and O. Ghattas, Low-cost parallel algorithms for 2:1 octree balance,
in Proceedings of the 26th IEEE International Parallel & Distributed Processing Symposium,
IEEE, 2012. http://dx.doi.org/10.1109/IPDPS.2012.47.

[15] Forschungszentrum Jülich – JUQUEEN. http://www.fz-juelich.de/ias/jsc/EN/Expertise/

Supercomputers/JUQUEEN/JUQUEEN_node.html. Last accessed May 2, 2014.
[16] O. S. Lawlor, S. Chakravorty, T. L. Wilmarth, N. Choudhury, I. Dooley, G. Zheng, and

L. V. Kalé, ParFUM: a parallel framework for unstructured meshes for scalable dynamic
physics applications, Engineering with Computers, 22 (2006), pp. 215–235.

[17] J. Luitjens, M. Berzins, and T. C. Henderson, Scalable parallel AMR for the Uintah
multiphysics code, in Petascale Computing Algorithms and Applications, D. A. Bader, ed.,
Chapman & Hall, 2008, pp. 67–81.

[18] P. MacNeice, K. M. Olson, C. Mobarry, R. de Fainchtein, and C. Packer, Paramesh: A
parallel adaptive mesh refinement community toolkit, Computer physics communications,
126 (2000), pp. 330–354.

[19] J. P. May, A concise course in algebraic topology, University of Chicago Press, 1999.
[20] G. M. Morton, A computer oriented geodetic data base; and a new technique in file sequencing,

tech. rep., IBM Ltd., 1966.
[21] C. D. Norton, J. Z. Lou, and T. A. Cwik, Status and directions for the PYRAMID parallel

unstructured AMR library, in Proceedings of the 15th IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2001, p. 120.

[22] S. Popinet, Gerris: a tree-based adaptive solver for the incompressible Euler equations in
complex geometries, Journal of Computational Physics, 190 (2003), pp. 572–600.

[23] W. C. Rheinboldt and C. K. Mesztenyi, On a data structure for adaptive finite element
mesh refinements, ACM Transactions on Mathematical Software, 6 (1980), pp. 166–187.

[24] R. S. Sampath, S. S. Adavani, H. Sundar, I. Lashuk, and G. Biros, Dendro: Parallel
algorithms for multigrid and AMR methods on 2:1 balanced octrees, in SC’08: Proceedings
of the International Conference for High Performance Computing, Networking, Storage,
and Analysis, ACM/IEEE, 2008.

[25] C. Sert and A. Beskok, Spectral element formulations on non-conforming grids: A comparative
study of pointwise matching and integral projection methods, Journal of Computational
Physics, 211 (2006), pp. 300–325.

[26] J. R. Stewart and H. C. Edwards, A framework approach for developing parallel adaptive
multiphysics applications, Finite Elements in Analysis and Design, 40 (2004), pp. 1599–1617.

[27] H. Sundar, R. Sampath, and G. Biros, Bottom-up construction and 2:1 balance refinement of
linear octrees in parallel, SIAM Journal on Scientific Computing, 30 (2008), pp. 2675–2708.

[28] T. Tu, D. R. O’Hallaron, and O. Ghattas, Scalable parallel octree meshing for terascale
applications, in SC ’05: Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis, ACM/IEEE, 2005.

[29] L. C. Wilcox, G. Stadler, C. Burstedde, and O. Ghattas, A high-order discontinuous

http://dx.doi.org/10.1109/IPDPS.2012.47
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/JUQUEEN_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/JUQUEEN_node.html

Recursive Algorithms for Distributed Forests of Octrees 33

Galerkin method for wave propagation through coupled elastic-acoustic media, Journal of
Computational Physics, 229 (2010), pp. 9373–9396.

[30] M. Zhou, O. Sahni, K. D. Devine, M. S. Shephard, and K. E. Jansen, Controlling un-
structured mesh partitions for massively parallel simulations, SIAM Journal on Scientific
Computing, 32 (2010), pp. 3201–3227.

Appendix A. Proof of the correctness of Find range boundaries (Algo-
rithm 4.2).

Theorem A.1. Given a range [f, l], where f and l are atoms with a common
ancestor s, and given a set of boundary indices Bquery ⊆ B, Algorithm 4.2 returns the
set B∩(f, l, s) ∩ Bquery (4.4).

Proof. The proof is inductive on the refinement level, s.l.
If s.l = lmax, then the only descendant of s is itself, so s = f = l. Therefore⋃

Dom([f, l]) = Dom(s) and B∩(f, l, s) = B, so B∩(f, l, s) ∩ Bquery = Bquery. This is
correctly returned on line 1.

Now suppose that Find range boundaries returns correctly if lmax ≥ s.l ≥ m,
and suppose s.l = m− 1. Let f ∈ desc(child(s)[j]) and l ∈ desc(child(s)[k]): the set
I defined in (4.7) is equal to {j, . . . , k}.

If j = k, then by Proposition 4.1, B∩(f, l, s) = B∩(f, l, child(s)[j]) ∩ Bj
∩. By the

inductive assumption, line 4 returns

B∩(f, l, child(s)[j]) ∩ (Bj∩ ∩ Bquery) = B∩(f, l, s) ∩ Bquery. (A.1)

Now suppose j < k. If the range [f, l] overlaps all of child(s)[i], then the set
B∩(fi, li, child(s)[i]) is equal to B. This is the case if j < i < k, so the set B1

match

computed on line 5 is

Bmatch =
⋃

j<i<k

Bquery ∩ Bi∩ =
⋃

j<i<k

Bquery ∩ (B∩(fi, li, child(s)[i]) ∩Bi
∩). (A.2)

This is also the case for i = j if f = fj , so on each branch of the condition on line 8

the set Bjmatch is computed as

Bjmatch = B∩(fj , lj , child(s)[j]) ∩ ((Bquery ∩ Bj∩)\Bmatch)

= (Bquery ∩ (B∩(fj , lj , child(s)[j]) ∩ Bj∩))\Bmatch.
(A.3)

By the same reasoning, on each branch of the conditional on line 11, the set Bkmatch is
computed as

Bkmatch = (Bquery ∩ (B∩(fk, lk, child(s)[k]) ∩ Bk∩))\Bmatch\Bjmatch. (A.4)

The union Bmatch ∪ Bjmatch ∪ Bkmatch is therefore equal to

Bquery ∩
⋃

j≤i≤k

B∩(fi, li, child(s)[i]) ∩ Bi∩ = Bquery ∩ B∩(f, l, s). (A.5)

By induction, the proof is complete.

Appendix B. Proof of the correctness of Iterate interior (Algo-
rithm 5.2).

Let the definitions in Section 5 be given. We prove the correctness of Iterate -

interior (Algorithm 5.2) when the relevant set is Pp. The proof for the case when
Pp is the relevant set is very similar.

Theorem B.1. Assume that the requirements for the arguments of Algorithm 5.2
are met. If c ∈ Pp, then leaf suppp(c) is correctly computed. If there is a subset of Pp

34 T. Isaac et.al.

whose domain is contained in Dom(c), then the callback function is executed for all
points in that subset.

Proof. We first assert that if c ∈ Pp, then its local leaf support leaf suppp(c)

is a subset of
⋃

i S[i]. By the definition of leaf supp(c), Dom(o) ∩ Dom(c) 6= ∅. By
Proposition 2.5, there is a point e in the closure set of o, e ∈ clos(o), such that
Dom(e) ⊆ Dom(c) or Dom(c) ⊆ Dom(e). By the definition of the global partition
set PΩ, the former must be true: otherwise, c could not be in Pp ⊆ PΩ. Therefore o

cannot be less refined than c, level(o) ≥ level(c). By Proposition 2.6, there must be
some support octant s = supp(c)[i] such that o ∈ desc(s). By the definition of S[i], it
must contain o. This proves the first assertion.

From here, we split the proof into two cases, dim(c) = 0, and dim(c) > 0.
Suppose dim(c) = 0. If o ∈ leaf suppp(c), then there is i such that o ∈ S[i]. By

Proposition 2.8, o must be an ancestor of the atom atom supp(c)[i]. Therefore o is
added to L on line 18. Conversely, if o is added to L on line 18, then atom supp(c)[i] is a
descendant of o, and by definition its domain is in o’s domain, Dom(atom supp(c)[i]) ⊆
Dom(o). Because Dom(atom supp(c)[i]) ∩ Dom(c) 6= ∅, it must be that Dom(o) ∩
Dom(c) 6= ∅. Therefore o is a leaf in S[i] ⊂ Op ∪Gd

p whose closure intersects c, which
matches the definition of leaf suppp(c). Thus, if c ∈ PΩ, the set L computed is equal

to leaf suppp(c), and the callback will be executed on line 20 if and only if c ∈ Pp.
Now suppose dim(c) > 0. Let L be the minimum level of a leaf o ∈ ∪iS[i]. The

remainder of the proof is inductive on the difference δ = L− level(c).
Suppose δ = 0, and let o ∈ S[i] be a leaf with level L = level(c). Because

o ⊆ supp(c)[i] and because level(supp(c)[i]) = level(c) by definition, o = supp(c)[i].
Therefore Dom(o)∩Dom(c) 6= ∅ and o ∈ leaf suppp(c). Because leaves do not overlap,
it must be that S[i] = {o}. Therefore o is added to L on line 9.

Because of the 2:1 condition, all remaining leaves in leaf suppp(c) have level L+ 1.
Let o ∈ S[j] be a leaf with level L+ 1. This implies that S[j] 6= {supp(c)[i]}, so the
children of supp(c)[i] are assigned to hi on line 12: o must be one of these children.
On line 14, o is added to L if and only if Dom(o) ∩ Dom(c) 6= ∅, which matches
the definition of leaf suppp(c). Therefore, if c ∈ PΩ, the constructed set L matches

leaf suppp(c), and the callback executes on line 20 if and only if b ∈ Pp.
Now suppose the algorithm is correct for 0 ≤ δ < k, and suppose δ = k. There can

be no i such that S[i] = {supp(c)[i]}, so the arrays Hi and octants hi are computed
on lines 11 and 12 for every i. Let e be in the child partition set part(c): e has
level level(c) + 1. By definition, each octant in the support set supp(e) also has
level level(c) + 1 and Dom(supp(e)[i])∩Dom(e) 6= ∅, which implies Dom(supp(e)[i])∩
Dom(c) 6= ∅. Proposition 2.6 implies that there must be j and k such that supp(e)[i] =
child(supp(c)[j])[k]. Therefore supp(e)[i] = hj [k] and the set Se[i] = Hj [k] is equal to
(Op∪Gd

p)∩desc(supp(e)[j]). This means that the arguments of the recursive call on line
25 are correct for each e ∈ part(c). By the inductive assumption, the callback function
is executed for the subset of Pp whose domains are in Dom(c) =

⊔
Dom(part(c). By

the principle of induction, the proof is complete.

Appendix C. Asymptotic analysis of Iterate (Algorithm 5.3).
We first present the asymptotic analysis of the complexity of the algorithm in a

single-process, single-octree setting.
Theorem C.1. Ignoring the time taken by the callbacks, Iterate executes in the

worst case in O(N logN) time.
Proof. The only operations in each instance of Iterate interior that are not

O(1) are the O(log |S[i]|) terms for the input arrays S[i]. Each of these arrays is

Recursive Algorithms for Distributed Forests of Octrees 35

associated with an octant supp(c)[i] that is an ancestor of a leaf. An octant o can only
be in supp(c) if c ∈ bound(o) and c = (o, b) for some b ∈ B. Therefore each ancestor
octant can be associated with at most |B| terms with O(log |S[i]|) complexity. An
octree has O(N) ancestors that are not leaves, so O(N) searches are conducted. Each
array S[i] contains a subset of leaves, so each O(log |S[i]|) is O(logN). We conclude
that an upper bound on the running time is O(N logN).

Theorem C.2. Ignoring callbacks, Iterate executes in O(N) time on a uniformly
refined octree.

Proof. The leaves are all at the same level L, so N = 2dL, and there are 2dl nodes
in level l of the tree. Because leaves are evenly distributed, each node at level l has
2d(L−l) leaf descendants. Each node is associated with a bounded number of binary
searches and calls to Split array, each with logarithmic complexity in the number of
leaves beneath it. So, ignoring leading coefficients, the time complexity is

L−1∑
l=0

2dl log 2d(L−l) = d

L−1∑
l=0

2dl(L− l)

= d

L−1∑
l=0

2dL

2d(L−l) (L− l)

[l̂ = L− l] = d2dL
L∑

l̂=1

l̂

2dl̂
= d2dLO(1) = dO(N).

(C.1)

Because the dimension d is fixed, Iterate runs in O(N) time.
A uniformly refined octree is just a regular grid, so the indices of neighbors follow a

predictable rule: a linear-time algorithm can be achieved without a recursive algorithm
and without searching through the leaf arrays. We outline a class of octrees which has
no rule for neighboring indices, but for which Iterate still runs in linear time.

Definition C.3 (∆-uniform octrees). A class of octrees is ∆-uniform if the
difference (maxo∈O o.l −mino∈O o.l) is uniformly bounded by ∆ for all octrees in the
class.

Theorem C.4. Iterate executes in O(N) time on a class of ∆-uniform octree.
Proof. Let L = maxo∈O o.l and lmin = mino∈O o.l. For lmino∈O o.l, 2d` is now an

upper bound on the number of nodes at level l, and for every l, 2d(L−l) is an upper
bound on the number of descendant leaves of a level l node. Therefore the O(2dL)
runtime for a uniform octree is an upper bound on the runtime of Iterate, while
a lower bound on N is 2dlmin = 2d(L−∆). Therefore 2dL ≤ 2d∆N , so the runtime of
Iterate is O(2d∆N) = O(N).

We now consider the Iterate algorithm in the multiple process, single octree
setting, and derive bounds in terms of the local number of leaves Np and the number
of processes P . A key component of the above analysis for the serial runtime, that the
number of ancestor nodes is O(N), is no longer true in a parallel setting: the number of
ancestors of the leaves in Op ∪Gd

p is not necessarily O(Np). Suppose a is the smallest

common ancestor of every leaf in Op ∪Gd
p and a.l = l̂. The number of branches below

a must be O(Np), so the analysis for the runtime after level l̂ is the same as for a
single process, substituting a for the root, so the time spent below a is O(Np logNp) in
general or O(Np) for a ∆-uniform tree. Thus an upper bound for the runtime is to add

O(l̂ logNp) to that time. We can bound l̂ by L = maxo∈O o.l, and in the ∆-uniform
case L ∈ O(logN). If we assume an even partitioning of the leaves, N = PNp, then

36 T. Isaac et.al.

L ∈ O(logP + logNp). The runtime for Iterate on an evenly distributed octree is
thus O((L+Np) logNp) in general and O(logP +Np) for ∆-uniform octrees.

Introducing multiple trees does not affect the analysis significantly: maintaining
separate arrays for each tree can only reduce the sizes of the subarrays that are split
by Split array. Some time is taken to set up the calls to Iterate interior for the
interfaces between octrees, but this time is negligble, especially if the forest realizes
the common use case K � N .

