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Abstract

The solute-solvent interface that separates biological molecules from their surrounding aqueous 

solvent characterizes the conformation and dynamics of such molecules. In this work, we 

construct a solvent fluid dielectric boundary model for the solvation of charged molecules and 

apply it to study the stability of a model cylindrical solute-solvent interface. The motion of the 

solute-solvent interface is defined to be the same as that of solvent fluid at the interface. The 

solvent fluid is assumed to be incompressible and is described by the Stokes equation. The solute 

is modeled simply by the ideal-gas law. All the viscous force, hydrostatic pressure, solute-solvent 

van der Waals interaction, surface tension, and electrostatic force are balanced at the solute-

solvent interface. We model the electrostatics by Poisson’s equation in which the solute-solvent 

interface is treated as a dielectric boundary that separates the low-dielectric solute from the high-

dielectric solvent. For a cylindrical geometry, we find multiple cylindrically shaped equilibrium 

interfaces that describe polymodal (e.g., dry and wet) states of hydration of an underlying 

molecular system. These steady-state solutions exhibit bifurcation behavior with respect to the 

charge density. For their linearized systems, we use the projection method to solve the fluid 

equation and find the dispersion relation. Our asymptotic analysis shows that, for large 

wavenumbers, the decay rate is proportional to wavenumber with the proportionality half of the 

ratio of surface tension to solvent viscosity, indicating that the solvent viscosity does affect the 

stability of a solute-solvent interface. Consequences of our analysis in the context of biomolecular 

interactions are discussed.
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1. Introduction

The stability of a solute-solvent interface that separates biomolecules from its surrounding 

aqueous solvent is crucial to the conformation, dynamics, and function of an underlying 

biomolecular system. Such a solute-solvent interface is often treated as a dielectric boundary 

as the dielectric coefficient of a biomolecular region can be as low as 1 – 4 while that of 

water can be as high as 80 under normal conditions [25]. This boundary is the key quantity 

in a large class of implicit or continuum solvent models [17,21,22,31,40] that describe 

efficiently the effect of aqueous solvent to biomolecular processes, such as protein folding 

and molecular recognition [21, 27].

The geometry of a solute-solvent interface is set largely by the van der Waals (vdW) short-

ranged repulsion between solute particles and solvent molecules, describing the effect of 

excluded volume of solute particles. But the interfacial surface energy, which measures the 

energetic cost of a solute breaking the surrounding network of water molecules, plays an 

important role in the hydrophobic interaction [5, 9, 30]. Due to the large jump of dielectric 

coefficient across the dielectric boundary, the electrostatic interaction between biomolecular 

charges, polarized solvent, and mobile ions generate a strong effective force on the dielectric 

boundary. It should be noted that electrostatic interactions in biomolecular systems can be 

efficiently modeled by Poisson’s or the Poisson–Boltzmann equation [3, 6, 10, 18, 28, 35, 

36]. Experimental and theoretical studies have also indicated that the solvent shear motion 

can induce protein conformational changes and the solvent viscosity can affect the kinetics 

of such changes [1, 24, 26, 32, 33, 37–39, 41].

In this work, we study how these vdW interactions, interfacial surface energy, electrostatics, 

and solvent fluid motion contribute to the stability of a model cylindrical solute-solvent 

interface, cf. Figure 1. Such an interface resembles that of a long α-helix, RNA, or DNA. 

Our model is adapted from that proposed in our previous work [43] (cf. also [44]), and 

consists of the following main elements:

1. The motion of the dielectric boundary Γ(t) (t denotes time) is defined by

(1.1)

where Vn is the normal velocity, u is the velocity field of solvent fluid, and n is the 

unit normal at the boundary Γ(t) pointing from the solute region Ωm to the solvent 

region Ωw.

2. The solvent fluid is assumed to be incompressible, and is described by the Stokes 

equation

(1.2)
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where μw and pw are the dynamic viscosity and pressure of the solvent fluid. The 

pressure pm = pm(t) of solute molecules is assumed to be spatially constant and 

described simply by the ideal-gas law:

(1.3)

where Vol (Ωm(t)) is the volume of solute region, and Cm is a constant independent 

of spatial and temporal variables but dependent on the temperature and amount of 

gas which are assumed to be constant.

3. The electrostatic potential ϕ solves a boundary-value problem of Poisson’s 

equation

(1.4)

defined in the entire region ℝ3. Here, ρ is a given, fixed charge density, and εΓ is 

the dielectric coefficient defined by

(1.5)

where ε0 is the vacuum permittivity, and  and  are the dielectric coefficients 

(i.e., relative permittivities) of the solute and solvent, respectively. These are 

positive constants and satisfy in general . The electrostatic potential 

determines the normal component of effective dielectric boundary force [7, 8, 14, 

29]

(1.6)

where I is the 3 × 3 identity matrix. Note that the electrostatic force always points 

in the direction from the high-dielectric solvent to low-dielectric solute.

4. At the solute-solvent interface Γ(t), all the viscous force, hydrostatic pressure, 

surface tension, solute-solvent vdW interaction force, and electrostatic force are 

balanced:

(1.7)

where D(u) = (∇u + (∇u)T )/2 is the strain rate tensor, γ0 is the constant surface 

tension, H is the mean curvature, nw is the constant number density of solvent 

molecules, and UvdW is a solute-solvent vdW interaction potential. Typical values 

of the parameters, such as μw, nw, and γ0, are given in Section 4. The magnitude of 

these forces (per unit area) can be of the order 0.1 ~ 10 kBT/Å with kB the 

Boltzmann constant and T absolute temperature.
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We find multiple cylindrically shaped equilibrium interfaces that describe polymodal (e.g., 

dry and wet) states of hydration of an underlying molecular system [5, 9, 30]. For instance, a 

larger equilibrium cylinder is relatively drier as water molecules are excluded further away 

from the center line of the cylinder. These steady states exhibit bifurcation behavior with 

respect to the charge density. We linearize our system around such equilibrium interfaces, 

and solve the resulting linearized system by a fluid projection method together with special 

functions for the electrostatic potential. We seek the solutions to the linearized system in the 

form Akeωt+ikz, where for any given mode k, Ak is a constant, and a negative ω = ω(k) 

implies the decay of the initial perturbation Akeikz, indicating the linear stability. Let us 

denote by R0 the radius of an underlying cylindrically shaped equilibrium interface. Our 

calculations lead to the dispersion relation

(1.8)

where ωair(k), ωsurf (k), ωvdW(k), ωele(k), and ωhyd are individual contributions from the 

solute air pressure (i.e., the term pm), surface energy, vdW interaction, electrostatics, and 

hydrodynamics, respectively. They are given by

as k → ∞, where χA denotes the characteristic function of a set A and the symbol ⨍ denotes 

an averaged integral (e.g., an integral over [a, b] divided by b – a in one-dimension).

Except the viscous force, all the static pressure, surface energy, vdW interaction, and 

electrostatics that are present in the force balance on the dielectric boundary (cf. (1.7)) are 

the main components in the recently developed variational implicit-solvent models (VISM) 

that have successfully predicted solvation free energies and different conformations of 

charged molecules. See [13, 15, 16, 19, 20, 23, 34, 42, 47, 48] and [4, 11, 12]. VISM centers 

around a solvation free-energy functional of all possible solute-solvent interfaces or 

dielectric boundaries Γ that separate the solvent region Ωw from solute region Ωm. A simple 

form of this functional is given by

Here ΔP is the difference between solvent and solute pressures on the boundary Γ. The term 

Gele[Γ] is the electrostatic free energy, defined to be the integral of ρϕ/2 over the entire 

system region with ρ being the charge density and ϕ the electrostatic potential that solves 
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Poisson’s equation (1.4). The negative first variation −δΓG[Γ] of the solvation free energy 

G[Γ] with respect to the location change of boundary Γ defines the normal component of 

effective force on Γ:

where fele = −δΓGele[Γ] is given in (1.6). Therefore, the force balance (1.7) is exactly

on the interface with ΔP = pw − pm. Note that we have implicitly assumed that the tangential 

components of the VISM force arising from the free energy G[Γ] is negligible.

In our previous work [14], we studied the linear stability of a cylindrical dielectric boundary 

in the relaxation of surface energy and electrostatic energy. We found the dispersion relation 

ω(k) = −γ0k2 for k ≫ 1. Our current work shows that the viscous effect of solvent fluid 

changes this dispersion relation to  for k ≫ 1; cf. (1.8). This suggests that 

viscosity slows down the decay of interface perturbation for large modes k.

The rest of the paper is organized as follows: In Section 2, we describe in detail the 

governing equations of our solvent fluid dielectric boundary model. In Section 3, we obtain 

the steady-state solutions and their linearized equations for a cylindrical solute-solvent 

interface. Then we solve the linearized equations to obtain the dispersion relations. The 

details of derivation of the linearized system are presented in Appendix A. Some definitions 

and formulas for the modified Bessel functions are collected in Appendix B. In Section 4, 

we present numerical examples to show the contribution of each component to the stability. 

Finally, in Section 5, we draw our conclusions and discuss several possible directions of 

future work.

2. Governing Equations

We describe the cylindrical solute-solvent interface at time t by a smooth function r = R(z, t) 

and assume it is L-periodic in z for some constant L > 0, where as usual . With 

the cylindrical coordinates (r, θ, z), we define the solute-solvent interface Γ(t), the solute 

region Ωm(t), and the solvent region Ωw(t) by

respectively, cf. Figure 1. Our governing equations are given by (1.1)–(1.4) and (1.7). We 

use the following boundary conditions (x denotes (x, y, z)): all R(z, t), u(x, t), pw(x, t), and 

ϕ(x, t) are L-periodic in z; and u = 0, pw = p∞, and ϕ = 0 at r = ∞ and for all z ∈ ℝ.
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The viscosity μw of solvent fluid, the number density of solvent molecules nw, the pressure 

of solvent fluid p∞ > 0 at infinity, and the surface tension γ0 > 0 of the solute-solvent 

interface are all known constants. In the ideal-gas law, Cm is a positive constant independent 

of time t and spatial points. The dielectric coefficient εΓ is defined in (1.5), where the 

relative permittivities  for the solute and  for the solvent are known constants, satisfying 

. We assume that the solute-solvent vdW interaction potential UvdW = UvdW(r) is 

a given smooth function that depends only on r and that satisfies

(2.1)

We also assume that the charge density ρ = ρ(r) : Ω → ℝ in Poisson’s equation is a known, 

continuous function that depends only on r. It is compactly supported: there exists Rc > 0 

such that ρ(r) = 0 if r > Rc. Moreover, it satisfies the condition of charge neutrality:

(2.2)

We now rewrite all the governing equations using the cylindrical coordinates. Let us first 

denote as usual by i, j, and k the cartesian coordinate vectors. For any point x = x i + y j + z 

k with cylindrical coordinates (r, θ, z), where  and θ = arctan y/x, the local 

cylindrical basis (or coordinate) vectors are er = cos θ i+sin θ j, eθ = −sin θ i + cos θ j, and ez 

= k. Note that x = rer + zez. We assume that the velocity u, pressure pw, and electrostatic 

potential ϕ at x are given by

(2.3)

respectively. These, together with r = R(z, t), are all the unknown functions in our equations. 

Note that the pressure pm(t) is eliminated as it can be readily expressed in terms of R(z, t).

Our governing equations and boundary conditions for these unknown functions in the 

cylindrical coordinates are the following:

• Equations for interface motion:

(2.4)

• Equations for solvent fluid:

(2.5)
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• Poisson’s equation for electrostatics:

(2.6)

where for a function h = h(x), h(x−) = limy→x−0 h(y) and h(x+) = limy→x+0 h(y) are 

the left and right limits, respectively.

• Equations of force balance:

(2.7)

We now derive (2.4)–(2.7) from (1.1)–(1.7). If x = x(t) ∈ Γ(t) has the cylindrical coordinates 

(R(z, t), θ, z), then

(2.8)

are orthonormal with n(x) the unit normal to Γ(t). Since x(t) = R(z, t) er +z ez, the normal 

velocity at x is , where a dot denotes the time 

derivative. This, together with (1.1) and (2.3), leads to the first equation in (2.4).

By (2.3) and a series of calculations, we obtain for x ∈ Ωw(t) the expression of Δu(x, t) and 

∇pw(x, t) as linear combinations of er and ez. They lead to the Stokes equation, the first two 

equations, in (2.5). Similar calculations lead to the third equation in (2.5) for the 

incompressibility equation.

The gradient of ϕ = ϕ(r, z, t) at x = rer + zez is ∇ϕ(x, t) = ∂rϕ er + ∂zϕ ez. If x = x(t) ∈ Γ(t) 

has the cylindrical coordinates (R(z, t), θ, z), then by (2.8) the normal derivatives of ϕ are 

given by

(2.9)
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where s = − or +. Consequently, by these and the expression of Laplacian in cylindrical 

coordinates, we can rewrite the boundary-value problem of Poisson’s equation (1.4) for the 

electrostatic potential ϕ = ϕ(r, z, t) as the elliptic interface problem (2.6) [14, 28]. Note that 

the third and fourth equations in (2.6) are the continuities of the electrostatic potential ϕ and 

the normal component of electric displacement −εΓ(t) ∂nϕ, respectively, across the dielectric 

boundary r = R(z, t).

To finally derive (2.7), we note that the volume Vol (Ωm(t)) of the cylindrical region Ωm(t) 

means that for one period 0 < z < L. Since the cylindrical surface is represented by r = R(z, 

t), the equation (1.3) for the ideal-gas law for the solute region is

(2.10)

If x = x(t) ∈ Γ(t) has the cylindrical coordinates (R(z, t), θ, z), then direct calculations lead to

(2.11)

(2.12)

By (2.8), (2.9), and (1.6), we have

(2.13)

These, together with (2.11) and (2.10), allow us to rewrite the equation of force balance 

(1.7) on the boundary Γ(t) into those in (2.7) by dotting (1.7) with n and n⊥, respectively. 

Note that each term in (2.7) is orthogonal to eθ. The correspondence between terms in (1.7) 

and (2.7) is through the parameters μw, γ0, nw, etc.

3. Steady-State Solutions and Their Linear Stabilities

Steady-state solutions with cylindrical solute-solvent interfaces r = R0 with constant radii R0 

> 0, together with their corresponding fluid velocity fields u0, w0, and pressures pw0, and the 

electrostatic potentials ϕ0 are given by
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(3.1)

where

All R0, u0, w0, pw0, and ϕ0 satisfy the governing equations for the interface motion, fluid 

velocity and pressure, and electrostatics, and the corresponding boundary conditions. Eq. 

(3.1) is the force balance equation. The existence of R0 > 0 such that f(R0) = 0 follows from 

(2.1) together with the fact that p∞ > 0 and 0 < εm < εw. Note that if we consider the 

ordinary differential equation Ṙ = f(R) for R = R(t), then the sign of f′(R0) determines the 

stability of R0. The constants C2, C3, and C4 are determined by the interface jump conditions 

and the boundary condition for the electrostatic potential ϕ0 (cf. the third, fourth, and last 

equations in (2.6)). Note that the limit C4 exists by the fact that the charge density ρ = ρ(r) is 

compactly supported and by the charge neutrality (2.2).

We now linearize our system around a steady-state solution r = R0, u0 = w0 = 0, pw0 = p∞, 

and ϕ0 = ϕ0(r) defined above. We assume

(3.2)

where δ ∈ ℝ is such that |δ| ≪ 1. All functions are L-periodic in z. Note that the expansion 

of velocity field is u(x, t) = δu1(x, t)+O(δ2) = δ [u1(r, z, t) er + w1(r, z, t) ez]+ O(δ2), where 

er, eθ, and ez are the local basis vectors at x that has cylindrical coordinates (r, θ, z).

The linearized equations and boundary conditions for R1, u1, w1, pw1, and ϕ1 are 

summarized below, and their derivations are detailed in Appendix A:

(3.3)
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(3.4)

(3.5)

(3.6)

We now seek solutions to the linearized system (3.3)–(3.6) of the form

where k = 2πk′/L and k′ is a nonnegative integer and all the functions û1 = û1(r), ŵ1 = ŵ1(r), 

p̂w1 = p̂w1(r), and ϕ̂
1 = ϕ̂

1(r) are to be determined. The sign of the growth rate ω = ω(k) 

determines the linear stability of an underlying steady state. The system (3.3)–(3.6) reduces 

to

(3.7)

(3.8)

(3.9)
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(3.10)

We shall use the modified Bessel functions of order n of the first and second kind In(x) and 

Kn(x). The definition and basic properties of these functions are recalled in Appendix B.

Lemma 3.1

The first three equations in (3.8) together with the boundary conditions (3.7), the fourth 

equation in (3.8), and the second equation in (3.10) have a unique solution û1 = û1(r), ŵ1 = 

ŵ1(r), p̂w1 = p̂w1(r), given by

Proof—The case k = 0 can be proved by direct verifications. For the case k > 0, we use a 

projection method to find the solution in three steps.

Step 1: Let a, b ∈ ℝ. Consider the equations for the velocity components ũ1 = ũ1(r) and w̃1 

= w̃1(r):

By (B.5), the solution is given by

(3.11)

Step 2: Find the general solution p̃1 = p̃1(r) to the equation

(3.12)

and p̃w1(∞) = 0. By (3.11) and (B.2), we can simplify the right-hand side of (3.12) as
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Since K0(kr) and I0(kr) are two linearly independent solutions to the homogeneous equation 

associated with (3.12) and their Wronskian is 1/r by (B.3) (the factor k does not appear), the 

general solution to (3.12) is then given by

where Ĉ1 and Ĉ2 are constants and where in the last step we used the formulas

together with (B.2) and (B.3). These formulas can be directly verified by taking the 

derivatives of the right-hand sides and using (B.2) and (B.3).

It now follows from (B.5) and p̃w1(∞) = 0 that

Hence,

(3.13)

where

is a constant.

Step 3: Define
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It is easy to verify that û1, ŵ1, and p̂w1 satisfy the first three equations in (3.8). By (B.2) and 

(B.5), we can also verify that û1(∞), ŵ1(∞), and p̂w1(∞) all equal 0. If we set τ1 = 

−akK0(kR0)/K1(kR0) + ikb and τ2 = b − ikC̃
1, then we can verify by (3.11)–(3.13), together 

with (B.2), that

By (3.7) and the second equation in (3.10), we have

Solving these two equations, we get

Plugging τ1 and τ2 into û1, ŵ1, and p̂w1 above, we obtain the desired solution expressions 

for the case k > 0.

Lemma 3.2

The solution ϕ̂
1 = ϕ̂

1(r) to the system of equations and boundary conditions (3.9) for the 

electrostatic potential is given by
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Proof—Direct verifications prove the result for the case k = 0. Fix k > 0. The solution ϕ̂
1(r) 

in each of the regions r < R0 and r > R0 is a linear combination of I0(kr) and K0(kr). By the 

last equation in (3.9) and by the asymptotic properties (B.4) and (B.5), we then have

where C̄
1 and C̄

2 are two constants. They are determined by the third and fourth equations in 

(3.9):

where we used (B.2) in deriving the second equation. Solving for C̄
1 and C̄

2, we have the 

desired solution.

Proposition 3.3

The growth rate ω = ω(k) is given by

(3.14)

where the asymptotics is with respect to k → ∞ and

We remark that the zeroth-mode mode perturbation (k = 0) is only in the r-direction. In this 

case, we have by taking the limit as k → 0 and using (B.4) that

The growth rate is then exactly
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where f is defined in (3.1).

Proof of Proposition 3.3—By Lemma 3.1,

For the steady-state electrostatic potential ϕ0 = ϕ0(r), we have

By Lemma 3.2,

Plugging these and (A.2) into the first equation of (3.10) with s = +, we then obtain

This leads to the expression of growth rate ω = ω(k) as desired.

Notice that ωhyd(k) > 0 for all k > 0, since 0 < K0(x) < K1(x) for any x > 0 [2]. By (B.5),

Thus,
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Moreover,

Therefore,

Combining all these, we obtain the desired asymptotics of ω(k).

4. Numerical Results

We use the following parameters that are typical values in molecular dynamics simulations:

where e is the elementary charge. We set the period L = 100 Å and the constant Cm = 0.65 

kBT. We define

with κ = 5.0 kBT/Å3 and σ = 10.0 Å. This potential is obtained by integrating a Lennard-

Jones (LJ) 12-6 potential along the z-axis. We use an artificial charge density of the form (in 

the units e/Å3)

where ρ0 (in the units e/Å) and Rc (in the units Å) are two positive numbers to be chosen 

later. One verifies that this charge density satisfies the charge neutrality condition (2.2), 

since

LI et al. Page 16

SIAM J Appl Math. Author manuscript; available in PMC 2016 February 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Note that the parameter ρ0 sets the magnitude of the charge distribution and hence the 

electrostatic force. The parameter Rc determines the spatial range of electrostatic force. If we 

set Rc to be close to the LJ parameter σ, then a small variation of the value of Rc can result in 

a dramatical change of equilibrium radii.

We use Newton’s method to solve (3.1) for R0 (in the units Å), the radius of a cylindrically 

shaped equilibrium interface. For certain values of the parameter ρ0, we find multiple values 

R0 with different initial guesses in Newton’s iteration. In Figure 2, we plot multiple branches 

of solutions R0 vs. ρ0 for (a) Rc = 10 Å and (b) Rc = 11.5 Å, respectively. Solid and dotted 

lines indicate stable and unstable branches of R0, respectively, with respect to the zeroth-

mode (k = 0) perturbation. For Rc = 10, there is a bifurcation at ρ0 = 5.04 × 104. For Rc = 

11.5, there are two bifurcation points at ρ0 = 2.34×104 and ρ0 = 5.19×104, respectively. All 

these are saddle-node bifurcations.

We plot in Figure 3 the dispersion relation ω = ω(k) given by (3.14) for Rc = 11.5. Figure 3 

(a), (b), and (c) correspond to the data points on the bottom, middle, and top curves in Figure 

2 (b), respectively. Let us first examine the stability and instability for the zeroth mode k = 

0. From Figure 3 (a) and (c), we observe the zeroth-mode linear stability for all the 

parameter choices along the bottom or top curve in Figure 2 (b), and the instability for those 

along the middle curve in Figure 2 (b). Consider the increase of ρ0 from the left bifurcation 

point from which the bottom and middle curves branch out in Figure 2 (b). We can see from 

Figure 3 (a) and (b) that the value of ω(0) along the bottom branch becomes more negative, 

indicating that the corresponding equilibrium shape is more stable. Along the middle branch, 

the value of ω(0) begins with 0 at the bifurcation point but rapidly increases to a large 

positive number and then gradually decreases to a small positive number near the right 

bifurcation point in Figure 2 (b). Consider now the decrease of ρ0 from the right bifurcation 

point in Figure 2 (b) from which the top curve and middle curve branch out. We observe 

from Figure 3 (c) and (b) that the value of ω(0) becomes more negative along the top curve 

and more positive along the middle curve.

Let us now examine the general, nonzero mode k. Consider first the data points on the 

bottom curve in Figure 2 (b) from left to right as ρ0 increases. Figure 3 (a) indicates that 

both the largest value of ω(k) and the range of the small-wavenumber instability increase. 

Consider now the data points on the middle branch in Figure 2 (b) from left to right as ρ0 

increases. We find from Figure 3 (b) the small-wavenumber instability and the large-

wavenumber stability. As ρ0 increases along the middle branch further to reach the right 

bifurcation point meeting with the top branch, the small-wavenumber instability diminishes 

and the interface switches its stability at the bifurcation. Finally, consider the top curve in 

Figure 2. We observe from Figure 2 (c) the linear stability for all wavenumbers k and for 

each data point on this curve. Moreover, for each k, ω(k) is more negative further away from 

the right bifurcation point. Note that the top branch terminates at the right bifurcation point 
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with ρ0 = 5.19 × 104 in Figure 2 (b). This indicates that for ρ0 larger than this value, and Rc 

= 11.5, there is no equilibrium radius R0 that is linearly stable for all wavenumbers.

Figure 4 displays the dispersion relations and contributions from different components of 

force corresponding to the three data points at ρ0 = 2.5×104 on the three branches, 

respectively, near but on the right of the left bifurcation point, in Figure 2 (b). Figure 4 (a) 

and (b) are for 0 ≤ k ≤ 3 and 0 ≤ k ≤ 1500, respectively. We observe for large k the linear 

decay of ω(k), the quadratic decay of ωsurf (k), and the linear growth of ωhyd(k) and ωele(k), 

respectively, consistent with our asymptotic analysis summarized in Proposition 3.3. In the 

range of small wavenumbers k, the growth rate ω(k) increases with k for the top and bottom 

branches, but decreases with k for the middle branch. It is readily seen from Figure 4 (a) 

that, in the small k regime, the dispersion relation is dominated by ωvdW(k) and ωele(k). The 

part ωsurf (k) is slightly positive for small k due to the cylindrical geometry but then drops 

quadratically. The part ωele(k) grows almost linearly with k except for k ≈ 0 where there is 

some subtle nonlinearity. Hence ωvdW(k)+ωele(k) can be approximated as a linear function 

with a positive slope due to ωele(k). By diving ωvdW(k) + ωele(k) by ωhyd(k), we find that the 

dispersion relation ω(k) can be approximately described by an inverse power law ω(k) ∝ (c1 

+ c2/k)/μw, where c1 and c2 are constants depending on ρ0 and Rc. This approximation is 

valid for k away from zero. For k close to zero, ωhyd ≈ 2μw/R0. The effect of air pressure 

ωair(k) is only reflected at k = 0, and it causes a negligibly small discontinuity at k = 0.

5. Conclusions

We have constructed a solvent fluid dielectric boundary model to describe the effect of 

solvent fluid to conformations of charged molecules in aqueous solution. In addition to the 

Stokes equation for the incompressible solvent fluid, we use the ideal-gas law to model 

solutes. Moreover, on the moving dielectric boundary, the viscous force balances the VISM 

forces that include hydrostatic pressures, surface tension, solute-solvent vdW interactions, 

and electrostatic force.

We have analyzed the linear stability of a steady-state cylindrical dielectric boundary. We 

find multiple such steady states that correspond to polymodal states (e.g., dry and wet) of 

hydration of charged molecules, as captured by our previous level-set variational implicit-

solvent modeling [15,16,34,42,47,48]. Such nonuniqueness results from the competition 

between the surface tension, electrostatics, and solute-solvent vdW interactions. The 

multiple steady states bifurcate with respect to the charge distributions. Our stability analysis 

shows that the surface tension is the dominate effect in high-wavenumber stability. But the 

solvent viscosity weakens such stabilization as it changes the quadratic tail for large 

wavenumber to a linear one. The electrostatics always destablizes the system. The most 

important stability parameter we find is γ0/(2μw), half of the ratio of the surface tension γ0 to 

the solvent fluid viscosity μw.

The instability of a solute-solvent interface is in fact a generic property of a real 

biomolecular system. For instance, the interface separating a protein from water molecules 

that are trapped inside the protein is metastable, as such water molecules lose their hydrogen 

bonding to the network of bulk water molecules [45, 46]. Our preliminary analysis only 
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indicates qualitatively the stabilizing factors, but does not characterize various scales at 

which the stability or instability occurs. It will be interesting to connect the small 

wavenumber instability analyzed here with the experiment and computer simulations on the 

metastable water molecules inside a protein.

The inclusion of solvent fluid flow is one step further to make an implicit-solvent approach 

more accurate in describing the important solvent effect. The development of numerical 

methods to solve our modeling system of equations is, however, nontrivial. One difficulty is 

to impose proper boundary conditions to allow solutes to change their volumes as occurring 

during the biomolecular conformational change. Usual boundary conditions, such as the 

periodic boundary condition imposed on the boundary of a computational region, will 

always keep the volume of solute region a constant because of the incompressibility of 

solvent fluid. A different issue is that the description of solutes by the ideal-gas law is over 

simplified. An improved approach is to include the solute molecular mechanical motion [16] 

and the coupling of such motion with the solvent fluid motion. Finally, our proposed solvent 

fluid model allows us to describe the solvent fluctuations through the Stokes equation with a 

stochastic stress tensor [43]. Such fluctuations are important in conformational changes of 

biomolecules. The mathematical description and numerical computation of such fluctuations 

will be challenging tasks.
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Appendix A

In this appendix, we derive the linearized system (3.3)–(3.6). Equations (3.3) and (3.4) can 

be obtained simply by plugging the expansions (3.2) into (2.4) and (2.5), and matching the 

O(δ) terms. The first, second, and fifth equations in (3.5) can be obtained similarly using the 

corresponding equations in (2.6). At the interface Γ(t) defined by r = R(r, t) with R(z, t) 

given in (3.2), we have

Comparing O(1)-terms, we obtain the already known continuity , cf. the 

third equation in (2.6) with ϕ0 and R0 replacing ϕ and R(z, t), respectively. Comparing O(δ)-

terms, we obtain the third equation in (3.5), which is the first interface condition for ϕ1 = 
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ϕ1(r, z, t). By (2.9), we have at either side s = − or + on the interface r = R(z, t) defined in 

(3.2) that

(A.1)

Therefore, the O(1)-terms in the continuity of εΓ(t)∂nϕ at r = R(z, t) (cf. the fourth equation 

in (2.6)) leads to the known continuity . The O(δ)-terms lead to

From the expression of the steady-state electrostatic potential ϕ0, we have

(A.2)

These imply the fourth equation in (3.5) which is the second interface condition for ϕ1.

To linearize the force balance equations (2.7), we first have by (3.2) and (2.10) that

Now, at the interface r = R(z, t), where a point has the cylindrical coordinates (R(z, t), θ, z), 

we have by (3.2) and (2.12), and routine calculations, that

Similarly, we have by (3.2) and (2.13) that
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By the continuity of ϕ0 at r = R0, we can change εw and the sign + to εm and the sign −, 

respectively. All these, together with (2.7), imply the first equation in (3.6). The second 

equation in (3.6) can be obtained by straight forward calculations using (3.2).

Appendix B

We recall that the modified Bessel functions of order n of first and second kind, In(x) and 

Kn(x), are linearly independent solutions to the second-order equation [2]

(B.1)

Here we only consider nonnegative integers n. These functions satisfy the following 

properties [2]:

(B.2)

(B.3)

(B.4)

(B.5)
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Fig. 1. A cylindrical solute-solvent interface
Γ separates the interior solute region Ωm (m stands for molecules) from the exterior solvent 

region Ωw (w stands for water). The unit normal n at Γ points from Ωm to Ωw. The system is 

L-periodic in the z-axis, the axis of cylinder.
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Fig. 2. Equilibrium radii R0 vs. the parameter ρ0 in the charge density ρ and their stabilities for 
the mode k
= 0 with (a) Rc = 10 and (b) Rc = 11.5. Multiple values of R0 are found for ρ0 in certain 

ranges. Solid and dotted lines indicate the stable and unstable branches of R0, respectively. 

The small magenta solid circles correspond to the saddle-node bifurcation points. In (b), the 

marker points in red, blue, and black from different branches correspond to the plots of 

dispersion relations in Figures 3 and 4.
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Fig. 3. Plots of the dispersion relations for multiple solutions R0 with Rc
= 11.5. The four curves in (a) correspond to the four data points on the bottom curve in 

Figure 2 (b). The three curves in (b) correspond to the three data points on the middle curve 

in Figure 2 (b). The four curves in (c) correspond to the four data points on the top curve in 

Figure 2 (b). Plots in each inset are for a large range of k.
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Fig. 4. The dispersion relations for multiple solutions of R0 at ρ

0 = 2.5 × 104 and Rc = 11.5 that correspond to the same marker points in Figure 2 (b). The 

insets indicate different contributions to the growth rate ω(k) : (a) Small range of k; (b) 

Large range of k.
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