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A HYPER-SPHERICAL ADAPTIVE SPARSE-GRID METHOD FOR
HIGH-DIMENSIONAL DISCONTINUITY DETECTION

Guannan Zhang ∗ Clayton G. Webster † Max Gunzburger ‡ John Burkardt §

Abstract. This work proposes and analyzes a hyper-spherical adaptive hierarchical sparse-grid
method for detecting jump discontinuities of functions in high-dimensional spaces is proposed. The
method is motivated by the theoretical and computational inefficiencies of well-known adaptive
sparse-grid methods for discontinuity detection. Our novel approach constructs a function represen-
tation of the discontinuity hyper-surface of an N -dimensional discontinuous quantity of interest, by
virtue of a hyper-spherical transformation. Then, a sparse-grid approximation of the transformed
function is built in the hyper-spherical coordinate system, whose value at each point is estimated
by solving a one-dimensional discontinuity detection problem. Due to the smoothness of the hyper-
surface, the new technique can identify jump discontinuities with significantly reduced computational
cost, compared to existing methods. Moreover, hierarchical acceleration techniques are also incor-
porated to further reduce the overall complexity. Rigorous error estimates and complexity analyses
of the new method are provided as are several numerical examples that illustrate the effectiveness
of the approach.

Key words. discontinuity detection, hyper-spherical coordinate system, adaptive sparse grid,
rare events, hierarchical acceleration

1. Introduction. Numerical approximation is an important tool used to define
solution techniques for physical, biological, economic systems. In simulations of such
systems, the relationship between the inputs that drive the system and the outputs,
i.e., the system responses, are described by a multivariate function which is usu-
ally the target of the numerical approximation. Often the target function exhibits
jump discontinuities, which have motivated many research efforts devoted to dis-
continuity detection. Traditionally, discontinuity detection has been associated with
capturing jump discontinuities of a process with respect to temporal and/or spatial
variables; thus, most efforts are restricted to low-dimensional problems. However,
high-dimensional discontinuity detection is of significant importance to cases where
the system outputs depend on a large number of input variables. For example, this
challenge arises in uncertainty quantification (UQ), where physical systems with un-
certainties are described by stochastic partial differential equations (SPDEs) with
random input data. It is well known that an output of interest derived from of the
solution of an SPDE may depend on a large number of random variables that result
from the characterization of the uncertainties. Outputs of interest often contain jump
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discontinuities, sometimes because of singular or other irregular behavior in random
coefficients, and forcing terms, in the SPDE, but can even occur if the input data are
smooth, or because the output of interest itself is defined in terms on non-smooth func-
tions, e.g., indicator functions. Another setting where high-dimensional discontinuity
detection is of importance is in optimization and control problems where again, the
controls are characterized using a large number of parameters and discontinuous cost
functionals often arise. Therefore, the development of novel, accurate, and efficient
numerical techniques for approximating high-dimensional discontinuous functions is
highly desired in the UQ, control, and other communities.

A straightforward approach to resolving the challenges faced when approximating
discontinuous functions is to first subdivide the high-dimensional parameter domain
into several subdomains, in each of which the target function is continuous or even
smoother. Then, in each subdomain, construct a piecewise continuous polynomial
approximation using well-known methods such as sparse-grid interpolants [5, 11, 12]
or even orthogonal polynomial expansions [16, 17]. Obviously, these approaches re-
quire that the boundaries of the subdomains follow the discontinuity manifolds of the
target function. Although such approaches are conceptually easy to understand, they
are severely challenged numerically, when one requires accurate representations of the
detected discontinuities in high dimensions. Moreover, in applications, the evaluation
of the target function often involves expensive simulations of complex models, e.g.,
the repeated execution of a computationally demanding solver for a system of PDEs.
In this case, efficiency is another important criterion to assess the performance of an
algorithm for high-dimensional discontinuity detection. Recently, several attempts
have been made to alleviate the challenges in locating discontinuities. In [1, 2], a
polynomial annihilation approach, originally developed for one and two-dimensional
edge detection, was extended to solve problems in high dimensions. However, such
methods rely on the evaluation of the target function based on a set of local tensor-
product grids, so that the number of function evaluations grows exponentially as the
dimension increases. Improvements were made in [8] by incorporating the adaptive
hierarchical sparse-grid (AHSG) approximation, in order to reduce the computational
cost. The AHSG method has been demonstrated [4,5,15,19,20] to be effective in ap-
proximating high-dimensional smooth functions, but the effectiveness of the AHSG
approximations inextricably relies on the smoothness of the target function. When
approximating a discontinuous function, mesh refinement is invariable needed in the
vicinity of discontinuities, resulting in a significantly deterioration in the sparsity of
the grid, i.e., using an AHSG method, a discontinuity of an N -dimensional function,
which occurs across an N − 1 dimensional hyper-surface, has to be approximated
using a “dense” grid, as illustrated by Example 3.1 in §3.2. This disadvantage dra-
matically limits the applicability of AHSG methods for high-dimensional discontinuity
detection.

To combat these challenges, in this work, we propose a hyper-spherical adaptive
hierarchal sparse-grid (HS-AHSG) method that, for functions in high dimensions con-
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taining jump discontinuities, achieves the desired performance and retains most of the
grid sparsity of AHSG methods, that are known to be effective for the approximation
of smooth functions. The basic idea is to approximate the discontinuity hyper-surface
directly instead of approximating the discontinuous function, motivated by observing
that the hyper-surface itself is often continuous or even smoother. Therefore, the
number of grid points needed to approximate the hyper-surface can be significantly
reduced compared to existing AHSG methods. To achieve this, the first step is to
define a function representation of the N−1-dimensional discontinuity hyper-surface.
Under a mild assumption about its geometry, the hyper-surface is transformed to a
function in a hyper-spherical coordinate system. Note that the transformed function
is defined in the subspace constituted by N − 1 angle coordinates; the function value
at a certain point is the Euclidean distance between the origin of the hyper-spherical
coordinate system and the discontinuity along the direction determined by the N − 1
angles. The next step is to develop an approach to evaluate the transformed function,
i.e., calculating the desired Euclidean distance at a given point. Fortunately, this is
relatively easy and trivial to implement because it reduces to an one-dimensional dis-
continuity detection problem along each of the directions determined by the N − 1
angles. Many existing techniques can be used to fulfill this relatively straight-forward
task, such as the polynomial annihilation or an existing AHSG method. In particular,
if the discontinuous function has a characteristic property (defined in §2), e.g. a char-
acteristic function, then root-finding methods can be applied as well. Based on the
above two steps, an HS-AHSG approximation of the discontinuous hyper-surface can
be constructed in the N−1-dimensional subspace, with the use of the hyper-spherical
coordinate system.

The efficiency of our algorithm is characterized by the total number of function
evaluations required by the HS-AHSG approximation. Thus, the computational com-
plexity is not the number of sparse-grid points, but is the sum of the number of func-
tion evaluations consumed by all the one-dimensional discontinuity detection prob-
lems. Taking the bisection method as an example, the number of iterations required
to achieve a prescribed accuracy is determined by the length of initial search interval.
Thus, to further improve the computational efficiency, we incorporate the hierarchal
acceleration technique proposed in [9] into the HS-AHSG framework. Specifically,
the HS-AHSG approximation on a coarse sparse grid is used to predict the value of
the transformed function at the new added points on a finer sparse grid. In this way,
the length of the initial search interval for each bisection simulation is significantly
reduced, as well as the necessary number of search iterations.

The main contributions of this paper are summarized as follows.

• A comprehensive framework for the HS-AHSG method for high-dimensional
discontinuity detection is constructed .

• The performance of several approaches for the evaluation of the transformed
function are investigated.
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• The computational efficiency of the HS-AHSG method is improved by incorpo-
rating hierarchical acceleration techniques.

• Rigorous error estimates and complexity analyses are provided for the proposed
algorithms.

• Numerical examples illustrating the theoretical results and the efficiency of HS-
AHSG methods.

The rest of the paper is organized as follows. Specific problem definition and
preliminary notions are discussed in §2. In §3, the AHSG method is briefly reviewed
and an example is given to illustrate its disadvantages when attempting to detect,
even moderate dimensional discontinuities. Our main results are given in §4. The
function representation of the discontinuity hyper-surface and its evaluation are dis-
cussed in §4.1 and §4.2, respectively; the basic and accelerated HS-AHSG algorithms
are presented in §4.3 and §4.4, respectively. Rigorous error estimates and complexity
analyses are conducted in §4.5. Extensive numerical tests and comparisons are given
in §5; the results are shown to be consistent with the derived theoretical estimates.
Finally, concluding remarks are given in §6.

2. Problem setting. Let Γ denote an open bounded domain in RN , N ≥ 1,
and let ∂Γ denote its boundary. We assume there exists an N −1 dimensional hyper-
surface in Γ, denoted by γ, separating the domain Γ into disjoint open subdomains Γ1

and Γ2, such that Γ = Γ1∪γ∪Γ2, Γ1∩Γ2 = γ, and Γ1∩γ = Γ2∩γ = Γ1∩Γ2 = ∅. We
observe that the volume of γ in RN is zero and Γ1 and Γ2 are both open along γ. The
boundaries of Γ1 and Γ2 are given by ∂Γ1 =

(
∂Γ ∪ Γ1

)
∪ γ and ∂Γ2 =

(
∂Γ ∪ Γ2

)
∪ γ,

respectively. We consider the generic N -dimensional discontinuous function f(y) :
Γ→ R given by

f(y) =

{
f1(y) if y ∈ Γ1

f2(y) if y ∈ Γ2\γ,
(2.1)

where y = (y1, . . . , yN) ∈ RN and f1(y) and f2(y) are continuous functions in Γ1 and
Γ2\γ, respectively. Based on the fact that f(y) = f1(y) for y ∈ γ ⊆ ∂Γ1, we assume
f(y) has a jump discontinuity on γ such that

f1(y∗) = lim
y→y∗∈γ
y∈Γ1

f1(y) 6= lim
y→y∗∈γ
y∈Γ2

f2(y) < +∞ ∀y∗ ∈ γ, (2.2)

which means, without loss of generality, the discontinuity only occurs when approach-
ing γ from the subdomain Γ2. The goal is to accurately capture the discontinuity
hyper-surface γ. Again, without loss of generality, we also assume that ∂Γ1 is a
continuous hyper-surface such that Γ1 and Γ2 are disjoint. As such, there exists an
continuous function G(y) = 0 such that γ =

{
y ∈ Γ |G(y) = 0

}
, i.e., γ is implicitly

defined by the equation G(y) = 0, and such that the target function f in (2.1) can
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be expressed as

f(y) =

{
f1(y) if G(y) ≥ 0 for y ∈ Γ

f2(y) if G(y) < 0 for y ∈ Γ,
(2.3)

where G(y) > 0 for y ∈ Γ1\γ and G(y) < 0 for y ∈ Γ2\γ. Note that G(y) = 0 is only
an abstract representation of γ and that its availability is not necessary for detecting
the discontinuity. Moreover, for a specific γ, the G(y) is not unique.

In one dimension, (N = 1), γ reduces to one or two points in Γ ⊂ R so that it is
relatively easy to capture the discontinuity of f(y). However, in higher dimensions
(N > 1), detecting discontinuities becomes difficult because γ is, in general, an N −1
dimensional hyper-surface with measure zero in RN . What is worse, there is no direct
information available about the location or geometry of γ, so that we can only rely
on indirect information about f(y) and G(y) to infer the location of γ. In this work,
f(y) in (2.3) is treated as a black-box function, i.e., given any y ∈ Γ as an input,
the function value can be obtained as an output without any knowledge about the
analytical expressions of f(y) or G(y).

Before moving forward, we provide two examples of discontinuous functions of
interest.

Example 2.1. Consider the generic function f(y) : Γ → R defined in (2.3) with
the implicit equation G(y) = 0 given by

G(y) = µ2 −
N∑
n=1

y2
n = 0,

where µ is a positive real constant such that γ =
{
y ∈ RN |G(y) = 0

}
⊂ Γ. In this

case, the discontinuity γ is a sphere in RN with radius µ and ∂Γ1 ∪ ∂Γ = ∅ and
γ = ∂Γ1. There are three specific scenarios one must consider:

(S1) f(y) can be evaluated implicitly through, e.g., f1(y) = sin(y2
1 + · · · + y2

N) and
f2(y) = sin(y2

1 + · · ·+ y2
N) + 0.5;

(S2) f(y) is the characteristic function of Γ1, e.g., f1(y) = 1 and f2(y) = 0;

(S3) Both f(y) and G(y) can be evaluated implicitly. �

Example 2.2. [Probability of an event that depends on the the solution of an
SPDE] Let D denote a bounded domain in Rd, d = 1, 2, 3, and (Ω,F ,P) denote a
complete probability space. Consider the following stochastic boundary value problem:
find u(ω,x) : Ω×D → Rm such that P-almost everywhere in Ω

L(a)(u) = h in D, (2.4)

where the coefficient a(ω,x) of the differential operator L and the right-hand side
h(ω;x) are random fields. As in [3, 11, 12, 18], we assume the random fields a and h
in (2.4) depend on a finite number of uncorrelated bounded random variables, i.e., on
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an N-dimensional random vector y(ω) =
(
y1(ω), . . . , yN(ω)

)
. We denote the image

of yn by Γn = yn(Ω) ⊂ R and define Γ as the interior of
∏N

n=1 Γn. By assuming
that y has a joint probability density function ρ(y) : Γ→ R+ with ρ(y) ∈ L∞(Γ), the
probability space (Ω,F ,P) is mapped to

(
Γ,B(Γ), ρ(y)dy

)
, where B(Γ) denotes the

Borel σ-algebra on Γ and ρ(y)dy the finite measure. According to the Doob-Dynkin
lemma [13], the solution u can be expressed as u

(
y(ω), ·

)
= u(y1(ω), . . . , yN(ω), ·).

In practice, we may be interested in quantifying the probability of an event that
depends on u(y,x). For example, such a quantity of interest is the probability of the
event that the spatial average F (u) = 1

|D|

∫
D
u(y,x)dx exceeds a threshold value u,

where |D| denotes the volume of the spatial (physical) domain D. This probability
can be expressed as

P
(
F (u) ≥ u

)
=

∫
Γ

X{F (u)≥u}(y)dρ(y), (2.5)

where X{F (u)≥u}(y) denotes the characteristic function of the event {F (u) ≥ u}. In
this case, the target function f(y) is the characteristic function X{F (u)≥u}(y) and the
discontinuity hyper-surface γ is determined by the implicit equation G(y) = F (u(y))−
u = 0. �

From the above examples, we observe that, in practice, there may be additional
indirect information available about f(y) andG(y) that can help one capture disconti-
nuities. For instance, in Example 2.2, when defining Γ1 = {y ∈ Γ | X{F (u)≥u}(y) = 1},
the function G(y) can be evaluated as well and the membership of a given y ∈ Γ in
the subdomain Γ1 can be determined by the computable value of f(y). Thus, in this
paper, we consider discontinuity detection problems under one of the following three
assumptions:

A1: Given y ∈ Γ, only f(y) can be evaluated;

A2: Given y ∈ Γ, the value f(y) can determine if f(y) = f1(y) or f(y) = f2(y),
i.e., if y ∈ Γ1 or y ∈ Γ2;

A3: Given y ∈ Γ, both f(y) and G(y) can be evaluated.

It is easy to see that A2 is a sufficient condition for A1 and that A3 is a suffi-
cient condition for both A1 and A2. Under A1, it is known that there exist jump
discontinuities in Γ, but no information about the location of γ can be inferred from
the function values of f(y). In the context of A2, function values of f(y) can in-
dicate the membership of a given point y ∈ Γ in the subdomain Γ1 ∈ Γ, which is
referred to as the characteristic property. Under A3, because G(y) can be evaluated
directly, detecting γ is equivalent to finding all the roots of the implicit equation
G(y) = 0. In one dimension (N = 1), this is straightforward to accomplish us-
ing classic root-finding algorithms, e.g., the bisection method. In higher dimensions,
classic root-finding methods might make it easy to find one root but approximately
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determining the whole surface γ is, in general, difficult. It is natural to look for
more efficient algorithms for dealing with discontinuous functions satisfying A2 or
A3. Such improved methods are discussed in detail in §4.

Because it is almost impossible to solve for the analytical expression describing the
hyper-surface γ, the main goal of our effort is to efficiently construct, in N dimensions,
an accurate approximate hyper-surface, denoted by γ̃. To assess the performance of
our approaches, the accuracy of γ̃ as an approximation of γ is measured by the
distance between γ and γ̃ defined as

e∞ = dist(γ, γ̃) = max
x∈γ

min
x′∈γ̃
|x′ − x|. (2.6)

In addition, as indicated in (2.5), we are also interested in estimating the integral of
f(y) over a subdomain of interest, i.e., either Γ1 or Γ2. Without loss of generality,
the accuracy of γ̃ is thus also assessed by the metric

eint =

∣∣∣∣∫
Γ1

f(y)dy −
∫

Γ̃1

f(y)dy

∣∣∣∣ , (2.7)

where Γ̃1 is the approximation of Γ1 resulting from the approximation γ̃ of γ. On the
other hand, as shown in Example 2.2, the computational cost on evaluating f(y) or
G(y) often dominates the total cost of constructing γ̃, e.g., because of the complexity
of the PDE solver required to perform those evaluations. Thus, we use the number
of function evaluations of either f(y) or G(y) as the metric to assess the efficiency
of constructing γ̃.

As discussed in §1, a straightforward way to estimate the integral
∫

Γ1
f(y)dy is

to use Monte Carlo methods, but the computational cost may not be affordable due
to the slow convergence of such methods. Alternatively, the adaptive hierarchical
sparse-grid (AHSG) method has been employed in discontinuity detection [8], but its
efficiency deteriorates dramatically as the dimension N increases. The new approach
proposed in §4 is a variant of the AHSG method but features much improved efficiency.
To set the stage, before introducing our approach, we will briefly review, in §3, the
standard AHSG method and illustrate its unsatisfactory performance in discontinuity
detection settings.

3. Adaptive hierarchical sparse-grid approximation. In §3.1, we briefly review
hierarchical sparse-grid interpolation that is the foundation of adaptive hierarchical
sparse-grid (AHSG) interpolation. In §3.2, the AHSG method is introduced and its
shortcomings in high-dimensional discontinuity detection is illustrated via a numerical
example.

3.1. Hierarchical sparse-grid interpolation. The goal is to construct a Lagrange
interpolant to a function η(y) : Γ → R. Instead of using standard locally supported
nodal piecewise polynomial bases, we build the interpolant using hierarchical piece-
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wise polynomials [5].
We begin with the one-dimensional hat function having support [−1, 1], given by

ψ(y) = max{0 , 1−|y|}. An arbitrary hat function with support (yl,i−hl, yl,i+hl) can
be generated by dilation and translation, i.e., ψl,i(y) = ψ

(
y+1−ihl

hl
), where l denotes

the resolution level, hl = 2−l+1 for l = 0, 1, . . . denotes the grid size of the level l grid,
and yl,i = i hl − 1 for i = 0, 1, . . . , 2l denotes the grid points of the grid. The basis
function ψl,i(y) has local support with respect to the level l grid and is centered at the
grid point yl,i; the number of grid points in the level l grid is 2l + 1. With V = L2

ρ(Γ),
a sequence of subspaces {Vl}∞l=0 of V of increasing dimension 2l + 1 can be defined as

Vl = span
{
ψl,i(y) | i = 0, 1, . . . , 2l

}
for l ∈ N.

The sequence is dense in V , i.e., ∪∞l=0Vl = V , and nested, i.e., V0 ⊂ V1 ⊂ · · · ⊂
Vl ⊂ Vl+1 ⊂ · · · ⊂ V . Each of the subspaces {Vl}∞l=0 is the standard finite element
subspace of continuous piecewise linear polynomial functions on [−1, 1] that is defined
with respect to the grid having mesh size hl. The set {ψl,i(y)}2l

i=0 is the standard nodal
basis for the space Vl.

An alternative to the nodal basis {ψl,i(y)}2l

i=0 for Vl is a hierarchical basis that we
now construct, starting with the hierarchical index sets Bl =

{
i = 1, 3, 5, . . . , 2l − 1

}
for l ∈ N+ and the sequence of hierarchical subspaces defined by

Wl = span
{
ψl,i(y) | i ∈ Bl

}
for l ∈ N+.

Due to the nesting property of {Vl}∞l=0, we have that Vl = Vl−1 ⊕ Wl and Wl =
Vl/ ⊕l−1

l′=0 Vl′ for l ∈ N+. We also have the hierarchical subspace splitting of Vl given
by Vl = V0 ⊕W1 ⊕ · · · ⊕Wl for l ∈ N.

For each grid level l > 0, the interpolant of a continuous function η(y) in the
subspace Vl in terms of the its nodal basis {ψl,i(y)}2l

i=0 is given by

Ul(η) =
2l∑
i=0

η(yl,i) · ψl,i(y). (3.1)

Due to the nesting property Vl = Vl−1⊕Wl, it is easy to see that Ul−1(η) = Ul
(
Ul−1(η)

)
,

based on which we define the incremental interpolation operator

∆l = Ul − Ul−1 for l ≥ 0 with U−1 = 0. (3.2)

Note that ∆l(η) only involves the basis functions for Wl for l ≥ 1. The interpolant
Ul(η) for any level l > 0 can be then decomposed in the form

Ul(η) = Ul−1(η) + ∆l(η) = · · · = U0(η) +
l∑

l′=1

∆l′(η). (3.3)

Copyright c© by ORNL. Unauthorized reproduction of this article is prohibited.



ORNL/TM-2014/36: G. Zhang, C. G. Webster, M. Gunzburger and J. Burkardt 9

Next we consider the hierarchical sparse-grid interpolation of a multivariate func-
tion η(y) defined, again without loss of generality, over the unit hypercube Γ =
[−1, 1]N ⊂ RN . The one-dimensional hierarchical polynomial basis can be extended
to the N -dimensional domain Γ using tensorization. Specifically, the N -variate basis
function ψl,i(y) associated with the point yl,i = (yl1,i1 , . . . , ylN ,iN ) is defined using

tensor products, i.e., ψl,i(y) :=
∏N

n=1 ψln,in(yn), where l = (l1, . . . , lN) is a multi-index
indicating the resolution level of the basis function. Note that the resolution level can
be different in each of the N directions. The N -dimensional hierarchical incremental
subspace Wl is defined by

Wl =
N⊗
n=1

Wln = span {ψl,i(y) | i ∈ Bl} ,

where the multi-index set Bl is given by

Bl :=

{
i ∈ NN

∣∣∣ iN ∈ {1, 3, 5, . . . , 2lN − 1} for n = 1, . . . , N if ln > 0

iN ∈ {0, 1} for n = 1, . . . , N if ln = 0

}
. (3.4)

Then, a sequence of subspaces {Vl}∞l=0 of the space V = L2
ρ(Γ) can be constructed

using a sparse-grid framework, i.e.,

Vl =
l⊕

l′=0

Wl′ =
l⊕

l′=0

⊕
|l′|=l′

Wl′ , (3.5)

where l = (l1, . . . , lN) ∈ NN is a multi-index and |l| ≡ l1 + · · · + lN ≤ l defines the
resolution level of the sparse polynomial space Vl. Note that full tensor-product space
is defined by simply replacing the index set |i| ≤ l by max{i1, . . . , iN} ≤ l in (3.5).
Similar to the one-dimensional case, {Vl}∞l=0 also has the nesting property such that
Vl = Vl−1 ⊕ Wl, where Wl = Vl

/
⊕l−1
l′=0Vl′ . We also have the hierarchical subspace

splitting of Vl given by Vl = V0 ⊕ W1 ⊕ · · · ⊕ Wl. Then, the level L hierarchical
sparse-grid approximation ηL(y) ∈ VL of the target function η(y) is defined by

ηL(y) =
L∑
l=0

∑
|l|=l

(∆l1 ⊗ · · · ⊗∆lN ) (η)(y)

= ηL−1(y) +
∑
|l|=L

(∆l1 ⊗ · · · ⊗∆lN ) (η)(y)

= ηL−1(y) +
∑
|l|=L

∑
i∈Bl

[η(yl,i)− ηL−1(yl,i)]ψl,i(y),

= ηL−1(y) +
∑
|l|=L

∑
i∈Bl

ωl,iψl,i(y),

(3.6)
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where ωl,i = η(yl,i) − ηL−1(yl,i) denotes the multi-dimensional hierarchical surplus.
This interpolant is a direct extension, via the Smolyak algorithm, of the one-dimensional
hierarchical interpolant. The definition of the surplus wl,i is based on the facts that
ηl(ηl−1(y)) = ηl−1(y) and ηl−1(yl,i)− η(yl,i) = 0 for |l| = l.

We denote by Hl(Γ) = {yl,i | i ∈ Bl} the set of points corresponding to the
subspace Wl. Then, the set of points corresponding to the subspace Wl is given by⋃
|l|=lHl(Γ), and the sparse grid corresponding to the interpolant ηL is given by

HL(Γ) =
⋃
|l|≤L

Hl(Γ),

whereHl(Γ) is also nested, i.e., Hl−1(Γ) ⊂ Hl(Γ). In addition, with ∆H0(Γ) = H0(Γ),
we denote by ∆Hl(Γ) = Hl(Γ)\Hl−1(Γ) the set of newly added sparse grid points on
level l.

3.2. Adaptive hierarchical sparse-grid interpolation. By virtue of the hierar-
chical surpluses ωl,i, the interpolant in (3.6) can be represented in a hierarchical
manner, i.e.,

ηL(y) = ηL−1(y) + ∆ηL(y),

where ηL−1(y) is the sparse-grid interpolant in VL−1 and ∆ηL(y) is the hierarchical
surplus interpolant in the subspace WL. According to the analysis in [5], for smooth
functions, the surpluses ωl,i of the sparse-grid interpolant ηL(y) tend to zero as the
resolution level L tends to infinity. For example, in the context of using piecewise-
linear hierarchical bases and η(y) having bounded second-order weak derivatives with
respect to y, the surplus ωl,i can be bounded as

|ωl,i| ≤ Csurp2−2·|l| for i ∈ Bl, (3.7)

where the constant Csurp is independent of the level |l|. Furthermore, the smoother
the target function is, the faster the surplus decays. This provides a good avenue for
constructing adaptive sparse-grid interpolants using the magnitude of the surplus as
an error indicator, especially for irregular functions having, e.g., steep slopes or jump
discontinuities. Another adaptive sparse-grid approach using wavelet coefficients to
guide mesh refinement is described in [6].

We first focus on the construction of one-dimensional adaptive grids and then
extend the adaptivity process to multi-dimensional sparse grids. As shown in Figure
1, the one-dimensional hierarchical grid points have a tree-like structure. In general,
a grid point yl,i on level l has two children on level l+1, namely yl+1,2i−1 and yl+1,2i+1.
Special treatment is required when moving from level 0 to level 1, where we only add
a single child y1,1. At each successive interpolation level, the basic idea of adaptivity
is to use the hierarchical surplus as an error indicator to detect the smoothness of
the target function and refine the grid by adding two new points on the next level
for each point for which the magnitude of the surplus is larger than the prescribed
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error tolerance. For example, in Figure 1, we illustrate the 6-level adaptive grid
for interpolating the function η(y) = exp[−(y − 0.4)2/0.06252] on [0, 1] with error
tolerance 0.01. Because the magnitude of every surplus is larger than 0.01 for all
points in levels 0, 1, and 2, as mentioned above, one point is added to the level 0
points and 2 points are added at levels 1 and 2. This takes us to level 3 where we find
that only 1 point, namely y3,3, has a surplus whose magnitude is larger than 0.01, so
only two new points are added on level 4. If we continue through levels 5 and 6, we
end up with the 6-level adaptive grid with only 21 points (points in black in Figure
1), whereas the 6-level non-adaptive grid has a total of 65 points (points in black and
gray in Figure 1).

y1 , 1

y0 , 0 y0 , 1

y2 , 1 y2 , 3

y3 , 1 y3 , 3 y3 , 5 y3 , 7

y4 , 1 y4 , 3 y4 , 5 y4 , 7 y4 , 9 y4 , 1 1 y4 , 1 3 y4 , 1 5

y5 , 1 y5 , 3 y5 , 5 y5 , 7 y5 , 9 y5 , 1 1 y5 , 1 3 y5 , 1 5 y5 , 1 7 y5 , 1 9 y5 , 2 1 y5 , 2 3 y5 , 2 5 y5 , 2 7 y5 , 2 9 y5 , 3 1

y6 ,1 y6 ,3 y6 ,5 y 6 ,7 y 6 ,9 y 6 ,1 1 y6 ,1 3 y6 ,1 5 y6 ,1 7 y6 ,1 9 y6 ,2 1 y 6 ,2 3 y 6 ,2 5 y 6 ,2 7 y6 ,2 9 y6 ,3 1 y6 ,3 3 y6 ,3 5 y6 ,3 7 y 6 ,3 9 y 6 ,4 1 y 6 ,4 3 y6 ,4 5 y6 ,4 7 y6 ,4 9 y6 ,5 1 y6 ,5 3 y 6 ,5 5 y 6 ,5 7 y 6 ,5 9 y6 ,6 1 y6 ,6 3

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

0 0.2 0.4 0.6 0.8 1

0.25

0.5

0.75

1

u(y ) = exp

[
−

(

y − 0 .4

0 .0625

)2
]

Figure 1: A 6-level adaptive sparse grid for interpolating the one-dimensional function
η(y) = exp[−(y − 0.4)2/0.06252] on [0, 1] picture on the bottom plot with an error
tolerance of 0.01. The resulting adaptive sparse grid has only 21 points (black points)
whereas the full grid has 65 points (black and gray points).

It is a trivial matter to extend the adaptivity from the one-dimension to the multi-
dimensional adaptive sparse grid. In general, a grid point in a N -dimensional space
has 2N children which are also the neighbor points of the parent node. We start with
an isotropic sparse grid of level Lmin and build an approximation ηLmin

(y) in order
to capture the main profile of the target function. Note that the children of a parent
point correspond to hierarchical basis functions on the next interpolation level. Thus,
for L ≥ Lmin, we only add those grid points on level L whose parent on level L − 1
has a surplus greater than the prescribed tolerance. In this way, the sparse grid can
be refined locally and we end up with an adaptive sparse grid which is a sub-grid of
the corresponding isotropic sparse grid.
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However, according to the analysis in [5], such a mesh refinement strategy will not
stop automatically if the target function has jump discontinuities because the surplus
will not decay to zero around the discontinuities. To mandate the termination of
the refinement iteration, one has to set a maximum allowable resolution level Lmax,
i.e., one stops refining the sparse grid when L = Lmax. Hence, the N -dimensional
adaptive sparse-grid interpolant of level L with the error tolerance being α > 0 can
be represented by

ηL,α(y) =
L∑
l=0

∑
|l|=l

∑
i∈Bαl

ωl,iψl,i(y), (3.8)

where L ≤ Lmax and the multi-index set Bα
l ⊆ Bl is defined by Bα

l =
{
i ∈ Bl | |ωl,i| ≥

α
}
. Note that Bα

l = Bl for |l| ≤ Lmin; for Lmin < L ≤ Lmax, Bα
l is an optimal

multi-index set that contains only the indices of the basis functions corresponding to
surplus magnitudes larger than the tolerance α. However, in practice, the function
η(y) needs to be evaluated at a certain number of grid points yl,i with |ωl,i| ≤ α in
order to detect when mesh refinement can stop. The corresponding adaptive sparse
grid is represented by HL,α(Γ) =

⋃L
l=0 ∆Hl,α(Γ), where ∆Hl,α(Γ) = ∆Hl(Γ) for

l = 0, . . . , Lmin, and ∆Hl,α(Γ) for l = Lmin +1, . . . , Lmax, only contains the sparse grid
points added by the mesh refinement. Note that if the target function is continuous
or smoother, the mesh refinement may stop at a level L smaller than the maximum
allowable level Lmax.

In the literature, the AHSG method has been used to approximate irregular func-
tions [5, 10], e.g., having steep slopes, sharp transitions, or jump discontinuities, in
low dimensional spaces (N ≤ 3). However, in these cases, the AHSG method can-
not achieve the desired efficiency as in approximating smooth functions. What is
worse, the AHSG approach will eventually converge slower than a simple Monte
Carlo method, even for a moderate 4-dimensional discontinuous function, as shown
in the following example.

Example 3.1. The target f(y) is the characteristic function in RN given by

f(y) =

{
1 if 1− y2

1 − · · · − y2
N ≥ 0,

0 otherwise,
(3.9)

where the discontinuity hyper-surface γ is the unit hyper-sphere in RN . For N =
1, 2, 3, 4, Lmin = 4, and Lmax = 100, we build AHSG approximation fL,α(y) with
α = 0.01. The error is measured by the metric eint defined in (2.7). Because the
surplus will not decay to zero around the hyper-sphere, mesh refinement will not stop
until the level L reaches Lmax. Thus, we compute and plot, in Figure 2, of the error
eint vs. the number of function evaluations, by increasing the resolution level L up
to Lmax. For comparison, the error of Monte Carlo simulations are also plotted in
Figure 2. We observe that the AHSG approximation outperforms Monte Carlo in
the one and two-dimensions, but performs similarly in three dimensions, and, in four
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dimensions, Monte Carlo outperforms AHSG.
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Figure 2: The error in the approximations of the integral of f(y) given by (3.9) vs. the
number of function evaluations, using the AHSG and Monte Carlo methods with
N = 1, 2, 3, 4 for (a) the AHSG approximations with a piecewise-linear hierarchical
basis and (b) the AHSG approximations with a piecewise-quadratic hierarchical basis.

To investigate the reason of such failures, we plot, in Figure 3, the resulting adap-
tive sparse grids in the two and three dimensions for an error eint < 0.01. Note that
mesh refinement places a dense set of grid points in the vicinity of the discontinuities,
resulting in a loss of the desired grid sparsity. In fact, the N-dimensional hypershere
γ, across which the function is discontinuous, is approximated by an extremely dense
grid. It is the loss of the sparsity that makes the AHSG approximation fail when
attempting discontinuity detection in high-dimensional space. Moreover, because the
target function f(y) is discontinuous, the accuracy of the AHSG approximation can-
not be improved by using high-order hierarchical basis [5]. In fact, the accuracy is
worse for piecewise-quadratic approximations than it is for piecewise-linear approxi-
mations; see Figure 2.

4. Hyper-spherical adaptive sparse-grid method for discontinuity detection.
In this section, we propose a hyper-spherical adaptive hierarchical sparse-grid (HS-
AHSG) method that overcomes the disadvantages of the AHSG method for high-
dimensional discontinuity detection. The basic idea is to directly approximate the
discontinuity hyper-surface γ itself, instead of refining the sparse grid in its vicinity,
i.e., instead of refining in a neighborhood of γ having non-zero volume in RN . Unlike
the discontinuous function f(y) in (2.3), the hyper-surface γ is usually smooth, so
that the drawbacks of the AHSG method mentioned above can be avoided when
directly approximating γ. However, in general, the hyper-surface γ is not a function
in the Cartesian coordinate system in RN , so that the hyper-spherical transformation
is introduced into our approach to convert γ into a function in the hyper-spherical
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Figure 3: The grids produced by the AHSG method for approximating the integral
of f(y) given by (3.9) with linear hierarchical basis and eint < 0.01: (a) the two-
dimensional sparse grid has 969 points; (b) the three-dimensional sparse grid has
936,093 points.

coordinate system. Details about the conversion and the evaluation of the transformed
function are discussed in §4.1 and §4.2, respectively. The main HS-AHSG algorithm
is described in §4.3. In §4.4, the efficiency of the proposed algorithm is improved by
incorporating the hierarchal acceleration technique proposed in [7]. Rigorous error
estimate and ε-complexity analyses are provided in §4.5, for the algorithms discussed
in §4.3 and §4.4.

4.1. Representation of the discontinuity surface in the hyper-spherical coor-
dinate system. A hyper-spherical coordinate system is a generalization of the two-
dimensional polar and three-dimensional spherical coordinate systems. It has: one
radial coordinate r ranging over [0,∞); one angular coordinate θN−1 ranging over
[0, 2π) and; N − 2 angular coordinates θ1, . . . , θN−2 ranging over [0, π). Denoting
by Γs = [0, π)N−2 × [0, 2π), the relation between the hyper-spherical coordinates
(r, θ1, . . . , θN−1) ∈ [0,∞) × Γs and the Cartesian coordinates y = (y1, . . . , yN) ∈ RN

is given by 

y1 = y0,1 + r cos(θ1)

y2 = y0,2 + r sin(θ1) cos(θ2)

y3 = y0,3 + r sin(θ1) sin(θ2) cos(θ3)

...

yN−1 = y0,N−1 + r sin(θ1) · · · sin(θN−2) cos(θN−1)

yN = y0,N + r sin(θ1) · · · sin(θN−2) sin(θN−1),

(4.1)

where y0 = (y0,1, . . . , y0,N) denotes the origin of the hyper-spherical coordinate sys-
tem. Based on this transformation, we would like to transform the discontinu-
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ity hyper-surface γ defined by the implicit equation G(y) = 0 in (2.3) into the
hyper-spherical coordinate system, and represent it by an explicit function of θ =
(θ1, . . . , θN−1). To achieve this, we make the following assumption on the geometry
of the subdomain Γ1 and the origin y0.

Assumption 4.1. For the underlying domain Γ = Γ1 ∪ γ ∪Γ2 in (2.1), we assume
that Γ1 is a star-convex domain in RN and that a point y0 in Γ1 is given such that,
for all y ∈ Γ1, the line segment {y0 + ty | t ∈ [0, 1]} from y0 to y is in Γ1.

Remark 4.2. When Γ1 is a convex domain, it is also star-convex and any point in
Γ1 can be used as the origin y0; the function given in Example 2.1 provides an example
of this case. If y0 is not known a priori, it can be obtained by Monte Carlo sampling
in Γ, as long as f(y) has the characteristic property. In practice, y0 is sometimes
available for the problem of interest. For instance, as discussed in Example 2.2, the
interest of investigating the probability of an event usually results from the occurrence
of such event in a physical experiment with a specific set of parameter values. In this
case, these values can be used to define the origin y0. On the other hand, if Γ1 is not
convex, the set of points qualified to be used as y0 is only a subset of Γ1. In this case,
especially when the target function has no characteristic property, it is much more
difficult to choose a qualified y0.

Based on the transformation (4.1) with origin y0 satisfying Assumption 4.1, there
exists a unique N − 1 dimensional continuous function g(θ) : Γs → [0,∞) such that
∂Γ1 = {(g(θ),θ) | ∀θ ∈ Γs}. The value of g(θ) is the Euclidean distance between
the origin y0 and ∂Γ1 along the direction θ. Under the definitions in §2, given
θ ∈ Γs, there are two possibilities for the location of (g(θ),θ), i.e., (g(θ),θ) ∈ ∂Γ ∪
∂Γ1 or (g(θ),θ) ∈ γ ⊆ ∂Γ1. Thus, g(θ) is the desired function representation of
the discontinuity hyper-surface γ. Unlike the implicit equation G(y) = 0, g(θ) is
an explicit representation of γ, so that it becomes feasible to estimate γ directly
by approximating g(θ) in the bounded domain Γs. However, Assumption 4.1 only
guarantees the existence of g(θ) and the value of g(θ) at θ ∈ Γs is unknown a priori.
Therefore, a strategy of evaluating g(θ) is provided in §4.2.

Before moving forward, for clarity, in Table 1 we list and explain the notations
used in the sequel.

4.2. Evaluation of the function representation of γ. We now investigate how
the transformed function g(θ) of the discontinuity hyper-surface γ can be evaluated
at a given point θ ∈ Γs. Essentially, taking advantage of the hyper-spherical transfor-
mation, the evaluation of g(θ) becomes a discontinuity detection problem for a one-
dimensional function fθ(r) in the interval [Sr(y0), Sr(βθ)]. If (g(θ),θ) ∈ ∂Γ ∩ ∂Γ1,
then fθ(r) is a continuous function on the line segment {y0 + tβθ | t ∈ [0, 1]}, such
that g(θ) = |βθ − y0|; if (g(θ),θ) ∈ γ ⊂ ∂Γ1\∂Γ, then fθ(r) is discontinuous at
r = g(θ) so that g(θ) can be estimated by capturing the discontinuity of fθ(r). Un-
der Assumption A1 given in §2, we cannot distinguish in advance whether fθ(r) is
continuous or discontinuous in [Sr(y0), Sr(βθ)], so that one needs to first approximate
the whole profile of fθ(r), then identify the existence and location of the discontinu-
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Table 1: Definition of notations

Notation Explanation

g(θ) the function representation of ∂Γ1 in Γs = [0, π)N−2×
[0, 2π)

g̃(θ) the approximation of g(θ)

S(y) the transformation from Cartesian coordinates y to
hyper-spherical coordinates (r,θ)

S−1(y) the inverse transformation of S(y)

Sr(y) the transformation from y to the radial coordinate r

Sθ(y) the transformation from y to the angular coordinates
θ = (θ1, . . . , θN−1)

βθ the Cartesian coordinates (βθ,1, . . . , βθ,N) of the inter-
section point of ∂Γ ∩ ∂Γ1 and the ray from y0 along
the direction θ

fθ(r) the target function f restricted to the ray along the
direction θ, i.e.,fθ(r) = f(S−1(r,θ))

ity by analyzing the approximation. However, in the context of A2 or A3, relying
on the characteristic property, root-finding approaches can be employed to improve
the efficiency of searching. We discuss the evaluation of f(y) in the absence of the
characteristic property in §4.2.1 and with the characteristic property in §4.2.2.

4.2.1. f(y) without the characteristic property. Under Assumption A1, f(y)
can be evaluated at a given point y ∈ Γ, but one cannot determine whether or not
the point y is in Γ1 ∪ γ from the value of f(y). For each θ, because fθ(r) is a one-
dimensional function of r, we use the one-dimensional ASGH method to construct an
adaptive approximation of fθ(r) in the interval [Sr(y0), Sr(βθ)]. As shown in Figure 1,
the adaptivity will automatically refine in the region where fθ(r) has large variations,
including jump discountinuities. To find a value g̃(θ) such that |g̃(θ) − g(θ)| ≤ τ ,
an adaptive interpolant is constructed by setting η = fθ in (3.8), with the maximum
level of the adaptive grid being Lmax = dlog2(|y0−βθ|/τ)e. Note that the hierarchical
surplus decays to zero as the level L increases in the smooth region of fθ(r), but
not near the jump discontinuity. Thus, if the mesh refinement stops automatically
at a level L < Lmax, it means that fθ(r) is continuous in [Sr(y0), Sr(βθ)] so that
g(θ) = |βθ − y0| and (g(θ),θ) ∈ ∂Γ ∪ ∂Γ1. Otherwise, due to Assumption 4.1, fθ(r)
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has only one jump discontinuity at (g(θ),θ) and thus g̃(θ) can be determined by

(r1, r2) = arg max
r,r′∈HLmax ([Sr(y0),Sr(βθ)])

|fθ(r)− fθ(r′)|
|r − r′|

and g̃(θ) =
1

2
(r1 + r2),

where [r1, r2] is the interval which contains the largest variation of fθ(r) based on the
available samples in HLmax([Sr(y0), Sr(βθ)]). If τ is sufficiently small, then we have
g(θ) ∈ [r1, r2] with |r1 − r2| < τ .

4.2.2. f(y) with characteristic property. Under Assumptions A2 or A3, be-
cause the function value of f(y) does decide on the membership of a given point y ∈ Γ
in the subdomain Γ1 ∪ γ ∈ Γ, we can take advantage of such information to infer the
existence or the location of the jump discontinuity of fθ(r) for any θ ∈ Γs. Specifi-
cally, to evaluate g(θ) at θ ∈ Γs, we first evaluate f(y) at y = βθ. If f(βθ) = f1(βθ),
then(g(θ),θ) ∈ ∂Γ∩∂Γ1 and |βθ − y0| is the exact value of g(θ). Otherwise, we have
(g(θ),θ) ∈ γ ⊂ ∂Γ1 and g(θ) is the location of the jump discontinuity of the function
fθ(r) which can be represented by

fθ(r) =

{
f1

(
S−1(r,θ)

)
if r ≤ g(θ)

f2

(
S−1(r,θ)

)
if r > g(θ),

where S−1(r,θ) ∈ Γ. Due to the characteristic property, several root-finding ap-
proaches can be applied to estimate the discontinuity of fθ(r). The simplest choice
is the bisection method. We start with r−1 = 0 and r0 = |βθ − y0|, where fθ(r−1) =
f1(S−1(r−1,θ)) and fθ(r0) = f2(S−1(r0,θ)). In the k-th iteration, we have rk =
(rk−1 + rk−2)/2, where fθ(rk−1) = f1(S−1(rk−1,θ)) and fθ(rk−2) = f2(S−1(rk−2,θ)).
For a prescribed accuracy τ such that |g̃(θ) − g(θ)| ≤ τ , the necessary number of
iterations K is given by

K =
⌈

log2

(
|y0 − βθ| /τ

)⌉
(4.2)

and the approximation is defined by g̃(θ) = (rK + rK−1)/2. Note that the number of
iterations K needed for bisection is the same as the maximum level Lmax needed for
the one-dimensional AHSG method. Both methods have grids of the same minimum
resolution for Lmax = K, but the bisection method requires fewer number of function
evaluations because it only add one neighboring point at each iteration whereas the
AHSG method adds two neighboring points at a time. Thus, the bisection method is
preferable when f(y) has the characterization property.

In case f(y) satisfies Assumption A3, i.e., the function G(y) in (2.3) can be
evaluated, other root-finding methods with faster convergence rates can be used to
improve the efficiency of the search along the direction of θ ∈ Γs. For instance, the
target function in Example (2.2) is a characteristic function and G(y) = u−F (u(y))
can be evaluated for each y ∈ Γ. The discontinuity of fθ(r) can also be detected
by searching the root of G(S−1(r,θ)) = u − F (u(S−1(r,θ))) = 0. If G(y) is smooth
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with respect to r, Newton’s method or the secant methods can be used to achieve
the desired accuracy with fewer iterations compared to the bisection method. In this
work, we use the Regula Falsi method [14], a variant of the secant method. As is the
case of using the bisection method, we start with r−1 = 0 and r0 = |βθ − y0|, where
G(S−1(r−1,θ)) ≥ 0 and G(S−1(r0,θ)) < 0. In the k + 1-th iteration, rk+1 is defined
by

rk+1 = rk −G(S−1(rk,θ)) · rk − rk′
G(S−1(rk,θ))−G(S−1(rk′ ,θ))

, (4.3)

where k′ is the maximum index less than k such that G(S−1(rk,θ)) ·G(S−1(rk′ ,θ)) <
0. It is known that the Regula Falsi method converges slower than the secant
method but the iterates generated by (4.3) are all contained within the initial in-
terval [Sr(y0), Sr(βθ)]. Thus, one does not need to worry about the issue of getting
negative rk from (4.3). When |rk − rk′| becomes sufficiently small, one can switch to
the secant method to obtain faster convergence.

4.3. The hyper-spherical adaptive hierarchical sparse-grid algorithm. We now
describe a complete procedure for the HS-AHSG method. Under Assumption 4.1, the
hyper-surface γ can be represented by the transformed function g(θ) and we would
like to build an adaptive sparse-grid interpolant of g(θ) in the N − 1 dimensional
domain Γs. At each grid point θl,i, g(θl,i) is estimated by g̃(θl,i) using the approaches
discussed in §4.2. Thus, we actually construct an interpolant of the approximation
g̃(θ). As discussed in §3.2, for fixed Lmin, Lmax, and α, the adaptive sparse-grid
interpolant at level L (Lmin ≤ L ≤ Lmax) is defined by setting η(θ) = g̃(θ) in (3.8),
i.e.,

g̃L,α(θ) =
L∑
l=0

∑
|l|=l

∑
i∈Bαl

ω̃l,l · ψl,i(θ), (4.4)

where the surpluses { ω̃l,i | |l| ≤ L, i ∈ Bα
l } are computed based on the set of approx-

imate function values {
g̃(θl,i)

∣∣ θl,i ∈ HL,α(Γs)
}
.

Recall that if (g(θl,i),θl,i) is on the boundary ∂Γ ∩ ∂Γ1, g̃(θl,i) = g(θl,i) has no
numerical error; otherwise, g̃(θl,i) is computed by either the one-dimensional AHSG
method discussed in §4.2.1 or one of the root-finding methods discussed in §4.2.2.
The approximated hyper-surface γ̃ is given by

γ̃ =
{

(g̃L,α(θ),θ)
∣∣ θ ∈ Γs

}
.

Algorithm 1 is the main algorithm we use to construct our HS-AHSG approximation,
where the bisection method is used under the Assumption A2.

By building the approximation g̃L,α(θ), we decompose a high-dimensional discon-
tinuity detection problem to a set of one-dimensional discontinuity detection prob-
lems which are much easier to solve than the original problem. Because g(θ) is a
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Algorithm 1: The hyper-spherical adaptive hierarchical sparse-grid approxima-
tion

Initialize N , Lmin, Lmax, α, τ , y0

l = −1

while l = −1 or
{

∆HL,α(Γs) 6= ∅ and l + 1 ≤ Lmax

}
do

Generate ∆Hl+1,α(Γs)

for θl,i ∈ ∆Hl+1,α(Γs) do

Search βθl,i = (βθl,i,1, . . . , βθl,i,N) ∈ Γ

if f(βθl,i) = f1(βθl,i) then

g̃(θl,i) = |y0 − βθl,i|

else

Define K =
⌈

log2

(
|y0 − βθl,i |/τ

) ⌉
Run bisection g̃(θl,i) = rK where |rK − g(θl,i)| ≤ |βθl,i − y0|/2K

end if

ω̃l,i = g̃(θl,i)− g̃L,α(θl,i)

end for

Update to Hl+1,α(Γs) by adding ∆Hl+1,α(Γs)

l = l + 1

end while

smooth function, the mesh refinement may automatically stop at a level L ≤ Lmax.
As mentioned in §2, the cost of function evaluations usually dominates the total com-
putational cost. The total cost of constructing the HS-AHSG approximation g̃L,α(θ)
is given by

Ctotal =
L∑
l=0

∑
|l|=l

∑
i∈Bαl

M τ
l,i · ζ, (4.5)

where ζ is the cost of a single function evaluation of either f(y) or G(y) and M τ
l,i is

the number of function evaluations for obtaining g̃(θl,i) with the accuracy τ along the
direction θl,i. Note that M τ

l,i = 1 in the sense that f(y) has the characteristic property
and (g(θl,i),θl,i) is on the boundary of Γ. It is well known that the convergence of
either the AHSG method or of root-finding methods heavily depends on the size of
the search interval. So far, the search interval for each θl,i is set to [Sr(y0), Sr(βθ)]
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which is the largest possible interval, because we assume that no knowledge about
the function value g(θl,i) is known a priori. In the next section, the efficiency of
constructing g̃L,α(θ) is improved by taking advantage of its hierarchal structure.

4.4. Accelerated approximation using sparse-grid hierarchies. As shown in
(4.5), the total computational cost, i.e., the total number of function evaluations, is
the summation of the numbers of function evaluations at all sparse-grid points. At
each grid point, the number of function evaluations is determined by the prescribed
accuracy τ and the initial search interval. So far, the initial search interval for each
θl,i is set to [Sr(y0), Sr(βθl,i)] because we assume no knowledge about the function
value g(θl,i) is known a priori. Such an assumption is true on level L = 0. When at
a level L ≥ 1, by the definition of surplus, we have

g̃(θl,i) = g̃L−1,α(θl,i) + ω̃l,i,

for each new added point θl,i ∈ ∆HL,α(Γs) on level L. As such, the HS-AHSG
approximation of level L − 1 can provide a prediction of the function value at each
new added point on level L, with the error being the unknown surplus. Such a
prediction will become more and more accurate as the surplus decays to zero. Thus,
for L ≥ 1, we utilize the HS-AHSG approximation of the previous level to reduce the
size of the initial search interval in order to accelerate the evaluation of g̃(θ).

Assuming the target function f(y) has the characteristic property, we give the
algorithm for the accelerated bisection method in Algorithm 2 which can be extended
to other approaches with relative ease.

The basic idea behind Algorithm 2 is to set one of the endpoints, e.g., r−1, of the
initial search interval to the predicted value given by the interpolated value g̃L,α(θl,i)
at the new added point θl,i. Besides that, several practical issues in terms of efficiency
and robustness are considered as well. First, one needs to properly define the other
endpoint r0 such that |r−1 − r0| will become smaller as the level L increases and the
interval [r−1, r0] can cover the discontinuity location g(θl,i). Theoretically, r0 can be
chosen according to the upper bound of the error |g(θ)− g̃L,α(θ)|. However, since the
a priori error bound is only known up to a constant, in the computations, we use the
hierarchical surplus, which acts as an a posteriori error estimate, to choose the other
endpoint r0. Specifically, for the new added grid points on level L, we initially set the
length |r−1 − r0| to the maximum magnitude, denoted by ξ, of all surpluses on level
L− 1. Note that such surpluses actually characterize the error of the interpolant on
level L−2 which means ξ is not the optimal choice, but in most cases, it is big enough
to cover the discontinuity and it also decays to zero as L increases. However, in order
to avoid the scenario that both r−1 and r0 are on the same side of the discontinuity,
e.g., r−1, r0 < g(θ), we add two loops in Algorithm 2 to recursively enlarge the length
|r−1 − r0| by ξ until the interval [r−1, r0] covers the value g(θ).

4.5. Error estimates and complexity analyses. In this section, we provide error
estimates and ε-complexity analyses of the proposed HS-AHSG method for approx-
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Algorithm 2: The accelerated bisection method to compute g̃l,i ≈ g(θl,i) for

θl,i ∈ ∆HL,α(Γs), given g̃L,α(θ)

ξ = max
{
|ωl′i′|

∣∣∣ θl′i′ ∈ HL−1,α(Γs) and |l′| = L− 1
}

Search βθl,i = (βθl,i,1, . . . , βθl,i,N) ∈ Γ

r−1 = min
{

max {g̃L−1,α(θl,i), 0} , |y0 − βθl,i |
}

if f(S−1(r−1,θl,i)) = f1(S−1(r−1,θl,i)) then

r0 = min{r−1 + ξ, |y0 − βθl,i|}

while f(S−1(r0,θl,i)) 6= f2(S−1(r0,θl,i)) do

r0 = min{r0 + ξ, |y0 − βθl,i |}

end while

else

r0 = max{r−1 − ξ, 0}

while f(S−1(r0,θl,i)) 6= f1(S−1(r0,θl,i)) do

r0 = max{r0 − ξ, 0}

end while

end if

Define K = dlog2 (|r0 − r−1|/τ)e

Run bisection g̃l,i = rK where |rK − g(θl,i)| ≤ |r0 − r−1|/2K

imating the discontinuity hyper-surface γ, i.e., the function g(θ). For simplicity, we
assume the target function f(y) satisfies Assumption A2. The analyses are carried
out in the context of the isotropic sparse-grid interpolation, given in (3.6), coupled

with a bisection method. For the sake of notational convenience, we set N̂ = N − 1
in the following derivation.

First, it is easy to see that the total error e = g(θ)− g̃L(θ) can be decomposed as

e = g(θ)− g̃L(θ) = g(θ)− gL(θ)︸ ︷︷ ︸
e1

+ gL(θ)− g̃L(θ)︸ ︷︷ ︸
e2

, (4.6)

where gL(θ) is the isotropic HS-AHSG approximation of the exact target function
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g(θ). An estimate for e is given in the following lemma.
Proposition 4.3. Under Assumption 4.1, if the transformed function g(θ) has

bounded second-order derivatives, i.e., g(θ) ∈ C2(Γs), then for the error e = e1 + e2

in (4.6) we have the estimate

‖e‖ ≤ Csg2−2L

N̂−1∑
k=0

(
L+ N̂ − 1

k

)
+ 2N̂

(
L+ N̂

N̂

)
τ, (4.7)

where τ is the tolerance used for the bisection method, the constant Csg is independent
of the level L, and the notation ‖ · ‖ denotes the L∞ norm.

Proof. According to the analyses in [5], the first part e1 is the error arising from
the sparse-grid interpolation which is bounded by

‖e1‖ ≤ Csg2−2L

N̂−1∑
k=0

(
L+ N̂ − 1

k

)
,

where the constant Csg only depends on the dimension N̂ and the upper bound of
the L∞ norm of the the second-order derivatives of g(θ). According to the definition
in (3.6), the second part e2 can be written as

e2 = gL(θ)− g̃L(θ) =
L∑
l=0

∑
|l|=l

(
∆l1 ⊗ · · · ⊗∆l

N̂

)
(g − g̃)(θ), (4.8)

where ‖g(θ)−g̃(θ)‖ ≤ τ . Thus, it is seen that estimating e2 is equivalent to estimating
the Lebesgue constant, denoted by ΛN̂,L, of the interpolation operator involved. From
the representation in (3.6), ΛN̂,L can be estimated using triangle inequality, i.e.,

ΛN̂,L ≤
L∑
l=0

∑
|l|=l

Λl ≤
L∑
l=0

∑
|l|=l

N̂∏
n=1

Λln ,

where Λl = ΠN̂
n=1Λln is the Lebesgue constant of ∆l1 ⊗ · · · ⊗ ∆l

N̂
and Λln is the

Lebesgue constant of ∆ln . By the definition in (3.2), it is easy to show that

Λln = sup

{
‖∆ln(g)‖
‖g‖

∣∣∣∣ g is continuous and g 6= 0

}
≤ λln + λln−1,

where λln and λln−1 are the Lebesgue constants of Uln and Uln−1, respectively. In
the context of linear hierarchical polynomials, we have λln = 1. Thus, the Lebesgue
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constant ΛN̂,L can be bounded by

ΛN̂,L ≤
L∑
l=0

∑
|l|=l

N̂∏
n=1

(λln + λln−1) ≤
L∑
l=0

∑
|l|=l

2N̂

= 2N̂
L∑
l=0

(
l + N̂ − 1

N̂ − 1

)
= 2N̂

L∑
l=0

(
l + N̂ − 1

l

)

= 2N̂

(
L+ N̂

N̂

)
.

Thus, the error e2 in (4.8) can be estimated by

‖e2‖ ≤ ΛN̂,L‖g(θ)− g̃(θ)‖ ≤ 2N̂

(
L+ N̂

N̂

)
τ,

which concludes the proof. �
Next, we analyze the cost of constructing g̃L(θ) with the prescribed error ε > 0.

According to the error estimate in Proposition 4.3, a sufficient condition of ‖e‖ =
‖g(θ)− g̃L(θ)‖ ≤ ε is that

‖e1‖ ≤ Csg2−2L

N̂−1∑
k=0

(
L+ N̂ − 1

k

)
≤ ε

2
(4.9)

and
‖e2‖ ≤ 2N̂

(
L+ N̂

N̂

)
τ ≤ ε

2
. (4.10)

Let Cmin denote the minimum cost, i.e., the minimum number of function evaluations,
needed to satisfy the inequalities (4.9) and (4.10). The goal is to determine an upper
bound for Cmin. Note that, for fixed dimension N and level L, the total cost Ctotal is
determined by solving the inequality (4.10). The larger is L, the smaller is τ which
means, when using the bisection method, a greater number of function evaluations
are needed to achieve the accuracy τ . Therefore, the estimation of Cmin has two steps.
Given N and ε, we first determine upper bounds for the minimum L needed to achieve
(4.9); then, we substitute the obtained value into (4.10) to obtain an upper bound
for Cmin.

To perform the first step, we need to estimate the numbers of degrees of freedom
of Vl and Wl for l ≤ L, denoted by |VL| and |Wl|, respectively. The estimation of
|VL| has been studied in [5, 11], but the estimate in [11] is not sufficiently sharp and
the estimate in [5] has no results related |Wl|. In the following lemma, we provide
estimates for |Wl| which directly leads to an estimate of |VL|.
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Lemma 4.4. The dimensions of the subspaces Wl and VL for N̂ ≥ 2, i.e., the
numbers of grid points in ∆Hl(Γs) and HL(Γs), respectively, are bounded by

|Wl| ≤ 2l

(
l + N̂ − 1

N̂ − 1

)
≤ 2l

(
l + N̂ − 1

N̂ − 1

)N̂−1

eN̂−1

for 0 ≤ l ≤ L and, correspondingly,

|VL| ≤ 2L+1

(
L+ N̂ − 1

N̂ − 1

)
≤ 2L+1

(
L+ N̂ − 1

N̂ − 1

)N̂−1

eN̂−1.

Proof. Using the (3.6) and exploiting the nesting structure of the sparse grid, the
dimension of VL can be represented by

|VL| =
L∑
l=0

|Wl| =
L∑
l=0

∑
|l|=l

N̂∏
n=1

(mln −mln−1),

where mln = 2ln + 1 is the number of grid points involved in the one-dimensional
interpolant Uln(·) in (3.1) and m−1 = 0. For the linear hierarchical basis, mln −
mln−1 = 2ln − 1 for ln ≥ 1.

We now derive an upper bound for |Wl| for l ≥ 1. Note that there are
(
N̂−1+l

N̂−1

)
ways to form the sum l with N̂ − 1 + l nonnegative integers, so we have

|Wl| =
N̂∏
n=1

(mln −mln−1)

(
N̂ − 1 + l

N̂ − 1

)
≤ 2l

(
N̂ − 1 + l

)
!(

N̂ − 1
)

! · l!
.

By an inequality from Stirling’s approximation of a factorial, i.e.,

dn ≤ n! ≤ dn

(
1 +

1

4n

)
with dn =

√
2πn

(n
e

)n
, n ∈ N+,
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we obtain that

|Wl| ≤ 2l

(
1 +

1

4(N̂ − 1 + l)

)
dN̂−1+l

dN̂−1 · dl

= 2l

(
1 +

1

4(N̂ − 1 + l)

)√
N̂ − 1 + l√

2πl(N̂ − 1)

(
N̂ − 1 + l

N̂ − 1

)N̂−1(
N̂ − 1 + l

l

)l

≤ 2l

(
l + N̂ − 1

N̂ − 1

)N̂−1(
1 +

N̂ − 1

l

)l

≤ 2l

(
l + N̂ − 1

N̂ − 1

)N̂−1

eN̂−1.

It is easy to see that |W0| satisfies the above inequality as well. This concludes the
proof about |W l|. The estimate for |VL| can be obtained immediately based on the
estimate of |Wl|. �

Next, similar to the analyses in [15], we solve the inequality (4.9) to obtain an
upper bound for L such that the error of the isotropic sparse-grid interpolant gL(θ)
is smaller than the prescribed accuracy ε

2
.

Lemma 4.5. For ε < 2Csg in (4.9), the accuracy ‖e1‖ ≤ ε
2

can be achieved with a
minimum level L such that

L ≤ dLke =

⌈
tkN̂

2 ln 2

⌉
with h =

2e

ln 2

(
2Csg

ε

) 1

N̂

,

where {tk}∞k=0 is a monotonically decreasing sequence defined by

tk = ln(tk−1h) with t0 =
e

e− 1
lnh.

Proof. We observe that the value of the minimal solution of the inequality (4.9)

has two possibilities, i.e., L < N̂ and L ≥ N̂ . In the former case, all values larger
than N̂ are also solutions of (4.9). Hence, we assume the solution of (4.9) is larger

than N̂ . It is also observed that if L ≥ N̂ , we have

N̂−1∑
k=0

(
L+ N̂ − 1

k

)
≤ N̂

(
L+ N̂ − 1

N̂ − 1

)
≤ N̂

(
L+ N̂

N̂

)
≤ N̂

(
2L

N̂

)N̂
eN̂ . (4.11)
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Thus, instead of solving (4.9) directly, it is sufficient to solve

Csg2−2LN̂

(
2L

N̂

)N̂
eN̂ ≤ ε

2
and L ≥ N̂ . (4.12)

Now, we temporarily treat L as a positive real number for convenience and the desired
iteration number is dLe. Let L = tN̂/ ln 4 in (4.12). Then, we have(

2L

N̂

)N̂
eN̂

(
2N̂Csg

ε

)
≤ 22L

⇐⇒
(

t

ln 2

)N̂
eN̂

(
2N̂Csg

ε

)
≤ 4

t
ln 4

N̂

⇐⇒
(
te

ln 2

)(
2N̂Csg

ε

) 1

N̂

≤ 4
t

ln 4

⇐⇒ ln t+ ln

[
e

ln 2

(
2Csg

ε

) 1

N̂

N̂
1

N̂

]
≤ t

⇐= ln t+ ln

[
2e

ln 2

(
2Csg

ε

) 1

N̂

]
≤ t

so that the inequality (4.12) is satisfied with with minimum L given by L = tN̂/ ln 4
if t satisfies

t ≥ ln t+ lnh with h =
2e

ln 2

(
2Csg

ε

) 1

N̂

,

where h > 1 by hypothesis. Letting t0 = e
e−1

lnh, it is easy to verify that

t0 − lnh =
1

e− 1
lnh ≥ 1 + ln

(
1

e− 1
lnh

)
= ln

(
e

e− 1
lnh

)
= ln t0,

and that the inequality (4.12) is satisfied. Furthermore, for k ≥ 0, tk = ln(tk−1h) ≤
tk−1 is also the solution of (4.12) due to the fact that

ln tk + lnh = ln(ln tk−1 + lnh) + lnh ≤ ln tk−1 + lnh = ln(tk−1h) = tk. (4.13)

Thus, the sequence {tk}∞k=0 monotonically converges to a unique solution t∗ such that
t∗ = ln t∗ + lnh. Based on the sequence {tk}∞k=0, we can easily find a sequence of
upper bounds {Lk}∞k=0 for the minimum L satisfying the inequality (4.9). �
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Corollary 4.6. Under Lemma 4.5, for k ∈ N, we have(
Lk + N̂

N̂

)
≤ ε

2N̂Csg

· 22Lk . (4.14)

Proof. It is an immediate result by substituting (4.12) into (4.11) �
We first derive an upper bound for Cmin in the context of the HS-AHSG method

without acceleration.
Theorem 4.7. Under Lemma 4.4 and Lemma 4.5, the minimum total cost Cmin

for building the isotropic sparse-grid approximation to g(θ) with accuracy ε based on
Algorithm 1 satisfies the estimate

Cmin ≤ ζ
α1

N̂

α2 + α3

log2

(
2Csg

ε

)
N̂


α4N̂ (

2Csg

ε

)α5
{
α6 log2

(
2Csg

ε

)
+ α7N̂ + α8

}
,

where Csg is the constant in (4.9) and ζ is the cost of one function evaluation of f(y)
or G(y) in (2.3). The constants α1, · · · , α8 are defined by

α1 = 2, α2 =
2e2

(e− 1)
log2

(
2e

ln 2

)
, α3 =

2e2

(e− 1)
, α4 =

3

2
,

α5 =
1

2
, α6 =

e

e− 1
, α7 =

e

e− 1
log2

(
2e

ln 2

)
+ 1, α8 = 2− log2(Csg).

(4.15)

Proof. According to the definition in (4.5), the minimum total cost Cmin can be
bounded as

Cmin ≤ ζ |VLk |K(τ0, ε, Lk, N̂), (4.16)

where Lk for k ∈ N is determined from Lemma 4.5 and K(τ0, ε, L, N̂) is the necessary
number of iterations for the bisection method to achieve the accuracy ε

2
in (4.10) in

approximating g(θ) at θ ∈ Γs for fixed N̂ , L, ε, and initial search interval length τ0.
We can see that the necessary tolerance τ of the bisection method is determined by
(4.10), i.e.,

τ(N̂ , L, ε) = 2−N̂−1ε

/(
L+ N̂

N̂

)
;

K(τ0, ε, L, N̂) can be represented by

K(τ0, ε, L, N̂) = log2

[
2N̂+1τ0

ε

(
L+ N̂

N̂

)]
, (4.17)

where we temporarily treat K as a positive real number for convenience and the
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desired iteration number is dKe. According to the discussion in §4.2.2, τ0 is set to

|y0−βθ| without any prior knowledge, thus τ0 ≤ (N̂ + 1)
1
2 which is the length of the

diagonal of [0, 1]N . Substituting L0 into (4.17), we have

K(τ0, ε, L0, N̂)

≤ log2

(
2N̂+1τ0

ε

)
+ log2

(
ε

2N̂Csg

22L0

)

= log2

(
2N̂+1τ0

CsgN̂

)
+ 2L0

≤ log2

(
2N̂+1(N̂ + 1)

1
2

CsgN̂

)
+

eN̂

e− 1
log2

[
2e

ln 2

(
2Csg

ε

) 1

N̂

]

≤N̂ +
eN̂

e− 1
log2

[
2e

ln 2

(
2Csg

ε

) 1

N̂

]
+ 2− log2(Csg)

=
e

e− 1
log2

(
2Csg

ε

)
+ N̂

{
e

e− 1
log2

(
2e

ln 2

)
+ 1

}
+ 2− log2(Csg)

=α6 log2

(
2Csg

ε

)
+ α7N̂ + α8.

(4.18)
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On the other hand, substituting L1 into the upper bound of VL1 , we have

|VL1| ≤ 2L1+1

(
L1 + N̂ − 1

N̂ − 1

)
≤ 2L1+1

(
L1 + N̂

N̂

)

≤ 2L1+1

(
ε

2N̂Csg

)
22L1 ≤

(
ε

N̂Csg

)
2

3t1N̂
2 ln 2

=

(
ε

N̂Csg

)
2

3 ln(t0h)N̂
2 ln 2 =

(
ε

N̂Csg

)
t

3
2
N̂

0

[
2e

ln 2

(
2Csg

ε

) 1

N̂

] 3
2
N̂

=

(
ε

N̂Csg

)(
e

e− 1
lnh

) 3
2
N̂ (

2e

ln 2

) 3
2
N̂ (

2Csg

ε

) 3
2

=
2

N̂

(
2Csg

ε

) 1
2

{
2e2

e− 1
log2

[
2e

ln 2

(
2Csg

ε

) 1

N̂

]} 3
2
N̂

=
2

N̂

 2e2

e− 1
log2

(
2e

ln 2

)
+

2e2

e− 1

log2

(
2Csg

ε

)
N̂


3
2
N̂ (

2Csg

ε

) 1
2

= α1

α2 + α3

log2

(
2Csg

ε

)
N̂


α4N̂ (

2Csg

ε

)α5

.

(4.19)

Hence, by substituting (4.18) and (4.19) into (4.16), the proof is finished. �
Next, we analyze the computational cost of the accelerated Algorithm 1 by ex-

ploiting Algorithm 2. Unlike the unaccelerated Algorithm 1 for which the length τ0 of
the initial search interval is set to be of the same scale as the domain Γ, in Algorithm
2, for each new added sparse grid point θl,i with L = |l| ≥ 1, the desired function
value g(θl,i) is firstly predicted by the level L − 1 HS-AHSG interpolant g̃L−1(θl,i),
and then this prediction is used as one endpoint of the initial search interval in the
bisection simulation, i.e., r−1 = g̃L−1(θl,i). The other endpoint is defined by the upper
bound of the error of the prediction, i.e., |g(θl,i)− g̃L−1(θl,i)|. In this case, the interval
[r−1, r0] will include the exact function value g(θl,i). This is slightly different from the
strategy used in Algorithm 2 in which the local error indicator, i.e., the surplus, is
used because the upper bound of |g(θl,i)− g̃L−1(θl,i)| is only known up to a constant.
In the following derivation, the error bound given in (4.7) is still valid, but, at sparse
grid points θl,i for |l| = L, we can obtain a sharper bound for the error of g̃L−1(θ).
The result is provided in the following lemma.

Lemma 4.8. If the transformed function g(θ) has bounded second-order deriva-
tives, then, at a sparse grid point θl,i with L = |l| ≥ 1 and i ∈ Bl(Γs) defined in (3.4),
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the error g(θl,i)− g̃L−1(θl,i) satisfies the estimate∣∣g(θl,i)− g̃L−1(θl,i)
∣∣ ≤ Csurp2−2L + 2N̂τ,

where Csurp is independent of L and τ is the tolerance of the bisection algorithm.

Proof. As in (4.7), we split the error into two parts, i.e.,

g(θl,i)− g̃L−1(θl,i) = g(θl,i)− gL−1(θl,i)︸ ︷︷ ︸
e1

+ gL−1(θl,i)− g̃L−1(θl,i)︸ ︷︷ ︸
e2

,

where e1 is the definition of the hierarchical surplus ωl,i whose upper bound is given
in [5], i.e., |e1| ≤ Csurp · 2−2L with Csurp is independent of L and e2 measures the
error between the exact prediction of the surplus and the perturbed one. To estimate
e2, we need to extend the formula for calculating surpluses given in [5] by including
the sparse grid points on the boundary. Based on [5, Lemma 3.2], we can see that
for each grid point θl,i with |l| ≥ 1, its exact surplus ωl,i can be computed from the
function values of g(θ) as follows:

ωl,i = Al,i(g) =

 N̂∏
n=1

Aln,in

 (g),

where Al,i(·) is an N̂ -dimensional stencil that provides the coefficients for a linear
combination of the nodal values of the function g to compute ωl,i. Specifically, Al,i is

product of N̂ one-dimensional stencils Aln,in for ln > 0, n = 1, . . . , N̂ , defined by

Aln,in(g) =

[
−1

2
1 − 1

2

]
ln,in

(g)

=− 1

2
g(θl,i − hlnen) + g(θl,i)−

1

2
g(θl,i + hlnen),

(4.20)

where en is a vector of zeros except for the n-th entry that is one, and hln is a scalar
equal to a half of the length of the support of the basis function ψl,i(θ) in the n-th
direction. Note that for ln = 0, we have Aln,in(g) = [0, 1, 0]ln,in(g). It is easy to see

that the sum of the absolute values of the coefficients of Al,i(·) is equal to 2N̂ . Note
that all the involved grid points in (4.20) belong to gL−1(θ) except for θl,i. Thus, due
to the fact that |g(θ)− g̃(θ)| ≤ τ , the error e2 can be estimated by

|e2| = |Al,i(g − g̃)− (g(θl,i)− g̃(θl,i))| ≤ 2N̂τ,

which concludes the proof. �
Next, the upper bound of Cmin in the context of using the HS-AHSG method with

acceleration is in the following theorem.
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Theorem 4.9. Under Lemma 4.4, 4.5, and 4.8, the minimum total cost Cmin in-
curred in building the isotropic sparse-grid approximation to g(θ) with accuracy ε
using the accelerated HS-AHSG method satisfies the estimate

Cmin ≤ ζα1

α2 + α3

log2

(
2Csg

ε

)
N̂

α4N̂ (
2Csg

ε

)α5 [
2N̂ − log2(N̂) + α9

]
,

where Csg is the constant in (4.9) and ζ is the cost of one function evaluation of f(y)
or G(y) in (2.3). The constants α1, · · · , α5 are defined as in Theorem 4.7 and α9 is
defined by

α9 = log2

(
Csurp

Csg

)
+ 2.

Proof. For L = L1, according to the definition in (4.5), Cmin can be bounded by

Cmin ≤ ζ

L1∑
l=0

|Wl|K(τ l0, ε, L1, N̂)

≤ ζ

L1∑
l=0

2l

(
l + N̂ − 1

N̂ − 1

)
log2

[
2N̂+1τ l0
ε

(
L1 + N̂

N̂

)]
,

(4.21)

where we temporarily treat K as a positive real number for convenience and the
desired iteration number is dKe. Based on Lemma 4.8, we define the initial search

interval τ l0 on level l by τ l0 = Csurp2−2l + 2N̂τ , where τ is the tolerance of the bisec-
tion method. For sufficiently small ε, the logarithmic function in (4.21) is positive.
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Substituting such τ l0 into (4.21), we obtain

Cmin ≤ ζ

L1∑
l=0

2l

(
l + N̂ − 1

N̂ − 1

)
log2

[
2N̂+1

ε

(
L1 + N̂

N̂

)(
Csurp2−2l + 2N̂τ

)]

= ζ

L1∑
l=0

2l

(
l + N̂ − 1

N̂ − 1

)

· log2

2N̂+1

ε

(
L1 + N̂

N̂

)Csurp2−2l +
ε

2
(
L1+N̂

N̂

)


= ζ

L1∑
l=0

2l

(
l + N̂ − 1

N̂ − 1

){
log2

[
2N̂+1Csurp2−2l

ε

(
L1 + N̂

N̂

)]
+ N̂

}

≤ ζ

L1∑
l=0

2l

(
l + N̂ − 1

N̂ − 1

){
log2

[
2N̂+1Csurp22(L1−l)

ε

ε

2N̂Csg

]
+ N̂

}

= ζ

L1∑
l=0

2l

(
l + N̂ − 1

N̂ − 1

)[
2(L1 − l) + log2

(
Csurp

Csg

)
+ 2N̂ − log2(N̂)

]

≤ ζ

(
L1 + N̂

N̂

)
L1∑
l=0

(L1 − l)2l

+ ζ2L1+1

(
L1 + N̂

N̂

)[
log2

(
Csurp

Csg

)
+ 2N̂ − log2(N̂)

]

≤ ζ2L1+1

(
L1 + N̂

N̂

)[
log2

(
Csurp

Csg

)
+ 2N̂ + 2− log2(N̂)

]

≤ ζα1

α2 + α3

log2

(
2Csg

ε

)
N̂

α4N̂ (
2Csg

ε

)α5 [
2N̂ − log2(N̂) + α9

]
,

which completes the proof. �
Remark 4.10. Theorem 4.7 and 4.9 tell us that the total cost of the HS-AHSG

method is mainly determined by the number of sparse-grid points. Asymptotically,
the growth rate of |VL| is characterized by the constants α4 and α5, and the cost due to
inaccurate initial searching interval is of order log2(1/ε). According to the analyses in
[5,15], the growth rate can be reduced when using high-order hierarchical polynomial
bases. In general, with a p-th order hierarchical basis, we have α4 = (p + 2)/(p + 1)
and α5 = 1/(p+ 1). Note that the use of acceleration technique with accurate initial
guesses will reduce the total cost by a factor of log2(1/ε) asymptotically, which will
be demonstrated in the following section.
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5. Numerical examples. In this section, we use three discontinuity detection
problems to illustrate the performance of the proposed hyper-spherical adaptive hier-
archical sparse-grid method. The first example is used to test the HS-AHSG method
in approximating discontinuities of functions with the characteristic property. In the
second example, a generic discontinuous function without the characteristic property
is considered and the importance of the choice of the origin y0 is demonstrated. The
third example is an application of the HS-AHSG method in computing the probabil-
ity of an event that depends on the solution of a partial differential equation with
random inputs.

Example 5.1. Consider the three characteristic functions in RN

F1(y) =

 1 if
N∑
n=1

y2
n ≥ 1

0 otherwise

(5.1)

F2(y) =

{
1 if |y3 − y1| ≤ 0.5 for y ∈ [0, 1]N

0 otherwise
(5.2)

F3(y) =

 1 if
√
y2

1 + y2
2 ≤ 0.5 and |yn| < 0.5 for n = 3, . . . , N

0 otherwise,
(5.3)

where the characteristic domains of F1(y), F2(y), and F3(y) are a unit hyper-sphere,
a layer in the unit hyper-cube, and a hyper-cylinder, respectively. The linear hierarchal
basis is used for building the HS-AHSG approximation in the hyper-spherical coordi-
nate system and the bisection method is used to estimate the value of transformed
function g(θ) at the sparse-grid points.

First, to illustrate the distribution of the sparse grid points generated by the HS-
AHSG method, we set N = 3 and plot, in Figures 4, 5 and 6, the discontinuity surface
γ, the surface of g(θ), and the sparse-grid points for each F1(y), F2(y), and F3(y),
respectively. By comparing Figure 3(b) and Figure 4, we can see the advantage of the
HS-AHSG method. The resulting sparse grid contains only 160 points to achieve the
desired accuracy whereas the classic AHSG method requires 36,093 grid points. In-
stead of directly approximating the discontinuous function F1(y), we approximate the
transformed surface shown in Figure 4(b), where its smoothness retains the sparsity
of the resulting grid. In Figure 5, we can see that the surface γ is only a part of the
boundary ∂Γ1 but Γ1 is a closed subdomain in Γ. There are a total of 1120 sparse
grid points on ∂Γ1 with only 349 points on γ and 771 points on ∂Γ1. According to the
discussion in 4.2, at the sparse-grid points placed on ∂Γ1\γ, there is no need to run
the bisection algorithm to evaluate g(θ) at the 771 points on ∂Γ1 so that a significant
amount of computational effort is saved. In Figures 5 and 6, we observe that the
transformed function g(θ) is not differentiable at the edges and vertices of the charac-
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teristic domain Γ1 so that the HS-AHSG approximation does mesh refinement around
these regions. Although the lack of a derivative is not as bad as a jump discontinuity,
it may result in a failure of the HS-AHSG method if the volume of such a singularity
grows fast as the dimension N increases. This issue will be considered in future work.
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Figure 4: (a) The discontinuity surface γ with sparse-grid points; (b) the transformed
surface g(θ) in the hyper-spherical coordinate system. The parameters for the HS-
AHSG approximation are Lmin = 4, Lmax = 12, α = 0.01, and y0 = (0.1, 0.2, 0.3); the
total number of sparse-grid points is 160.
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Figure 5: (a) The discontinuity surface γ with sparse-grid points; (b) the transformed
surface g(θ) in the hyper-spherical coordinate system. The parameters for the HS-
AHSG approximation are Lmin = 4, Lmax = 12, α = 0.01, and y0 = (0.3, 0.4, 0.5); the
total number of sparse-grid points is 1120 of which only 349 are off the boundary.

Next, we test the convergence of the HS-AHSG method in detecting the disconti-
nuity of F1(y) in three cases: the HS-ASHG method with isotropic sparse grids and
no acceleration, the HS-AHSG method with isotropic sparse grids and acceleration,
and the HS-AHSG method with adaptive sparse grids and acceleration. The origin of
the hyper-spherical coordinate system is set to y0 = (0.2/

√
N, . . . , 0.2/

√
N) which is
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Figure 6: (a) The discontinuity surface γ with sparse-grid points; (b) the transformed
surface g(θ) in the hyper-spherical coordinate system. The parameters for the HS-
AHSG approximation are Lmin = 4, Lmax = 12, α = 0.01, and y0 = (0.1, 0.1, 0.1); the
total number of sparse-grid points is 473.

0.2 away from the origin (0, . . . , 0). The error decay for N = 2, 3, 4, 5, 7, 9 is plotted
in Figure 7. As expected, for high-dimensional discontinuity detection, our approach
achieves faster convergence rates than the well known AHSG method. Moreover, for
the same accuracy, acceleration and adaptivity can provide a significant saving in
computational cost. Further evidence of this is seen in Table 2 for which the compu-
tational cost is again measured by the total number of function evaluations.

Example 5.2. Consider the two-dimensional discontinuous function on [−1.5, 1.5]×
[−1.5, 1.5] given by

f(y) =


y2

1 + y2
2 if

√
y2

1 + y2
2 ≤ 1 +

1

4
cos

(
4 arctan

(y2

y1

))
y2

1 + y2
2 +

1

2
otherwise

(5.4)

which is plotted in Figure 8, where the jump discontinuity is along the curve
√
y2

1 + y2
2 =

1 + 1
4

cos (4 · arctan (y2/y1)). We observe that the domain Γ1 defined as the interior if
this curve is star-convex but is not convex so that only a subset of points in Γ1 can be
used as the origin of the hyper-spherical coordinate system. We test our approach with
the origin being (0, 0) and (−1.1, 0) and the bisection method is used to approximate
the transformed function g(θ). The captured discontinuity curves and the correspond-
ing transformed curves are plotted in Figure 8(b) and 8(c), respectively. It is easy
to see that the point (0, 0) is a qualified point to be the origin of the polar system so
that the approximate curve captures the discontinuity very well. In contrast, (−1.1, 0)
does not satisfy the Assumption 4.1 so that the function fθ(r) has multiple roots along
some directions wheras the bisection algorithm can only find one root. Thus, the dis-
continuity curve is not captured correctly in a subdomain of Γs, as shown in Figure
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Figure 7: Error decay of the HS-AHSG method with isotropic sparse grids and no
acceleration, isotropic sparse grids and acceleration, and adaptive sparse grids and
acceleration for detecting the discontinuity of f1(y) in Example 5.1 with Lmin = 4,
Lmax = 12, y0 = (0.2/

√
N, . . . , 0.2/

√
N) for N = 2, 3, 4, 5, 7, 9

8(b).
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Table 2: Computational costs and savings of the HS-AHSG method with acceleration
and adaptivity in Example 5.1

Dim Error
IsoSG IsoSG+acceleration AHSG+acceleration

cost cost saving cost saving

2D

1.0e-3 384 274 28.7% 251 34.7%

1.0e-4 1,603 955 40.4% 832 48.1%

1.0e-5 7,230 2,968 58.9% 2,737 62.1%

3D

1.0e-3 7,046 4,461 36.7% 3,022 57.1%

1.0e-4 42,541 18,021 57.6% 12,817 69.9%

1.0e-5 224,978 67,721 69.9% 54,439 75.8%

4D

5.0e-2 880 682 22.5% 584 33.6%

1.0e-3 66,207 38,165 42.4% 26,329 60.2%

1.0e-4 542,632 241,337 55.5% 161,354 70.3%

5D

5.0e-2 5,135 3,645 29.0% 2,082 59.5%

1.0e-2 23,782 16,558 30.4% 14,694 38.2%

1.0e-3 383,884 207,862 45.9% 94,148 75.5%

7D

1.0e-1 24,757 11,770 52.5% 6,327 74.4%

5.0e-2 67,671 40,221 40.6% 25,111 62.9%

5.0e-3 773,113 479,984 37.9% 354,040 54.2%

9D

1.0e-1 26,593 14,843 44.2% 6,426 75.8%

5.0e-2 157,851 80,507 49.0% 58,849 62.7%

1.0e-2 1,472,441 983,101 33.2% 513,163 65.1%

In addition, if we assume the function f(y) has no characteristic property, the
one-dimensional AHSG approach discussed in §4.2.1 has to be used to estimate the
value of the transformed function g(θ). For comparison, in Figure 9(a-b), we plot the
points at which the function f(y) is evaluated to estimate the transformed function
g(θ) at the first 17 sparse grid points in Γs. As expected, the one-dimensional AHSG
method requires 532 function evaluations whereas the bisection method only requires
242 function evaluations. Further proof can be seen in Figure 9(c) where the decays
of the interpolation errors are plotted. When setting the origin y0 = (−1.1, 0), the
error does not decay toward zero because of the violation of Assumption 4.1. When
y0 = (0, 0), we can see that the use of the characteristic property and the hierarchical
acceleration can significantly reduce the number of function evaluations to achieve the
prescribed accuracy.

Example 5.3. Consider a two-dimensional steady heat equation with stochastic
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Figure 8: (a) The surface of the target function f(y) in Example 5.2; (b) the true dis-
continuity curve and the approximated curves with the origin of the polar coordinate
system being (0, 0) and (-1.1, 0); (c) the transformed functions of the discontinuity
curves in the polar coordinate system.
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Figure 9: (a) The 532 points (blue dots) at which the function f(y) without the
characteristic property is evaluated to estimate the transformed function g(θ) at the
first 17 sparse-grid points in the polar coordinate system; (b) the 242 points (blue
dots) at which the function f(y) with the characteristic property is evaluated to
estimate the transformed function g(θ) at the first 17 sparse-grid points in the polar
coordinate system; (c) the decay of the interpolation error.

diffusivity {
∇ · (κ(x, ω)∇u(x, ω)) = h(x) in [0, 1]2 × Ω,

u(x, ω) = 0 on ∂D × Ω
(5.5)

with

h(x) = 2000 + exp

(
−(x1 − 0.6)2 + (x2 − 0.8)2

0.052

)
(5.6)
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and
κ(x, ω) = y1(ω)2 + exp

[
y2(ω)4 sin(πx1) + y3(ω)2 sin(πx2)

+ cos(πx1) + cos(πx2)

]
,

(5.7)

where y(ω) = (y1(ω), y2(ω), y3(ω)) are independent and identically distributed ran-
dom variables following the uniform distribution U([−1, 1]). The quantify of interest
is the probability of the event that the integral of the solution u(x, ω) over D is larger
than the threshold value 1.2, i.e.,

QoI =

∫
Ω

XΓ1(y)ρ(y)dy where Γ1 = P
{
y ∈ R3

∣∣∣ ∫
D

u(x,y(ω))dx > 1.2
}
. (5.8)

where Γ1 is the domain of interest and the characteristic function XΓ1(y) is discontin-
uous across the boundary γ = ∂Γ1. Note that this example satisfies the Assumption
A3 given in §2 and the implicit function is defined by G(y) = 1.2−

∫
D
u(x,y)dx = 0

which is smooth due to the regularity of the solution u. In this case, we can use
more advanced root-finding methods as discussed in §4.2.2, such as the Regula Falsi
method. Here we use the HS-AHSG method with both acceleration and adaptivity
and only compare the performances of different root-finding methods. The origin of
the hyper-spherical coordinate system is set to (0.01, 0.2, 0.05). The surface γ and its
transformed representation are plotted in Figure 10(a) and 10(b), respectively. For
Lmin = 3, Lmax = 20, and α = 0.01, we end up with a total of 344 sparse-grid
points in the hyper-speherical domain Γs; those points are also plotted in Figure 10(a)
and 10(b). In Figure 10(c), we show the error decay of the HS-AHSG approxima-
tions using the bisection and Regula Falsi methods, respectively. It is easy to see that
the Regula Falsi method can provide additional savings in computational costs over
the bisection method by taking advantage of the availability and smoothness of G(y).
Further evidence of this can been seen in Table 3.

Table 3: The computational cost of the HS-AHSG method using the bisection method
and the Regula Falsi method in Example 5.3

Error Bisection Regula Falsi Saving

1.0e-3 4,116 3,381 17.8%

1.0e-4 17,464 13,047 25.3%

1.0e-5 68,299 48,555 28.9%

6. Conclusions. In this paper, we propose a comprehensive methodology for
high-dimensional discontinuity detection by extending well-known sparse-grid meth-
ods. Both theoretical and numerical results demonstrate that our approach is a sig-
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Figure 10: (a) The discontinuity surface γ with 344 sparse grid points; (b) the
transformed surface g(θ) in the hyper-spherical coordinate system. The parameters
for the HS-AHSG approximation are Lmin = 4, Lmax = 12, α = 0.01, and y0 =
(0.01, 0.2, 0.05). (c) The error decays of the Monte Carlo method and the HS-AHSG
approximation using the bisection and the Regula Falsi methods.

nificant improvement to existing methods. Moreover, our approach is not restricted
to the context of sparse-grid approximation. It can be combined with any other
numerical method for high-dimensional approximation such as radial basis approxi-
mation and mesh-free interpolations. In future work, we will focus on how to relax
the assumption related to the geometry of the domain of interest, so that problems
with more complicated geometries can be investigated.
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