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Abstract

This paper presents stronger methods of achieving perfect completeness in quantum interactive proofs. First,
it is proved that any problem inQMA has a two-message quantum interactive proof system of perfect complete-
ness with constant soundness error, where the verifier has only to send a constant number of halves of EPR
pairs. This in particular implies that the classQMA is necessarily included by the classQIP

1
(2) of problems

having two-message quantum interactive proofs of perfect completeness, which gives the first nontrivial upper
bound forQMA in terms of quantum interactive proofs. It is also proved that any problem having anm-message
quantum interactive proof system necessarily has an(m+ 1)-message quantum interactive proof system of per-
fect completeness. This improves the previous result due toKitaev and Watrous, where the resulting system of
perfect completeness requiresm+ 2 messages if not using the parallelization result.
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1 Introduction

1.1 Background and Motivation

The classical complexity classMA of problems having Merlin-Arthur (MA) proof systems, first introduced by
Babai [Bab85], is a natural probabilistic generalization of the classNP. Informally, in a Merlin-Arthur proof
system, Arthur, a probabilistic polynomial-time verifier,first receives a message (a witness) from Merlin, an all-
powerful but untrustworthy prover, and then checks with high probability the validity of Merlin’s claim that the
common input is a yes-instance of the problem.

Quantum Merlin-Arthur (QMA) proof systems are a generalization of the Merlin-Arthur proof systems to
the quantum setting, whose notion was already discussed at an early stage of quantum computing research in a
technical report by Knill [Kni96]. In this setting, Arthur now receives a quantum witness from Merlin and performs
polynomial-time quantum computation to check with high probability whether the input is a yes-instance or not.
The resulting complexity class is calledQMA [Wat00] (originally calledBQNP [Kit99, KSV02]), and has been
central to the development of quantum complexity theory in that it plays a role similar to thatNP plays in classical
computation.

The standard way of definingMA andQMA allows two-sided bounded error: each yes-instance may be
wrongly rejected with small probability (completeness error), while each no-instance may also be wrongly ac-
cepted with small probability (soundness error). If completeness error is zero, that is, any yes-instance is never
wrongly rejected, the corresponding system is said to haveperfect completeness. The versions ofMA andQMA
with perfect completeness are denoted byMA1 andQMA1, respectively.

Classically, it is known that any Merlin-Arthur proof system that may have two-sided bounded error can al-
ways be modified into another Merlin-Arthur proof system with one-sided bounded error of perfect completeness,
i.e., MA = MA1 holds [ZF87, GZ11]. This is a very nice property in that honest Merlin can always convince
Arthur without error by providing a suitable witness for a yes-instance. A natural question to ask is whether the
same property holds for quantum Merlin-Arthur proof systems as well, i.e., whetherQMA = QMA1 or not. This
question still remains unsolved after many years of investigations. Besides its theoretical interest, answering this
question by the affirmative would lead to many consequences.In particular, any computational problem complete
for the classQMA1, for instance the QUANTUM SATISFIABILITY (QSAT) problems [Bra06], would immediately
become complete for the classQMA as well. This would not only lead to a better understanding ofQMA but
also have potentials to significantly simplify and strengthen a possible quantum version of the celebrated PCP the-
orem [AS98, ALM+98] that many researchers have been trying to establish [AALV09, AALV11, AE11], partly
because one-sided error verifications are much easier to treat, and also because the QSAT problems are more direct
quantum analogues of the SAT problems than the LOCAL HAMILTONIAN problems (note that the classical PCP
theorem can be viewed as proving theNP-completeness of a special case of the 3SAT problem in which,for every
no-instance, at most a constant fraction of clauses are simultaneously satisfiable).

As a barrier to affirmatively answering theQMA versusQMA1 question, Aaronson [Aar09] constructed a
quantum oracle relative to whichQMA1 is a proper subclass ofQMA, which means that a “black-box” proof
of QMA = QMA1 cannot exist. Nevertheless, no classical oracle is known that separatesQMA1 from QMA,
and the following recent results in some sense step towards an affirmative answer to the question: Nagaj, Woc-
jan, and Zhang [NWZ09] showed that perfect completeness is achievable for a special case of quantum Merlin-
Arthur proof systems in which some real number related to themaximum acceptance probability of a given system
can be exactly expressed with a bit string of polynomial length. More recently, Jordan, Kobayashi, Nagaj, and
Nishimura [JKNN12] proved that the equality holds for quantum Merlin-Arthur proof systemsof classical witness,
that is,QCMA = QCMA1 (or MQA = MQA1 in a recently-proposed terminology [Wat09a, GSU13]) holds, as-
suming that the circuit of a verifier is exactly implementable with a gate set in which the Hadamard and any classical
reversible transformations are performable without error. In particular, the latter result gives evidence that, if we
put some natural assumption on a gate set, the quantum oraclebarrier by Aaronson [Aar09] may not be an insur-

1



mountable obstacle when seeking the possibility ofQMA = QMA1, as the arguments in Ref. [Aar09] also lead to
a quantum oracle that separatesQCMA1 from QCMA.

Quantum Merlin-Arthur proof systems may be viewed as a special case of more general quantum interac-
tive proof systems, where the verifier and the prover may exchange messages using many rounds of commu-
nications. In their seminal paper, Kitaev and Watrous [KW00] showed that perfect completeness is achiev-
able in quantum interactive proof systems. More precisely,with two additional messages, any quantum inter-
active proof system that may involve two-sided bounded error can be transformed into another quantum inter-
active proof system that has one-sided bounded error of perfect completeness. This in particular implies that
QMA ⊆ QIP1(3), whereQIP1(3) is the class of problems having three-message quantum interactive proof sys-
tems of perfect completeness. Unfortunately,QIP1(3) is already so powerful that it includesPSPACE [Wat03] (ac-
tually, QIP1(3) = QIP = PSPACE [KW00, JJUW11], whereQIP denotes the class of problems having general
quantum interactive proofs). Accordingly, this only givesa weaker result for the upper bound ofQMA, asQMA
is known to be insidePP [KW00, Wat00, MW05] (in fact, a slightly stronger boundQMA ⊆ A0PP = SBQP is
known [Vya03, Kup09]).

1.2 Our Results and Their Meaning

This paper presents new general techniques to transform quantum interactive proof systems into those of perfect
completeness, which increase the number of messages by justone. Our first result states that any problem inQMA
has a two-message quantum interactive proof of perfect completeness.

Theorem 1. QMA ⊆ QIP1(2).

HereQIP1(2) is the class of problems having two-message quantum interactive proof systems of perfect com-
pleteness (with negligible soundness error). This gives the first nontrivial upper bound ofQMA in terms of quantum
interactive proofs, which has no relation known to the existing upper boundA0PP = SBQP. Note that the inclu-
sionQMA ⊆ QIP(2) is indeed trivial for the two-sided error classQIP(2) of two-message quantum interactive
proofs, but the inclusion here is by the one-sided error classQIP1(2) and is nontrivial to prove.

In fact, we prove a much stronger result, which arguably steps towards settling theQMA versusQMA1 ques-
tion. Namely, we show that, to achieve perfect completenesswith constant soundness error, the verifier in the
two-message quantum interactive proof system has only to send a constant number of halves of EPR pairs to the
prover. Or in other words, any problem inQMA has a quantum Merlin-Arthur proof system of perfect complete-
ness with constant soundness error, in which Arthur and Merlin share a constant number of EPR pairs a priori.
More formally, letQMAk-EPR(c, s) denote the class of problems having quantum Merlin-Arthur proof systems
with completenessc and soundnesss, where Arthur and Merlin initially sharek EPR pairs. Then we have the
following containment.

Theorem 2. For any constants ∈ (0, 1], there exists a constantk ∈ N such that

QMA ⊆ QMAk-EPR(1, s).

Theorem 1 is an immediate consequence of Theorem 2, as one mayview quantum Merlin-Arthur proof systems
with shared EPR pairs as a special case of two-message quantum interactive proofs where the verifier first generates
the EPR pairs and sends halves of them to the prover (and the parallel repetition of two-message quantum interactive
proofs works perfectly [KW00]). Theorem 2 nevertheless appears to be much stronger than Theorem 1 since
it shows that perfect completeness is achievable with just one additional message of a very restricted form (a
constant number of halves of EPR pairs). To see this, letQMAconst-EPR be the class of problems having quantum
Merlin-Arthur proof systems with a constant number of priorshared EPR pairs that may involve two-sided bounded
error, and letQMAconst-EPR

1 be that of perfect completeness. Then, indeed, the equalityQMAconst-EPR = QMA
immediately follows from the result by Beigi, Shor, and Watrous [BSW11], as any quantum Merlin-Arthur proof
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system with a constant number of prior shared EPR pairs is a special case of two-message quantum interactive
proofswith short questions(i.e., two-message quantum interactive proofs with the first message consisting of at
most logarithmically many qubits). Therefore, we obtain the following characterization ofQMA.

Corollary 3. QMAconst-EPR
1 = QMAconst-EPR = QMA.

This in particular implies that perfect completeness is achievable for the model of quantum Merlin-Arthur
proof systems with a constant number of prior shared EPR pairs, a model that has computational power equiva-
lent toQMA. Similar arguments further imply that perfect completeness is achievable even with the models of
quantum Merlin-Arthur proof systems with a logarithmic number of prior shared EPR pairs and “short-question”
two-message quantum interactive proof systems, as both of these have computational power equivalent toQMA.

The methodology developed in this paper essentially shows that, in order to obtain the inclu-
sionQMA ⊆ QMA1 (and thus immediately the equalityQMA = QMA1), it is sufficient to find a way of elimi-
nating the need for the constant number of shared EPR pairs inour proof system. In fact, as will be clear with our
proof structure, the constant number of shared EPR pairs arenecessary only for the purpose of forcing a dishonest
prover to send a witness that is close to some maximally entangled state of constant dimensions. Hence, some
suitable procedure that tests if a given state of constant dimensions is sufficiently entangled or not may replace the
shared EPR pairs to affirmatively answer theQMA versusQMA1 question (if two-sided error is allowed, such a
test is possible with quantum state tomography).

For general quantum interactive proof systems, we further present a method that makes any quantum interactive
proof system perfectly complete by increasing the number ofmessages by just one. This improves the previous
result due to Kitaev and Watrous [KW00], whose constructionincreases the number of messages by two, if not
using their parallelization result. More precisely, for the classQIP(m) of problems havingm-message quantum
interactive proofs that may involve two-sided bounded error, and the classQIP1(m) of problems having those of
perfect completeness, we show the following.

Theorem 4(informal statement). For anym ≥ 2,

QIP(m) ⊆ QIP1(m+ 1).

In fact, if the number of messages in the original system is odd, our transformation does not increase it at all.

Theorem 5(informal statement). For any oddm ≥ 3,

QIP(m) ⊆ QIP1(m).

While the inclusions of Theorems 4 and 5 can also be obtained by using the parallelization results in
Refs. [KW00, KKMV09], our techniques give a new and arguablymore direct way of obtaining these results.
Our construction actually works well even in the setting of quantum multi-prover interactive proof systems: it
transforms any quantumk-prover interactive proof system into another quantumk-prover interactive proof system
of perfect completeness by increasing the number of turns byjust one in general, and without increasing it when
the number of turns in the original system is odd. This much improves the previous result in Ref. [KKMV09],
where the construction increases the numberm of turns to3m (i.e., by a factor of three), again without using their
parallelization result. We refer to Theorems 25, 26, 33, and34 in Section 7 for the precise statements of the results.
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1.3 Organization of This Paper

Section 2 gives a high-level explanation of how Theorem 2 (i.e, the inclusionQMA ⊆ QMAconst-EPR
1 ) is proved.

Section 3 presents an overview of the proof of Theorem 4 (i.e., the inclusionQIP(m) ⊆ QIP1(m+ 1)). Section 4
provides basic notions and definitions that are used in this paper. Section 5 rigorously describes and analyzes the
basic procedure called REFLECTION PROCEDURE, which is the fundamental technical tool throughout this paper.
Section 6 then gives a full proof of Theorem 2. Finally, Section 7 proves the results on general quantum interactive
proofs.

2 Proof Idea of Theorem 2

The purpose of this section is to give a high-level description of our construction that proves Theorem 2 (the
inclusionQMA ⊆ QMAconst-EPR

1 ). We first describe the main idea in Subsection 2.1 and a simpleprotocol for a
very special case. Then we explain in Subsection 2.2 how to make this simple protocol robust against any cheating
strategy, by introducing additional tests. Finally, in Subsection 2.3, we present our complete protocol.

2.1 Underlying Ideas

For an inputx, letVx denote the verifier’s quantum circuit in the originalQMA proof system. The operatorVx acts
on two quantum registers, one registerA corresponding to the verifier’s work space and another registerM corre-
sponding to the space that stores the witness from the prover. Let px denote the maximum acceptance probability,
over all possible witnesses, of the verification procedure.From the definition of the classQMA one can assume
that, for every yes-instancex it holds thatpx ≥ 1/2, and for every no-instancex it holds thatpx ≤ 1/3. As pointed
out by Marriott and Watrous [MW05], the maximum acceptance probability px of Vx over all possible witnesses is
the maximum eigenvalue of the Hermitian operator

Mx = ΠinitV
†
xΠaccVxΠinit,

whereΠinit is the projection onto the subspace spanned by states in which all the qubits inA are in state|0〉, and
Πacc is the projection onto the space spanned by the accepting states.

Reflection Procedure The basic idea of our protocol is to simulate a procedure thatwe call REFLECTION PRO-
CEDURE, presented in details in Section 5. Roughly speaking, this procedure is viewed as performing a part of
amplitude amplification [Gro96] on the original verification procedure, and is quite similar to the so-called quan-
tum rewinding technique [Wat09b], the underlying idea of which dates back to the strong amplification method for
QMA due to Marriott and Watrous [MW05]. Not surprisingly, our REFLECTION PROCEDUREcan be analyzed in
a way similar to the case of the strong amplification method for QMA due to Marriott and Watrous [MW05]. We
refer to Figure 1 for a presentation of this procedure specialized to the case of QMA proof systems (a more general
description of the procedure will be given in Figure 3 in Section 5).

The REFLECTION PROCEDUREhas access to the unitary transformationVx, receives a quantum state in regis-
terM, and has the following property:

1. If Mx has an eigenvalue 1/2, then there exists a quantum state inM such that the procedure accepts with
certainty.

2. If Mx has no eigenvalue in the interval(12 − ε, 12 + ε), then for any quantum state inM given, the procedure
rejects with probability at least4ε2.
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REFLECTION PROCEDURE

1. Receive a quantum registerM. Prepare|0〉 in each of the qubits in a quantum registerA. Apply Vx to the
state in(A,M).

2. Perform a phase-flip (i.e., multiply−1 in phase) if the state in(A,M) belongs to the subspace corresponding
to the projectionΠacc.

3. ApplyV †
x to (A,M).

4. Reject if the state in(A,M) belongs to the subspace corresponding toΠinit, and accept otherwise.

Figure 1: The REFLECTION PROCEDURE(specialized to the case of QMA proof systems; see Figure 3 inSection 5
for the most general version of this procedure).

This procedure would then enable us to transform the original QMA proof system into another QMA proof system
with perfect completeness if we had exactlypx = 1/2 for any yes-instancex. This nice property on the complete-
ness of course does not necessarily hold in general.

We mention that the REFLECTION PROCEDUREis actually slightly superior to the original quantum rewinding
technique (for the purpose of achieving perfect completeness) in that it requires just two applications ofVx (more
precisely, one application ofVx and one application ofV †

x ), instead of three. This property will be crucial for our
analysis since the REFLECTION PROCEDUREwill ultimately be applied to a modified version ofVx that cannot be
implemented directly by the verifier without the help of the prover.

Simple Protocol whenpx is Known In general, we only know thatpx ≥ 1/2 for a yes-instance. Assume that
the verifier can apply the matrix

Wq =

(√
1− q

√
q√

q −√
1− q

)

acting on one qubit, whereq is such that0 ≤ q ≤ 1 and pxq = 1/2 (the value ofq depends of course on the
inputx). Then, by performing in parallel the original verificationtest (which succeeds with probabilitypx) and an
additional test that appliesWq on a single qubit in the initial state|0〉 and measures it, we obtain a new verification
procedure that accepts the input with probability exactlypxq = 1/2 (where the new condition for acceptance is that
the original test acceptsand the additional single qubit contains1). In particular, such a unitary transformationWq

always exists for any yes-instancex, and thus, this could achieve the perfect completeness if the verifier knew the
probabilitypx ≥ 1/2.

The Hermitian operator corresponding to the case of applying in parallel these two tests can be represented by

M ′
x = (Πinit ⊗ |0〉〈0|)(Vx ⊗Wq)

†(Πacc ⊗ |1〉〈1|)(Vx ⊗Wq)(Πinit ⊗ |0〉〈0|),

which has1/2 as an eigenvalue for a yes-instancex. Moreover, it can be easily shown that, on a negative instance,
the eigenvalues of this Hermitian operator are bounded awayfrom 1/2. Thus, the REFLECTION PROCEDURE

applied to the new verification testVx ⊗Wq transforms the original system into a perfect completenesssystem.
This protocol of course works only when the verifier can applyWq.

Reflection Simulation Test and Distillation Procedure The main problem with the protocol described above is
that the verifier does not know in general the probabilitypx, and is then not able to applyWq. Informally, our basic
idea to overcome this difficulty consists in asking the prover to send, along with the witness|w〉 of the original
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proof system, the unitary transformationWq to the verifier, wherepxq = 1/2. Concretely, this is done by asking
the prover to send two copies of theChoi-Jamiołkowski stateassociated withWq, denoted by|J(Wq)〉 and defined
as follows:

|J(Wq)〉 = (I ⊗Wq)|Φ+〉 =
√

1− q|Φ−〉+√
q|Ψ+〉,

where|Φ+〉 = 1√
2
(|00〉 + |11〉), |Φ−〉 = 1√

2
(|00〉 − |11〉) and|Ψ+〉 = 1√

2
(|01〉 + |10〉). By an analysis similar to

the case of quantum teleportation, one can see that the state|J(Wq)〉 can be used to simulate one application of the
unitary transformationWq to any quantum state of a single qubit in a probabilistic manner; the application succeeds
with probability1/4, and we know whether it succeeds or not.

Let us denote byM the register that is expected to contain the witness|w〉, and byS1, S′1, S2, andS′2 the four
single-qubit registers that altogether are expected to contain the two copies of the Choi-Jamiołkowski state. On a
yes-instance, an (honest) prover will then send the state

|w〉M ⊗ |J(Wq)〉(S1,S′1) ⊗ |J(Wq)〉(S2,S′2).

With this state given, the verifier can simulate the desired QMA system with underlying verification proce-
dureVx⊗Wq with success probability(1/4)2 = 1/16 (note thatW †

q =Wq, and thus, one copy of|J(Wq)〉 is
used to simulate the application ofWq, and another copy of it is used to simulate the application ofW †

q ). In case
where the simulation fails, the verifier systematically accepts by giving up the simulation to keep perfect complete-
ness. This is the core idea of the procedure REFLECTION SIMULATION TEST described in Subsection 6.1.4, which
is a key building block in our proof of Theorem 2.

In fact, we incorporate one more technique called DISTILLATION PROCEDURE, which is again based on the
analysis of Ref. [MW05], and makes the analysis of our complete protocol significantly easier. In general, one of
the main difficulties when analyzing the soundness with the simulation of the REFLECTION PROCEDUREwith the
associated Hermitian operatorM ′

x above is that one has to care about the entanglement between the witness part
in M and the part for the Choi-Jamiołkowski states inS1, S′1, S2, andS′2. This could make the soundness analysis
extremely hard, and in fact, the authors do not even know if the soundness can be proved without using the DIS-
TILLATION PROCEDURE. The idea to settle this difficulty is that, instead of directly simulating the REFLECTION

PROCEDUREabove on a received state (that is expected to be a product state of a witness|w〉 and two copies of
the Choi-Jamiołkowski state), one first performs the DISTILLATION PROCEDUREtwice in sequence on the witness
part (i.e.,M) of the received state to produce a situation where one can perform a much simplified version of the
REFLECTION PROCEDUREthat does not even need to receive a witness. This new REFLECTION PROCEDUREhas
a very nice property that it does not significantly change thebehavior of the original REFLECTION PROCEDURE,
and its associated Hermitian operator acts over a space of just four dimensions and has a much simpler form:

(|0〉〈0| ⊗ |0〉〈0|)(Wp ⊗Wq)
†(|1〉〈1| ⊗ |1〉〈1|)(Wp ⊗Wq)(|0〉〈0| ⊗ |0〉〈0|),

wherep = p2x/(2p
2
x − 2px + 1) andq = 1/(2p) (which is different from the value ofq in the previous case with

M ′
x). More precisely, the two applications of the DISTILLATION PROCEDURE (described in Subsection 6.1.1)

enable us to generate with high probability two identical copies of the single-qubit state

|χp〉 =
√

1− p|0〉+√
p|1〉

from a given witness|w〉 (and one can know whether the generation of the two copies succeeded or not). The point
is that, if the input were a no-instance, and the original soundness were very small, the generated state should be
very close to|0〉 ⊗ |0〉, and could be analyzed as if it were unentangled with other qubits. Note that one can easily
transform|χp〉 into |J(Wp)〉, and thus one essentially obtains the desired two copies of the Choi-Jamiołkowski
state corresponding toWp after the two applications of the DISTILLATION PROCEDURE.
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2.2 Towards the Actual Protocol

The main problem of the strategy described in the previous subsection is of course that, on a no-instance, a
dishonest prover may not send the prescribed state. Actually, for a dishonest prover who sends a state of the
form |w〉 ⊗ |J(Wq)〉⊗2, then no matter which state|w〉 and no matter which valueq the prover chooses, the sound-
ness can be analyzed with a quite straightforward argument.The real issue lies in the case where a dishonest prover
does not send a quantum state of the form|w〉 ⊗ |J(Wq)〉⊗2, and especially when the state in(S1,S′1,S2,S

′
2) is not

a product state of two identical copies of a Choi-Jamiołkowski state.
To force a state in(S1,S′1,S2,S

′
2) to be at least close to a mixture of two-fold products of an identical quantum

state (which may be a mixed state), we modify the protocol so that we can use the finite quantum de Finetti
theorem [KR05, CKMR07]. For this, the verifier now asks the prover to send not only two copies of|J(Wq)〉 but
a larger number of copies of it:|J(Wq)〉⊗N whereN is large but still a constant. The expected witness sent by an
honest prover is then

|w〉M ⊗ |J(Wq)〉(S1,S′1) ⊗ · · · ⊗ |J(Wq)〉(SN ,S′N ).

The witness state in(M,S1,S′1, . . . ,SN ,S
′
N ) sent by a prover in a general case may of course not be of the

form above, if the prover is dishonest. After the two applications of the DISTILLATION PROCEDURE with
M, the verifier permutes theN pairs of registers(S1,S′1), . . . , (SN ,S

′
N ) uniformly at random. This makes

the state in(S1,S′1), . . . , (SN ,S
′
N ) symmetric (i.e., invariant under any permutation of theN pairs of reg-

isters (S1,S′1), . . . , (SN ,S
′
N )), and thus the quantum de Finetti theorem guarantees that the reduced state in

(S1,S
′
1,S2,S

′
2) of the resulting state after random permutation must be close to some mixture of two-fold product

states
∑

j

µjξj ⊗ ξj.

Note that each stateξj may not necessarily be a pure state, and is usually a mixed state. The SWAP TEST, performed
additionally to this random permutation, will ensure that every ξj must be actually close to some pure state. This
is nevertheless not enough: we want to ensure that eachξj is close to some Choi-Jamiołkowski state. To have this
desirable property, we now assume that each pair of registers (Sj ,S

′
j) initially contains an EPR pair, and that the

verifier initially holds the registersS1, . . . ,SN and receives only, additionally toM, the registersS′1, . . . ,S
′
N as

witness. This assumption is the only part where we need (a constant number of) shared EPR pairs, and removing
it is the last obstacle that prevents us from proving the result QMA = QMA1. To make use of this assumption,
we further device a test called the SPACE RESTRICTION TEST that restricts the Hilbert space corresponding to the
registers(S1,S′1,S2,S

′
2) in which the verifier expects to receive the copies of the Choi-Jamiołkowski state. The

assumption of a constant number of prior-shared EPR pairs isthen tactically used with this SPACE RESTRICTION

TEST to finally ensure that eachξj must be close to some legal Choi-Jamiołkowski state.

2.3 Final Protocol

The final protocol of the verifier in a QMA system of perfect completeness with a constant number of shared EPR
pairs is given in Figure 2. Actually, Figure 2 presents a slightly simplified exposition of our final protocol; the
complete description will appear in Section 6 (see Figure 6 in the proof of Theorem 2).

Let us briefly describe the protocol step by step, focusing onwhat happens when the prover is honest. At the
end of Step 1, i.e., just after receiving a witness from the prover, the state in(M,S1,S′1, . . . ,SN ,S

′
N ) is given by

|w〉M ⊗ |J(Wq)〉(S1,S′1) ⊗ · · · ⊗ |J(Wq)〉(SN ,S′N ).

When none of the two executions of the DISTILLATION PROCEDURE fails in Step 2, the state in
(R1,R2,S1,S

′
1, . . . ,SN ,S

′
N ) becomes

|χp〉R1
⊗ |χp〉R2

⊗ |J(Wq)〉(S1,S′1) ⊗ · · · ⊗ |J(Wq)〉(SN ,S′N ),

7



Verifier’s QMA Protocol for Achieving Perfect Completenesswith N Prior-Shared EPR Pairs (Simplified)

1. Store the particles of the sharedN EPR pairs in(S1, . . . ,SN ). Receive a quantum witness in registers
(M,S′1, . . . ,S

′
N ).

2. Execute the DISTILLATION PROCEDUREtwice in sequence, both using a state inM. Accept if any of the
two executions fails, and continue otherwise, with storingthe two generated single-qubit states inR1 andR2.

3. Permute theN pairs of registers(S1,S′1), . . . , (SN ,S
′
N ) uniformly at random.

4. Perform the SPACE RESTRICTION TEST. That is, test if the state in(Sj,S′j) is in the space spanned by
{|Φ−〉, |Ψ+〉}, for eachj ∈ {1, 2}. Reject if not so, and continue otherwise.

5. Perform the SWAP TEST between(S1,S′1) and(S2,S′2). Reject if it fails, and continue otherwise.

6. Perform the REFLECTION SIMULATION TEST with (R1,R2,S1,S
′
1,S2,S

′
2) as input. Accept if this returns

“accept”, and reject otherwise.

Figure 2: Slightly simplified description of the verifier’s QMA protocol for achieving perfect completeness with
N pre-shared EPR pairs. The complete description appears as Figure 6 in Section 6.

at the end of this step. Step 3 just permutes theN pairs of registers(S1,S′1), . . . , (SN ,S
′
N ) uniformly at random,

which does not change the state at all. The SPACE RESTRICTION TEST in Step 4 forces each of the two-qubit states
in (S1,S

′
1) and(S2,S′2) to be in the subspace spanned by|Φ−〉 and|Ψ+〉 (as the state must be in this subspace if

it is a product of the desirable Choi-Jamiołkowski states),which does not change the state either. Then the SWAP

TEST in Step 5 never fails, since the registers(S1,S
′
1) and(S2,S′2) contain the identical pure state. Finally, Step 6

performs the REFLECTION SIMULATION TEST, which must result in acceptance with certainty, as the value q was
chosen appropriately so that the associated Hermitian operator with this REFLECTION SIMULATION TEST has an
eigenvalue exactly1/2.

Rough Sketch of Soundness AnalysisHere we give a very rough sketch of the soundness analysis fora no-
instance case. The rigorous analysis can be found in Section6.

Without loss of generality, it is assumed that the original QMA system has soundness exponentially close to0.
Then, if none of the two executions of the DISTILLATION PROCEDUREfails, whatever witness has been received
in Step 1, the state generated in(R1,R2) after Step 2 must be exponentially close to

|χ0〉R1
⊗ |χ0〉R2

= |0〉R1
⊗ |0〉R2

(and the probability that the DISTILLATION PROCEDUREfails is actually exponentially small in this case). This
implies that the state in(R1,R2) is almost unentangled with the state in(S1,S′1, . . . ,SN ,S

′
N ).

As the random permutation in Step 3 makes the state in(S1,S
′
1, . . . ,SN ,S

′
N ) symmetric, from the quantum de

Finetti theorem, the reduced state in(R1,R2,S1,S
′
1,S2,S

′
2) after Step 3 must be close to the state of the form

(|0〉〈0|)⊗2 ⊗
(

∑

j

µjξ
⊗2
j

)

.

A key property is that the reduced state in(S1,S2) is exponentially close to the totally mixed state(I/2)⊗2, which
is guaranteed by the facts that each state inSj for j ∈ {1, . . . , N} was originally a half of the shared EPR pair,
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that the two executions of the DISTILLATION PROCEDUREdisturbed the state by an amount at most exponentially
small, and that the state(I/2)⊗N in (S1, . . . ,SN ) is invariant under random permutation.

Now one can show that (stated here informally) if the probability of rejection is very small in the SPACE

RESTRICTION TEST in Step 4 (otherwise the dishonest prover is caught with somereasonable probability in this
Step 4), the state in(R1,R2,S1,S

′
1,S2,S

′
2) at the end of Step 4 is sufficiently close to a state of the form

(|0〉〈0|)⊗2 ⊗
(

∑

j

µ′jξ
′
j
⊗2

)

,

where eachξ′j is a mixed state over the Hilbert space spanned by|Φ−〉 and|Ψ+〉, while the SWAP TEST in Step 5 re-
quires that eachξ′j must be close to some pure state (otherwise the dishonest prover is caught with some reasonable
probability in this Step 5).

Together with the fact mentioned above that the reduced state in (S1,S2) was close to the totally mixed state
(I/2)⊗2 when entering Step 4, these two properties finally ensure that the state in(R1,R2,S1,S

′
1,S2,S

′
2) at the end

of Step 5 must be sufficiently close to a state of the form

(|0〉〈0|)⊗2 ⊗
[

∑

j

µ′′j
(

|J(W±
aj )〉〈J(W

±
aj )|

)⊗2
]

,

where eachW±
aj is equal to eitherWaj orZWajZ, with Z =

(

1 0
0 −1

)

. Notice that this is a mixture of desired states
and their slightly different variants.

For each state of the form

|0〉⊗2 ⊗ |J(W±
aj )〉

⊗2 = |χ0〉⊗2 ⊗ |J(W±
aj )〉

⊗2,

however, we can easily show that the REFLECTION SIMULATION TEST in Step 6 rejects with sufficiently large
probability (shown to be exactly1/16) irrelevant to the valueaj , and thus, the verifier can reject with probability
close to1/16 even when the verification procedure reaches Step 6 with veryhigh probability.

3 Proof Idea of Theorem 4

This section gives an overview of the proof of Theorem 4 (moreprecisely, of the formal statement of this re-
sult, Theorem 25), which proves the inclusionQIP(m) ⊆ QIP1(m+ 1), for eachm ≥ 2. For simplicity, here we
assume that the numberm of messages is odd (the case with even number of messages can be proved with essen-
tially the same argument), and completeness and soundness are 2/3 and1/3, respectively, in the original quantum
interactive proof system.

The basic idea is again to simulate the REFLECTION PROCEDURE associated with the originalm-message
quantum interactive proof system.

Fix an inputx and the transformations of the proverP onx in the originalm-message quantum interactive proof
system. This time, we consider that the registerM in the REFLECTION PROCEDUREdescribed in Figure 1 contains
all the qubits the proverP can access in the original system (i.e., all the private qubits of the prover and all the
message qubits that are used for communications). We further consider that the registerA contains all the private
qubits of the verifier in the original system. Now, if we replace Vx in Figure 1 by the unitary transformationU
derived from the original quantum interactive proof systemwhen the verifier communicates withP on inputx,
the REFLECTION PROCEDUREdescribed in Figure 1 can be viewed as first applyingU by performing a forward
simulation of the communications withP , then applying a phase-flip with respect to the accepting states, and
further applyingU † by performing a backward simulation of the communications with P to confirm if the entire
statedoes notgo back to a legal initial state.
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Hence, if there is a strategy for a prover that can convince the verifier with probability exactly1/2 in the original
system, then this specific REFLECTION PROCEDUREwith such a prover must result in acceptance with certainty,
from the property of the REFLECTION PROCEDURE. Fortunately, if the numberm of messages is at least two,
it is not hard for an all powerful prover to arbitrarily decrease the accepting probability, and thus, this essentially
achieves the perfect completeness when the input is a yes-instance. On the other hand, for any no-instance, no
prover can convince the verifier with probability more than1/3. This implies that the above specific REFLECTION

PROCEDUREmust result in rejection with some constant probability (actually with probability at least1/9), again
from the property of the REFLECTION PROCEDURE. Therefore, this basically establishes a quantum interactive
proof system of perfect completeness, as desired.

There are two problems in this construction. One is that a dishonest prover may not be so cooperative that a
backward simulation formsU † as required (i.e., a prover may behave during the backward simulation differently
from the inverse of what he/she behaved during the forward simulation). The other is that the number of messages
increases fromm to 2m− 1, and thus, it is less communication-efficient than the existing construction of achieving
perfect completeness in quantum interactive proofs due to Kitaev and Watrous [KW00].

Modified Reflection Procedure Both of the two problems mentioned above originate from the fact that the
REFLECTION PROCEDUREinvolves one application ofU and one application ofU †. Now we modify the procedure
so that it involves one application ofU † only (and no application ofU is required), which simultaneously settles
both of the two problems.

To do this, at the beginning, one expects to receive a state just after Step 1 of the REFLECTION PROCEDURE, and
then performs on this state two tests, called REFLECTION TEST and INVERTIBILITY TEST, respectively, with equal
probability without revealing which test the prover is undergoing. In the REFLECTION TEST, one simply performs
Steps 2–4 of the REFLECTION PROCEDURE(i.e., one first applies the appropriate phase-flip and then appliesU †)
to finish the simulation of it. In the INVERTIBILITY TEST, one apply justU † without performing the phase-flip and
checks if the entire statedoesgo back to a legal initial state of the original REFLECTION PROCEDURE. We call
the resulting procedure the MODIFIED REFLECTION PROCEDURE, a precise description of which will be given
in Subsection 7.1. The idea of making use of the INVERTIBILITY TEST originally appeared in Ref. [KKMV09]
when achieving perfect completeness in quantum multi-prover interactive proofs, but the test was used only after
the forward simulation of the protocol in their original construction, and was not for the purpose of reducing the
number of messages.

As is clear from the construction above, the MODIFIED REFLECTION PROCEDURE requires only one appli-
cation ofU † as desired. Thus, the quantum interactive proof system thatsimulates this MODIFIED REFLECTION

PROCEDURE involves onlym messages as required (for an evenm, it involvesm+ 1 messages, as the original
system starts with a turn for a verifier, while the verifier in the constructed system needs to receive a witness before
his/her first turn). Moreover, for any yes-instance, the honest prover clearly has only to cooperate with the verifier
to perform the backward simulation of the original REFLECTION PROCEDUREand can convince the verifier with
certainty. On the other hand, for any no-instance, the original REFLECTION PROCEDUREwould have rejected with
high probability, if the properU † had been performed. Thus, if the backward simulation in the MODIFIED RE-
FLECTION PROCEDUREwere properly performed, the REFLECTION TEST of it could reject with high probability
as it properly simulates the original REFLECTION PROCEDURE. In contrast, if the backward simulation were not
proper in the MODIFIED REFLECTION PROCEDURE, then the INVERTIBILITY TEST of it would result in rejection
with high probability, as it essentially forces the prover to perform a proper backward simulation of the original
REFLECTION PROCEDURE. Indeed, as will be proved in Subsection 7.1, if one starts with a REFLECTION PRO-
CEDURE that rejects with probability at leastε for every possible witness, the resulting MODIFIED REFLECTION

PROCEDURErejects with probability at leastε/4 no matter which witness is received (the proof of Proposition 30
essentially proves this). Hence, the soundness can be shownas well in the MODIFIED REFLECTION PROCEDURE.

10



4 Preliminaries

Throughout this paper, letN andZ
+ denote the sets of positive and nonnegative integers, respectively, and let

Σ = {0, 1} denote the binary alphabet set. A functionf : Z+ → N is polynomially boundedif there exists a
polynomial-time deterministic Turing machine that outputs 1f(n) on input1n. A function f : Z+ → [0, 1] is neg-
ligible if, for every polynomially bounded functiong : Z+ → N, it holds thatf(n) < 1/g(n) for all but finitely
many values ofn.

Quantum Fundamentals We assume the reader is familiar with the quantum formalism,including pure and
mixed quantum states, density operators, measurements, trace norm, fidelity, as well as the quantum circuit model
(see Refs. [NC00, KSV02], for instance). Here we summarize some notations and properties that are used in this
paper.

For eachk ∈ N, letC(Σk) denote the2k-dimensional complex Hilbert space whose standard basis vectors are
indexed by the elements inΣk. In this paper, all Hilbert spaces are complex and have dimension a power of two.
For a Hilbert spaceH, let IH denote the identity operator overH, and letD(H) be the set of density operators over
H. For a quantum registerR, let |0〉R denote the state in which all the qubits inR are in state|0〉. As usual, denote
the two single-qubit states inC(Σ) that form theHadamard basisby

|+〉 = 1√
2
(|0〉+ |1〉), |−〉 = 1√

2
(|0〉 − |1〉),

and the four two-qubit states inC(Σ2) that form theBell basisby

|Φ+〉 = 1√
2
(|00〉 + |11〉), |Φ−〉 = 1√

2
(|00〉 − |11〉),

|Ψ+〉 = 1√
2
(|01〉 + |10〉), |Ψ−〉 = 1√

2
(|01〉 − |10〉),

respectively. Let

H =
1√
2

(

1 1
1 −1

)

, X =

(

0 1
1 0

)

, Z =

(

1 0
0 −1

)

denote the Hadamard and Pauli operators. For convenience, we may identify a unitary operator with the unitary
transformation it induces. In particular, for a unitary operatorU , the induced unitary transformation is also denoted
byU .

For a linear operatorA, thetrace normof A is defined by

‖A‖tr = tr
√
A†A.

For two quantum statesρ andσ, thetrace distancebetween them is defined by

D(ρ, σ) =
1

2
‖ρ− σ‖tr,

and thefidelity between them is defined by

F (ρ, σ) = tr
√√

ρσ
√
ρ.

A special case of the trace distance is thestatistical differencebetween two probability distributionsµ andν, which
is defined by

SD(µ, ν) = D(µ, ν)

by viewing probability distributions as special cases of quantum states with diagonal density operators. We will
use the following important properties of the trace distance and fidelity.
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Lemma 6. Letµρ andµσ be the probability distributions derived from two quantum statesρ andσ, respectively,
by performing an arbitrary identical measurement. Then,

SD(µρ, µσ) ≤ D(ρ, σ).

Lemma 7 ([SR02, NS03]). For any quantum statesρ, σ, andξ,

F (ρ, σ)2 + F (σ, ξ)2 ≤ 1 + F (ρ, ξ).

For any unitary transformationU acting over the two-dimensional Hilbert spaceH = C(Σ) (i.e., the single-
qubit space), theChoi-Jamiołkowski stateof U is the two-qubit state inH⊗H = C(Σ2) defined by

|J(U)〉 = (I ⊗ U)|Φ+〉.

In fact, the Choi-Jamiołkowski state can be defined for any admissible (and not limited to unitary) transformation
and any finite-dimensional Hilbert space, using the Choi-Jamiołkowski representation [Jam72, Cho75], but which
is unnecessary in this paper.

The Finite Quantum de Finetti Theorem ForN ∈ N and quantum registersQ1, . . . ,QN , each consisting of
k qubits, anN -partite quantum stateρ in (Q1, . . . ,QN ) is said to besymmetricif ρ is invariant under any permu-
tation over the registersQ1, . . . ,QN .

The finite quantum de Finetti theorem[KR05, CKMR07] provides a very useful property that the reduced
m-partite state of anyN -partite symmetric state when tracing out the lastN −m subsystems must be close to a
mixture ofm-fold product states. This paper uses the following bound proved in Ref. [CKMR07].

Theorem 8(Finite quantum de Finetti theorem). For N, k ∈ N, letQ1, . . . ,QN be quantum registers each consist-
ing ofk qubits, and letρ be anN -partite symmetric state in(Q1, . . . ,QN ). For anym ∈ N satisfyingm < N and
them-partite reduced stateρ(m) of ρ in (Q1, . . . ,Qm), there existC ∈ N, a set{ξj}j∈{1,...,C} of k-qubit states,
and an associated probability distribution{µj}j∈{1,...,C} such that

D

(

ρ(m),

C
∑

j=1

µjξ
⊗m
j

)

≤ 22k+1m

N
.

Polynomial-Time Uniformly Generated Families of Quantum Circuits Following conventions, we define
quantum Merlin-Arthur proof systems in terms of quantum circuits. In particular, we use the following notion
of polynomial-time uniformly generated families of quantum circuits.

A family {Qx} of quantum circuits ispolynomial-time uniformly generatedif there exists a deterministic pro-
cedure that, on every inputx, outputs a description ofQx and runs in time polynomial in|x|. It is assumed that
the circuits in such a family are composed of gates in some reasonable, universal, finite set of quantum gates. Fur-
thermore, it is assumed that the number of gates in any circuit is not more than the length of the description of that
circuit. ThereforeQx must have size polynomial in|x|. For convenience, we may identify a circuitQx with the
unitary operator it induces.

Throughout this paper, we assume a gate set with which the Hadamard and any classical reversible transforma-
tions can be exactly implemented. Note that this assumptionis satisfied by many standard gate sets such as the Shor
basis [Sho96] consisting of the Hadamard, controlled-i-phase-shift, and Toffoli gates, and the gate set consisting of
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the Hadamard, Toffoli, and NOT gates [Shi02, Aha03]. Moreover, as the Hadamard transformation in some sense
can be viewed as a quantum analogue of the classical operation of flipping a fair coin, our assumption would be
the most natural quantum correspondence to the tacit classical assumption in randomized complexity theory that
fair coins and perfect logical gates are available. Hence webelieve that our condition is very reasonable and not
restrictive. Note that, with a gate set satisfying this assumption, any transformation corresponding to a Clifford
group operator is exactly implementable. In particular, the controlled-phase-flip transformationZ can be exactly
realized by using an ancilla qubit prepared in state|−〉 = 1√

2
(|0〉 − |1〉) (by applying a NOT and an Hadamard in

sequence to|0〉) and performing a CNOT with this ancilla as the target.
Since non-unitary and unitary quantum circuits are equivalent in computational power [AKN98], it is suffi-

cient to treat only unitary quantum circuits, which justifies the above definition. Nevertheless, for readability, most
procedures in this paper will be described using intermediate projective measurements and unitary operations con-
ditioned on the outcome of the measurements. All of these intermediate measurements can be deferred to the end
of the procedure by a standard technique so that the procedure becomes implementable with a unitary circuit.

Quantum Interactive Proof Systems Now we review the model of quantum interactive proof systems.
A quantum interactive proof system is a communication modelbetween two players called aquantum verifierV

and aquantum proverP , both of whom receive a common inputx ∈ Σ∗. Fix the inputx. Let V andP be
quantum registers corresponding to the private spaces ofV andP , respectively, and letM be a quantum register
corresponding to the message space that is used to exchange messages betweenV andP . One of the qubits inV,
which is private toV , is designated as theoutput qubit. At the beginning, all the qubits inV andM are initialized
to state|0〉, while the quantum state inP can be arbitrarily prepared byP . ThenV andP together run a protocol
that consists of alternating turns of the verifier and of the prover. The first turn is for the verifier if the total number
of turns is even, and it is for the prover otherwise, whereas the last turn is always for the prover. At each turn of the
verifier,V applies some unitary transformation implementable with a polynomial-size quantum circuit to the state
in (V,M), and then sends the registerM to P . At each turn of the prover,P applies some unitary transformation
to the state in(P,M), and then sendsM to V . After the last turn, the verifierV further applies some unitary
transformation implementable with a polynomial-size quantum circuit to the state in(V,M), and then measures the
output qubit in the standard basis.V accepts if this measurement results in|1〉 and rejects otherwise.

Formally, for any functionm : Z+ → N that is polynomially bounded, anm-message polynomial-time quan-
tum verifieris a polynomial-time computable mappingV : Σ∗ → Σ∗. For each inputx ∈ Σ∗, V (x) is interpreted
as describing a series{Vx,j}j∈{1,...,⌈(m(|x|)+1)/2⌉} of quantum circuits acting over the same number of qubits as
well as a partition of the qubits on which these circuits act into registersV andM, where{Vx,j} is a polynomial-
time uniformly generated family of quantum circuits explained before (in particular, every circuitVx,j is com-
posed of gates in some reasonable, universal, finite set of quantum gates). For any polynomially bounded func-
tionm : Z+ → N, anm-message quantum proveris a mappingP that simply maps an input binary stringx ∈ Σ∗

to a series{Px,j}j∈{1,...,⌊(m(|x|)+1)/2⌋} of unitary transformations as well as a partition of the qubits on which these
unitary transformations act into registersM andP. It is always assumed thatV andP arecompatible(i.e., the
registerM is common forV andP ) when they are associated with the same quantum interactiveproof system.

Given an inputx, anm-message polynomial-time quantum verifierV , and anm-message quantum proverP ,
letQx be the unitary transformation induced fromV andP , acting over the space corresponding to(V,M,P):

Qx = (Vx,(m(|x|)+1)/2 ⊗ IP)(IV ⊗ Px,(m(|x|)+1)/2) · · · (Vx,1 ⊗ IP)(IV ⊗ Px,1)

if m(|x|) is odd, while

Qx = (Vx,(m(|x|)/2)+1 ⊗ IP)(IV ⊗ Px,m(|x|)/2)(Vx,m(|x|)/2 ⊗ IP) · · · (IV ⊗ Px,1)(Vx,1 ⊗ IP)

if m(|x|) is even, whereV andP are the Hilbert spaces corresponding toV andP, respectively. When communicat-
ing with the proverP who prepares the initial stateρ ∈ D(P), the verifierV accepts the inputx if the measurement
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of the designated output qubit inV in the standard basis results in|1〉 at the end of the protocol after having applied
the unitary transformationQx to the initial state|0〉〈0|(V,M) ⊗ ρ in (V,M,P).

Formally, the classQIP(m, c, s) of problems havingm-message quantum interactive proof systems with com-
pletenessc and soundnesss is defined as follows. For generality, throughout this paper, we use promise prob-
lems [ESY84] rather than languages when defining complexityclasses.

Definition 9. Given a polynomially bounded functionm : Z+ → N and functionsc, s : Z+ → [0, 1] satisfying
c > s, a promise problemA = (Ayes, Ano) is inQIP(m, c, s) iff there exists anm-message polynomial-time quan-
tum verifierV such that, for every inputx:

(Completeness) ifx ∈ Ayes, there exist anm-message quantum proverP and the initial stateρx of P that makeV
acceptx with probability at leastc(|x|),

(Soundness) ifx ∈ Ano, for anym-message quantum proverP ′ and any initial stateρ′x of P ′ prepared,V accepts
x with probability at mosts(|x|).

The classQIP(m) of problems havingm-message quantum interactive proof systems is defined as follows.

Definition 10. Given a polynomially bounded functionm : Z+ → N, a promise problemA = (Ayes, Ano) is in
QIP(m) iff A is inQIP(m, 1− ε, ε) for some negligible functionε : Z+ → [0, 1].

Similarly, the classQIP1(m) of problems havingm-message quantum interactive proof systems of perfect
completeness is defined as follows.

Definition 11. Given a polynomially bounded functionm : Z+ → N, a promise problemA = (Ayes, Ano) is in
QIP1(m) iff A is in QIP(m, 1, ε) for some negligible functionε : Z+ → [0, 1].

Finally, as quantum Merlin-Arthur proof systems are nothing but one-message quantum interactive proof sys-
tems, the classesQMA andQMA1 of problems having quantum Merlin-Arthur proof systems andthose of perfect
completeness are simply defined as follows, respectively.

Definition 12. A promise problemA = (Ayes, Ano) is in QMA iff A is in QIP(1, 1 − ε, ε) for some negligible
functionε : Z+ → [0, 1].

Definition 13. A promise problemA = (Ayes, Ano) is in QMA1 iff A is in QIP(1, 1, ε) for some negligible
functionε : Z+ → [0, 1].

Quantum Merlin-Arthur Proof Systems with Shared EPR Pairs We further introduce another variant of quan-
tum Merlin-Arthur proof systems in which Arthur and Merlin initially share some copies of the EPR pair|Φ+〉.
If Arthur and Merlin are allowed to sharek EPR pairs initially, the resulting systems are calledquantum Merlin-
Arthur proof systems withk shared EPR pairs, or k-EPR QMA proof systemsin short. Notice that this model is
actually equivalent to a special case of two-message quantum interactive proof systems in which the first transfor-
mation of a verifier is just to createk copies of the EPR pairs (andk halves of these EPR pairs are sent to a prover
as the first message).

Formally, the classQMAk-EPR(c, s) of problems having quantum Merlin-Arthur proof systems with k shared
EPR pairs with completenessc and soundnesss is defined as follows.

Definition 14. Given a polynomially bounded functionk : Z+ → N and functionsc, s : Z+ → [0, 1] satisfying
c > s, a promise problemA = (Ayes, Ano) is in QMAk-EPR(c, s) iff A has a two-message quantum interactive
proof system with completenessc and soundnesss in which, for every inputx, the first transformation of the
associated quantum verifier is just to createk(|x|) copies of EPR pairs and the first message from the verifier
consists only of thek(|x|) halves of these EPR pairs.
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We further define the classQMAconst-EPR of problems having quantum Merlin-Arthur proof systems with
a constant number of shared EPR pairs with constant gap between completeness and soundness and the
classQMAconst-EPR

1 of problems having those of perfect completeness with constant soundness error as follows.

Definition 15. A promise problemA = (Ayes, Ano) is inQMAconst-EPR iff A is inQMAk-EPR(2/3, 1/3) for some
constantk ∈ N.

Definition 16. A promise problemA = (Ayes, Ano) is in QMAconst-EPR
1 iff A is in QMAk-EPR(1, 1/2) for some

constantk ∈ N.

Remark. Definitions 15 and 16 are equivalent to the seemingly most conservative defini-

tionsQMAconst-EPR def
=

⋃

k∈N,0≤s<c≤1QMAk-EPR(c, s) andQMAconst-EPR
1

def
=

⋃

k∈N,s∈[0,1)QMAk-EPR(1, s) of
these classes, for repeating the associated system with each of these classes constant times can achieve arbitrarily
large constant gap between completeness and soundness (in the two-sided error case, one first achieves sufficiently
large completeness via a parallel repetition followed by a threshold value computation, and then achieves desirably
small soundness via another parallel repetition of the obtained large-completeness system, without decreasing the
completeness too much).

5 Reflection Procedure

We start with presenting a very simple base procedure, whichwe call the REFLECTION PROCEDURE, that forms
a very base of our protocols to be constructed – basically, our protocols aim to simulate this base procedure with
several suitable modifications.

Let H be some Hilbert space, and consider two decompositions ofH into X0 ⊕ X1 andY0 ⊕ Y1 for sub-
spacesX0, X1, Y0, andY1 of H. Let∆j be the projection overH onto the subspaceXj and letΠj be that ontoYj,
for eachj ∈ {0, 1}.

LetU be some unitary transformation acting overH, and letM be the Hermitian operator overH defined by

M = ∆0U
†Π0U∆0.

Suppose thatM has an eigenvalueλ > 0 and consider the eigenstate (i.e., the normalized eigenvector) |φ0〉 corre-
sponding toλ. Then,M |φ0〉 = λ|φ0〉, and thus,

∆0|φ0〉 =
1

λ
∆0M |φ0〉 =

1

λ
M |φ0〉 = |φ0〉.

Define the four states|ψ0〉, |ψ1〉, |ξ0〉, and|ξ1〉 in H as follows:

|ψ0〉 =
Π0U |φ0〉
‖Π0U |φ0〉‖

, |ψ1〉 =
Π1U |φ0〉

‖Π1U |φ0〉‖
, |ξ0〉 =

∆0U
†|ψ0〉

‖∆0U †|ψ0〉‖
, |ξ1〉 =

∆1U
†|ψ0〉

‖∆1U †|ψ0〉‖
.

Then,‖Π0U |φ0〉‖ = ‖Π0U∆0|φ0〉‖ =
√

〈φ0|M |φ0〉 =
√
λ, and thus,‖Π1U |φ0〉‖ =

√
1− λ. It follows that

‖∆0U
†|ψ0〉‖ =

1√
λ
‖∆0U

†Π0U |φ0〉‖ =
1√
λ
‖∆0U

†Π0U∆0|φ0〉‖ =
1√
λ
‖M |φ0〉‖ =

√
λ,

and thus,‖∆1U
†|ψ0〉‖ =

√
1− λ. Hence,

|ξ0〉 =
1√
λ
∆0U

†|ψ0〉 =
1

λ
∆0U

†Π0U |φ0〉 =
1

λ
∆0U

†Π0U∆0|φ0〉 =
1

λ
M |φ0〉 = |φ0〉.
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REFLECTION PROCEDURE

1. Receive a quantum registerQ. Reject if the state inQ does not belong to the subspace corresponding to the
projection∆0, and otherwise applyU to Q.

2. Perform a phase-flip (i.e., multiply−1 in phase) if the state inQ belongs to the subspace corresponding to
the projectionΠ0.

3. ApplyU † toQ.

4. Reject if the state inQ belongs to the subspace corresponding to∆0, and accept otherwise.

Figure 3: The REFLECTION PROCEDURE.

This implies that
U †|ψ0〉 =

√
λ|ξ0〉+

√
1− λ|ξ1〉, U †|ψ1〉 =

√
1− λ|ξ0〉 −

√
λ|ξ1〉,

which was the crucial property analyzed by Marriott and Watrous [MW05] to develop their space-efficient QMA
amplification technique.

It follows that

U †(−Π0 +Π1)U |φ0〉 = U †(−
√
λ|ψ0〉+

√
1− λ|ψ1〉

)

= (1− 2λ)|ξ0〉 − 2
√

λ(1− λ)|ξ1〉,

and thus, whenM has an eigenvalue1/2, the corresponding eigenstate (which is necessarily inX0) must be
transformed into a state inX1 after the following process: one first appliesU to |φ0〉, next flips the phase of states
in Y0 (i.e., applies the unitary transformation−Π0 +Π1), and then appliesU †. This property can be used to test if
M has an eigenvalue1/2, which is summarized in Figure 3.

Proposition 17. Suppose that the Hermitian operatorM = ∆0U
†Π0U∆0 has an eigenvalue1/2. Then there exists

a quantum state given in Step 1 of theREFLECTION PROCEDUREsuch that the procedure results in acceptance
with certainty.

Proof. Consider the case where the eigenstate ofM with its corresponding eigenvalue1/2 is received inQ in
Step 1. Then the claim is immediate from the argument above. �

Proposition 18. For any ε ∈ (0, 12 ], suppose that none of the eigenvalues of the Hermitian opera-
tor M = ∆0U

†Π0U∆0 is in the interval
(

1
2 − ε, 12 + ε

)

. Then, for any quantum state given in Step 1 of the
REFLECTION PROCEDURE, the procedure results in rejection with probability at least 4ε2.

Proof. Let |ψ〉 be any state received inQ in Step 1. Without loss of generality, one can assume that|ψ〉 is inX0 (as
otherwise either rejected in Step 1 or projected onto a statein X0).

For the Hilbert spaceH, there always exists an orthonormal basis such that all the basis states of it are eigen-
states ofM , and thus, the state|ψ〉 can be necessarily written as|ψ〉 = ∑d

j=1 αj|φj〉 for d = dimX0 ≤ dimH,

where each|φj〉 is an eigenstate ofM in X0 and
∑d

j=1 |αj |2 = 1.
From the analysis above, every eigenstate|φj〉 of M in X0 with corresponding eigenvalueλj > 0 must satisfy

that
∆0U

†(−Π0 +Π1)U |φj〉 = (1− 2λj)|φj〉.
On the other hand, for every eigenstate|φj〉 of M in X0 with corresponding eigenvalueλj = 0, it holds that
‖Π0U |φj〉‖ = ‖Π0U∆0|φj〉‖ =

√

〈φj |M |φj〉 = 0. This impliesΠ1U |φj〉 = U |φj〉, and thus,

∆0U
†(−Π0 +Π1)U |φj〉 = ∆0|φj〉 = |φj〉 = (1− 2λj)|φj〉.
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Therefore,

∆0U
†(−Π0 +Π1)U |ψ〉 =

d
∑

j=1

αj(1− 2λj)|φj〉,

and thus, the probability of rejection is at least
∑d

j=1 |αj |2(1− 2λj)
2 ≥ 4ε2

∑d
j=1 |αj |2 = 4ε2, as claimed. �

6 QMA ⊆ QMAconst-EPR

1
⊆ QIP1(2)

The goal of this section is to prove Theorem 2. In Subsection 6.1 we first describe building blocks, before presenting
the proof in Subsection 6.2.

6.1 Building Blocks

6.1.1 Encoding Accepting Probability in Phase

Let V be the verifier of a certain QMA system. Consider the quantum circuit Vx of V when the input isx,
which acts over a pair of two registersA of v(|x|) qubits andM of m(|x|) qubits, for some polynomially bounded
functionsv,m : Z+ → N. The circuitVx expects to receive a quantum witness ofm(|x|) qubits in registerM, and
uses thev(|x|) qubits inA as its work qubits. The Hilbert spaces associated withA andM are denoted byA and
M, respectively.

For an inputx, let px be the maximum acceptance probability of the verifierV in this QMA system. Then,
as pointed out by Marriott and Watrous [MW05],px corresponds to the maximum eigenvalue of the Hermitian
operator

Mx = ΠinitV
†
xΠaccVxΠinit,

whereΠinit is the projection onto the subspace spanned by states in which all the qubits inA are in state|0〉, and
Πacc is that onto the subspace spanned by accepting states of thisQMA system. Let|wx〉 be the eigenstate (i.e.,
eigenvector) ofMx corresponding to the eigenvaluepx. A crucial analysis of Ref. [MW05] (which essentially
follows from the arguments in Section 5) is that

ΠinitV
†
xΠaccVx(|0〉A ⊗ |wx〉M) = px|0〉A ⊗ |wx〉M,

ΠinitV
†
xΠrejVx(|0〉A ⊗ |wx〉M) = (1− px)|0〉A ⊗ |wx〉M,

whereΠrej = IA⊗M −Πacc is the projection onto the subspace spanned by rejecting states of this QMA system.
Let p = p2x/(2p

2
x − 2px + 1). Using the property explained above, if one copy of|wx〉 is given, one can gener-

ate with high probability the state

|χp〉 =
1

√

2p2x − 2px + 1

[

(1− px)|0〉 + px|1〉
]

as follows. One uses a single-qubit registerR in addition toA andM, where one sets|wx〉 in M, and initializes all
the qubits inA andR to state|0〉. First, one performs a forward simulation of the original system overA andM
(i.e., appliesVx to (A,M)), and flips the qubit inR if the content of(A,M) corresponds to an accepting state of the
original system (i.e., applies the unitary transformationX ⊗Πacc + I ⊗Πrej to (R,A,M)). One then performs a
backward simulation of the original system overA andM (i.e., appliesV †

x to (A,M)). Now one measures all the
qubits inA in the computational basis. If no|1〉 is measured (i.e., if the state is projected with respect toΠinit,
which happens with probability2p2x − 2px + 1), the unnormalized state in the system must be

|0〉R ⊗ (1− px)|0〉A ⊗ |wx〉M + |1〉R ⊗ px|0〉A ⊗ |wx〉M =
[

(1− px)|0〉 + px|1〉
]

R
⊗ |0〉A ⊗ |wx〉M,

and thus, the desired state is successfully generated inR. We call this procedure the DISTILLATION PROCEDURE,
which is summarized in Figure 4.
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DISTILLATION PROCEDURE

Input: a single-qubit registerR, av(|x|)-qubit registerA, and anm(|x|)-qubit registerM.

Output: a single-qubit registerR or a symbol⊥.

1. ApplyVx to (A,M).

2. Flip the qubit inR if the content of(A,M) corresponds to an accepting state of the original system.

3. ApplyV †
x to (A,M).

4. Measures all the qubits inA in the computational basis. If any of these measurements result in |1〉, output⊥,
otherwise outputR.

Figure 4: The DISTILLATION PROCEDURE.

6.1.2 Multiplicatively Adjusting Accepting Probabilitie s

For a real numbera ∈ [0, 1], letWa be the unitary transformation defined by

Wa =

(√
1− a

√
a√

a −
√
1− a

)

.

Given a unitary transformationWp for some real numberp ∈
[

1
2 , 1

]

, we construct another unitary transforma-
tionU and an appropriate projection operatorΠ0 acting over two qubits so that the probability‖Π0U |00〉‖2 exactly
equals1/2.

Suppose that one can apply another unitary transformationWq, for some real numberq ∈ [0, 1], and define the
unitary transformationU and projection operatorΠ0 by

U =Wp ⊗Wq, Π0 = |11〉〈11|.

Then, clearly,‖Π0U |00〉‖2 = pq, and thus, this probability equals1/2 if and only if pq = 1/2. This in particular
implies that there exists a real numberq ∈ [0, 1] that achieves the adjusted accepting probability exactly1/2 when
p ≥ 1/2, but noq ∈ [0, 1] can make it exactly equal to1/2 whenp < 1/2.

6.1.3 Simulating Unitaries with Choi-Jamiołkowski States

In this subsection, we consider the case where the aforementioned unitary transformationWa itself is not available,
but only the copies of its Choi-Jamiołkowski state|J(Wa)〉 = (I ⊗Wa)|Φ+〉 are available.

Note that one copy of the Choi-Jamiołkowski state|J(Wa)〉 can be used to simulate one application ofWa (the
simulation succeeds with probability1/4). More precisely, the simulation ofWa is done as follows. Suppose one
wants to applyWa to the qubit in some single-qubit registerR1, while the state|J(Wa)〉 is available in(R2,R

′
2),

for some single-qubit registersR2 andR′
2. Then one measures the state in(R1,R2) in the Bell basis. If this results

in |Φ+〉, the application ofWa succeeds, and the desired state is available in the registerR′
2 (which can be verified

via an argument similar to the analysis of seminal quantum teleportation).
Actually, when one wants to applyWa to the specific state|0〉, there is a more efficient way than the simulation

just explained above. A key observation is that, for any realnumbera ∈ [0, 1], the unitary transformationWa in
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the last subsection can be written as

Wa =

(√
1− a

√
a√

a −
√
1− a

)

=
√
1− aZ +

√
aX,

and thus, the state|χa〉 is given by

|χa〉 =Wa|0〉 =
√
1− a|0〉+

√
a|1〉,

while the Choi-Jamiołkowski state ofWa is given by

|J(Wa)〉 =
√
1− a|J(Z)〉+

√
a|J(X)〉 =

√
1− a|Φ−〉+

√
a|Ψ+〉.

Hence, given one copy of the Choi-Jamiołkowski state|J(Wa)〉, one can easily generate the state|χa〉 =Wa|0〉 in
the first qubit by applying the following unitary transformation T to |J(Wa)〉:

T : |Φ−〉 7→ |00〉, |Ψ−〉 7→ |01〉, |Ψ+〉 7→ |10〉, |Φ+〉 7→ |11〉

(note that thisT can be realized by first applying the CNOT transformation using the first qubit as the control, then
applying the Hadamard transformationH and the NOT transformationX in this order to the first qubit, and finally
applying CNOT again using the first qubit as the control).

6.1.4 Simulating the Reflection Procedure with Choi-Jamiołkowski States

Now we consider simulating the REFLECTION PROCEDUREwith given two copies of|χp〉 =Wp|0〉 and two copies
of a Choi-Jamiołkowski state|J(Wq)〉, wherep andq are real numbers in[0, 1]. The procedure basically follows
the REFLECTION PROCEDUREwith taking the registerQ to be a two-qubit register, the initial state|φ0〉 to be|00〉,
the projection∆0 to be |00〉〈00|, and the underlying unitaryU and projectionΠ0 to beWp ⊗Wq and |11〉〈11|,
as defined in Subsection 6.1.2. Thus, to precisely perform the REFLECTION PROCEDURE in Figure 3 in this
setting, we need to apply each ofWp =W †

p andWq =W †
q twice. Fortunately, each of the first applications of

Wp andWq is to the|0〉 state, and thus, one may simply replace these applications by just using a given copy of
|χp〉 and generating|χq〉 from a copy of|J(Wq)〉, respectively. The second applications of these unitariescan
be probabilistically simulated by using the Choi-Jamiołkowski states|J(Wp)〉 and |J(Wq)〉, where one creates
|J(Wp)〉 from a copy of|χp〉. This leads to the procedure called REFLECTION SIMULATION TEST described in
Figure 5.

Now we analyze the properties of this simulation.

Proposition 19. The REFLECTION SIMULATION TEST accepts with certainty if the state in the input regis-
ter (R1,R2,S1,S

′
1,S2,S

′
2) is |χp〉⊗2 ⊗ |J(Wq)〉⊗2 for some real numbersp, q ∈ [0, 1] satisfyingpq = 1/2.

Proof. The claim is almost obvious. With|χp〉 in R1 and |J(Wq)〉 in (S1,S
′
1) for suchp andq, Step 1 in the

REFLECTION SIMULATION TEST creates the state

U |00〉 =
(
√

1− p|0〉+√
p|1〉

)

R1
⊗

(
√

1− q|0〉+√
q|1〉

)

S1

in (R1,S1), since the application ofT generates the state|χq〉 in S1. As the application ofT † in Step 3 gener-
ates the Choi-Jamiołkowski state|J(Wp)〉 in (R2,R

′
2), one succeeds in Step 3 with probability(1/4)2 = 1/16

in applying both ofW †
p =Wp and W †

q =Wq, which successfully simulatesU † with generating the de-
sired state in(R′

2,S
′
2). Hence, the simulation of the REFLECTION PROCEDURE succeeds with probabil-

ity 1/16, in which case the test necessarily results in acceptance asin the analysis in Section 5, since
(|00〉〈00|U †Π0U |00〉〈00|)|00〉 = ‖Π0U |00〉‖2|00〉 = 1

2 |00〉. On the other hand, if any of measurements in Step 3
fails in measuring|Φ+〉, the test just stops and accepts with giving up. Therefore, the test must result in acceptance
with certainty. �
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REFLECTION SIMULATION TEST

Input: single-qubit registersR1, R2, S1, S′1, S2, andS′2.

Output: “accept” or “reject”.

1. Receive six single-qubit registersR1, R2, S1, S′1, S2, andS′2.
Apply the unitary transformationT to the state in(S1,S′1).
Prepare|0〉 in a single-qubit registerR′

2.

2. Perform a phase-flip (i.e., multiply−1 in phase) if(R1,S1) contains11.

3. Try to simulate Step 3 of the REFLECTION PROCEDUREby performing the following:
Apply T † to the state in(R2,R

′
2). Measure the states in(R1,R2) and(S1,S2) in the Bell basis. Continue if

both of these two measurements result in|Φ+〉, and accept otherwise (accept with giving up due to failure of
the simulation).

4. Reject if(R′
2,S

′
2) contains00, and accept otherwise.

Figure 5: The REFLECTION SIMULATION TEST, which tries to simulate the REFLECTION PROCEDURE using
Choi-Jamiołkowski states.

Proposition 20. For any real numberq ∈ [0, 1], the REFLECTION SIMULATION TEST results in rejection
with probability 1/16 if the state in the input register(R1,R2,S1,S

′
1,S2,S

′
2) is either |0〉⊗2 ⊗ |J(W+

q )〉⊗2 or
|0〉⊗2 ⊗ |J(W−

q )〉⊗2, whereW+
q =Wq and

W−
q = ZWqZ =

(√
1− q −√

q
−√

q −√
1− q

)

=
√

1− qZ −√
qX.

Proof. We prove the case where the state in(R1,R2,S1,S
′
1,S2,S

′
2) is |0〉⊗2 ⊗ |J(W+

q )〉⊗2. The other case is

proved similarly, by noticing thatT |J(W−
q )〉 = (W−

q |0〉) ⊗ |0〉 andW−
q

†
=W−

q hold for anyq ∈ [0, 1].
With |0〉 in R1 and |J(W+

q )〉 = |J(Wq)〉 in (S1,S
′
1), Step 1 in the REFLECTION SIMULATION TEST creates

the state
|0〉R1

⊗ |χq〉S1
in (R1,S1). For this state given, Step 2 in the REFLECTION SIMULATION TEST does not change the state in
(R1,S1) at all. As |0〉 = |χ0〉, the application ofT † in Step 3 generates the Choi-Jamiołkowski state|J(W0)〉
in (R2,R

′
2), and thus, one succeeds in Step 3 with probability(1/4)2 = 1/16 in applying both ofW †

0 =W0 and
W †
q =Wq. If such an event occurs, the state in(R′

2,S
′
2) becomes|0〉R′

2
⊗ |0〉S′

2
, and thus, the test results in rejection

with certainty.
Taking it into account that the test just stops and accepts with giving up when any of measurements in Step 3

fails in measuring|Φ+〉, the test results in rejection with probability1/16 in total. �

6.2 Proof of Theorem 2

Now we are ready to prove Theorem 2.
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Proof of Theorem 2.LetA = (Ayes, Ano) be inQMA and letV be the verifier of the corresponding QMA system.
Without loss of generality, one can assume that both completeness and soundness errors are exponentially small in
this QMA system.

For an inputx, the quantum circuitVx of the verifierV acts over a pair of two registersA of v(|x|) qubits
andM of m(|x|) qubits, for some polynomially bounded functionsv,m : Z+ → N. This can be interpreted asVx
expecting to receive a quantum witness|w〉 of m(|x|) qubits in registerM, and using thev(|x|) qubits inA as its
work qubits. By Refs. [Shi02, Aha03], one can further assumethat the quantum circuitVx for any inputx consists
of only the Hadamard, Toffoli, and NOT gates. As pointed out by Marriott and Watrous [MW05], the maximum
acceptance probabilitypx of V with inputx corresponds to the maximum eigenvalue of the Hermitian operator

Mx = ΠinitV
†
xΠaccVxΠinit,

whereΠinit is the projection onto the subspace spanned by states in which all the qubits inA are in state|0〉, and
Πacc is the projection onto the space spanned by the accepting states ofV . From this verifierV , we shall construct
a protocol for the verifierW of another QMA system in whichW sharesN EPR pairs a priori with a prover
communicating with, whereN is a constant that is a power of two.

Our basic strategy is to try to perform the REFLECTION SIMULATION TEST usingVx. Fix an inputx, and

let p = p2x
2p2x−2px+1

. Let S1, . . . ,SN be single-qubit registers which store the particles of the shared EPR pairs. In

addition toM,W receivesN single-qubit registersS′1, . . . ,S
′
N . W expects to receive inM the state|wx〉 that is the

eigenstate (i.e., eigenvector) ofMx corresponding to the eigenvaluepx, and to receive states inS′1, . . . ,S
′
N such that

the state in(Sj,S′j) forms |J(Wq)〉 for eachj ∈ {1, . . . , N}, for q satisfyingpq = p2x
2p2x−2px+1

q = 1/2. In addition
toA,W prepares three single-qubit registersB, R1, andR2. All the qubits inA, B, R1, andR2 are initialized to the
|0〉 state.

First,W performs the DISTILLATION PROCEDUREtwice in sequence, first with(R1,A,M) as input, and sec-
ond with (R2,A,M) as input. If any of these two runs of the DISTILLATION PROCEDUREoutputs a symbol⊥,
the simulation fails, and thus accept with giving up. If not failed, thenW chooses two indicesr1 andr2 from
the set{1, . . . , N} uniformly at random. Ifr2 = 1, W accepts with giving up. OtherwiseW swaps the regis-
ters(S1,S′1) and(Sr1 ,S

′
r1) if r1 ≥ 2, and further swaps(S2,S′2) and(Sr2 ,S

′
r2) if r2 ≥ 3. Afterwards,W never

touches the registers(Sj ,S′j) for j ≥ 3, and thus this process essentially has the same effect as performing a ran-
dom permutation over the registers(S1,S′1), . . . , (SN ,S

′
N ). W then performs the SPACE RESTRICTION TEST by

checking if the state in(Sj,S′j) is in the space spanned by{|Φ−〉, |Ψ+〉}, for eachj ∈ {1, 2}, and further per-
forms the SWAP TEST between(S1,S′1) and(S2,S′2) (using the registerB as the control). Finally,W performs the
REFLECTION SIMULATION TEST with (R1,R2,S1,S

′
1,S2,S

′
2) as input. The protocol is summarized in Figure 6.

Notice that this protocol is exactly implementable when theHadamard and any classical reversible transformations
can be performed exactly.

For the completeness, suppose thatx is in Ayes. Let p = p2x
2p2x−2px+1

. The honest Merlin sets his shares of

theN EPR pairs in single-qubit registersS′1, . . . ,S
′
N , and appliesWq to each qubit in(S′1, . . . ,S

′
N ) to create the

state|J(Wq)〉 in (Sj,S
′
j), for j ∈ {1, . . . , N}, whereq satisfiespq = 1/2 (such aq always exists whenpx ≥ 1/2,

which is ensured by the completeness condition of the original QMA system). He also prepares|wx〉 in M, and
sends the

(

m(|x|) +N
)

-qubit state in(M,S′1, . . . ,S
′
N ) as a witness. Then, conditioned on the first application of

the DISTILLATION PROCEDUREnot outputting⊥, the state|χp〉 =Wp|0〉 is generated inR1, and|0〉⊗v(|x|) ⊗ |wx〉
is left in (A,M), and thus, the state|χp〉 is generated also inR2 when the second application of the DISTILLATION

PROCEDUREdoes not output⊥. Conditioned on the chosenr2 not being1 in Step 3, the protocol continues and
the state remains the same after this step. When continued, the SPACE RESTRICTION TEST in Step 4 clearly
never rejects and does not change the state at all, as the state in (Sj ,S

′
j) is |J(Wq)〉 =

√
1− q|Φ−〉+√

q|Ψ+〉
for eachj ∈ {1, 2}. Furthermore, the SWAP TEST never fails in Step 5 and it does not change the state at all
(and thus, the protocol never results in rejection in this step). Therefore, the state in(R1,R2,S1,S

′
1,S2,S

′
2)

is |χp〉⊗2 ⊗ |J(Wq)〉⊗2, when entering Step 6. Hence, from Proposition 19, the REFLECTION SIMULATION
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Verifier’s QMA Protocol for Achieving Perfect Completenesswith N Prior-Shared EPR Pairs

1. Store the particles of the sharedN EPR pairs in(S1, . . . ,SN ). Receive an
(

m(|x|) +N
)

-qubit quantum
witness in(M,S′1, . . . ,S

′
N ), where the firstm(|x|) qubits of the witness are inM, and the

(

m(|x|) + j
)

-th
qubit of the witness is inSj, for j ∈ {1, . . . , N}.
Prepare|0〉 in each of the three single-qubit registersB, R1 andR2, and|0〉⊗v(|x|) in av(|x|)-qubit registerA,
which corresponds to the private space of the original verifier.

2. Execute the DISTILLATION PROCEDUREwith (R1,A,M) as input. Accept if this outputs⊥, and continue
otherwise. Execute the DISTILLATION PROCEDUREagain, this time using(R2,A,M) as input. Accept if
this outputs⊥, and continue otherwise.

3. Choose two integersr1 andr2 from {1, . . . , N} uniformly at random. Accept ifr2 = 1 (accept with giving
up due to failure of simulation), and continue otherwise. Swap the registers(S1,S′1) and(Sr1 ,S

′
r1) if r1 ≥ 2,

and further swap the registers(S2,S′2) and(Sr2 ,S
′
r2) if r2 ≥ 3.

4. Perform the SPACE RESTRICTION TEST to check if the state in(Sj,S′j) is in the space spanned by
{|Φ−〉, |Ψ+〉}, for eachj ∈ {1, 2}. Reject if not so, and continue otherwise.
That is, perform the following for eachj ∈ {1, 2}: Apply the unitary transformationT defined by

T : |Φ−〉 7→|00〉, |Ψ−〉 7→|01〉, |Ψ+〉 7→|10〉, |Φ+〉 7→|11〉

to the state in(Sj,S′j). Reject ifS′j contains1, and applyT † to the state in(Sj ,S′j) to continue otherwise.

5. Perform the SWAP TEST between(S1,S′1) and(S2,S′2). Reject if it fails, and continue otherwise.
That is, applyH toB, swap(S1,S′1) and(S2,S′2) if B contains1, applyH toB again, and reject ifB contains
1, and continue otherwise.

6. Perform the REFLECTION SIMULATION TEST with (R1,R2,S1,S
′
1,S2,S

′
2) as input. Accept if this returns

“accept”, and reject otherwise.

Figure 6: Verifier’s QMA protocol for achieving perfect completeness withN pre-shared EPR pairs.

TEST results in acceptance with certainty, when the protocol reaches Step 6. As rejections can happen only in
Steps 4, 5, and 6, this proves the perfect completeness.

Now for the soundness, suppose thatx is inAno. LetRj, Sj , andS ′
j denote the Hilbert spaces associated with

the quantum registersRj, Sj, andS′j, for eachj, respectively.
As the soundness error of the original QMA system is exponentially small, whatever state the registerM

contains, the probability that the first application of the DISTILLATION PROCEDUREoutputs⊥ is exponentially
small. Moreover, conditioned on this not outputting⊥, the state generated inR1 is exponentially close to|0〉 (in
trace distance). Similarly, whatever state left inM after the first application of the DISTILLATION PROCEDURE,
the probability that the second application of the DISTILLATION PROCEDUREoutputs⊥ is exponentially small,
and the state generated inR2 is exponentially close to|0〉. Hence, the state in(R1,R2,S1,S

′
1, . . . ,SN ,S

′
N ) when

entering Step 2 must be exponentially close to(|0〉〈0|)⊗2 ⊗ ρ for some2N -qubit stateρ such that the reduced state
trS′

1
⊗···⊗S′

N
ρ is equal to theN -qubit totally mixed state(I/2)⊗N .

As Step 3 essentially has the same effect as performing a random permutation over the regis-
ters(S1,S′1), . . . , (SN ,S

′
N ) for the purpose of computing the reduced state in(S1,S

′
1,S2,S

′
2), from the finite quan-

tum de Finetti theorem (Theorem 8), the state in(R1,R2,S1,S
′
1,S2,S

′
2) after Step 3 should have trace distance at

22



most 2
6

N to the state

σ = (|0〉〈0|)⊗2 ⊗
(

∑

j

µjξ
⊗2
j

)

for some two-qubit statesξj , where
∑

j µj = 1, if the state in(R1,R2,S1,S
′
1, . . . ,SN ,S

′
N ) were(|0〉〈0|)⊗2 ⊗ ρ

when entering Step 3 and ifr2 6= 1 (here we are taking the randomness over the choices ofr1 andr2 into account).
By letting τ =

∑

j µjξ
⊗2
j , this in particular implies that for the reduced statetrS′

1
⊗S′

2
τ and the two-qubit totally

mixed state(I/2)⊗2,

D

(

trS′

1
⊗S′

2
τ,
(I

2

)⊗2
)

≤ 26

N

holds, sincetrS′

1
⊗···⊗S′

N
ρ = (I/2)⊗N . Taking it into account that the protocol enters Step 3 with probability

exponentially close to1 with the state in(R1,R2,S1,S
′
1, . . . ,SN ,S

′
N ) being exponentially close to(|0〉〈0|)⊗2 ⊗ ρ

in trace distance, we conclude that the protocol enters Step4 with probability exponentially close to1− 1
N with

the state in(R1,R2,S1,S
′
1,S2,S

′
2) having trace distance at most26

N + ε to σ for some exponentially smallε.
Now from Proposition 21 which will be found below and proved in the end of this section, the protocol

should result in rejection with probability at leastmin
{

27

N ,
1
16 − 15

(

26

N

)
1

8
}

if the state in(R1,R2,S1,S
′
1,S2,S

′
2)

wereσ when entering Step 4. Hence, using Lemma 6, the protocol results in rejection with probability at least

min
{

26

N − ε, 1
16 − 26

N − ε− 15
(

26

N

)
1

8
}

, when entering Step 4. As the protocol enters Step 4 with probability expo-
nentially close to1− 1

N , by takingN = 270, the protocol results in rejection with probability at least

(

1− 1

269

)

·min
{ 1

265
,
1

16
− 1

263
− 15

28

}

≥ 1

266
.

This proves the inclusion

QMA ⊆ QMA270-EPR
(

1, 1 − 1

266

)

.

Now for any constants ∈ (0, 1), one can achieve soundnesss simply by repeating this proof systemt times in
parallel for some appropriate constantt, as the system is a special case of two-message quantum interactive proof
systems, for which parallel repetition works perfectly [KW00]. This completes the proof. �

Finally, we prove the following proposition.

Proposition 21. When entering Step 4 of the protocol described in Figure 6, suppose that the state in
(R1,R2,S1,S

′
1,S2,S

′
2) were of the form(|0〉〈0|)⊗2 ⊗ τ whereτ =

∑

j µjξ
⊗2
j for some two-qubit statesξj and

real numbersµj ∈ [0, 1] satisfying
∑

j µj = 1, such that the reduced state ofτ in (S1,S2) has trace distance at

mostδ to the two-qubit totally mixed state(I/2)⊗2 for some positiveδ satisfying 1
16 − 15δ

1

8 > 0. Then the protocol

should result in rejection with probability at leastmin
{

2δ, 1
16 − 15δ

1

8

}

.

To prove Proposition 21, we first show two propositions that are special cases of Proposition 21.

Proposition 22. LetW be the two-dimensional space spanned by|Φ−〉 and|Ψ+〉. When entering Step 4 of the pro-
tocol described in Figure 6, suppose that the state in(R1,R2,S1,S

′
1,S2,S

′
2) were of the form(|0〉〈0|)⊗2 ⊗ τ where

τ =
∑

j µj(|ψj〉〈ψj |)⊗2 for some two-qubit states|ψj〉 ∈ W and real numbersµj ∈ [0, 1] satisfying
∑

j µj = 1,
such that the reduced state ofτ in (S1,S2) has trace distance at mostδ to the two-qubit totally mixed state(I/2)⊗2

for some positiveδ satisfying 1
16 − π

2 δ
1

2 > 0. Then the protocol should result in rejection with probability at least
1
16 − π

2 δ
1

2 .

The following lemma is essential for the proof of Proposition 22.
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Lemma 23. For eachj ∈ {1, 2}, let Sj and S ′
j be two-dimensional complex Hilbert spacesC(Σ), and letWj

be the two-dimensional subspace ofSj ⊗ S ′
j spanned by|Φ−〉 and |Ψ+〉. Let ρ be any four-qubit state in

D(W1 ⊗W2) ⊆ D(S1 ⊗ S ′
1 ⊗ S2 ⊗ S ′

2) that is a mixture of two-fold product pure states|ζj〉⊗2 in W1 ⊗W2

and such thatD(trS′

1
⊗S′

2
ρ, (I/2)⊗2) ≤ δ. Then there exists a four-qubit stateσ that is a mixture of two-fold prod-

ucts|J(W±
aj )〉⊗2 of a Choi-Jamiołkowski state, for real numbersaj ∈ [0, 1], such thatD(ρ, σ) ≤ π

2 δ
1

2 , where each
W±
aj is equal to eitherW+

aj =Waj or W−
aj = ZWajZ.

Proof. As ρ is a mixture of two-fold product pure states inW1 ⊗W2, it must be written as

ρ =
∑

j

µj(|ζj〉〈ζj |)⊗2,

where|ζj〉⊗2∈ W1 ⊗W2, µj∈ [0, 1] for eachj, and
∑

j µj=1. Without loss of generality, one may assume that

|ζj〉 = αj |Φ−〉+ βje
iθj |Ψ+〉

for eachj, whereαj andβj are real numbers in[0, 1] satisfyingα2
j + β2j = 1, andθj is a real number in[0, 2π).

For eachj, let aj = β2j , and define the two-qubit pure state|ηj〉 as

|ηj〉 = αj |Φ−〉+ βj |Ψ+〉 =
√

1− aj |Φ−〉+√
aj|Ψ+〉 = |J(W+

aj )〉

if j ∈ J+, and
|ηj〉 = αj |Φ−〉 − βj |Ψ+〉 =

√

1− aj |Φ−〉 − √
aj|Ψ+〉 = |J(W−

aj )〉
if j ∈ J−, whereJ+ = {j : θj ∈ [0, π/2] ∪ [3π/2, 2π)} andJ− = {j : θj ∈ (π/2, 3π/2)}.

Now take the four-qubit stateσ as
σ =

∑

j

µj(|ηj〉〈ηj |)⊗2.

We shall show that thisσ has the desired property. For this purpose, we prove two claims.

Claim 1. D
(

trS′

1
⊗S′

2
ρ, (I/2)⊗2

)

≥ 2
∑

j µjα
2
jβ

2
j sin

2 θj.

Proof. Noticing that

|ζj〉 =
1√
2

[

αj(|00〉 − |11〉) + βje
iθj (|01〉 + |10〉)

]

=
1√
2

[

(αj |0〉 + βje
iθj |1〉)⊗ |0〉+ eiθj (βj |0〉 − αje

−iθj |1〉) ⊗ |1〉
]

,

the reduced statetrS′

1
⊗S′

2
ρ is the mixture of the following four states

(αj |0〉+ βje
iθj |1〉) ⊗ (αj |0〉+ βje

iθj |1〉),
(αj |0〉+ βje

iθj |1〉) ⊗ (βj |0〉 − αje
−iθj |1〉),

(βj |0〉 − αje
−iθj |1〉) ⊗ (αj |0〉+ βje

iθj |1〉),
(βj |0〉 − αje

−iθj |1〉) ⊗ (βj |0〉 − αje
−iθj |1〉)

with equal probability1/4 for each, which can be expressed as a density matrix by

1

4









1 −2iαjβjsj −2iαjβjsj −4α2
jβ

2
j s

2
j

2iαjβjsj 1 4α2
jβ

2
j s

2
j −2iαjβjsj

2iαjβjsj 4α2
jβ

2
j s

2
j 1 −2iαjβjsj

−4α2
jβ

2
j s

2
j 2iαjβjsj 2iαjβjsj 1









,
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where sj is the shorthand ofsin θj. Let us denote the difference betweentrS′

1
⊗S′

2
ρ and (I/2)⊗2 by A

(i.e., A = trS′

1
⊗S′

2
ρ− (I/2)⊗2 ). In order to find the eigenvalues of2A, we solve the characteristic equa-

tion |2A− λI| = 0. Straightforward calculations show that the four solutions of the equation|2A− λI| = 0 are
given by−2

∑

j µjα
2
jβ

2
j s

2
j (two-fold) and2

∑

j µjα
2
jβ

2
j s

2
j ± 2

∣

∣

∑

j µjαjβjsj
∣

∣. This implies that

D

(

trS′

1
⊗S′

2
ρ,

(

I

2

)⊗2)

=
1

2
tr
√
A†A

=
1

2

[

2
∑

j

µjα
2
jβ

2
j s

2
j +

(

∑

j

µjα
2
jβ

2
j s

2
j +

∣

∣

∣

∣

∑

j

µjαjβjsj

∣

∣

∣

∣

)

+

∣

∣

∣

∣

∣

∑

j

µjα
2
jβ

2
j s

2
j −

∣

∣

∣

∣

∑

j

µjαjβjsj

∣

∣

∣

∣

∣

∣

∣

∣

∣

]

=
∑

j

µjα
2
jβ

2
j s

2
j +max

{

∑

j

µjα
2
jβ

2
j s

2
j ,

∣

∣

∣

∣

∑

j

µjαjβjsj

∣

∣

∣

∣

}

,

which is at least2
∑

j µjα
2
jβ

2
j s

2
j . This completes the proof of the claim. �

Claim 2. Let {µj} be a probability distribution, and{cj} be a set of real numbers. If
∑

j µjc
2
j ≤ ε, it holds that

∑

j µj|cj | ≤ ε
1

2 .

Proof. By the Cauchy-Schwarz inequality, we have

∑

j

µj |cj | =
∑

j

√
µj ·

√
µj|cj | ≤

(

∑

j

µj

)
1

2
(

∑

j

µj |cj |2
)

1

2

≤ ε
1

2 ,

as claimed. �

Now we boundD(ρ, σ). Notice that

D(ρ, σ) ≤
∑

j

µjD
(

(|ζj〉〈ζj |)⊗2, (|ηj〉〈ηj |)⊗2
)

=
∑

j∈J+
µj

√

1−
∣

∣〈ζj |ηj〉
∣

∣

4
+

∑

j∈J−
µj

√

1−
∣

∣〈ζj |ηj〉
∣

∣

4
.

If j ∈ J+, it holds that

∣

∣〈ζj|ηj〉
∣

∣

4
=

∣

∣α2
j + β2j e

−iθj ∣
∣

4
=

[

(

α2
j + β2j cos θj

)2
+

(

β2j sin θj
)2
]2

=
(

1− 4α2
jβ

2
j sin

2 θj
2

)2
,

and thus,

√

1−
∣

∣〈ζj|ηj〉
∣

∣

4
= 2

√
2
∣

∣

∣
αjβj sin

θj
2

∣

∣

∣

√

1− 2α2
jβ

2
j sin

2 θj
2

≤ 2
√
2
∣

∣

∣
αjβj sin

θj
2

∣

∣

∣
≤ π√

2

∣

∣αjβj sin θj
∣

∣,

where the last inequality comes from the fact that for anyθ ∈ [0, π/2] ∪ [3π/2, 2π),
∣

∣sin θ
2

∣

∣ ≤
∣

∣

θ
2

∣

∣ ≤ π
4 | sin θ|.

On the other hand, ifj ∈ J−, we have

∣

∣〈ζj |ηj〉
∣

∣

4
=

∣

∣α2
j − β2j e

−iθj ∣
∣

4
=

∣

∣α2
j + β2j e

−iθ′j
∣

∣

4
,

whereθ′j = θj + π (mod 2π). Noticing thatθ′j ∈ [0, π/2] ∪ [3π/2, 2π), it holds that

√

1−
∣

∣〈ζj |ηj〉
∣

∣

4 ≤ π√
2

∣

∣αjβj sin θ
′
j

∣

∣.

25



Therefore,
D(ρ, σ) ≤ π√

2

∑

j

µj|cj |,

where

cj =

{

αjβj sin θj if j ∈ J+,

αjβj sin θ
′
j if j ∈ J−.

By Claim 1 and the fact thatsin2 θ′j = sin2 θj for eachj ∈ J−, the assumptionD
(

trS′

1
⊗S′

2
ρ, (I/2)⊗2

)

≤ δ implies
that

∑

j

µjc
2
j =

∑

j

µjα
2
jβ

2
j sin

2 θj ≤
δ

2
.

By Claim 2, this implies thatD(ρ, σ) ≤ π√
2
( δ2 )

1

2 = π
2 δ

1

2 , which completes the proof of Lemma 23. �

Proof of Proposition 22.Let σ = (|0〉〈0|)⊗2 ⊗ τ . From Lemma 23, there exists a quantum stateτ ′ that is a
mixture of two-fold products|J(W±

aj )〉⊗2 of a Choi-Jamiołkowski state, for real numbersaj ∈ [0, 1], such that,

for σ′ = (|0〉〈0|)⊗2 ⊗ τ ′, D(σ, σ′) ≤ π
2 δ

1

2 . Here, as in Lemma 23, eachW±
aj is equal to eitherW+

aj =Waj

or W−
aj = ZWajZ. From Proposition 20, the REFLECTION SIMULATION TEST should result in rejection with

probability 1
16 if the quantum state in(R1,R2,S1,S

′
1,S2,S

′
2) were σ′. By Lemma 6, this implies that the

REFLECTION SIMULATION TEST should result in rejection with probability at least116 − π
2 δ

1

2 if the state in
(R1,R2,S1,S

′
1,S2,S

′
2) wereσ. Note thatσ is never rejected in Step 4 and passes the Swap-Test in Step 5 with

certainty, and the state is not changed at all in these two steps. Hence, if the state in(R1,R2,S1,S
′
1,S2,S

′
2) wereσ

when entering Step 4, the protocol should result in rejection with probability at least116 − π
2 δ

1

2 , as claimed. �

We next show the following proposition, which is more general than Proposition 22, but still is a special case
of Proposition 21.

Proposition 24. Let W be the two-dimensional space spanned by|Φ−〉 and |Ψ+〉. When entering Step 4 of the
protocol described in Figure 6, suppose that the state in(R1,R2,S1,S

′
1,S2,S

′
2) were of the form(|0〉〈0|)⊗2 ⊗ τ

whereτ =
∑

j µjξj
⊗2 for some two-qubit statesξj ∈ D(W) and real numbersµj ∈ [0, 1] satisfying

∑

j µj = 1,
such that the reduced state ofτ in (S1,S2) has trace distance at mostδ to the two-qubit totally mixed state(I/2)⊗2

for some positiveδ satisfying 1
16 − 10δ

1

4 > 0. Then the protocol should result in rejection with probability at least

min
{

2δ, 1
16 − 10δ

1

4

}

.

Proof. Let σ = (|0〉〈0|)⊗2 ⊗ τ . Note thatσ is never rejected in Step 4, and the state is not changed at allin this
step.

Fix a constantγ1 ∈ (0, 1), and letS be the set of indicesj defined by

S = {j : trξj2 ≥ 1− γ1}.

Notice that the inequalitytrξj2 ≥ 1− γ1 implies that the maximum eigenvalue of the Hermitian matrixξj is at
least1− γ1, and thus, for eachj ∈ S, there exist a two-qubit pure state|ψj〉 ∈ W, a two-qubit stateνj ∈ D(W),
and a real numberλj ∈ [1− γ1, 1] such that

ξj = λj |ψj〉〈ψj |+ (1− λj)νj .

This implies that

∥

∥ξj − |ψj〉〈ψj |
∥

∥

tr
=

∥

∥λj |ψj〉〈ψj |+ (1− λj)νj − |ψj〉〈ψj |
∥

∥

tr
= (1− λj)

∥

∥νj − |ψj〉〈ψj |
∥

∥

tr
,
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which further implies that

D(ξj , |ψj〉〈ψj |) ≤ (1− λj)D(νj , |ψj〉〈ψj |) ≤ 1− λj ≤ γ1.

Fix another constantγ2 ∈ (0, 1).
If
∑

j∈S µj < 1− γ2, the SWAP TEST in Step 5 results in rejection with probability greater than1
2γ1γ2.

On the other hand, if
∑

j∈S µj ≥ 1− γ2, the stateσ has trace distance at most2γ1 + γ2 to the
stateσ′ = (|0〉〈0|)⊗2 ⊗ τ ′, where

τ ′ =
1

∑

j∈S µj

∑

j∈S
µj(|ψj〉〈ψj |)⊗2

and the reduced state ofτ ′ in (S1,S2) has trace distance at mostδ + 2γ1 + γ2 to (I/2)⊗2.
Indeed,

‖τ − τ ′‖tr =
∥

∥

∥

∥

∑

j

µjξ
⊗2
j − τ ′

∥

∥

∥

∥

tr

≤
∥

∥

∥

∥

∑

j

µjξ
⊗2
j −

(

∑

j∈S
µj(|ψj〉〈ψj |)⊗2 +

∑

j 6∈S
µjξ

⊗2
j

)∥

∥

∥

∥

tr

+

∥

∥

∥

∥

(

∑

j∈S
µj(|ψj〉〈ψj |)⊗2 +

∑

j 6∈S
µjξ

⊗2
j

)

− τ ′
∥

∥

∥

∥

tr

≤
∑

j∈S
µj

∥

∥ξ⊗2
j − (|ψj〉〈ψj |)⊗2

∥

∥

tr
+

∥

∥

∥

∥

∑

j 6∈S
µjξ

⊗2
j −

(

1
∑

j∈S µj
− 1

)

∑

j∈S
µj(|ψj〉〈ψj |)⊗2

∥

∥

∥

∥

tr

≤
∑

j∈S
µj

(

∥

∥ξ⊗2
j − |ψj〉〈ψj | ⊗ ξj

∥

∥

tr
+

∥

∥|ψj〉〈ψj | ⊗ ξj − (|ψj〉〈ψj |)⊗2
∥

∥

tr

)

+

(

1−
∑

j∈S
µj

)∥

∥

∥

∥

1
∑

j 6∈S µj

∑

j 6∈S
µjξ

⊗2
j − τ ′

∥

∥

∥

∥

tr

≤ 2
∑

j∈S
µj

∥

∥ξj − |ψj〉〈ψj |
∥

∥

tr
+

(

1−
∑

j∈S
µj

)∥

∥

∥

∥

1
∑

j 6∈S µj

∑

j 6∈S
µjξ

⊗2
j − τ ′

∥

∥

∥

∥

tr

,

and thus,

D(σ, σ′) = D(τ, τ ′)

≤ 2
∑

j∈S
µjD(ξj, |ψj〉〈ψj |) +

(

1−
∑

j∈S
µj

)

D

(

1
∑

j 6∈S µj

∑

j 6∈S
µjξ

⊗2
j , τ ′

)

≤ 2γ1 + γ2.

As the reduced state ofτ in (S1,S2) has trace distance at mostδ to (I/2)⊗2, it follows that the reduced state
of τ ′ in (S1,S2) has trace distance at mostδ + 2γ1 + γ2 to (I/2)⊗2. Now from Proposition 22, the protocol
should result in rejection with probability at least116 − π

2 (δ + 2γ1 + γ2)
1

2 if the state in(R1,R2,S1,S
′
1,S2,S

′
2)

wereσ′ when entering Step 4. Hence, from Lemma 6, the protocol should result in rejection with probability at
least 1

16 − 2γ1 − γ2 − π
2 (δ + 2γ1 + γ2)

1

2 if the state in the registers(R1,R2,S1,S
′
1,S2,S

′
2) wereσ when entering

Step 4.
Overall, the protocol should result in rejection with probability at least

min
{1

2
γ1γ2,

1

16
− 2γ1 − γ2 −

π

2
(δ + 2γ1 + γ2)

1

2

}
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if the state in(R1,R2,S1,S
′
1,S2,S

′
2) wereσ when entering Step 4. Takingγ1 =

√
2δ

1

2 andγ2 = 2
√
2δ

1

2 , this is at
least

min
{

2δ,
1

16
− 4

√
2δ

1

2 − π

2

(

δ + 4
√
2δ

1

2

) 1

2

}

≥ min
{

2δ,
1

16
− 4

√
2δ

1

2 − π

2

√
7δ

1

4

}

≥ min
{

2δ,
1

16
− 10δ

1

4

}

,

which completes the proof. �

Now we are ready to prove Proposition 21.

Proof of Proposition 21.Letσ = (|0〉〈0|)⊗2 ⊗ τ . LetW be the two-dimensional space spanned by|Φ−〉 and|Ψ+〉,
and letΠW = |Φ−〉〈Φ−|+ |Ψ+〉〈Ψ+| be the projection ontoW.

Fix a constantγ ∈ (0, 1).
If trΠ⊗2

W τ < 1− γ, Step 4 results in rejection with probability greater thanγ.
On the other hand, iftrΠ⊗2

W τ ≥ 1− γ, we claim that the stateσ has trace distance at most
√
γ to the

stateσ′ = (|0〉〈0|)⊗2 ⊗ τ ′, where

τ ′ =
∑

j

µ′jξ
′
j
⊗2

with

µ′j =
1

trΠ⊗2
W τ

(trΠWξj)
2µj , ξ′j =

1

trΠWξj
ΠWξjΠW ,

for eachj, and the reduced state ofτ ′ in (S1,S2) has trace distance at mostγ to (I/2)⊗2. Note thatµ′j ∈ [0, 1] and
ξ′j ∈ D(W) for eachj, and

∑

j µ
′
j = 1.

Let S be the24-dimensional Hilbert spaceC(Σ4) associated with the quantum register(S1,S
′
1,S2,S

′
2) and

let T be another24-dimensional Hilbert spaceC(Σ4). Consider any purification|ψ〉 ∈ S ⊗ T of τ ∈ D(S), and
define an eight-qubit pure state|ψ′〉 ∈ S ⊗ T by

|ψ′〉 = 1
∥

∥(Π⊗2
W ⊗ IT )|ψ〉

∥

∥

(Π⊗2
W ⊗ IT )|ψ〉.

Then,|ψ′〉 is a purification ofτ ′, since

trT |ψ′〉〈ψ′| = 1
∥

∥(Π⊗2
W ⊗ IT )|ψ〉

∥

∥

2 trT (Π
⊗2
W ⊗ IT )|ψ〉〈ψ|(Π⊗2

W ⊗ IT )

=
1

trΠ⊗2
W trT |ψ〉〈ψ|

Π⊗2
W (trT |ψ〉〈ψ|)Π⊗2

W =
1

trΠ⊗2
W τ

Π⊗2
W τΠ⊗2

W = τ ′,

where the last equality follows from the fact that

τ ′ =
∑

j

1

trΠ⊗2
W τ

(trΠWξj)
2µj

( 1

trΠWξj
ΠWξjΠW

)⊗2
=

1

trΠ⊗2
W τ

∑

j

µj(ΠWξjΠW)⊗2 =
1

trΠ⊗2
W τ

Π⊗2
W τΠ⊗2

W .

Therefore, by using the fact thatD
(

|ψ〉〈ψ|, |ψ′〉〈ψ′|
)

=
√

1− |〈ψ|ψ′〉|2 holds for any pure states|ψ〉 and |ψ′〉
(which is ensured by calculating eigenvalues of the Hermitian matrix|ψ〉〈ψ| − |ψ′〉〈ψ′|),

D(σ, σ′) = D(τ, τ ′)

≤ D
(

|ψ〉〈ψ|, |ψ′〉〈ψ′|
)

=
√

1− |〈ψ|ψ′〉|2 =
√

1−
∥

∥(Π⊗2
W ⊗ IT )|ψ〉

∥

∥

2
=

√

1− trΠ⊗2
W τ ≤ √

γ.

As the reduced state ofτ in (S1,S2) has trace distance at mostδ to (I/2)⊗2, it follows that the reduced state of
τ ′ in (S1,S2) has trace distance at mostδ +

√
γ to (I/2)⊗2. Now from Proposition 24, the protocol should result
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in rejection with probability at leastmin
{

2(δ +
√
γ), 1

16 − 10(δ +
√
γ)

1

4

}

if the state in(R1,R2,S1,S
′
1,S2,S

′
2)

wereσ′ when entering Step 4. Hence, Lemma 6 implies that the protocol should result in rejection with probabil-
ity at leastmin

{

2(δ +
√
γ)−√

γ, 1
16 −

√
γ − 10(δ +

√
γ)

1

4

}

if the state in(R1,R2,S1,S
′
1,S2,S

′
2) wereσ when

entering Step 4.
Overall, the protocol should result in rejection with probability at least

min
{

γ, 2(δ +
√
γ)−√

γ,
1

16
−√

γ − 10(δ +
√
γ)

1

4

}

if the state in(R1,R2,S1,S
′
1,S2,S

′
2) wereσ when entering Step 4. Takingγ = 2δ, this is at least

min
{

2δ, 2δ+(2δ)
1

2 ,
1

16
−(2δ)

1

2 −10
[

δ+(2δ)
1

2

] 1

4

}

≥ min
{

2δ,
1

16
−(2δ)

1

2 −10(3δ
1

2 )
1

4

}

≥ min
{

2δ,
1

16
−15δ

1

8

}

,

which completes the proof. �

7 QIP(m) ⊆ QIP1(m + 1)

Now we show that anym-message QIP system with two-sided bounded error can be converted into an(m+ 1)-
message QIP system with one-sided error of perfect completeness, for anym ≥ 2.

Theorem 25. For any polynomially bounded functionm : Z+ → N and polynomial-time computable func-
tionsc, s : Z+ → [0, 1] satisfyingm ≥ 2 andc− s ≥ 1/p for some polynomially bounded functionp : Z+ → N,

QIP(m, c, s) ⊆ QIP
(

m+ 1, 1, 1 − (c− s)2

16

)

.

If m is an odd-valued function whose values are at least three, wecan show a stronger statement that any
m-message QIP system with two-sided bounded error can be converted into anotherm-message QIP system with
one-sided error of perfect completeness.

Theorem 26. For any polynomially bounded odd-valued functionm : Z+ → 2N + 1 and polynomial-time com-
putable functionsc, s : Z+ → [0, 1] satisfyingm ≥ 3 and c− s ≥ 1/p for some polynomially bounded func-
tion p : Z+ → N,

QIP(m, c, s) ⊆ QIP
(

m, 1, 1 − (c− s)2

16

)

.

Remark.In fact, in Theorems 25 and 26, it is sufficient for the claims that the functionsc ands satisfyc− s ≥ 2−p

for some polynomially bounded functionp : Z+ → N.

With the perfect parallel repetition theorem for general quantum interactive proofs [Gut09], the following
corollaries immediately follow.

Corollary 27. For any polynomially bounded functionsm, p : Z+ → N and polynomial-time computable func-
tionsc, s : Z+ → [0, 1] satisfyingm ≥ 2 andc− s ≥ 1/q for some polynomially bounded functionq : Z+ → N,

QIP(m, c, s) ⊆ QIP(m+ 1, 1, 2−p).

Corollary 28. For any polynomially bounded odd-valued functionm : Z+ → 2N+ 1, polynomially bounded func-
tion p : Z+ → N, and polynomial-time computable functionsc, s : Z+ → [0, 1] satisfyingm ≥ 3 andc− s ≥ 1/q
for some polynomially bounded functionq : Z+ → N,

QIP(m, c, s) ⊆ QIP(m, 1, 2−p).

29



M ODIFIED REFLECTION PROCEDURE

1. Receive a quantum registerQ. Flip a fair coin, and proceed to the REFLECTION TEST in Step 2 if it results
in “Heads”, and proceed to the INVERTIBILITY TEST in Step 3 if it results in “Tails”.

2. (REFLECTION TEST)
Perform the following:

2.1 Perform a phase-flip (i.e., multiply−1 in phase) if the state inQ belongs to the subspace corresponding
to the projectionΠ0.

2.2 ApplyU † toQ.

2.3 Reject if the state inQ belongs to the subspace corresponding to the projection∆0, and accept other-
wise.

3. (INVERTIBILITY TEST)
Perform the following:

3.1 ApplyU † toQ.

3.2 Accept if the state inQ belongs to the subspace corresponding to∆0, and reject otherwise.

Figure 7: The MODIFIED REFLECTION PROCEDURE.

7.1 Modified Reflection Procedure

The REFLECTION PROCEDURE in Section 5 involves one application ofU and one application ofU †. Here we
modify the procedure so that it involves one application ofU † only (and no application ofU is required).

To do this, one expects to receive a state just after Step 1 of the REFLECTION PROCEDURE, and performs two
tests, called REFLECTION TEST and INVERTIBILITY TEST, respectively, with equal probability without revealing
which test the prover is undergoing. In the REFLECTION TEST, we simply perform Steps 2–4 of the REFLECTION

PROCEDUREto finish the simulation of it, whereas in the INVERTIBILITY TEST, we applyU † without performing
the phase-flip to check that the state received was a legal state that can appear just after Step 1 of the REFLECTION

PROCEDURE. The idea of making use of the INVERTIBILITY TEST has originally appeared in Ref. [KKMV09]
when achieving perfect completeness in quantum multi-prover interactive proofs. From another viewpoint, the
modification here may be considered as applying the “halvingtechnique” in Ref. [KKMV09] to the REFLECTION

PROCEDURE, the technique originally used to reduce the number of turnsby (almost) half in quantum multi-prover
interactive proofs. We will take this view when analyzing the soundness of this procedure in Proposition 30 below.
The procedure is summarized in Figure 7.

Proposition 29. Suppose that the Hermitian operatorM = ∆0U
†Π0U∆0 has an eigenvalue1/2. Then there

exists a quantum state given in Step 1 of theMODIFIED REFLECTION PROCEDUREsuch that the procedure results
in acceptance with certainty.

Proof. The proof is almost straightforward. Let|ψ∗〉 be an eigenvector ofM corresponding to its eigenvalue1/2,
and consider the case where the stateU |ψ∗〉 is received inQ in Step 1.

If the REFLECTION TEST is performed, this essentially simulates the original REFLECTION PROCEDUREwith
its received state being|ψ∗〉. As in the case of Proposition 17, the procedure results in acceptance with certainty in
this case.

On the other hand, if the INVERTIBILITY TEST is performed, this produces the stateU †U |ψ∗〉 = |ψ∗〉 when
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entering Step 3.2. As|ψ∗〉 is an eigenvector ofM with its corresponding eigenvalue1/2, it holds that

∆0|ψ∗〉 = 2∆0M |ψ∗〉 = 2M |ψ∗〉 = |ψ∗〉,

and thus, Step 3.2 results in acceptance with certainty.
Hence, given the stateU |ψ∗〉 in Step 1, the procedure results in acceptance with certainty, and the claim

follows. �

Proposition 30. For any ε ∈ (0, 12 ], suppose that none of the eigenvalues of the Hermitian opera-
tor M = ∆0U

†Π0U∆0 is in the interval
(

1
2 − ε, 12 + ε

)

. Then, for any quantum state given in Step 1 of the
MODIFIED REFLECTION PROCEDURE, the procedure results in rejection with probability at least ε2.

Proof. The proof is similar to the proofs of Lemmas 4.1 and 5.1 in Ref.[KKMV09]. Let |ψ〉 be any state received
in Q in Step 1. Denote the unitary transformationU †(−Π0 +Π1) by V , and let

|α〉 = ∆1V |ψ〉
‖∆1V |ψ〉‖ , |β〉 = ∆0U

†|ψ〉
‖∆0U †|ψ〉‖ .

Then

‖∆1V |ψ〉‖ =
1

‖∆1V |ψ〉‖
∣

∣〈ψ|V †∆1V |ψ〉
∣

∣ = F
(

|α〉〈α|, V |ψ〉〈ψ|V †) = F
(

V †|α〉〈α|V, |ψ〉〈ψ|
)

,

and thus, the probabilityp1 of acceptance when the REFLECTION TEST is performed is given by

p1 = F
(

V †|α〉〈α|V, |ψ〉〈ψ|
)2
.

Similarly, the probabilityp2 of acceptance when the INVERTIBILITY TEST is performed is given by

p2 = F
(

U |β〉〈β|U †, |ψ〉〈ψ|
)2
.

Hence, the probabilitypacc of acceptance when the received state in Step 1 was|ψ〉 is given by

pacc =
1

2
(p1 + p2) =

1

2

(

F
(

V †|α〉〈α|V, |ψ〉〈ψ|
)2

+ F
(

U |β〉〈β|U †, |ψ〉〈ψ|
)2
)

.

It follows from Lemma 7 that

pacc ≤
1

2

(

1 + F
(

V †|α〉〈α|V,U |β〉〈β|U †)
)

=
1

2

(

1 + F
(

|α〉〈α|, V U |β〉〈β|U †V †)
)

.

Now notice that|β〉 is a state inX0, and thus,

‖∆1V U |β〉‖2 ≤ 1− 4ε2,

since‖∆0V U |β〉‖2 ≥ 4ε2 from the analysis on the REFLECTION PROCEDURE in the proof of Proposition 18.
Hence, using∆1|α〉 = |α〉,

F
(

|α〉〈α|, V U |β〉〈β|U †V †) =
∣

∣〈α|V U |β〉
∣

∣ =
∣

∣〈α|∆1V U |β〉
∣

∣ ≤
∥

∥∆1V U |β〉
∥

∥ ≤
√

1− 4ε2,

and thus,

pacc ≤
1

2
+

√
1− 4ε2

2
≤ 1

2
+

1− 2ε2

2
= 1− ε2.

Therefore, the procedure results in rejection with probability at leastε2, as claimed. �
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7.2 Perfectly Rewindable QIPs

Here we introduce the notion ofperfectly rewindableQIP systems. The concept of perfectly rewindable systems
was originally introduced for quantum multi-prover interactive proofs in Ref. [KKMV09], and the notion here is
the single-prover version of it as a special case.

Definition 31. Given a polynomially bounded functionm : Z+ → N and a functions : Z+ → [0, 1] satisfying
s < 1

2 , a promise problemA = {Ayes, Ano} has a perfectly rewindablem-message quantum interactive proof sys-
tem with soundnesss iff there exists anm-message polynomial-time quantum verifierV such that, for every
inputx:

(Perfect Rewindability) ifx ∈ Ayes, there exists anm-message quantum proverP such that the maximum prob-
ability thatV acceptsx when communicating withP is exactly1/2, where the maximum is taken over all
possible initial statesρx of P ,

(Soundness) ifx ∈ Ano, for anym-message quantum proverP ′ and any initial stateρ′x of P ′ prepared,V accepts
x with probability at mosts(|x|).

Note that in the perfect rewindability property we first fix the transformations of the prover, and then maximize
over all legal initial states, which hence have a fixed dimension. We first show how to modify any general QIP
system to a perfectly rewindable one without changing the number of messages.

Lemma 32. Letm : Z+ → N be a polynomially bounded function and letc, s : Z+ → [0, 1] be polynomial-time
computable functions satisfyingc− s ≥ 1/p for some polynomially bounded functionp : Z+ → N. Then, any
promise problemA = (Ayes, Ano) in QIP(m, c, s) has a perfectly rewindablem-message quantum interactive
proof system with soundness12 − c−s

4 .

Proof. Let A = (Ayes, Ano) be a problem inQIP(m, c, s) and letV be the correspondingm-message quan-
tum verifier. We first modifyV to obtain anotherm-message quantum verifierV ′ that witnesses the inclu-
sionA ∈ QIP

(

m, 12 + c−s
4 , 12 − c−s

4

)

. This can be done via a standard technique as follows. Fix an inputx. The
new verifierV ′ behaves in a manner exactly same asV , except for the acceptance condition. Ifc(|x|) + s(|x|) ≥ 1,
V ′ accepts with probability 1

c(|x|)+s(|x|) when the final state in the system would makeV accept (and reject

otherwise). Thus,V ′ acceptsx ∈ Ayes with probability at least c(|x|)
c(|x|)+s(|x|) =

1
2

(

1 + c(|x|)−s(|x|)
c(|x|)+s(|x|)

)

, while ac-

ceptsx ∈ Ano with probability at most s(|x|)
c(|x|)+s(|x|) =

1
2

(

1− c(|x|)−s(|x|)
c(|x|)+s(|x|)

)

. Similarly, if c(|x|) + s(|x|) < 1, let-

ting ε(|x|) = 1− c(|x|) and δ(|x|) = 1− s(|x|), V ′ rejects with probability 1
ε(|x|)+δ(|x|) =

1
2−c(|x|)−s(|x|) when

the final state in the system would makeV reject (and accept otherwise). Thus,V ′ rejectsx ∈ Ayes with prob-

ability at most ε(|x|)
ε(|x|)+δ(|x|) =

1
2

(

1− δ(|x|)−ε(|x|)
ε(|x|)+δ(|x|)

)

= 1
2

(

1− c(|x|)−s(|x|)
2−c(|x|)−s(|x|)

)

, while V ′ rejectsx ∈ Ano with prob-

ability at least δ(|x|)
ε(|x|)+δ(|x|) =

1
2

(

1 + δ(|x|)−ε(|x|)
ε(|x|)+δ(|x|)

)

= 1
2

(

1 + c(|x|)−s(|x|)
2−c(|x|)−s(|x|)

)

. Taking it into account that, with a
given finite-size gate set available for the verifier, it may not be possible to accept with probability exactly

1
c(|x|)+s(|x|) in the casec(|x|) + s(|x|) ≥ 1, or to reject with probability exactly 1

ε(|x|)+δ(|x|) =
1

2−c(|x|)−s(|x|) in the

casec(|x|) + s(|x|) < 1, we actually consider another verifierV ′′ who approximately performs the transformations
of V ′ with sufficient accuracy, where the transformations ofV ′′ are exactly implementable with the given finite-size
gate set available for the verifier. As bothc(|x|) + s(|x|) and2− c(|x|) − s(|x|) are at most2− 1

p , the bounds

obtained above are sufficient to claim that them-message system with the verifierV ′′ has completeness12 + c−s
4

and soundness12 − c−s
4 .

The rest of the proof is essentially the same as the proof of Lemma 3.2 in Ref. [KKMV09]. We further modify
V ′′ to construct anotherm-message quantum verifierW for a perfectly rewindable proof system forA. The new
verifierW prepares a single-qubit registerB in addition to the registerV which corresponds to the space used by
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V ′′. The qubit inB is initialized to|0〉. W behaves exactly in the same manner asV ′′ does, except that, in addition
to all actionsV ′′ would do,W also sendsB to the prover in the last message from the verifier and receivesB from
the prover in the last message from the prover. As for the finaldecision,W accepts if and only if the content ofV
would makeV ′′ acceptandB contains1. Notice thatW accepts only ifV ′′ would accept, and thus, the soundness
is obviously at most12 +

c−s
4 .

For perfect rewindability, we slightly modify the protocolof the honest prover in the casex ∈ Ayes. Given
a protocol of the honest proverP in the system withV ′′ and an initial state|ψinit〉 in the system withV ′′ that
achieves the maximal acceptance probabilitypmax whenV ′′ communicating with thisP , we construct a protocol
of the honest proverQ in the system withW as follows.Q uses|ψinit〉 as the initial state and behaves exactly in
the same manner asP does, except that, upon receiving the last message fromW , Q applies to the qubit inB the
one-qubit unitary transformationU satisfying

U : |0〉 7→
√

1− 1

2pmax
|0〉+

√

1

2pmax
|1〉,

in addition to all what the originalP would do. From the construction it is obvious that the maximum accepting
probability ofW when communicating withQ is exactly equal to12 and that this maximum is achieved whenQ
uses|ψinit〉 as the initial state. Finally, as the transformations ofV ′′ are exactly implementable with the given
finite-size gate set available for the verifier, so are the transformations ofW . �

Remark.In fact, in Lemma 32, it is sufficient for the claim that the functionsc ands satisfyc− s ≥ 2−p for some
polynomially bounded functionp : Z+ → N.

7.3 Proofs of Theorems 25 and 26

Now we are ready to show Theorems 25 and 26. First we prove Theorem 26, assuming thatm is an odd-valued
function andm ≥ 3. The case of generalm is proved in the same manner as this special case, except thatthe
number of messages increases by one whenm(|x|) is even, which gives Theorem 25.

Proof of Theorem 26.As m is an odd-valued function andm ≥ 3, there is a polynomially bounded func-
tion r : Z+ → N such thatm = 2r + 1. Let A = (Ayes, Ano) be in QIP(2r + 1, c, s). Then from Lemma 32,
A has a perfectly rewindable(2r + 1)-message quantum interactive proof system with soundness1

2 − c−s
4 . Let

V be the verifier of this perfectly rewindable(2r + 1)-message quantum interactive proof system. We construct
another(2r + 1)-message quantum verifierW of a new quantum interactive proof system forA.

Fix an inputx. Let V be the quantum register consisting of private qubits used bythe original verifierV , and
let M be the quantum register consisting of qubits used for communications in the original proof system. LetVx,j
be thejth transformation ofV , for eachj ∈ {1, . . . , r(|x|) + 1}, acting over(V,M). The new verifierW uses the
same registersV andM as the original verifierV . W first receives the two registersV andM, expecting that the
state in(V,M) forms whatV would have after the last message from a prover had been received in the original
proof system.W then performs one of the two tests, called REFLECTION TEST and INVERTIBILITY TEST, chosen
uniformly at random. In the REFLECTION TEST, W first performs a phase-flip if the state in(V,M) would cause
V to accept when the last transformationVx,r(|x|)+1 of V was performed, and then moves to a backward simulation
of the original system.W accepts when the backward simulationdoes notproduce a legal initial state of the
original system. In the INVERTIBILITY TEST, W just immediately moves to a backward simulation of the original
system. This time,W accepts when the backward simulationdoesproduce a legal initial state of the original
system. The exact protocol is described in Figure 8. Notice that the number of messages in this system is indeed
1 + 1 + 2(r(|x|)− 1) + 1 = 2r(|x|) + 1 = m(|x|).

For the completeness, suppose thatx is inAyes.
As the original system was perfectly rewindable, there exists a (2r + 1)-message quantum proverP in the

original system such that the maximum probability thatV acceptsx when communicating with thisP is exactly
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Verifier’s Protocol for Achieving Perfect Completeness (Odd-Number-Message Case)

1. Receive quantum registersV andM.

2. Chooseb ∈ {0, 1} uniformly at random. Ifb = 0, move to the REFLECTION TEST described in Step 3, while
if b = 1, move to the INVERTIBILITY TEST described in Step 4.

3. (REFLECTION TEST)

3.1 ApplyVx,r(|x|)+1 to the state in(V,M). Perform a phase-flip (i.e., multiply−1 in phase) if the content

of (V,M) corresponds to an accepting state of the original system. Apply V †
x,r(|x|)+1 to the state in

(V,M), and sendM to the prover.

3.2 Forj = r(|x|) down to2, do the following:
ReceiveM from the prover. ApplyV †

x,j to the state in(V,M), and sendM to the prover.

3.3 ReceiveM from the prover. ApplyV †
x,1 to the state in(V,M). Reject if all the qubits inV are in state|0〉,

and accept otherwise.

4. (INVERTIBILITY TEST)

4.1 SendM to the prover.

4.2 Forj = r(|x|) down to2, do the following:
ReceiveM from the prover. ApplyV †

x,j to the state in(V,M), and sendM to the prover.

4.3 ReceiveM from the prover. ApplyV †
x,1 to the state in(V,M). Accept if all the qubits inV are in

state|0〉, and reject otherwise.

Figure 8: Verifier’s protocol for achieving perfect completeness withm = 2r + 1.

1/2, where the maximum is taken over all possible initial statesof P . LetP be the quantum register consisting of
the private qubits of thisP , and letPx,j be thejth transformation ofP , for eachj ∈ {1, . . . , r(|x|) + 1}, acting
over (M,P). Let |ψ∗

x〉 be an optimal initial state in(M,P) with which P achieves the accepting probability1/2
(note thatP possesses the message registerM at the beginning of the protocol, and that there always exists an
optimal initial state that is pure).

Denote the Hilbert spaces associated withV, M, andP by V, M, andP, respectively. Since the first action is
done byP in this original proof system, one can assume without loss ofgenerality thatPx,1 = IM⊗P (i.e., the first
transformation ofP may be regarded as a part of preparing the initial state). Taking this into account, define the
unitary transformationQx acting over(V,M,P) by

Qx =
(

Vx,r(|x|)+1 ⊗ IP
)(

IV ⊗ Px,r(|x|)+1

)

· · ·
(

Vx,2 ⊗ IP
)(

IV ⊗ Px,2
)(

Vx,1 ⊗ IP
)

,

and further define the Hermitian matrixMx by

Mx = ΠinitQ
†
xΠaccQxΠinit,

whereΠinit is the projection onto the subspace spanned by states in which all the qubits inV are in state|0〉, and
Πacc is that onto the subspace spanned by accepting states of the original system. Then the quantum state|φ∗x〉
in (V,M,P) defined as|φ∗x〉 = |0〉V ⊗ |ψ∗

x〉(M,P) is the eigenvector ofMx with its corresponding eigenvalue1/2,
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since

max
|φ〉∈V⊗M⊗P

〈φ|Mx|φ〉 = max
|ψ〉∈M⊗P

‖ΠaccQx(|0〉 ⊗ |ψ〉)‖2 = ‖ΠaccQx(|0〉 ⊗ |ψ∗
x〉)‖2 = 〈φ∗x|Mx|φ∗x〉 =

1

2
.

Now, with a (2r + 1)-message quantum proverR in the constructed system who prepares the
state |ξ∗x〉 =

(

V †
x,r(|x|)+1

⊗ IP
)

Qx|φ∗x〉 in (V,M,P) as an initial state and appliesRx,1 = IM⊗P and

Rx,j = Px,r(|x|)−j+3 for eachj ∈ {2, . . . , r(|x|) + 1}, the constructed protocol may be viewed as performing the
MODIFIED REFLECTION PROCEDUREwith its underlying quantum registerQ = (V,M,P), unitary transformation

U =
(

V †
x,r(|x|)+1 ⊗ IP

)

Qx,

and projection operators

∆0 = Πinit,

Π0 =
(

V †
x,r(|x|)+1 ⊗ IP

)

Πacc

(

Vx,r(|x|)+1 ⊗ IP
)

.

As the associated Hermitian operator

M = ∆0U
†Π0U∆0 = ΠinitQ

†
xΠaccQxΠinit =Mx

has an eigenvalue1/2 with its corresponding eigenvector|φ∗x〉 = |0〉V ⊗ |ψ∗
x〉(M,P), from Propo-

sition 29, the protocol results in acceptance with certainty with this prover R and the initial
state|ξ∗x〉 =

(

V †
x,r(|x|)+1 ⊗ IP

)

Qx|φ∗x〉 = U |φ∗x〉, which shows the perfect completeness.
Now for the soundness, suppose thatx is inAno.
LetR be any(2r + 1)-message quantum prover of the constructed system, and letR be the quantum register

consisting of the private qubits ofR. Suppose thatR applies the unitary transformationRx,j to the state in(M,R)
as thejth transformation ofR, for eachj ∈ {1, . . . , r(|x|) + 1}.

Define the unitary transformationQx acting over(V,M,R) by

Qx =
(

Vx,r(|x|)+1 ⊗ IR
)(

IV ⊗R†
x,2

)

· · ·
(

Vx,2 ⊗ IR
)(

IV ⊗R†
x,r(|x|)+1

)(

Vx,1 ⊗ IR
)

,

whereR is the Hilbert space associated with the registerR. Then the constructed protocol may be viewed as
performing the MODIFIED REFLECTION PROCEDUREwith its underlying quantum registerQ = (V,M,R), unitary
transformation

U =
(

V †
x,r(|x|)+1 ⊗ IR

)

Qx,

and projection operators

∆0 = Πinit,

Π0 =
(

V †
x,r(|x|)+1 ⊗ IR

)

Πacc

(

Vx,r(|x|)+1 ⊗ IR
)

.

The associated Hermitian operator of this MODIFIED REFLECTION PROCEDUREis given by

Mx = ∆0U
†Π0U∆0 = ΠinitQ

†
xΠaccQxΠinit.

Consider the following(2r + 1)-message quantum proverP ′ in the original system:P ′ usesR as a register con-
sisting of his/her private qubits, and appliesIM⊗R as his/her first transformation, andR†

x,r(|x|)−j+3
as his/herjth

transformation, forj ∈ {2, . . . , r(|x|) + 1}. Then, from the soundness property of the original system, no matter
which stateP ′ initially prepares, the accepting probability is at most1

2 −
c(|x|)−s(|x|)

4 , which implies that all the
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eigenvalues ofMx is at most12 −
c(|x|)−s(|x|)

4 . Hence, from Proposition 30, the constructed protocol results in

rejection with probability at least(c(|x|)−s(|x|))
2

16 , which ensures the soundness1− (c−s)2
16 .

Finally, the protocol given in Figure 8 slightly deviates from the standard form of quantum interactive proof
systems in that the length of the first message from a prover isdifferent from the lengths of other messages,
which may be easily modified into a standard-form system thathas exactly the same number of messages and
completeness and soundness parameters. �

Now we prove Theorem 25. The proof is essentially the same as the proof of Theorem 26, and we analyze the
case where the number of messages is even.

Proof of Theorem 25.Let A = (Ayes, Ano) be inQIP(m, c, s). Then from Lemma 32,A has a perfectly rewind-
ablem-message quantum interactive proof system with soundness1

2 − c−s
4 . Let V be the verifier of this perfectly

rewindablem-message quantum interactive proof system. We construct an(m+ 1)-message quantum verifierW
of a new quantum interactive proof system forA. The construction is essentially the same as that in the proof of
Theorem 26.

Fix an inputx. Suppose thatm(|x|) ≥ 2 is even, and writem(|x|) = 2r(|x|) for somer(|x|) ∈ N (the proof of
Theorem 26 already shows the case wherem(|x|) is odd). The exact protocol is described in Figure 9, where the
only difference from the protocol in Figure 8 lies in the condition of judging whether the state is initialized or not
– now a state is a legal initial state only when all the qubits in both ofV andM must be in state|0〉. Notice that the
number of messages in this system is indeed1 + 1 + 2(r(|x|) − 1) + 1 = 2r(|x|) + 1 = m(|x|) + 1.

The analysis on this protocol is essentially the same as thatin the proof of Theorem 26, and is omitted. �

7.4 Cases with Quantum Multi-Prover Interactive Proofs

With essentially the same arguments discussed in this section, we can show similar properties even for quantum
multi-prover interactive proof systems. The model of quantum multi-prover interactive proofs we use is that in the
most general setting (i.e., both of a verifier and provers usequantum computation and communications, and provers
can share arbitrary entanglement of arbitrarily large size). Let QMIP(k,m, c, s) be the class of problems having
m-turn quantumk-prover interactive proof systems with completenessc and soundnesss. See Ref. [KKMV09] for
rigorous definitions of the quantum multi-prover model and resulting complexity classes. Here we give only the
statements of theorems, as proofs of those theorems are essentially same as Theorems 25 and 26. Note that these
theorems give a more communication-efficient way of achieving perfect completeness in quantum multi-prover
interactive proofs than the original method presented in Ref. [KKMV09], where the number of turns increases by
a factor of three.

Theorem 33. For any polynomially bounded functionsk,m : Z+ → N and polynomial-time computable func-
tionsc, s : Z+ → [0, 1] satisfyingm ≥ 2 andc− s ≥ 1/p for some polynomially bounded functionp : Z+ → N,

QMIP(k,m, c, s) ⊆ QMIP
(

k,m+ 1, 1, 1 − (c− s)2

16

)

.

Theorem 34. For any polynomially bounded functionk : Z+ → N, polynomially bounded odd-valued func-
tion m : Z+ → 2N + 1, and polynomial-time computable functionsc, s : Z+ → [0, 1] satisfying m ≥ 3 and
c− s ≥ 1/p for some polynomially bounded functionp : Z+ → N,

QMIP(k,m, c, s) ⊆ QMIP
(

k,m, 1, 1 − (c− s)2

16

)

.

Remark.Similar to the single-prover case, in fact, it is sufficient for the claims in Theorems 33 and 34 that the
functionsc ands satisfyc− s ≥ 2−p for some polynomially bounded functionp : Z+ → N.
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Verifier’s Protocol for Achieving Perfect Completeness (Even-Number-Message Case)

1. Receive quantum registersV andM.

2. Chooseb ∈ {0, 1} uniformly at random. Ifb = 0, move to the REFLECTION TEST described in Step 3, while
if b = 1, move to the INVERTIBILITY TEST described in Step 4.

3. (REFLECTION TEST)

3.1 ApplyVx,r(|x|)+1 to the state in(V,M). Perform a phase-flip (i.e., multiply−1 in phase) if the content

of (V,M) corresponds to an accepting state of the original system. Apply V †
x,r(|x|)+1 to the state in

(V,M), and sendM to the prover.

3.2 Forj = r(|x|) down to2, do the following:
ReceiveM from the prover. ApplyV †

x,j to the state in(V,M), and sendM to the prover.

3.3 ReceiveM from the prover. ApplyV †
x,1 to the state in(V,M). Reject if all the qubits in(V,M) are in

state|0〉, and accept otherwise.

4. (INVERTIBILITY TEST)

4.1 SendM to the prover.

4.2 Forj = r(|x|) down to2, do the following:
ReceiveM from the prover. ApplyV †

x,j to the state in(V,M), and sendM to the prover.

4.3 ReceiveM from the prover. ApplyV †
x,1 to the state in(V,M). Accept if all the qubits in(V,M) are in

state|0〉, and reject otherwise.

Figure 9: Verifier’s protocol for achieving perfect completeness withm(|x|) = 2r(|x|).
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