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ON FAST IMPLEMENTATION OF HIGHER ORDER HERMITE-FEJÉR
INTERPOLATION∗

SHUHUANG XIANG† AND GUO HE‡†

Abstract. The problem of barycentric Hermite interpolation is highly susceptible to overflows or under-
flows. In this paper, based on Sturm-Liouville equations for Jacobi orthogonal polynomials, we consider the fast
implementation on the second barycentric formula for higher order Hermite-Fejér interpolation at Gauss-Jacobi
or Jacobi-Gauss-Lobatto pointsystems, where the barycentric weights can be efficiently evaluated and cost linear
operations corresponding to the number of grids totally. Furthermore, due to the division of the second barycen-
tric form, the exponentially increasing common factor in the barycentric weights can be canceled, which yields
a superiorly stable method for computing the simplified barycentric weights, and leads to a fast implementation
of the higher order Hermite-Fejér interpolation with linear operations on the number of grids. In addition, the
convergence rates are derived for Hermite-Fejér interpolation at Gauss-Jacobi pointsystems.

Key words. Hermite-Fejér interpolation, barycentric, Jacobi polynomial, Gauss-Jacobi point, Lobatto-
Gauss-Jacobi point, Chebyshev point.
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1. Introduction. There are many investigations for the behavior of continuous functions
approximated by polynomials. Weierstrass [58] in 1885 proved the well known result that every
continuous function f(x) in [−1, 1] can be uniformly approximated as closely as desired by
a polynomial function. This result has both practical and theoretical relevance, especially in
polynomial interpolation.

Polynomial interpolation is a fundamental tool in many areas of numerical analysis. La-
grange interpolation is a well known, classical technique for approximation of continuous func-
tions. Let us denote by

x
(n)
1 , x

(n)
2 , . . . , x(n)

n(1.1)

the n distinct points in the interval [−1, 1] and let f(x) be a function defined in the same interval.
The nth Lagrange interpolation polynomial of f(x) is uniquely defined by the formula

Ln[f ] =

n∑

k=1

f(x
(n)
k )ℓ

(n)
k (x), ℓ

(n)
k (x) =

ωn(x)

ω′
n(x

(n)
k )(x − x

(n)
k )

,(1.2)

where ωn(x) = (x − x
(n)
1 )(x − x

(n)
2 ) · · · (x − x

(n)
n ). However, for an arbitrarily given system of

points {x(n)
1 , x

(n)
2 , . . . , x

(n)
n }∞n=1, Bernstein [2] and Faber [13], in 1914, respectively, showed that

there exists a continuous function f(x) in [−1, 1] for which the sequence Ln[f ] (n = 1, 2, . . .) is
not uniformly convergent to f in [−1, 1]1 . Additionally, Bernstein [3] proved that there exists a
continuous function f(x) also for which the sequence Ln[f ] is divergent. Particularly, Grünwald
[23] in 1935 and Marcinkiewicz [32] in 1937, independently, showed that even for the Chebyshev
points of first kind

x
(n)
k = cos

(
2k − 1

2n
π

)
, k = 1, 2, . . . , n, n = 1, 2, . . . ,(1.3)

there is a continuous function f(x) in [−1, 1] for which the sequence Ln[f ] is divergent everywhere
in [−1, 1].

∗This work was supported by National Science Foundation of China (No. 11371376).
†Department of Applied Mathematics and Software, Central South University, Changsha, Hunan 410083, P.

R. China.‡Corresponding author
1A very simple proof was given by Fejér [15] in 1930.
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1.1. (Higher order) Hermite-Fejér interpolation. One of the proofs of Weierstrass
approximation theorem using interpolation polynomials was presented by Fejér [14] in 1916 based
on the above Chebyshev pointsystem (1.3): If f ∈ C[−1, 1], then there is a unique polynomial
H2n−1(f, x) of degree at most 2n−1 such that limn→∞ ‖H2n−1(f)−f‖∞ = 0, where H2n−1(f, x)
is determined by

H2n−1(f, x
(n)
k ) = f(x

(n)
k ), H ′

2n−1(f, x
(n)
k ) = 0, k = 1, 2, . . . , n.(1.4)

This polynomial is known as the Hermite-Fejér interpolation polynomial.
The convergence result has been extended to general Hermite-Fejér interpolation of f(x) at

nodes (1.1), upon strongly normal pointsystems introduced by Fejér [16]: Given, respectively,

the function values f(x
(n)
1 ), f(x

(n)
2 ), . . ., f(x

(n)
n ) and derivatives d

(n)
1 , d

(n)
2 ,. . ., d

(n)
n at these grids,

the Hermite-Fejér interpolation polynomial H2n−1(f) has the form of

H2n−1(f, x) =
n∑

k=1

f(x
(n)
k )h

(n)
k (x) +

n∑

k=1

d
(n)
k b

(n)
k (x),(1.5)

where h
(n)
k (x) = v

(n)
k (x)

(
ℓ
(n)
k (x)

)2
, b

(n)
k (x) = (x− x

(n)
k )

(
ℓ
(n)
k (x)

)2
and

v
(n)
k (x) = 1− (x− x

(n)
k )

ω′′
n(x

(n)
k )

ω′
n(x

(n)
k )

(see Fejér [17]).

The pointsystem (1.1) is called strongly normal if for all n

v
(n)
k (x) ≥ c > 0, k = 1, 2, . . . , n, x ∈ [−1, 1](1.6)

for some positive constant c. The pointsystem (1.1) is called normal if for all n

v
(n)
k (x) ≥ 0, k = 1, 2, . . . , n, x ∈ [−1, 1].(1.7)

Fejér [16] (also see Szegö [45, pp 339]) showed that for the zeros of Jacobi polynomial P
(α,β)
n (x)

of degree n (α > −1, β > −1)

v
(n)
k (x) ≥ min{−α,−β} for −1 < α ≤ 0, −1 < β ≤ 0, k = 1, 2, . . . , n and x ∈ [−1, 1].

While for the Legendre-Gauss-Lobatto pointsystem (the roots of (1− x2)P
(1,1)
n−2 (x) = 0),

v
(n)
k (x) ≥ 1, k = 1, 2, . . . , n, x ∈ [−1, 1].

This result is extended to Jacobi-Gauss-Lobatto pointsystem (the roots of (1 − x2)P
(α,β)
n−2 = 0)

and Jacobi-Gauss-Radau pointsystem (the roots of (1 − x)P
(α,β)
n−1 = 0 or (1 + x)P

(α,β)
n−1 = 0) by

Vértesi [52, 53]: for all k and x ∈ [−1, 1],

v
(n)
k (x) ≥ min{2− α, 2 − β} for {x

(n−2)
k }

⋃
{−1, 1} with 1 ≤ α ≤ 2 and 1 ≤ β ≤ 2,

v
(n)
k (x) ≥ min{2− α,−β} for {x(n−1)

k }⋃{1} with 1 ≤ α ≤ 2 and −1 < β ≤ 0,

v
(n)
k (x) ≥ min{−α, 2− β} for {x(n−1)

k }⋃{−1} with −1 < α ≤ 0 and 1 ≤ β ≤ 2.

Based upon the (strongly) normal pointsystem, Grünwald [24] in 1942 showed that for every

f ∈ C[−1, 1], limn→∞ ‖H2n−1(f) − f‖∞ = 0 if {x(n)
k } is strongly normal satisfying (1.6) and

{d(n)k } satisfies

|d(n)k | < nc−δ for some given positive number δ, k = 1, 2, . . . , n = 1, 2, . . . ,
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while limn→∞ ‖H2n−1(f)−f‖∞ = 0 in [−1+ ǫ, 1− ǫ] for each fixed 0 < ǫ < 1 if {x(n)
k } is normal

and {d(n)k } is uniformly bounded for n = 1, 2, . . ..
To get fast convergence on suitable smooth functions, higher order Hermite-Fejér interpola-

tion polynomials were considered in Goodenough and Mills [21], Sharma and Tzimbalario [39],
Szabados [44], Vértesi [55], etc.: for p = 0, 1, . . . ,m− 1 and q = 1, 2, . . . , n,

Hmn−1(f, x) =
n∑

k=1

m−1∑

j=0

f (j)(x
(n)
k )Ajk(x), H

(p)
mn−1(f, x

(n)
q ) = f (p)(x(n)

q ),(1.8)

where the polynomial Ajk(x) of degree at most mn− 1 satisfies

A
(p)
jk (x(n)

q ) = δjpδkq, j = 0, 1, . . . ,m− 1, k = 1, 2, . . . , n,(1.9)

and δ is the Kronecker delta function. For simplicity, in the following we abbreviate x
(n)
k as xk,

ℓ
(n)
k (x) as ℓk(x), h

(n)
k (x) as hk(x), and b

(n)
k (x) as bk(x).

The convergences of the higher order Hermite-Fejér interpolation polynomials have been
extensively studied (see e.g. Byrne et al. [9], Goodenough and Mills [22], Locher [30], Mathur
and Saxena [31], Moldovan [33], Nevai and Vértesi [34], Popoviciua [35], [39], Shi [40, 41], Shisha
et al. [42], Sun [43], Szili [46], Vecchia et al. [12], Vértesi [52, 54] etc.). The convergence rates
are achieved most on Gauss-Jacobi or Jacobi-Gauss-Lobatto pointsystems. As is well known in
approximation theory, the right approach is to use point sets that are clustered at the endpoints
of the interval with an asymptotic density proportional to (1− x2)−1/2 as n → ∞ emphasised,
for example, in Berrut and Trefethen [5] and Trefethen [48]. Hence, in this paper we confine
ourselves to Gauss-Jacobi or Jacobi-Gauss-Lobatto pointsystems.

1.2. Barycentric forms and implementation on general Hermite interpolation.
In general, the Hermite interpolation is to find a polynomial HN−1(f, x) of degree at most N−1
such that

dr

dxr
HN−1(f, x)

∣∣∣∣
x=xk

= fk,r for r = 0, 1, . . . , nk − 1,

where fk,0, fk,1, . . . , fk,nk−1 denote the function value and its first nk − 1 derivatives at the
interpolation grid points xk (k = 1, 2, . . . , n), respectively, and N = n1 + n2 + · · ·+ nn.

The polynomial HN−1(f, x) can be represented in either the Newton form or the barycentric
form. In the Newton form, the grid points xk must be ordered in a special way (see Schneider
and Warner [38]). If the grid points are not carefully ordered, the Newton form is susceptible
to catastrophic numerical instability. For more details, see Fischer and Reichel [18], Tal-Ezer
[47], Berrut and Trefethen [5], Butcher et al. [8] and Sadiq and Viswanath [36]. In contrast, the
barycentric form does not depend on the order in which the nodes are arranged, which treats all
the grid points equally. Barycentric interpolation is arguably the method of choice for numerical
polynomial interpolation.

The first barycentric formula for the Hermite interpolation is of the form of

HN−1(f, x) = H∗(f, x)
∑n

k=1

fk,nk−1

(nk−1)!

(
wk,0

x−xk

)
+

fk,nk−2

(nk−2)!

(
wk,0

(x−xk)2
+

wk,1

x−xk

)

+ · · ·+ fk,0

(
wk,0

(x−xk)
nk

+ · · ·+ wk,nk−1

x−xk

)
,

(1.10)

where H∗
N (f, x) =

∏n
k=1(x − xk)

nk and wk,r is called the barycentric weights. Applying 1 ≡
H∗

N (f, x)
∑n

k=1

∑nk−1
r=0 wk,r(x− xk)

r−nk derives the second barycentric form2

HN−1(f, x) =

∑n
k=1

∑nk−1
s=0

fk,s

s!

∑nk−s−1
r=0 wk,r(x− xk)

r+s−nk

∑n
k=1

∑nk−1
r=0 wk,r(x− xk)r−nk

(1.11)

2Two typos occur in (1.4) [36]: (x−xk)
nk−r−s should be (x−xk)

r+s−nk and (x−xk)
nk−r be (x−xk)

r−nk .
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(see e.g. [8, 36]).

The second barycentric form is more robust in the presence of rounding errors in the weights
wk,r . It is obvious from inspection that either of the two forms can be used to evaluate the
interpolant HN−1(f, x) at a given point x using O(

∑n
k=1 n

2
k) arithmetic operations once the

barycentric weights wk,r are known.

Schneider and Werner [38] used divided differences to evaluate the barycentric weights. This
method requires n(n − 1)/2 divisions, (N2 −

∑n
k=1 n

2
k)/2 multiplications and about the same

number of subtractions or additions [36]. However, the numerical stability depends upon a good
ordering of the grid points as mentioned above. Moreover, Newton interpolation requires the
recomputation of the divided difference tableau for each new function.

Butcher et al. [8] introduced an efficient method, compared with that in [38], for computing
the barycentric weights, which is derived by using contour integrals and the manipulation of
infinite series. More recently, Sadiq and Viswanath [36] gave another more direct and simple
derivation of this method: Calculating the barycentric weights is to find the coefficients in the
Taylor polynomial of expressions of the form

∏

j 6=k

(x+ xk − xj)
−nj =

∏

j 6=k

(xk − xj)
−nj

∏

j 6=k

(
1− x− xk

xk − xj

)−nj

which can be obtained by the following recursion

Ik,r =

r∑

s=1

Pk,sIk,r−s/r, Ik,0 = 1, Pk,r =
∑

j 6=k

nj(xj − xk)
−r, r = 1, 2, . . . , nk − 1,

and then wk,r = CkIk,r with Ck =
∏

j 6=k(xk − xj)
−nj . It costs O(n

∑n
k=1 nk +

∑n
k=1 n

2
k)

multiplications. Roughly half these operations are additions or subtractions and roughly half are
multiplications. Furthermore, if an additional derivative is prescribed at one of the interpolation
points, update the barycentric coefficients use only O(N) operations [36].

Notice that the barycentric Hermite interpolation problem is highly susceptible to overflows
or underflows. The weights wk,r in (1.10) and (1.11) usually vary by exponentially large factors.
Figures 1.1-1.2 illustrate the magnitudes of the barycentric weights computed by the method
of Sadiq and Viswanath [36] at the Chebyshev pointsystem (1.3) or Legendre pointsystem with
different multiple number m of derivatives (n1 = n2 = · · · = nn = m). We can see from these
two figures that the barycentric weights become extremely large while the number of points and
the multiple number of derivatives are not so large, which will lead to overflows3 for larger n or
m. Table 1.1 shows the threshold S that the algorithm suffers overflows for computation of the
weights if n ≥ S with different m, respectively.
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Fig. 1.1. Magnitudes of the barycentric weights wk,r by method of Sadiq and Viswanath interpolating at
Chebyshev pointsystem (1.3).

3In Matlab, the largest positive normalized floating-point number in IEEE double precision is (1 + (1 −
2−52))21023 ≈ 1.7977 × 10308, the smallest positive normalized floating-point number in IEEE double precision
is 2−1022 ≈ 2.225× 10−308.
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Fig. 1.2. Magnitudes of the barycentric weights wk,r by method of Sadiq and Viswanath interpolating at
Legendre pointsystem.

Table 1.1

The threshold S that the algorithm [36] collapses for computation of the barycentric weights if n ≥ S with
different m at the Chebyshev pointsystem (1.3) and Legendre pointsystem

Chebyshev pointsystem (1.3) Legendre pointsystem

m = 2 m = 3 m = 4 m = 2 m = 3 m = 4

S=524 S=347 S=263 S=523 S=346 S=262

Thus, in [36], Sadiq and Viswanath used 2 cos((2k−1)π/(2n)) instead of cos((2k−1)π/(2n))
and considered Leja reordering of the points to get more stable computation of the weights and
decrease the chance of overflows or underflows. However, reordering of the points does not
change the magnitudes of the barycentric weights. Furthermore, Leja reordering needs O(n2)
operations [10].

Fortunately, from the second barycentric form (1.11), we see that the weights wk,r appear in
the denominator exactly as in the numerator. Due to the division, the barycentric weights can
be simplified by cancelling the common factors without altering the result (see Figures 2.1-2.4
and Tables 2.1-2.4 below).

In this paper, we are concerned with fast implementation of the higher order Hermite-Fejér
interpolation polynomial (1.8), based on the second barycentric form (1.11), at Gauss-Jacobi or
Jacobi-Gauss-Lobatto pointsystems.

Recently, a new algorithm on the evaluation of the nodes and weights for the Gauss quadra-
ture was given by Glaser, Liu and Rokhlin [20] with O(n) operations, which has been extended
by both Bogaert, Michiels and Fostier [7], and Hale and Townsend [25]. A Matlab routine for
computation of these nodes and weights can be found in Chebfun system [51].

As a result of these developments, in Section 2, we will discuss in details on calculation of the
second barycentric weights of the higher order Hermite-Fejér interpolation polynomial (1.11) at
Gauss-Jacobi or Jacobi-Gauss-Lobatto pointsystems, and present two algorithms with O(nm2)
operations. Particularly, due to division, the common factor in the barycentric weights can
be canceled, which yields a superiorly stable method for computing the simplified barycentric
weights. In Section 3, we will consider the stabilities of these implementations for the second
barycentric formula on higher order Hermite-Fejér interpolation and present numerical examples
illustrating the efficiency and accuracy. A final remark on the convergence rate of Hermite-Fejér
interpolation (1.5) is included in Section 4.

All the numerical results in this paper are carried out by usingMatlab R2012a on a desktop
(2.8 GB RAM, 2 Core2 (32 bit) processors at 2.80 GHz) with Windows XP operating system.

2. Fast computation of the barycentric weights on higher order Hermite-Fejér
interpolation. In this section, we will introduce two methods for fast computation of the
barycentric weights on higher order Hermite-Fejér interpolation at Gauss-Jacobi or Jacobi-
Gauss-Lobatto pointsystems, which both share O(nm2) operations and lead to fast and stable
calculation of the barycentric weights due to the division in (1.11), where the exponentially
increasing common factor is cancelled.
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Algorithm 1: Following the barycentric Hermite interpolation formula in [8, 36, 38], we
rewrite the higher order Hermite-Fejér interpolation (1.8) as

Hmn−1(f, x) = H∗
mn(x)

n∑

k=1

fk,m−1

(m− 1)!

(
wk,0

x− xk

)
+

fk,m−2

(m− 2)!

(
wk,0

(x− xk)2
+

wk,1

x− xk

)

+ · · ·+ fk,0

(
wk,0

(x−xk)m
+ · · ·+ wk,m−1

x−xk

)(2.1)

with

drHmn−1(f, x)

dxr

∣∣∣∣
x=xk

= fk,r for r = 0, . . . ,m− 1 and k = 1, · · · , n,(2.2)

where H∗
mn(x) =

∏n
k=1(x− xk)

m and fk,j = f (j)(xk). Denote by h̄k(x) =
ωn(x)
x−xk

= ω′
n(xk)ℓk(x),

then, expression (2.1) can be represented as

Hmn−1(f, x) =

n∑

k=1

fk,0
(
wk,0h̄

m
k (x) +wk,1h̄

m
k (x)(x− xk) + · · ·+ wk,m−1h̄

m
k (x)(x− xk)

m−1
)

+ · · ·+
fk,m−1

(m−1)!
wk,0h̄

m
k (x)(x− xk)

m−1.

(2.3)

Furthermore, from (1.9) and (2.1)-(2.3), we have

wk,0h̄
m
k (x)

∣∣∣∣
x=xk

= 1,

wk,0(h̄
m
k (x))(j) +wk,1(h̄

m
k (x)(x− xk))

(j) + · · ·+wk,j(h̄
m
k (x)(x− xk)

j)(j)
∣∣∣∣
x=xk

= 0

(2.4)

for j = 1, . . . ,m− 1. By using the Taylor expansion of h̄m
k (x) at xk, it leads to

(
h̄m
k (x)(x − xk)

i
)(j)

j!

∣∣∣∣
x=xk

=
(h̄m

k (x))(j−i)

(j − i)!

∣∣∣∣
x=xk

, i = 0, 1, . . . , j − 1.

Thus, from (2.4), we get the following formulas

wk,0 =
1

(ω′
n(xk))m

, wk,j = −

j−1∑

i=0

wk,i

(j − i)!

(
ℓ
m
k (x)

)(j−i)
∣∣∣∣∣
x=xk

, j = 1, 2, . . . ,m− 1.(2.5)

In addition, from the definition of ℓk(x) = ωn(x)
ω′

n(xk)(x−xk)
, it is not difficult to deduce by

applying the Taylor expansion of ωn(x) at x = xk that

(ℓk(x))
(r) ∣∣

x=xk

r!
=

ω
(r+1)
n (xk)

(r + 1)!ω′
n(xk)

:= Mk,r, r = 0, · · · ,m− 1.(2.6)

Set bk,j =

[
ℓmk (x)

](j)
x=xk

j! (j = 0, 1, . . . ,m − 1) and ak,i =
m

(i−1)!

[ ℓ′k(x)
ℓk(x)

](i−1)

x=xk
(i = 1, 2, . . . ,m − 1).

Noting that bk,j = m
j!

[
ℓm−1
k (x)ℓ′k(x)

](j−1)

x=xk
= m

j!

[
ℓmk (x)

ℓ′k(x)
ℓk(x)

](j−1)

x=xk
, it follows by Leibniz formula

that

bk,j =
1

j

j∑

i=1

ak,ibk,j−i, j = 1, 2, . . . ,m− 1; bk,0 = 1.(2.7)

In the following, we shall show that ak,i can be computed from Mk,r, then bk,j can be
evaluated from the recursion (2.7). In fact, ak,i can be calculated from the coefficient of the
Taylor expansion of ℓ′k(x)/ℓk(x) at x = xk by the following lemma.

Lemma 2.1. Let F (x) = A(x)
B(x) =

∑s
j=1 Fj(x − xk)

j−1 + O((x − xk)
s), where A(x) =∑s

j=1 Aj(x − xk)
j−1 + O((x − xk)

s) and B(x) =
∑s

j=1 Bj(x − xk)
j−1 + O((x − xk)

s), then it
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obtains

B1Fj = Aj −
j∑

i=2

BiFj−i+1, j = 1, · · · , s.(2.8)

Proof. The proof is trivial.
Since

ℓk(x) =

m−1∑

r=1

Mk,r−1(x − xk)
r−1 +O((x − xk)

m−1),(2.9)

and

ℓ′k(x) =

m−1∑

r=1

rMk,r(x− xk)
r−1 +O((x − xk)

m−1),(2.10)

by Lemma 2.1 and using Mk,0 = 1 and
ℓ′k(x)
ℓk(x)

= 1
m

∑m−1
r=1 ak,r(x− xk)

r−1 +O((x − xk)
m−1), we

have

ak,1 = mMk,1, ak,i = imMk,i −
i∑

j=2

Mk,j−1ak,i−j+1, i = 2, . . . ,m− 1,(2.11)

and then by (2.5) we get

wk,0 =
1

(ω′(xk))m
, wk,j = −

j−1∑

i=0

wk,ibk,j−i, j = 1, . . . ,m− 1.(2.12)

Thus, if {Mk,r}m−1
r=0 and wk,0 are known, from (2.11) the total computation of {ak,j}m−1

j=0 costs

O(m2) operations, the same as those for {bk,j}m−1
j=0 and {wk,j}m−1

j=0 by (2.7) and (2.12), respec-

tively, and then the implementation of (1.11) with n1 = · · · = nn = m costs O(nm2) operations.

Algorithm 2: The barycentric weights wk,r of the Hermite-Fejér interpolation (2.1) can
also be calculated by another fast way based on the formula given in Szabados [44],

Hmn−1(f, x) =

n∑

k=1

m−1∑

j=0

f (j)(xk)
ℓk(x)

m

j!

m−j−1∑

i=0

[ℓk(x)
−m]

(i)
x=xk

i!
(x− xk)

i+j .(2.13)

We rewrite the interpolation (2.13) in the first barycentric interpolation form

Hmn−1(f, x) = H
∗
mn(x)

n∑

k=1

1

(ω′
n(xk))m

m−1∑

j=0

fk,j

j!

m−j−1∑

i=0

[
ℓk(x)

−m
](i)
x=xk

i!
(x− xk)

i+j−m
,(2.14)

and second barycentric interpolation form

Hmn−1(f, x) =

∑n

k=1
wk,0

∑m−1

j=0

fk,j

j!

∑m−j−1

i=0

[
ℓk(x)−m

](i)
x=xk

i!
(x− xk)

i+j−m

∑n

k=1
wk,0

∑m−1

i=0

[
ℓk(x)

−m
](i)
x=xk

i!
(x− xk)i−m

(2.15)

respectively. Next we concentrate on the computation of b̃k,j :=

[
ℓk(x)

−m
](j)
x=xk

j! (j = 0, 1, . . . ,m−
1). Comparing (2.14) with (2.1), we find that the barycentric weights satisfies

wk,j = b̃k,jwk,0, j = 0, 1, . . . ,m− 1.(2.16)
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From [44], it follows

b̃k,j =
1

j

j∑

i=1

ãk,ib̃k,j−i, j = 1, 2, . . . ,m− 1; b̃k,0 = 1,(2.17)

where ãk,i =
m

(i−1)!

[
1

x−xk
− ω′

n(x)
ωn(x)

](i−1)

x=xk
(i = 1, · · · ,m− 1). Then from ωn(x) = ω′

n(xk)ℓk(x)(x−
xk), it is easy to see that ãk,i =

m
(i−1)!

[ ℓk(x)ω′

n(xk)−ω′

n(x)
ωn(x)

](i−1)

x=xk
= m

(i−1)!

[−ℓ′k(x)
ℓk(x)

](i−1)

x=xk
. Similarly,

by Lemma 2.1 and (2.9)-(2.10), we get

ãk,j = −mMk,1, ãk,j = −jmMk,j −
j∑

i=2

Mk,j−1ãk,j−i+1, j = 2, . . . ,m− 1.(2.18)

Thus, from (2.18) and (2.17), the total computation of barycentric weights {b̃k,r}m−1
r=0 costs also

O(m2) operations if {Mk,r}m−1
r=0 and wk,0 are known.

From the above illustrations, we see that fast computation of Mk,r and wk,0 leads to fast
implementation of higher order barycentric Hermite-Fejer interpolation. We shall show that
for each k, {Mk,r}m−1

r=0 can be rapidly calculated with O(m) operations for Gauss-Jacobi or
Jacobi-Gauss-Lobatto pointsystems.

2.1. Gauss-Jacobi pointsystems. Let {xk}nk=1 be the zeros of the Jacobi polynomial

P
(α,β)
n (x). Thus ωn(x) =

P (α,β)
n (x)
Kn

, where Kn is the leading coefficient of P
(α,β)
n (x). From (2.6),

we get

Mk,r−1 =
ω
(r)
n (xk)

r!ω′
n(xk)

=
drP (α,β)

n

dxr (xk)

r!P ′(α,β)
n (xk)

, r = 1, . . . ,m.

It is known that P
(α,β)
n (x) is the unique solution of the second order linear homogeneous Sturm-

Liouville differential equation

(1 − x2)y′′ + (β − α− (α+ β + 2)x)y′ + n(n+ α+ β + 1)y = 0,(2.19)

from which it is not difficult to deduce that

(1 − x2)y(r+2) + [β − α− (α + β + 2(r + 1))x]y(r+1) + [n(n+ α+ β + 1)
−r(α+ β + r + 1)]y(r) = 0,

(2.20)

for r = 0, 1, . . .. Thus, we have

Mk,r+1 = (α+β+2(r+1))xk+α−β
1−x2

k

1
(r+2)Mk,r +

r(α+β+r+1)−n(n+α+β+1)
1−x2

k

1
(r+2)(r+1)Mk,r−1,(2.21)

with Mk,0 = 1, Mk,1 = α−β+(α+β+2)xk

2(1−x2
k
)

and then {Mk,r}m−1
r=0 can be computed in O(m). Con-

sequently, from (2.6)-(2.7), (2.11)-(2.12), (2.14)-(2.15) and (2.18), the barycentric form (1.11)
with n1 = · · · = nn = m and (2.15) can be achieved in O(nm2) operations if wk,0 is known.

From Wang et al. [57], wk,0 has the explicit form

wk,0 =

[
C(α,β)

n (−1)k+1
√
(1 − x2

k)wk

]m
, k = 1, 2, . . . , n,(2.22)

where wk is the Gaussian quadrature weight corresponding to xk for the Jacobi weight,

C(α,β)
n = σn

Γ(2n+ α+ β + 1)

2n+
α+β+1

2

1√
n!Γ(n+ α+ β + 1)Γ(n+ α+ 1)Γ(n+ β + 1)

and σn = +1 for n odd and σ = −1 for n even. Moreover, both {xk}nk=1 and {wk}nk=1 can be
efficiently calculated by routine jacpts in Chebfun [51] with O(n) operations.
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Additionally, it is worth noting that due to the division of the second barycentric form (1.11)

or formula (2.15), the common factor (C
(α,β)
n )m of weights wk,r from (2.12) and (2.16) can be

cancelled without affecting the value of Hmn−1(f, x) (we call these new weights as simplified
barycentric weights). Then the barycentric weight wk,0 can be simplified as

wk,0 = (−1)m(k+1)

[√
(1 − x2

k)wk

]m
.(2.23)

Comparing these two algorithms with Sadiq and Viswanath’s [36], we find that the new
algorithms cost O(nm2) operations much less than that O(n2m + nm2) given by Sadiq and

Viswanath [36] if n ≫ m. Moreover, due to the cancellation of the common factor (C
(α,β)
n )m,

the computation of {wk,j}m−1
j=0 is quite efficient and stable (see Figures 2.1-2.2 and Tables 2.3-

2.4). Tables 2.1-2.2 show the values of the common factor
(
C

(α,β)
n

)m
with respect to Chebyshev

pointsystem (1.3) and Gauss-Legendre pointsystem, respectively.

Table 2.1(
C

(α,β)
n

)m

with respect to Chebyshev pointsystem (1.3): α = β = −0.5

m = 2 m = 3 m = 4 m = 10

n = 100 1.27876 ∗ 1057 −4.57282 ∗ 1085 1.63523 ∗ 10114 3.41937 ∗ 10285

n = 200 1.02744 ∗ 10117 −3.29335 ∗ 10175 1.05564 ∗ 10234 1.14496 ∗ 10585

n = 500 1.70536 ∗ 10297 −7.04245 ∗ 10445 2.90825 ∗ 10594 1.44238 ∗ 101486

n = 1000 9.13653 ∗ 10597 −8.73318 ∗ 10896 8.34762 ∗ 101195 6.36660 ∗ 102989

Table 2.2(
C

(α,β)
n

)m

with respect to Gauss-Legendre pointsystem: α = β = 0

m = 2 m = 3 m = 4 m = 10

n = 100 2.55114 ∗ 1057 −1.28855 ∗ 1086 6.50829 ∗ 10114 1.08061 ∗ 10287

n = 200 2.05232 ∗ 10117 −9.29755 ∗ 10175 4.21203 ∗ 10234 3.64106 ∗ 10586

n = 500 3.40901 ∗ 10297 −1.99041 ∗ 10446 1.16214 ∗ 10595 4.60408 ∗ 101487

n = 1000 1.82685 ∗ 10598 −2.46919 ∗ 10897 3.33738 ∗ 101196 2.03477 ∗ 102991
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Fig. 2.1. Magnitude of the simplified barycentric weights wk,r by the Algorithm 2 interpolating at the
Chebyshev pointsystem (1.3): k = 1 : 106 and r = 0 : m− 1.

Remark 2.2. The simplified barycentric weights (2.23), in the case m = 1 (wk,0 =

(−1)k+1
√
(1− x2

k)wk), is exact the barycentric weight for the barycentric formula of Lagrange
interpolation at the Jacobi pointsystem {xk}nk=1, which was derived for Chebyshev points of sec-
ond kind in Henrici [27], for Legendre points in Wang and Xiang [56], and extended to Jacobi
points in Hale and Trefethen [26].
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Fig. 2.2. Magnitude of the simplified barycentric weights wk,r by the Algorithm 2 interpolating at Leg-
endre pointsystem: k = 1 : 106 and r = 0 : m− 1.

Table 2.3

The CPU time for computation of the simplified barycentric weights wk,r by the Algorithm 2 at the
Chebyshev pointsystem (1.3): k = 1 : n and r = 0 : m− 1.

m = 2 m = 3 m = 4 m = 10

n = 104 0.011127s 0.012392s 0.012778s 0.026214s
n = 105 0.031632s 0.046582s 0.061328s 0.271533s
n = 106 0.239484s 0.377926s 0.530127s 2.813712s

Table 2.4

The CPU time for computation of the simplified barycentric weights wk,r by the Algorithm 2 at the
Legendre pointsystem: k = 1 : n and r = 0 : m− 1.

m = 2 m = 3 m = 4 m = 10

n = 104 0.166094 0.169577s 0.170217s 0.182489s
n = 105 1.713747s 1.712082s 1.734930s 1.970211s
n = 106 17.445534s 17.745105s 18.010896s 20.098777s

2.2. Jacobi-Gauss-Lobatto pointsystems. Suppose −1 = x1 < x2 < · · · < xn−1 <

xn = 1 are the n zeros of (x2 − 1)P
(α,β)
n−2 (x). Thus from (2.6) we get

Mr−1(x) =
ω
(r)
n (x)

r!ω′

n(x)
=

(x2−1)
(
P

(α,β)
n−2

)(r)
(x)+2rx

(
P

(α,β)
n−2

)(r−1)
(x)+r(r−1)

(
P

(α,β)
n−2

)(r−2)
(x)

r!
(
(x2−1)

(
P

(α,β)

n−2

)
′

(x)+2xP
(α,β)

n−2
(x)
) ,(2.24)

for r = 2 . . . ,m. Especially, Mk,0 = M0(xk) = 1 for k = 1, 2, . . . , n.
For the case xk = ±1, it follows

M1,r−1 = Mr−1(−1) =

(
P

(α,β)

n−2

)(r−1)
(−1)

(r−1)!P
(α,β)

n−2
(−1)

− 1
2

(
P

(α,β)

n−2

)(r−2)
(−1)

(r−2)!P
(α,β)

n−2
(−1)

, r = 2, . . . ,m,(2.25)

Mn,r−1 = Mr−1(1) =

(
P

(α,β)
n−2

)(r−1)
(1)

(r−1)!P
(α,β)
n−2

(1)
+ 1

2

(
P

(α,β)
n−2

)(r−2)
(1)

(r−2)!P
(α,β)
n−2

(1)
, r = 2, . . . ,m,(2.26)

and for the case xk 6= ±1 and r = 2, . . . ,m,

Mk,r−1 = Mr−1(xk) =

(
P

(α,β)
n−2

)(r)
(xk)

r!
(
P

(α,β)
n−2

)
′

(xk)
+ 2xk

x2
k
−1

(
P

(α,β)
n−2

)(r−1)
(xk)

(r−1)!
(
P

(α,β)
n−2

)
′

(xk)
+ 1

x2
k
−1

(
P

(α,β)
n−2

)(r−2)
(xk)

(r−2)!
(
P

(α,β)
n−2

)
′

(xk)
,(2.27)

where

(
P

(α,β)
n−2

)(r)
(xk)

r!
(
P

(α,β)

n−2

)
′

(xk)
can be evaluated by (2.21) with n − 2 instead of n for xk 6= ±1, and for

xk = ±1 by

(
P

(α,β)
n−2

)(r)
(±1)

r!
(
P

(α,β)
n−2

)
(±1)

=
(n− 2)(α+ β + n− 1)− (r − 1)(α+ β + r)

r (±(α+ β + 2r) + α− β)

(
P

(α,β)
n−2

)(r−1)

(±1)

(r − 1)!
(
P

(α,β)
n−2

)
(±1)



11

for r = 1, 2, . . . ,m− 1.

Moreover, from [57], wk,0 has the explicit form of

wk,0 =
[
C

(α,β)
n−2 (−1)k+1

√
ηkŵk

]m
, ηk =





β, k = 1,
α, k = n,
1, otherwise,

(2.28)

where ŵk = wk

1−x2
k

for k = 2, 3, . . . , n− 1,

ŵ1 = 2α+β−1 Γ(β)Γ(β + 1)Γ(n+ α+ 1)n!

Γ(n+ β + 1)Γ(n+ α+ β + 1)
, ŵn = 2α+β−1 Γ(α)Γ(α + 1)Γ(n+ β + 1)n!

Γ(n+ α+ 1)Γ(n+ α+ β + 1)

and {wk}n−1
k=2 is the Gaussian quadrature weight corresponding to {xk}n−1

k=2 . Due to the division
in (2.15), the barycentric weight wk,0 can be simplified as

wk,0 = (−1)m(k+1) (ηkŵk)
m/2

.(2.29)

Figures 2.3-2.4 show magnitude of the simplified barycentric weightswk,r by theAlgorithm 2
interpolating at the Jacobi-Gauss-Lobatto pointsystem with α = β = 1.5 and Legendre-Gauss-
Lobatto pointsystem with n = 106 and m = 2, 3, 4 respectively.
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Fig. 2.3. Magnitude of the simplified barycentric weights wk,r by the Algorithm 2 interpolating at the
Jacobi-Gauss-Lobatto pointsystem with α = β = 1.5: k = 1 : 106 and r = 0 : m− 1.

Fig. 2.4. Magnitude of the simplified barycentric weights wk,r by the Algorithm 2 interpolating at
Legendre-Lobatto pointsystem: k = 1 : 106 and r = 0 : m− 1. wk,1 = 0 except the first and the last term.

Remark 2.3. In the case m = 1 and α = β = 0.5, the nodes {xk}nk=1 are the Chebyshev
points of second kinds

xk = cos

(
k − 1

n− 1
π

)
, k = 1, 2, . . . , n(2.30)

and wk,0 = (−1)k+1ηk with ηk =

{
1
2 , k = 1, n
1, otherwise

derived by Salzer [37].
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Algorithm 1 Barycentric weights at Gauss-Jacobi or Jacobi-Gauss-Lobatto pointsystems

1: Input parameters n, m, α, β.
2: Compute the nodes {xk}nk=1 and simplified barycentric weights {wk,0}nk=1 by jacpts.

3: Compute Mk,r =
ω(r+1)

n (xk)
(r+1)!ω′

n(xk)
(k = 1, · · · , n, r = 1, · · · ,m− 1) by recursion.

4: Compute ak,i = imMk,i −
∑i−1

j=1 ak,jMk,i−j (k = 1, · · · , n, i = 1, · · · ,m− 1).

5: Compute bk,i =
1
i

∑i
v=1 ak,vbk,i−v (k = 1, · · · , n, i = 1, · · · ,m− 1) with bk,0 = 1.

6: Let ck,0 = 1, compute ck,i = −∑i−1
j=1 ck,jbk,i−j (k = 1, · · · , n, i = 1, · · · ,m− 1).

7: Return wk,i = wk,0ck,i (k = 1, · · · , n, i = 0, · · · ,m− 1).

Algorithm 2 Barycentric weights at Gauss-Jacobi or Jacobi-Gauss-Lobatto pointsystems

1: Input parameters n, m, α, β.
2: Compute the nodes {xk}nk=1 and simplified barycentric weights {wk,0}nk=1 by jacpts.

3: Compute Mk,r =
ω(r+1)

n (xk)
(r+1)!ω′

n(xk)
(k = 1, · · · , n, r = 1, · · · ,m) by recursion.

4: Compute ãk,i = −imMk,i −
∑i−1

j=1 ãk,jMk,i−j (k = 1, · · · , n, i = 1, · · · ,m− 1).

5: Compute b̃k,i =
1
i

∑i
v=1 ãk,v b̃k,i−v (k = 1, · · · , n, i = 1, · · · ,m− 1) with b̃k,0 = 1.

6: Return wk,i = wk,0b̃k,i (k = 1, · · · , n, i = 0, · · · ,m− 1).

2.3. Lower order Hermite-Fejér interpolation. In particular, from (2.5), the barycen-
tric weights for lower order Hermite-Fejér barycentric interpolation can be given in the explicit
forms.

• m = 2: wk,1 = −ω′′

n(xk)
ω′

n(xk)
wk,0. Moreover, for the Gauss-Jacobi pointsystem,

wk,1 = (β − α− (α+ β + 2)xk)wk, , k = 1, 2, . . . , n,

while for the Jacobi-Gauss-Lobatto pointsystem,

w1,1 =

(
1 +

(n− 2)(n+ α+ β − 1)

β + 1

)
βŵ1, wn,1 =

(
−1− (n− 2)(n+ α+ β − 1)

α+ 1

)
αŵn

and

wk,1 = (β − α− (α+ β − 2)xk)
ŵk

1− x2
k

, k = 2, . . . , n− 1.

• m = 3:

wk,1 = −3ω′′
n(xk)

2ω′
n(xk)

wk,0, wk,2 =

(
−ω

(3)
n (xk)

2ω′
n(xk)

+
3

2

(
ω′′
n(xk)

ω′
n(xk)

)2
)
wk,0.

• m = 4:

wk,1 = −2ω′′
n(xk)

ω′
n(xk)

wk,0, wk,2 =

(
−2ω

(3)
n (xk)

3ω′
n(xk)

+
5

2

(
ω′′
n(xk)

ω′
n(xk)

)2
)
wk,0

and

wk,3 =

(
−ω

(4)
n (xk)

6ω′
n(xk)

+
5ω′′

n(xk)ω
(3)
n (xk)

3ω′
n(xk)ω′

n(xk)
− 5

2

(
ω′′
n(xk)

ω′
n(xk)

)3
)
wk,0.

3. Illustration of numerical stability and numerical examples. The stability for the
second barycentric formulas for Lagrange interpolation has been extensively studied by Henrici
[27], Berrut and Trefethen [5]. Rigorous arguments that make this intuitive idea precise are
provided by Higham [28, 29]. For more details, see [5, 28, 29].
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These arguments can be directly applied to the second barycentric higher order Hermite-
Fejér formula (2.15) if the barycentric weights can be evaluated well and do not suffer from
overflows or underflows, which makes barycentric interpolation entirely reliable in practice for
small values of m at the pointsystems, such as the Chebyshev pointsystem (1.3) and Jacobi-

Gauss-Lobatto pointsystem for α = β = 1.5, i.e. the roots of (1− x2)P
( 3
2 ,

3
2 )

n−2 (x), studied in this
paper.

To be pointed out especially, although both the Algorithm 1 and Algorithm 2 enjoy the
fast implementation at the cost of O(nm2) operations for pointsystems discussed in Section 2,
the performances are not always same. More specifically, they own the same high accuracy for
small m and different outcomes for larger m. The Algorithm 2 manifests better stability for
larger m in our numerical experiments. Form the descriptions of the two algorithms, we can see
that the first algorithm needs one more step than the second algorithm. This extra step leads
to a great loss of significance due to the fast growth of the entries in these two algorithms for
large m. So, the Algorithm 2 is recommended in practice.

Here, we use four functions to test the accuracy and stability for the second Hermite-
Fejér barycentric interpolation form with Algorithm 2 at the Gauss-Jacobi and Jacobi-Gauss-
Lobatto pointsystems with f(x) = 1/(1+x2), which is analytic in a neighborhood of [−1, 1], C∞

function f(x) = e−1/x2

, and nonsmooth functions f(x) = 1− |x|3. Figures 3.1-3.3 illustrate the
performance of the second barycentric interpolant (2.15) for the above first three functions at
Chebyshev pointsystem (1.3) and Jacobi-Gauss-Lobatto pointsystem with α = β = 1.5 by using
n = 10 : 20 : 2000 grid points and m = 2j−1 (j = 1, 2, . . . , 6) derivatives under the ∞-norm for
the vector ‖f(x)−Hmn−1(f, x)‖∞ at x = −1 : 0.02 : 1.
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Fig. 3.1. ‖f(x)−Hmn−1(f, x)‖∞ at x = −1 : 0.02 : 1 with n = 10 : 20 : 2000 and m = 2j−1 (j = 1, 2, . . . , 6)
for f(x) = 1/(1 + x2) at the Chebyshev pointsystem (1.3) and Jacobi-Gauss-Lobatto pointsystem with α = β =
1.5, respectively.

From these examples, we can see that the barycentric interpolation is quite stable for small
values of m. However, when m is too large, the simplified barycentric weights will suffer from
overflows or underflows too. Figure 3.5 shows the maximum m for a fixed n in the computation
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for f(x) = e−1/x2
at the Chebyshev pointsystem (1.3) and Jacobi-Gauss-Lobatto pointsystem with α = β = 1.5,

respectively.
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for f(x) = 1− |x|3 at the Chebyshev pointsystem (1.3) and Jacobi-Gauss-Lobatto pointsystem with α = β = 1.5,
respectively.
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of the simplified barycentric weights wk,r (k = 1 : n, r = 0 : m− 1) by Algorithm 2 before the
overflows or underflows occurre.
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Fig. 3.4. The maximum number m for a fixed n before the overflows or underflows occurred for Gauss-
Jacobi pointsystem α = β = −0.5 (left) and for Jacobi-Gauss-Lobatto pointsystem α = β = 1.5 (right): n = 10 :
106.

4. Final remarks. It is remarkable that Chebyshev pointsystems (1.3) and (2.32) are
fairly nice in Lagrange polynomial approximation (see [49, 50, 59]). However, for (higher or-
der) Hermite-Fejér interpolation, the Chebyshev pointsystem (2.32) completely fails (see Figure

4.1). The good choice is Chebyshev pointsystem (1.3) or the roots of (1 − x2)P
( 3
2 ,

3
2 )

n−2 (x), since
pointsystem (2.32) is not normal and the latter two pointsystems are strongly normal for m = 2.
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Fig. 4.1. The absolute errors of Hmn−1(f, x)− f(x) at x = −1 : 0.002 : 1 with different m and n by using
Chebyshev pointsystem (2.32) for f(x) = 1

1+x2 .

For strongly normal pointsystem satisfying (1.6), Vértesi [52] proved that for each f ∈
C1[−1, 1],

‖E(f)‖∞ = max
x∈[−1,1]

|H2n−1(f, x)− f(x)| ≤
(
4 +

2

c

)
min

qj∈P2n−2

‖f ′ − qj‖∞

where P2n−2 denotes the set of all polynomials of degree at most 2n− 1 with real coefficients.
If f is analytic or of finite limited regularity, the convergence rate on Hermite-Fejér inter-

polation H2n−1(f, x) at Gauss-Jacobi pointsystem can be improved and given explicitely based
on the asymptotics of the coefficients of Chebyshev series for f .
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Suppose f(x) satisfies a Dini-Lipschitz condition on [−1, 1], then it has the following abso-
lutely and uniformly convergent Chebyshev series expansion (see Cheney [11, pp 129])

f(x) =
∞∑

j=0

′cjTj(x), cj =
2

π

∫ 1

−1

f(x)Tj(x)√
1− x2

dx, j = 0, 1, . . . .(4.1)

where the prime denotes summation whose first term is halved, Tj(x) = cos(j cos−1 x) denotes
the Chebyshev polynomial of degree j.

Lemma 4.1. (i) (Bernstein [4]) If f is analytic with |f(z)| ≤ M in the region bounded by
the ellipse Eρ with foci ±1 and major and minor semiaxis lengths summing to ρ > 1, then for
each j ≥ 0,

|cj | ≤
2M

ρj
.(4.2)

(ii) (Trefethen [49, 50]) For an integer k ≥ 1, if f(x) has an absolutely continuous (k− 1)st
derivative f (k−1) on [−1, 1] and a kth derivative f (k) of bounded variation Vk = Var(f (k)) < ∞,
then for each j ≥ k + 1,

|cj | ≤
2Vk

πj(j − 1) · · · (j − k)
.(4.3)

Lemma 4.2. Suppose {xj}nj=1 are the roots of P
(α,β)
n (x) (α, β > −1), then it follows

(x− xj)ℓj(x) = σn

√
(1 − x2

j)wj

2(α+β+1)/2

√
n!Γ(n+ α+ β + 1)

Γ(n+ α+ 1)Γ(n+ β + 1)
P (α,β)
n (x), j = 1, 2, . . . , n.(4.4)

Proof. Let zn =
∫ 1

−1
(1−x)α(1+x)β [P

(α,β)
n (x)]2dx andKn the leading coefficient of P

(α,β)
n (x).

From Abramowitz and Stegun [1], we have

zn =
2α+β+1

2n+ α+ β + 1
· Γ(n+ α+ 1)Γ(n+ β + 1)

n!Γ(n+ α+ β + 1)
, Kn =

1

2n
Γ(2n+ α+ β + 1)

n!Γ(n+ α+ β + 1)
.

Furthermore, by Hale and Townsend [25] and Wang et al. [57], we obtain

(x− xj)ℓj(x) =
wn(x)
w′

n(xj)
= σn(−1)j

√
K2

n2n(1−x2
j
)wj

2n(2n+α+β+1)zn
wn(x)

= σn(−1)j
√

(1−x2
j
)wj

(2n+α+β+1)zn
P

(α,β)
n (x),

which leads to the desired result (4.4).

Theorem 4.3. Suppose {xj}nj=1 are the roots of P
(α,β)
n (x) (−1 < α, β ≤ 0), then the

Hermite-Fejér interpolation (1.5) at {xj}nj=1 has the convergence rate

‖E(f)‖∞ ≤





4τnM [2nρ2 + (1− 2n)ρ]

(ρ− 1)2ρ2n
(n ≥ 1), if f analytic in Eρ with |f(z)| ≤ M

4τnVk

(k − 1)π(2n− 1)(2n− 2) · · · (2n− k + 1)
, if f, . . . , f (k−1) absolutely continuous

and Vk < ∞, n ≥ k/2, k ≥ 2,

(4.5)
where E(f, x) = f(x)−H2n−1(f, x), and

τn =





O(n−1.5−min{α,β} logn), if −1 < min{α, β} ≤ max{α, β} ≤ − 1
2

O(n2max{α,β}−min{α,β}− 1
2 ), if −1 < min{α, β} ≤ − 1

2 < max{α, β} ≤ 0

O(n2max{α,β}), if − 1
2 < min{α, β} ≤ max{α, β} ≤ 0

.(4.6)
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Proof. Since the Chebyshev series expansion of f(x) is uniformly convergent under the
assumptions of Theorem 4.3, and the error of Hermite-Fejér interpolation (1.5) on Chebyshev
polynomials satisfies |E(Tj , x)| = |Tj(x) − H2n−1(Tj , x)| = 0 for j = 0, 1, . . . , 2n − 1, then it
yields

|E(f, x)| = |f(x)−H2n−1(f, x)| = |
∞∑

j=0

|cj ||E(Tj , x)| ≤
∞∑

j=2n

|cj ||E(Tj , x)|.(4.7)

Furthermore, |E(Tj , x)| = |Tj(x) −
∑n

i=1 Tj(xi)hi(x) −
∑n

i=1 T
′
j(xi)bi(x)|. In the following, we

will fucus on estimates on |E(Tj , x)| for j ≥ 2n.
Notice that the pointsystem is normal which implies hi(x) ≥ 0 for all i = 1, 2, . . . , n and

x ∈ [−1, 1],

1 ≡
n∑

i=1

hi(x) =

n∑

i=1

vi(x)ℓ
2
i (x)

(see [16]) and then

|
n∑

i=1

Tj(xi)hi(x)| ≤
n∑

i=1

hi(x) = 1, j = 0, 1, . . . .(4.8)

Additionally, by Lemma 4.2, it obtains for j = 2n, 2n+ 1, . . . that

|∑n
i=1 T

′
j(xi)bi(x)|

= j|
∑n

i=1 Uj−1(xi)(x− xi)ℓ
2
i (x)|

= j
2(α+β+1)/2

√
n!Γ(n+α+β+1)

Γ(n+α+1)Γ(n+β+1) |P
(α,β)
n (x)

∑n
i=1 Uj−1(xi)

√
(1− x2

i )wiℓi(x)|
= j

2(α+β+1)/2

√
n!Γ(n+α+β+1)

Γ(n+α+1)Γ(n+β+1) |P
(α,β)
n (x)

∑n
i=1 sin((j − 1) arccos(xi))

√
wiℓi(x)|

= jO
(
|P (α,β)

n (x)|
√

‖{wi}ni=1‖∞Λn

)

since
√

n!Γ(n+α+β+1)
Γ(n+α+1)Γ(n+β+1) is decreasing as n increases and then uniformly bounded on n for

−1 < α, β ≤ 0, where Λn = maxx∈[−1,1]

∑n
i=1 |ℓi(x)| is the Lebesgue constant, which, together

with

P (α,β)
n (x) =

{
O(n− 1

2 ), if max{α, β} ≤ − 1
2

O(nmax{α,β}), if max{α, β} > − 1
2

, wi =

{
O(n−2−2min{α,β}), if min{α, β} ≤ − 1

2

O(n−1), if min{α, β} > − 1
2

(see Szegö [45, pp 168, 354]) and

Λn =

{
O(log n), if max{α, β} ≤ − 1

2

O(nmax{α,β}+ 1
2 ), if max{α, β} > − 1

2

([45, pp 338]),

yields

|
n∑

i=1

T ′
j(xi)bi(x)| = jτn.(4.9)

Thus, by (4.8), (4.9) and (1.5), we find |E(Tj , x)| ≤ 2 + jτn for j ≥ 2n, and then the error
of Hermite-Fejér interpolation (4.7) satisfies

|E(f, x)| = |f(x)−H2n−1(f, x)| ≤
∞∑

j=2n

|cj ||E(Tj , x)| = 2τn

∞∑

j=2n

j|cj |,

which, following [59], leads to the desired result.
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From the definition of τn (4.6), we see that when α = β = − 1
2 the convergence order on

n is the lowest. In addition, from Szabados [44] (also see Sadiq and Viswanath [36]), we see
that the convergence of the higher order Hermite-Fejér interpolation (2.15) at the Chebyshev
pointsystem (1.3) satisfies

‖f −Hmn−1(f)‖∞ =

{
O(log n)‖f − p ∗ ‖Cm−1[−1,1], if m is odd
O(1)‖f − p ∗ ‖Cm−1[−1,1], if m is even

(4.10)

where p∗ is the best approximation polynomial of f with degree at most mn− 1 and ‖f − p ∗
‖Cm−1[−1,1] = max0≤j≤m−1 ‖f (j) − (p∗)(j)‖∞.

Numerical examples also illustrate that the roots of (1 − x2)P
( 3
2 ,

3
2 )

n−2 (x) are appropriate to
higher order Hermite-Fejér interpolation. In the future work, we will consider the convergence
rates on this pointsystem.

It is worth noting that the new methods for Hermite barycentric weights at Gauss-Jacobi
pointsystems or Jacobi-Gauss-Lobatto pointsystems can be extended to Jacobi-Gauss-Radau
pointsystems or the roots of other kinds of orthogonal polynomials, such as Laguerre polynomi-
als, Hermite polynomials, etc., based on the works of [20], [57] and Chebfun [51].
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