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This is a major revision of the manuscript http://arxiv.org/abs/1406.2816. We have

significantly extended the numerical experiments, adding the comparison of cross

algorithms, verification via the Monte Carlo method, computation of the exceedance

probabilities, the log-normally distributed coefficient, and the systematic study of

the performance w.r.t. different parameters of the stochastic PDE (correlation

length, variance, etc.). Some unused material is removed.

Abstract

We apply the Tensor Train (TT) decomposition to construct the tensor product
Polynomial Chaos Expansion (PCE) of a random field, to solve the stochastic ellip-
tic diffusion PDE with the stochastic Galerkin discretization, and to compute some
quantities of interest (mean, variance, exceedance probabilities). We assume that the
random diffusion coefficient is given as a smooth transformation of a Gaussian random
field. In this case, the PCE is delivered by a complicated formula, which lacks an an-
alytic TT representation. To construct its TT approximation numerically, we develop
the new block TT cross algorithm, a method that computes the whole TT decompo-
sition from a few evaluations of the PCE formula. The new method is conceptually
similar to the adaptive cross approximation in the TT format, but is more efficient
when several tensors must be stored in the same TT representation, which is the case
for the PCE. Besides, we demonstrate how to assemble the stochastic Galerkin matrix
and to compute the solution of the elliptic equation and its post-processing, staying
in the TT format.

We compare our technique with the traditional sparse polynomial chaos and the
Monte Carlo approaches. In the tensor product polynomial chaos, the polynomial
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degree is bounded for each random variable independently. This provides higher accu-
racy than the sparse polynomial set or the Monte Carlo method, but the cardinality
of the tensor product set grows exponentially with the number of random variables.
However, when the PCE coefficients are implicitly approximated in the TT format,
the computations with the full tensor product polynomial set become possible. In the
numerical experiments, we confirm that the new methodology is competitive in a wide
range of parameters, especially where high accuracy and high polynomial degrees are
required.

Keywords: uncertainty quantification, polynomial chaos expansion, Karhunen-Loève ex-
pansion, stochastic Galerkin, tensor product methods, tensor train format, adaptive cross
approximation, block cross

MSC2010: 15A69, 65F10, 60H15, 60H35, 65C30

1 Motivation

Situations in which one is concerned with uncertainty quantification often come in the
following guise: we are investigating physical models where inputs are not given precisely,
but instead are random quantities or random fields, or depend on a set of parameters. A
classical example is the Darcy flow model with a random diffusion coefficient,

−∇κ(x,ω)∇u(x,ω) = f(x,ω), x ∈ D ⊂ R
d, (1)

where d is the spatial dimension, κ(x,ω) is a random field dependent on a random parame-
ter ω in a probability space (Ω,A,P). The solution u(x,ω) belongs to H1(D) w.r.t. x and
the same probability space w.r.t. ω. There is an established theory about the existence and
uniqueness of the solution to (1) under various assumptions on κ and f; see, for example,
[2, 21, 23, 44, 47].

In [21, 23] it is shown that under additional assumptions on the right-hand side f and
special choices of the test space the problem (1) is well-posed. The case where the Lax-
Milgram theorem is not applicable (e. g. upper and lower constants κ, κ in 0 < κ < κ <

κ < ∞ do not exist) is also considered in [47]. In [21] the authors analyze assumptions
on κ which were made in [2] to guarantee the uniqueness and the existence of the solution
and to offer a new method with much weakened assumptions. Additionally, in [21], the
authors point out that after truncating terms in the expansion for κ, as is done in [44], it
is not guaranteed that the truncated κ will be strictly bounded from zero. As a result the
existence of the approximate solution to (1) is questionable. The remarkable difference of
the approach in [21] from approaches in [2, 44] is that the permeability coefficient κ is not
truncated and, as a result, the ellipticity condition is maintained.

To solve (1) we need to discretize the random field κ. This requires some knowledge on
the probability space Ω and the probability measure. A widely used approach relies on two
assumptions: κ is defined as an invertible smooth function of another random field with
known distribution (e.g. normal), and the covariance function of either of those fields is
given. After that κ(x,ω) can be expanded to a series of functions, depending on x and a set
of new parameters θ = (θ1, θ2, . . .). Typically used are polynomials of θ, hence called the
Polynomial Chaos Expansion (PCE) [66, 67] family of discretizations. Another approach
is the collocation on some grid in θ [1, 3]. Each of θ is a random quantity depending
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on ω, but the domain of θ is known deterministically. Introducing a discretization for θ,
we turn the stochastic problem (1) into a high-dimensional deterministic one. However,
its straightforward numerical solution suffers from the curse of dimensionality : even if θ
contains a finite amount of variables (say, M), the number of discrete degrees of freedom
grows exponentially with M.

To surmount this issue, a data-sparse approximation is needed. During the last years,
low-rank tensor product techniques were successfully applied to the solution of high-dimensional
stochastic and parametric PDEs. A recent literature survey of low-rank tensor approxima-
tion techniques can be found in [27]. The tensor product approach involves a format, in
which the data are represented, and a set of algorithms to manipulate the data in the
format. The algorithms can be roughly separated into three classes: methods performing
basic approximate algebra (additions, products, simple iterative methods) of data within
the format; methods constructing the formatted representation from a few entries of the
initial data; and methods aiming to solve equations, e.g. linear systems, ODEs or eigenvalue
problems, keeping all data in the format.

To some extent, these methods have already been applied to parametric problems. Non-
intrusive (black box) tensor methods for multi-parametric problems, i.e. “class 2”, were
developed in [4, 5, 15]. In particular, in [4] the authors follow the stochastic collocation
approach and compute functionals of the solution of multi-parametric PDEs. Since the
stochastic collocation allows to solve uncoupled deterministic problems for different collo-
cation points, the functional of the solution (e.g. the average value) can be approximated
straightforwardly via the black box hierarchical tensor interpolation algorithm. To com-
pute the whole stochastic solution is a more difficult problem, especially in the stochastic
Galerkin framework, where deterministic problems are coupled.

In [36, 37, 46, 60, 69] the authors develop iterative methods and preconditioners to solve
numerically discretized multi-parametric problems. Several manipulations of the PCE with
a low-rank approximation have been considered. In [19] the authors assume that the solution
has a low-rank canonical (CP) tensor format and develop methods for the CP-formatted
computation of level sets. In [45, 18] the authors analyzed tensor ranks of the stochastic
operator. The proper generalized decomposition was applied for solving high dimensional
stochastic problems in [49, 50]. In [33, 34, 35] the authors employed newer tensor formats,
the Tensor Train (TT) and Quantized TT (QTT), for the approximation of coefficients
and the solution of stochastic elliptic PDEs. The theoretical study of the complexity of
the stochastic equation was provided, for example, by means of the analytic regularity and
(generalized) PC approximation [67] for control problems constrained by linear parametric
elliptic and parabolic PDEs [38].

Other classical techniques to cope with high-dimensional problems are sparse grids [28,
10, 48] and (quasi) Monte Carlo methods [26, 61, 39]. Nevertheless, tensor product methods
are more flexible than sparse grids, as they allow to avoid severe reductions of the model
from the very beginning, and adapt a suitable structure on the discrete level. Compared to
Monte Carlo methods, tensor techniques work implicitly with the whole solution, and even
a construction of a tensor format for entry-wise given data in a black box manner uses less
randomness than the MC approach.

In this article we approximate the PCE of the input coefficient κ(x,ω) in the TT tensor
format. After that we compute the solution u(x,ω) and perform all post-processing in the
same TT format. The first stage, computation of the PCE of κ, involves a lengthy formula,
defining each entry of the discretized coefficient. To perform this computation efficiently,
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we develop a new block cross approximation algorithm, which constructs the TT format for
κ from a few evaluations of the entry-wise formula. This formula delivers several tensors
that are to be summed and approximated in a TT format. We show that the new algorithm
is more efficient than several runs of a previously existing cross method [57] for each tensor
separately. As soon as the coefficient is given in the TT format, it becomes very easy to
construct the stiffness matrix, derived from the stochastic Galerkin discretization of (1).
We apply the alternating iterative tensor algorithm to solve a large linear system arising
from (1), and finally use the cross algorithm again to compute the exceedance probability
from the solution.

In the next section, we outline the general Galerkin, Polynomial Chaos Expansion (PCE)
and Karhunen-Loève Expansion (KLE) discretization schemes for a random field. An intro-
duction to the TT methods and the new block cross interpolation algorithm are presented in
Section 3. Some details of how to apply the block cross algorithm to the PCE calculations
are given in Section 4.1. We start with the TT approximation of the multi-dimensional
input coefficient κ. After that, in Section 4.2, we construct the stochastic Galerkin matrix
in the TT format. Section 4.4 is devoted to the efficient post-processing (computation of
the mean value, covariance, and probability of a particular event) in the TT format. Nu-
merical results in Section 5 demonstrate the practical performance of the TT approach in
the outlined tasks.

2 Discretisation and computation

For brevity, we follow [43], where more references may be found. See also the recent
monograph [40] to study more about KLE, PCE and multiindices. In [17, 60, 63, 64] the
authors discuss the stochastic Galerkin matrix, its sparsity and preconditioners.

To discretize (1), we follow the Galerkin approach. The Finite Element method (for
example, with piecewise linear functions) is a natural way to discretize the spatial part. We
choose a finite dimensional subspace

VN = span{ϕ1(x), . . . , ϕN(x)} ⊂ V, (2)

where V = H1(D)∩ L0
2(D̄) is the Hilbert space of functions on x. For simplicity, we impose

the homogeneous Dirichlet boundary conditions.
Discretization in the probability space (Ω,A,P) is less trivial. We use the Karhunen-

Loève Expansion (KLE) to determine a finite set of independent parameters, defining
κ(x,ω). However, the distribution of these parameters might be unknown, and special
efforts are needed to resolve this.

2.1 Discretization of the input random field

We assume that κ(x,ω) may be seen as a smooth transformation κ = φ(γ) of the Gaussian
random field γ(x,ω). In this Section, we explain how to compute KLE of γ if the covariance
of κ is given. For more details see [69, Sections 3.4.1, 3.4.2] or [29].

A typical example is the log-normal field with φ(γ) = exp(γ). Expanding φ in a series
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of the Hermite polynomials gives

φ(γ) =

∞∑

i=0

φihi(γ) ≈
Q∑

i=0

φihi(γ), φi =

+∞∫

−∞

φ(z)
1

i!
hi(z) exp(−z2/2)dz, (3)

where hi(·) is the i-th Hermite polynomial, and Q is the number of terms after the trunca-
tion.

The Gaussian field γ(x,ω) can be written as the Karhunen-Loève expansion. First,
given the covariance function of κ(x,ω), we may relate it with the covariance function of
γ(x,ω) as follows (see details in [69, Sections 3.4.1, 3.4.2]),

covκ(x, y) =

∫

Ω

(κ(x,ω) − κ̄(x)) (κ(y,ω) − κ̄(y))dP(ω) ≈
Q∑

i=0

i!φ2
i cov

i
γ(x, y), (4)

where κ̄(x) is the expectation of κ(x,ω). Solving this implicit Q-order equation, we derive
covγ(x, y) [69]. Now, the KLE can be computed as follows:

γ(x,ω) =

∞∑

m=1

gm(x)θm(ω), where

∫

D

covγ(x, y)gm(y)dy = λmgm(x). (5)

Here we assume that the eigenfunctions gm absorb the square roots of the KL eigenvalues.
The stochastic variables θm are normalized (they are uncorrelated and jointly Gaussian).

The initial coefficient κ depends nonlinearly on θm. In the discrete setting, we truncate
PCE and write it for M random variables,

κ(x,ω) ≈
∑

α∈JM

κ(x,α)Hα(θ(ω)), where Hα(θ) := hα1
(θ1) · · ·hαM

(θM) (6)

is the multivariate Hermite polynomial, α = (α1, . . . , αM) is a multiindex (a tuple of
multinomial orders), hαm

(θm) is the univariate Hermite polynomial, θ = (θ1, . . . , θM) is a
tuple of random variables, and JM is a set of all multinomial orders (see definition below).
The Galerkin coefficients κ(x,α) are evaluated as follows:

κ(x,α) =
(α1 + · · ·+ αM)!

α1! · · ·αM!
φα1+···+αM

M∏

m=1

gαm

m (x), (7)

where φα1+···+αM
is the Galerkin coefficient of the transform function in (3) and gαm

m (x)

means just the αm-th power of the KLE function value gm(x).
In practice, we restrict the polynomial orders in (6) to finite limits, which can be done

in different ways.

Definition 1. The full multi-index set is defined by restricting each component indepen-
dently,

JM,p = {α = (α1, . . . , αM) : αm = 0, . . . , pm, m = 1, . . . ,M} ,

where p = (p1, . . . , pM) is a shortcut for the tuple of order limits.
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The full set provides high flexibility for the resolution of stochastic variables [18, 19, 60].
However, its cardinality is equal to

∏M
m=1(pm+1) ≤ (p+1)M, if pm ≤ p. This may become

a enormous number even if p and M are moderate (p ∼ 3, M ∼ 20 is typical). In this paper,
we do not store all (p + 1)M values explicitly, but instead approximate them via a tensor
product representation.

Another approach is to preselect the set of polynomials with the moderate cardinality
[62, 44, 9, 11].

Definition 2. The sparse multi-index set is defined by restricting the sum of components,

J
sp
M,p = {α = (α1, . . . , αM) : α ≥ 0, α1 + · · ·+ αM ≤ p} .

The sparse set contains O
(

M!
p!(M−p)!

)
= O(Mp) values if M ≫ p, which is definitely less

than (p+ 1)M. However, the negative side is that for a fixed p some variables are resolved
worse than others, and the approximation accuracy may suffer. It may also be harmful to
increase p since in the sparse set it contributes exponentially to the complexity.

The low-rank tensor approximation allows to reduce the storage of the coefficient with
the full set JM,p from O(pM) to O(Mpr2), where r is a data-dependent tensor rank. The-
oretical estimates of r are under development; numerical studies reflect that often r does
not depend on p and depends linearly (or even milder) on M [33]. When M is moderate,
and p is relatively large, the low-rank approach with the full index set (Def. 1) becomes
preferable. Besides, as soon as the coefficient κ is computed in a tensor product form, to
assemble the Galerkin matrix of the stochastic PDE is a much easier task than with the
sparse set.

Some complexity reduction in Formula (7) can be achieved with the help of the KLE
for the initial field κ(x,ω). Consider the expansion

κ(x,ω) = κ̄(x) +

∞∑

ℓ=1

√
µℓvℓ(x)ηℓ(ω) ≈ κ̄(x) +

L∑

ℓ=1

√
µℓvℓ(x)ηℓ(ω), (8)

where vℓ(x) are eigenfunctions of the integral operator with the covariance as the kernel
(see e.g. [69, 29, 44]). It’s hard to work with (8) straightforwardly, since the distribution
of ηℓ is generally unknown. But we know that the set V(x) = {vℓ(x)}

L
ℓ=1, where L is the

number of KLE terms after the truncation, serves as an optimally reduced basis. Therefore,
instead of using (7) directly, we project it onto V(x):

κ̃ℓ(α) =
(α1 + · · ·+ αM)!

α1! · · ·αM!
φα1+···+αM

∫

D

M∏

m=1

gαm

m (x)vℓ(x)dx. (9)

Note that the range ℓ = 1, . . . , L may be much smaller than the number of discretization
points N in D. After that, we restore the approximate coefficients (7):

κ(x,α) ≈ κ̄(x) +

L∑

ℓ=1

vℓ(x)κ̃ℓ(α). (10)
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2.2 Discretization of the stochastic operator equation

The same PCE ansatz of the coefficient (6) may be adopted to discretize the solution u

and ultimately the whole initial problem (1), see [18, 19]. For brevity, we illustrate the
procedure on the deterministic right-hand side f = f(x).

Given the KLE components (8) and the spatial discretization basis (2), we first assemble
the spatial Galerkin matrices,

K
(x)
0 (i, j) =

∫

D

κ̄(x)∇ϕi(x) · ∇ϕj(x)dx, K
(x)
ℓ (i, j) =

∫

D

vℓ(x)∇ϕi(x) · ∇ϕj(x)dx, (11)

for i, j = 1, . . . , N, ℓ = 1, . . . , L. Now we take into account the PCE part κ̃α. Assuming that
u is decomposed in the same way as (6) with the same JM,p or JspM,p, we compute the integral

in (12) over stochastic coordinates θ and compute the stochastic parts K
(ω)

ℓ ∈ R#JM×#JM

of the Galerkin matrix as follows (see also [29, 69, 43]),

K
(ω)

ℓ (α,β) =

∫

RM

Hα(θ)Hβ(θ)
∑

ν∈JM

κ̃ℓ(ν)Hν(θ)ρ(θ)dθ =
∑

ν∈JM

∆α,β,ν κ̃ℓ(ν), (12)

where ρ(θ) = ρ(θ1) · · ·ρ(θM) is the probability density with ρ(θm) =
1√
2π

exp(−θ2
m/2), and

∆α,β,ν = ∆α1,β1,ν1
· · ·∆αM,βM,νM

, ∆αm,βm,νm
=

∫

R

hαm
(θ)hβm

(θ)hνm
(θ)ρ(θ)dθ, (13)

is the triple product of the Hermite polynomials, and κ̃ℓ(ν) is according to (9). Let us
denote ∆0(α,β) = ∆α1,β1,0 · · ·∆αM,βM,0, i.e. ∆0 ∈ R#JM×#JM . Putting together (10), (11)
and (12), we obtain the whole discrete stochastic Galerkin matrix,

K = K
(x)
0 ⊗∆0 +

L∑

ℓ=1

K
(x)
ℓ ⊗K

(ω)

ℓ , (14)

which is a square matrix of size N ·#JM, and ⊗ is the Kronecker product.
For the sparse index set, we need to compute O

(
(#J

sp
M,p)

3
)

entries of ∆ explicitly. For
the full index set and κ̃ν given in the tensor format, the direct product in ∆ (13) allows
to exploit the same format for (14) and to simplify the procedure, see Sec. 4.2.

The deterministic right-hand side is extended to the size of K easily,

f = f0 ⊗ e0, f0(i) =

∫

D

ϕi(x)f(x)dx, i = 1, . . . , N, (15)

and e0 is the first identity vector of size #JM, e0 = (1, 0, . . . , 0)⊤, which assigns the deter-
ministic f(x) to the zeroth-order Hermite polynomial in the parametric space.

2.3 Solution of the stochastic equation

Now the discrete equation writes as a linear system

Ku = f , (16)
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where u ∈ RN·#JM is the vector of the Galerkin coefficients for the solution, with elements
enumerated by u(i,α).

In [60] the authors propose two new strategies for constructing preconditioners for the
stochastic Galerkin system to be used with Krylov subspace iterative solvers. The authors
also research the block sparsity structure of the corresponding coefficient matrix as well as
the stochastic Galerkin matrix. In [63, 64] the authors develop and analyze a Kronecker-
product preconditioner.

In many cases it is sufficient to use the mean-field preconditioner K
(x)
0 ⊗∆0, which is

easy to invert due to the Kronecker form. We follow this approach. To solve the system in
a tensor product format, we employ alternating optimization methods [14].

3 Tensor product formats and low-rank data compres-

sion

We see that the cardinality of the full polynomial set JM,p may rise to prohibitively large
values (p+1)M. In this paper, we study two ways to alleviate this problem. First, we can fix
the basis set a priori. This is the case with the sparse set JspM,p. Due to particular properties
of the stochastic elliptic equation, it is possible to derive a posteriori error indicators and
build the sparse set adaptively [16, 11].

Another approach, which is applicable to a wider class of problems, is to use the full dis-
cretization set, but to approximate already discrete data, via a low-rank tensor product for-
mat. For stochastic PDEs, low-rank approximations were used in e.g. [8, 15, 19, 33, 46, 50].
This approach requires specific computational algorithms, since the data are represented in
a nonlinear fashion. In this section we suggest such an algorithm to construct a data-sparse
format of the stochastic coefficient and quantities of interest.

3.1 Tensor Train decomposition

To show the techniques in the briefest way, we choose the so-called matrix product states
(MPS) formalism [20], which introduces the following representation of a multi-variate
array, or tensor :

u(α1, . . . , αM) =

r1∑

s1=1

r2∑

s2=1

· · ·
rM−1∑

sM−1=1

u(1)
s0,s1

(α1)u
(2)
s1,s2

(α2) · · ·u(M)
sM−1,sM

(αM). (17)

Surely, in the same form we may write κ(α). In numerical linear algebra this format is
known as “tensor train (TT)” representation [52, 54]. Each TT core (or block) is a three-
dimensional array, u(m) ∈ Rrm−1×(pm+1)×rm , m = 1, . . . ,M, where pm denotes the mode size,
the polynomial order in the variable αm, and rm = rm(u) is the TT rank. The total number
of entries scales as O(Mpr2), which is tractable as long as r = max{rm} is moderate.

We still have not specified the border rank indices s0 and sM. In the classical TT
definition [52] and in (17), there is only one tensor u(α) in the left-hand side, therefore
s0 = sM = 1, and also r0 = rM = 1. However, the left-hand side might contain several
tensors, such as κ̃ℓ(α) (9). Then we can associate s0 = ℓ or sM = ℓ, and approximate all
tensors for different ℓ in the same shared TT representation.
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High-dimensional matrices (cf. K in (14)) can be also presented in the TT format,

K =
∑

s0,...,sM−1

K(0)
s0

⊗K(1)
s0,s1

⊗ · · · ⊗K(M)
sM−1

.

The matrix by vector product Ku is then recast to TT blocks of K and u. Similarly, using
the multilinearity of the TT format, we can cast linear combinations of initial tensors to
concatenations of TT blocks.

The principal favor of the TT format comparing to the Canonical Polyadic (CP) decom-
position (which is also popular, see e.g. [18, 19]) is a stable quasi-optimal rank reduction
procedure [52], based on singular value decompositions. The complexity scales as O(Mpr3),
i.e. it is free from the curse of dimensionality, while the full accuracy control takes place.
This procedure can be used to reduce unnecessarily large ranks after the matrix by vector
product or the linear combination in the TT format, and to compress a tensor if it is fully
given as a multidimensional array and fits into the memory. However, in our situation this
is not the case, and we need another approach to construct a TT format.

3.2 Cross interpolation of matrices

If M = 2, the left-hand side of (17) can be seen as a matrix. For simplicity we consider this
case first. The basic assumption is that any entry of a matrix (or tensor) can be evaluated.
However, to construct a TT approximation, we do not want to compute all elements, but
only few of them.

The principal ingredient for this is based on the efficiency of an incomplete Gaussian
elimination in an approximation of a low-rank matrix, also known as the Adaptive Cross
Approximation (ACA) [6, 7]. Given is a matrix U = [U(i, j)] ∈ Rp×q, we select some
“good” columns and rows to approximate the whole matrix,

U(i, j) ≈ Ũ(i, j) = U(i, J) · Û−1 ·U(I, j), (18)

where Û = U(I, J), and I ⊂ {1, . . . , p}, J ⊂ {1, . . . , q} are sets of indices of cardinality r,
so e.g. U(i, J) ∈ R1×r. It is known that there exists a quasi-optimal set of interpolating
indices I, J.

Lemma 3 (Maximum volume (maxvol) principle [25] ). If I and J are such that det U(I, J)

is maximal among all r× r submatrices of U , then

‖U − Ũ‖C ≤ (r+ 1) min
rank(V )=r

‖U − V ‖2,

where ‖ · ‖C is the Chebyshev norm, ‖X‖C = maxi,j |Xi,j|.

In practice, however, the computation of the true maximum volume submatrix is in-
feasible, since it is an NP-hard problem. Instead one performs a heuristic iteration in an
alternating fashion [24]: we start with some (e.g. random) low-rank factor U (1) ∈ Rp×r,
determine indices I yielding a quasi-maxvol r× r submatrix in U (1), and compute U (2) as r
columns of U of the indices I. Vice versa, in the next step we find quasi-maxvol column in-
dices in U (2) and calculate corresponding pr elements, collecting them into the newer U (1),
which hopefully approximates the true low-rank factor better than the initial guess. This
process continues until the convergence, which appears to be quite satisfactory in practice.
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3.3 TT-cross interpolation of tensors

In higher dimensions we recurrently proceed in the same way, since the TT format con-
stitutes a recurrent matrix low-rank factorization. Let us merge the first m and the last
M−m indices from α. The corresponding TT blocks will induce the following matrices:

Definition 4. Given a TT format (17) and an index m. Define the left interface matrix
U<m ∈ R(p1+1)···(pm−1+1)×rm−1 and the right interface matrix U>m ∈ Rrm×(pm+1+1)···(pM+1) as
follows,

U<m
sm−1

(α1, . . . , αm−1) =

r1∑

s1=1

· · ·
rm−2∑

sm−2=1

u(1)
s1
(α1) · · ·u(m−1)

sm−2,sm−1
(αm−1),

U>m
sm

(αm+1, . . . , αM) =

rm+1∑

sm+1=1

· · ·
rM−1∑

sM−1=1

u(m+1)
sm,sm+1

(αm+1) · · ·u(M)
sM−1

(αM).

Such matrices are convenient to relate high-dimensional TT expressions with their two-
dimensional analogs. For example, the TT format (17) can be written in the following
form,

u(α) ≈ U<m(α1, . . . , αm−1) · u(m)(αm) ·U>m(αm+1, . . . , αM). (19)

The TT-cross algorithm [55] assumes that the above expansion is valid on some rm−1(pm+

1)rm indices, and can thus be seen as a system of equations on elements of u(m). Let us be
given rm−1 left indices (α̂1, . . . , α̂m−1) ∈ I(m−1) and rm right indices (α̂m+1, . . . , α̂M) ∈ J(m+1).
For the single index αm we allow its full range {αm} = {0, 1, . . . , pm}. Requiring that (19)
is valid on the combined indices

(α̂1, . . . , α̂m−1, αm, α̂m+1, . . . , α̂M) ≡
(
I
(m−1), αm, J

(m+1)
)
,

we obtain the following computational rule for u(m),

u(m)(αm) = Û−1
<m · u

(
I
(m−1), αm, J

(m+1)
)
· Û−1

>m, (20)

where Û<m = U<m(I(m−1)) and Û>m = U>m(J(m+1)) are the submatrices of U<m and U>m

at indices I(m−1) and J(m+1), respectively.
Of course, these submatrices must be nonsingular. In the previous subsection we saw

a good strategy: if indices I(m−1) and J(m+1) are chosen in accordance with the maxvol
principle for U<m and U>m, the submatrices are not only nonsingular, but also provide
a good approximation for (19). However, in practice U<m and U>m are too large to be
treated directly. Instead, we use the alternating iteration over the dimensions and build
nested index sets.

The alternating iteration means that we loop over m = 1, 2, . . . ,M (the so-called forward
iteration) and m = M,M−1, . . . , 1 (backward iteration). Consider first the forward transi-
tion, m−1 → m. Given the set I(m−1), the nested indices I(m) are defined as follows. We con-
catenate I(m−1) and αm, i.e. consider rm−1(pm+1) indices (α̂1, . . . , α̂m−1, αm) ∈ {I(m−1), αm},
and select rm indices I(m) only from {I(m−1), αm}, not from all O(pm) possibilities. It can be
seen that the next interface U<m+1, restricted to {I(m−1), αm}, can be computed as a product

of the previous submatrix Û<m and the current TT block u(m). To formalize this, we need
the following definition.
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Definition 5. Given a three-dimensional tensor u(m) ∈ Rrm−1×(pm+1)×rm, introduce the
following reshapes, both pointing to the same data stored in u(m):

• left folding: u|m〉(sm−1, αm; sm) = u
(m)
sm−1,sm(αm), u|m〉 ∈ Rrm−1(pm+1)×rm, and

• right folding: u〈m|(sm−1; αm, sm) = u
(m)
sm−1,sm(αm), u〈m| ∈ Rrm−1×(pm+1)rm .

Then the restriction of U<m+1 writes as follows,

V 〈m| = Û<mu
〈m|, and U<m+1

(
I
(m−1), αm

)
= V |m〉 ∈ R

rm−1(pm+1)×rm.

Thus, it is enough to apply the maximum volume algorithm [24] to the matrix V |m〉, deriving

local maxvol indices îm ⊂ {1, . . . , rm−1(pm + 1)}, and obtain both I(m) and Û<m+1 by the
restriction

I
(m) = {I(m−1), αm}(̂im), Û<m+1 = V |m〉(̂ik) ∈ R

rm×rm .

The backward transition m + 1 → m for J(m) and Û>m can be written analogously.
We show it directly in Alg.1 below. In total, we need only O(nitMpr2) entries of u to be
evaluated, where nit is the number of alternating iterations, typically of the order of 10.

3.4 Rank-adaptive DMRG-cross algorithm

A drawback of the TT-cross method is that the TT ranks are fixed; they have to be guessed
a priori, which is also a problem of exponential complexity in M. A remedy is to consider
larger portions of data in each step. The Density Matrix Renormalization Group (DMRG)
algorithm was developed in the quantum physics community ([65], see also the review [58]
and the references therein) to solve high-dimensional eigenvalue problems coming from the
stationary spin Schroedinger equation. It is written in a similar alternating fashion as the
TT-cross procedure described above. The crucial difference is that instead of one TT block
as in (20) we calculate two neighboring TT blocks at once.

In the DMRG-cross [57] interpolation algorithm, this is performed as follows. Given
I(m−1), J(m+2), we compute

u(m,m+1)(αm, αm+1) = Û−1
<m · u

(
I
(m−1), αm, αm+1, J

(m+2)
)
· Û−1

>m+1.

Then we need to separate indices αm and αm+1 to recover the initial TT structure. This
can be done via the singular value decomposition. The four-dimensional array u(m,m+1)

is reshaped to a matrix U (m,m+1) ∈ Rrm−1(pm+1)×(pm+1+1)rm+1, and the truncated SVD is
computed,

U (m,m+1) ≈ V ΣW⊤, s.t.
∥∥U (m,m+1) − V ΣW⊤∥∥

F
≤ ε

∥∥U (m,m+1)
∥∥
F
,

where V ∈ Rrm−1(pm+1)×r̂m , Σ ∈ Rr̂m×r̂m, W ∈ R(pm+1+1)rm+1×r̂m, and ‖ · ‖F is the Frobenius
norm. The new TT rank r̂m is likely to differ from the old one rm. After that, we rewrite
u(m) and u(m+1) with V and W , respectively, replace rm = r̂m, and continue the iteration.

To ensure that the perturbations introduced to u(m,m+1) and the whole tensor u coincide,
we need to ensure that the interfaces U<m and U>m+1 have orthonormal columns and rows,
respectively. Fortunately, this requires only small-sized QR decompositions of matrices u|m〉

and u〈m| [52, 58] in the first iteration. Later, the SVD will provide orthogonal factors in
u(m) and u(m+1) automatically.
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This algorithm allows a fast adaptation of TT ranks towards the requested accuracy
threshold. The price is, however, a larger degree of p in the complexity, since we perform
a full search in both αm and αm+1 in each step. The greedy-cross method [56] avoids
this problem by maximizing the error over only O(rp) random entries among all O(r2p2)

elements in u(m,m+1). Here, instead of the neighboring block u(m+1), it is the error that
provides additional information and improves the approximation. However, for the KLE-
PCE coefficient (9), we have other candidates for such auxiliary data. And we have reasons
to consider them prior to the error.

3.5 Block TT-Cross interpolation algorithm

Note that each call of (9) throws L values, corresponding to different ℓ = 1, . . . , L. We
may account for this in various ways. Since ℓ has the meaning of the reduced spatial
variable, we may feature it as an additional dimension. But when we restrict the indices{
I(m−1), αm

}
(̂im) = I(m), we will remove some values of ℓ from consideration. Therefore, a

vast majority of information cannot be used: we evaluate L values, but only a few of them
will be used to improve the approximation. Another way is to run L independent cross (e.g.
DMRG-cross) algorithms to approximate each κ̃ℓ(α) in its own TT format. Yet, this is also
not very desirable. First, the TT ranks for the whole κ are usually comparable to the ranks
of individual TT formats. Therefore, L cross algorithms consume almost L times more time
than the single run. Secondly, we will have to add L TT formats to each other by summing
their ranks, which is to be followed by the TT approximation procedure. The asymptotic
complexity thus scales as O(L3), which was found to be too expensive in practice.

A better approach is to store all κ̃ℓ(α) in the same TT representation, employing the
idea of the block TT format [13]. The resulting method has a threefold advantage: all
data in each call of (9) are assimilated, the algorithm adjusts the TT ranks automatically
according to the given accuracy, and the output is returned as a single optimally-compressed
TT format, convenient for further processing.

Assume that we have a procedure that, given an index α1, . . . , αM, throws L values
uℓ(α), ℓ = 1, . . . , L. When the tensor entries uℓ(I

(m−1), αm, J
(m+1)) are evaluated, we modify

(20) as follows:

y(m)(αm, ℓ) = Û−1
<m · uℓ

(
I
(m−1), αm, J

(m+1)
)
· Û−1

>m. (21)

Now y(m) is a four-dimensional tensor, in the same way as in the DMRG-cross. We need
to find a basis in α that is best suitable for all uℓ. Hence, we reshape y(m) to the matrix
Y (m) ∈ Rrm−1(pm+1)×Lrm and compute the truncated singular value decomposition

Y (m) ≈ u|m〉ΣW⊤, u|m〉 ∈ R
rm−1(pm+1)×r̂m , Σ ∈ R

r̂m×r̂m , W ∈ R
Lrm×r̂m. (22)

Again, the new rank r̂m satisfies the Frobenius-norm error criterion, and replaces rm for the
next iteration. In the backward iteration, we reshape y(m) to Y (m) ∈ RLrm−1×(pm+1)rm and
take the right singular vectors to the new TT block,

Y (m) ≈ WΣu〈m|, W ∈ R
Lrm−1×r̂m , Σ ∈ R

r̂m×r̂m , u〈m| ∈ R
r̂m×(pm+1)rm. (23)

The whole procedure is summarized in the Block TT-Cross Algorithm 1.
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Algorithm 1 Block cross approximation of tensors in the TT format

Require: A function to evaluate uℓ(α1, . . . , αM), initial TT guess u(1)(α1) · · ·u(M)(αM),
relative accuracy threshold ε.

Ensure: Improved TT approximation u
(1)
ℓ (α1)u

(2)(α2) · · ·u(M)(αM).

1: Initialize I(0) = [], Û<1 = 1, J(M+1) = [], Û>M = 1.
2: for iteration = 1, 2, . . . , nit or until convergence do

3: for m = 1, 2, . . . ,M− 1 do {Forward sweep}
4: if iteration > 1 then {All indices are available, assimilate the information}
5: Evaluate the tensors at cross indices and compute the common block by (21).
6: Compute the truncated SVD (22) with accuracy ε.
7: else {Warmup sweep: the indices are yet to be built}
8: Find QR decomposition u|m〉 = q|m〉R,

(
q|m〉)∗ q|m〉 = I.

9: Replace u〈m+1| = Ru〈m+1|, u|m〉 = q|m〉.
10: end if

11: Compute the pre-restricted interface V 〈m| = Û<mu
〈m|.

12: Find local maxvol indices îm = maxvol

(
V |m〉).

13: New indices I(m) =
{
I(m−1), αm

}
(̂im), interface Û<m+1 = V |m〉(̂im) ∈ Rrm×rm.

14: end for

15: for m = M,M− 1, . . . , 2 do {Backward sweep}
16: Evaluate the tensors at cross indices and compute the common block by (21).
17: Compute the truncated SVD (23) with accuracy ε.

18: Compute the pre-restricted interface V |m〉 = u|m〉Û>m

19: Find local maxvol indices ĵm = maxvol

((
V 〈m|

)⊤)
.

20: Restrict J(m) =
{
αm, J

(m+1)
}
(̂jm), Û>m−1 = V 〈m|(̂jm) ∈ Rrm−1×rm−1.

21: end for

22: Evaluate the first TT block u
(1)
ℓ (α1) = uℓ

(
α1, J

(2)
)
Û−1

>1 .
23: end for

4 TT-structured calculations with PCE

4.1 Computation of the PCE in the TT format via the cross inter-

polation

Equipped with Alg. 1, we may apply it to the PCE approximation, passing Formula (9) as
a function uℓ(α) that evaluates tensor values on demand. The initial guess may be even a
rank-1 TT tensor with all blocks populated by random numbers, since the cross iterations
will adapt both the representation and TT ranks.

Considering the sizes of the involved matrices, the complexity estimate can be written
straightforwardly.

Statement 6. The cost to compute κ̃ℓ(α) via the block TT-Cross Algorithm 1 is

O(r2p(MN+NL) + r3pL+ r3pL ·min{p, L}).

The first two terms come from Formula (9), and the last one is the complexity of SVDs
(22) and (23).
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Remark 7. It is unclear in general which term will dominate. For large N, we are
typically expecting that it is the evaluation (21). However, if N is moderate (below 1000),
but the rank is large (∼ 100), the SVD consumes most of the time. For the whole algorithm,
assuming also L ∼ M, we can thus expect the O(nitM

2Npr3) complexity, which is lower
than O(MpL3), which we could receive if we run independent cross algorithms for each ℓ.

As soon as the reduced PCE coefficients κ̃ℓ(α) are computed, the initial expansion (10)
comes easily. Indeed, after the backward cross iteration, the ℓ index belongs to the first TT
block, and we may let it play the role of the “zeroth” TT rank index,

κ̃ℓ(α) =
∑

s1,...,sM−1

κ
(1)
ℓ,s1

(α1)κ
(2)
s1,s2

(α2) · · ·κ(M)
sM−1

(αM). (24)

For ℓ = 0 we extend this formula such that κ̃0(α) is the first identity vector e0, cf. (15).
Now we collect the spatial components from (8) into the “zeroth” TT block,

κ(0)(x) =
[
κ
(0)
ℓ (x)

]L
ℓ=0

=
[
κ̄(x) v1(x) · · · vL(x)

]
, (25)

then the PCE (6) writes as the following TT format,

κ(x,α) =
∑

ℓ,s1,...,sM−1

κ
(0)
ℓ (x)κ

(1)
ℓ,s1

(α1) · · ·κ(M)
sM−1

(αM). (26)

4.2 Stiffness Galerkin operator in the TT format

With the full set JM,p, we may benefit from the rank-1 separability of ∆, since each index
αm, βm, νm varies independently on the others.

Lemma 8. Given the PCE TT format (26) for the coefficient κ with the TT ranks r(κ),
the Galerkin operator (14) can be constructed in the TT format with the same ranks.

Proof. Given the PCE (26) in the TT format, we split the whole sum over ν in (12) to the
individual variables,

∑

ν∈JM,p

∆α,β,ν κ̃ℓ(ν) =
∑

s1,...,sM−1

K
(1)
ℓ,s1

(α1, β1)K
(2)
s1,s2

(α2, β2) · · ·K(M)
sM−1

(αM, βM),

K(m)(αm, βm) =

pm∑

νm=0

∆αm,βm,νm
κ(m)(νm), m = 1, . . . ,M.

(27)

A similar reduction of a large summation to one-dimensional operations arises also in quan-
tum chemistry [30]. Agglomerate K

(x)
ℓ (i, j) from (11) to the “zeroth” TT block for the

operator, then the TT representation for the operator writes with the same TT ranks as in
κ̃,

K =
∑

ℓ,s1,...,sM−1

K
(x)
ℓ ⊗K

(1)
ℓ,s1

⊗ · · · ⊗K(M)
sM−1

∈ R
(N·#JM,p)×(N·#JM,p). (28)
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One interesting property of the Hermite triples is that ∆α,β,ν = 0 if e.g. ν > α + β.
That is, if we set the same p for α, β and ν, in the assembly of (14) we may miss some
components, corresponding to α > p/2, β > p/2. To compute the Galerkin operator
exactly, it is reasonable to vary νm in the range {0, . . . , 2p}, and hence assemble κ̃ in the
set JM,2p. While in the sparse set it would inflate the storage of ∆ and K significantly, in
the TT format it is feasible: the TT ranks do not depend on p, and the storage grows only
linearly with p.

4.3 Computation of the solution function

Having solved the system (16), we obtain the PCE coefficients of the solution in the TT
format,

u(x,α) =
∑

s0,...,sM−1

u(0)
s0
(x)u(1)

s0,s1
(α1) · · ·u(M)

sM−1
(αM). (29)

Some statistics are computable directly from u(x,α), but generally we need a function in
the initial random variables, u(x, θ). Since JM,p is a tensor product set, u(x,α) can be
turned into u(x, θ) without changing the TT ranks, similarly to the construction of the
Galerkin matrix in the previous subsection:

u(x, θ) =
∑

s0,...,sM−1

u(0)
s0
(x)

(
p∑

α1=0

hα1
(θ1)u

(1)
s0,s1

(α1)

)
· · ·
(

p∑

αM=0

hαM
(θM)u(M)

sM−1
(αM)

)
. (30)

4.4 Computation of statistics

In this section we discuss how to calculate some statistical outputs from the solution in the
TT format, such as the mean, the (co)variance and the probability of an event.

The mean value of u, in the same way as in κ, can be derived as the PCE coefficient at
α = (0, . . . , 0), ū(x) = u(x, 0, . . . , 0). It requires no additional calculations.

The covariance is more complicated and requires both multiplication (squaring) and
summation over α. By definition, the covariance reads

covu(x, y) =

∫

RM

(u(x, θ) − ū(x)) (u(y, θ) − ū(y))ρ(θ)dθ

=
∑

α,β 6=(0,...,0),
α,β∈JM,p

u(x,α)u(y,β)

∫

RM

Hα(θ)Hβ(θ)ρ(θ)dθ.

Knowing that
∫
Hα(θ)Hβ(θ)ρ(θ)dθ = α!δα,β, we take us0(α) = u

(1)
s0 (α1) · · ·u(M)(αM)

from (29) and multiply it with the Hermite mass matrix (TT ranks do not change),

ws0(α) := us0(α)
√
α! =

∑

s1,...,sM−1

(
u(1)

s0,s1
(α1)

√
α1!
)
· · ·
(
u(M)

sM−1
(αM)

√
αM!

)
, (31)

and then take the scalar product C =
[
Cs0,s

′

0

]
, where Cs0,s

′

0
=
〈
ws0 ,ws ′

0

〉
with w defined in

(31). Given the TT rank bound r for u(x,α), we deduce the O(Mpr3) complexity of this
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step. After that, the covariance is given by the product of C with the spatial TT blocks,

covu(x, y) =

r0∑

s0,s
′

0
=0

u(0)
s0
(x)Cs0,s

′

0
u
(0)

s ′
0
(y), (32)

where u
(0)
s0 is the “zeroth” (spatial) TT block of the decomposition (29). Given N degrees

of freedom for x, the complexity of this step is O(N2r20). Note that a low-rank tensor
approximation of a large covariance matrix is very important, for example, in Kriging [51].
The variance is nothing else than the diagonal of the covariance, varu(x) = covu(x, x).

Other important outputs are the characteristic, level set functions, and the probability
of a particular event [19].

Definition 9. Let S ⊂ R be a subset of real numbers.

• The characteristic function of u at S is defined pointwise for all θ ∈ RM as follows,

χS(x, θ) :=

{
1, u(x, θ) ∈ S,

0, u(x, θ) /∈ S.
(33)

• The level set function reads LS(x, θ) := u(x, θ)χS(x, θ).

• The probability of S reads PS(x) =
∫
RM χS(x, θ)ρ(θ)dθ.

The characteristic function can be computed using either the cross Algorithm 1 (see
also [5, 4]), which takes Formula (33) as the function that evaluates a high-dimensional
array χ at the indices in x, θ, or the Newton method for the sign function [19]. In both
cases we may face a rapid growth of TT ranks during the cross or Newton iterations: the
characteristic function is likely to have a discontinuity that is not aligned to the coordinate
axes, and some of the singular values in the TT decomposition will decay very slowly. We
face the same problem with increasing ranks during computing the level set functions and
exceedance probabilities.

However, the probability is easier to compute, especially if it is relatively small. Using
the same cross algorithm, we can compute directly the product χ̂S(x, θ) = χS(x, θ)ρ(θ).
The probability (at a fixed x) is then computed as a scalar product with the all-ones vector
in the TT format, PS(x) = 〈χ̂, 1〉. But if P is small, it means that most of the entries in
χ̂ are small, and do not inflate TT ranks, which might be the case for χ. Typically, the
computation of small probabilities is used to predict the failure risk of a technical system.
The event set has the form S = {z ∈ R : z > τ}, and the probability is called the exceedance
probability. This will be studied in numerical experiments.

5 Numerical Experiments

We verify the approach on the elliptic stochastic equation (1) in a two-dimensional L-shape
domain, x = (x1, x2) ∈ D = [−1, 1]2\[0, 1]2. We pose zero Dirichlet boundary conditions
and use the deterministic right-hand side f = f(x) = 1. The stochasticity is introduced in
the diffusion coefficient κ(x,ω); we investigate log-normal and beta distributions for κ.

To generate the spatial mesh, we use the standard PDE Toolbox in MATLAB. We
consider from 1 to 3 refinement levels of the spatial grid, denoted by R. The first refinement

16



R = 1 yields 557 degrees of freedom, R = 2 gives 2145 points, and R = 3 corresponds to
8417 points. Since we have to store the stiffness matrices in a dense form, we cannot refine
the grid further.

The KLE of both κ and γ is truncated to the same number of terms L = M.
All utilities related to the Hermite PCE were taken from the sglib [68], including dis-

cretization and solution routines in the sparse polynomial set JspM,p. However, to work with
the TT format (for full JM,p), we employ the TT-Toolbox [53]. The same polynomial orders
are chosen in all variables, p = (p, . . . , p). We use the modules of sglib for low-dimensional
stages and replace the parts corresponding to high-dimensional calculations by the TT al-
gorithms. The block TT-cross Alg. 1 is implemented in the procedure amen_cross.m from
the TT-Toolbox, and the linear system (16) was solved via the Alternating Minimal Energy
(AMEn) method [14], the procedure amen_solve.m from the companion package tAMEn
[12]. Computations were conducted in MATLAB R2012a on a single core of the Intel Xeon
X5650 CPU at 2.67GHz, provided by the Max- Planck-Institute, Magdeburg.

The accuracy of the coefficient and the solution was estimated using the Monte Carlo
method with Nmc simulations. We approximate the average L2-error as follows,

Eκ =
1

Nmc

Nmc∑

z=1

√∑N
i=1 (κ(xi, θz) − κ∗(xi, θz))

2

√∑N
i=1 κ

2
∗(xi, θz)

≈
∫

RM

‖κ(x, θ) − κ∗(x, θ)‖L2(D)

‖κ∗(x, θ)‖L2(D)

ρ(θ)dθ,

where {θz}
Nmc

z=1 are normally distributed random samples, {xi}
N
i=1 are the spatial grid points,

and κ∗(xi, θz) = φ (γ(xi, θz)) is the reference coefficient computed without using the PCE
for φ. The same definition is used for the solution u, with u∗(x, θz) being the solution of
the deterministic PDE with the coefficient κ∗(x, θz).

Besides that we compare the statistics obtained with our approaches and the Monte
Carlo method. For the mean and variance we use the same discrete approximation to the
L2-norm,

Eū =
‖ū− ū∗‖L2(D)

‖ū∗‖L2(D)

, Evaru =
‖varu − varu∗‖L2(D)

‖varu∗‖L2(D)

.

To examine the computation of probabilities, we compute the exceedance probability.
This task can be simplified by taking into account the maximum principle: the solution
is convex w.r.t. x. We compute the maximizer of the mean solution, xmax : ū(xmax) ≥
ū(x) ∀x ∈ D. Fix x to xmax and consider only the stochastic part umax(θ) = u(xmax, θ),
and û = ū(xmax). Now, taking some τ > 1, we compute

P = P (umax(θ) > τû) =

∫

RM

χumax(θ)>τû(θ)ρ(θ)dθ. (34)

By P∗ we will also denote the probability computed from the Monte Carlo method, and
estimate the error as EP = |P− P∗| /P∗.

5.1 Log-normal distribution

Let

κ(x,ω) = exp

(
1+ σ

γ(x,ω)

2

)
+ 10,
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Table 1: Performance of the block cross Alg. 1 versus the DMRG cross [57]
M Block cross DMRG crosses ‖κDMRG − κBlock‖

CPU time, sec. rκ CPU time, sec. rκ ‖κBlock‖
10 4.908 20 31.29 20 2.77e-5
15 10.36 27 114.9 27 2.24e-5
20 19.11 32 286.2 33 1.83e-4
30 49.89 39 1372.0 50 2.52e-4

where γ ∼ N(0, 1) is the standard normally distributed random field. The covariance func-

tion is taken Gaussian, covκ(x, y) = exp
(
−

‖x−y‖2
2l2c

)
, where lc is the (isotropic) correlation

length.
The default parameters are the following: number of KLE terms M = 20, polynomial

order p = 3, correlation length lc = 1, dispersion σ = 0.5, refinement level of the spatial
grid R = 1, and the tensor approximation accuracy ε = 10−4. Below we will vary each of
these parameters, keeping the others fixed. For the computation of the probability (34) we
use τ = 1.2.

5.1.1 Verification of the block cross algorithm

Formula (9) can be evaluated for each KLE index ℓ independently, using existing cross ap-
proximation algorithms. We compare with the so-called DMRG cross method [57], which
is conceptually the closest approach to our Algorithm 1. In Table 1 we show the perfor-
mance of the single run of Algorithm 1 (which gives the coefficient for all ℓ simultaneously)
and of L DMRG crosses, followed by the summation of individual terms to the common
representation. We see that even if the TT ranks of the output are exactly the same, the
times differ dramatically. This is because the ranks of individual components and of the
whole coefficient are comparatively the same, and the DMRG approach requires roughly L

times more operations. The last column in Table 1 confirms that both approaches deliver
the same data up to the approximation tolerance.

5.1.2 Experiment with the polynomial order p

First, we provide a detailed study of the computational time of each of the stages in the
TT and Sparse methods: construction of the coefficient (Tκ), construction of the operator
(Top), and the solution of the system (Tu). The results are shown in Table 2, and times are
measured in seconds. The complexity of the cross algorithm, employed for the computation
of κ in the TT format, grows linearly with p, since the TT ranks are stable w.r.t. p (see
Table 3). However, it is much slower than the direct evaluation of the coefficients in the
sparse set. This is mainly due to the singular value decompositions, involving matrices of
sizes hundreds.

Nevertheless, for the computation of the Galerkin matrix the situation is the opposite.
In the TT format, the computations via formula (27) are very efficient, since they involve M
products of p2×2p matrices. In the sparse representation, we have to perform all (#J

sp
M,p)

3

operations, which is very time-consuming. Since #J
sp
M,p grows exponentially with p, we had

to skip the cases with large p.
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Table 2: Detailed CPU times (sec.) versus p, log-normal distribution
TT (full index set JM,p) Sparse (index set J

sp
M,p)

p Tκ Top Tu Tκ Top Tu
1 9.6166 0.1875 1.7381 0.4525 0.2830 0.6485
2 14.6635 0.1945 2.9584 0.4954 3.2475 1.4046
3 19.1182 0.1944 3.4162 0.6887 1027.7 18.1263
4 24.4345 0.1953 4.2228 2.1597 — —
5 30.9220 0.3155 5.3426 9.8382 — —

Table 3: Performance versus p, log-normal distribution
p CPU time, sec. rκ ru rχ̂ Eκ Eu P

TT Sparse χ̂ TT Sparse TT Sparse TT
1 11.54 1.38 0.23 32 42 1 3.75e-3 1.69e-1 9.58e-3 1.37e-1 0
2 17.81 5.14 0.32 32 49 1 1.35e-4 1.10e-1 4.94e-4 4.81e-2 0
3 22.72 1046 83.12 32 49 462 6.21e-5 2.00e-3 2.99e-4 5.29e-4 2.75e-4
4 28.85 — 69.74 32 50 416 6.24e-5 — 9.85e-5 — 1.21e-4
5 36.58 — 102.5 32 49 410 6.27e-5 — 9.36e-5 — 6.20e-4

The solution stage is more simple, since the mean value preconditioner is quite efficient,
both for the standard CG method with the sparse set and the AMEn method for the
TT format. Again, the complexity of the TT solver grows linearly with p. The sparse
solver works reasonably fast as well, but it cannot be run before the matrix elements are
computed1; hence it is also skipped for p = 4, 5.

In Table 3 we present the total CPU times required in both methods to find the solution
u, the time for computing χ̂, maximal TT ranks of the coefficient (rκ), the solution (ru)
and the weighted characteristic function (rχ̂), as well as statistical errors in the coefficient
(Eκ) and the solution (Eu). The probability P is presented only for the TT calculation.
Since P ∼ 10−4, 10000 simulations may be not enough to compute P with the Monte Carlo
method. Below we present a dedicated test of the Monte Carlo approach.

5.1.3 Experiment with the KLE dimension M

The length of the truncated KLE is another crucial parameter of the stochastic PDE. In
Table 4 we compare the TT and Sparse procedures.

We see that the accuracy of the TT approach is stable w.r.t. M, and the complexity
grows mildly. Note, however, that the correlation length lc = 1 is quite large and yields
a fast decay of the KLE, such that M = 20 is actually enough for the accuracy 10−4.
The TT approach demonstrates stability w.r.t. the overapproximation at M = 30. This
is not the case for the sparse approach: at high M the accuracy is lost. This is because
p = 3 is not enough to transform the covariance (4) accurately. Since eigenvalues of the
covariance decay rapidly, higher eigenpairs become strongly perturbed (the eigenvalues can
even become negative), and a large error propagates to the PCE. In the full set, the maximal

1It is sometimes advocated to avoid a construction of the matrix and to compute its elements only
when they are needed in the matrix-vector product. It saves memory, but the computational time will be
comparatively the same, since it is proportional to the number of operations.
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Table 4: Performance versus M, log-normal distribution
M CPU time, sec. rκ ru rχ̂ Eκ Eu P

TT Sparse χ̂ TT Sparse TT Sparse TT
10 6.401 6.143 1.297 20 39 70 2.00e-4 1.71e-1 3.26e-4 1.45e-1 2.86e-4
15 12.15 92.38 22.99 27 42 381 7.56e-5 1.97e-3 3.09e-4 5.41e-4 2.99e-4
20 21.82 1005 67.34 32 50 422 6.25e-5 1.99e-3 2.96e-4 5.33e-4 2.96e-4
30 52.92 48961 136.5 39 50 452 6.13e-5 9.26e-2 3.06e-4 5.51e-2 2.78e-4

Table 5: Performance versus lc, log-normal distribution
lc CPU time, sec. rκ ru rχ̂ Eκ Eu P

TT Sparse χ̂ TT Sparse TT Sparse TT
0.1 216 55826 0.91 70 50 1 1.98e-2 1.98e-2 1.84e-2 1.84e-2 0
0.3 317 52361 41.8 87 74 297 3.08e-3 3.51e-3 2.64e-3 2.62e-3 8.59e-31
0.5 195 51678 58.1 67 74 375 1.49e-4 2.00e-3 2.58e-4 3.10e-4 6.50e-33
1.0 57.3 55178 97.3 39 50 417 6.12e-5 9.37e-2 3.18e-4 5.59e-2 2.95e-04
1.5 32.4 49790 121 31 34 424 3.24e-5 2.05e-1 4.99e-4 1.73e-1 7.50e-04

polynomial order is equal to pM, and the error of the covariance transform is negligible.

5.1.4 Experiment with the correlation length lc

The Gaussian covariance function yields an exponential decay of the KLE coefficients [59,
42], but the actual rate is highly dependent on the correlation length [32, 41]. In this
experiment, we study the range of lengths from 0.1 to 1.5. In order to have a sufficient
accuracy for all values of lc, we fix the dimension M = 30. The results are presented in the
same layout as before in Table 5.

In the TT approach, we see a clear decrease of the computational complexity and the
error with growing covariance length. This is because the SVD approximation in the TT
format automatically reduces the storage w.r.t. the latter (less important) variables, if the
KLE decay is fast enough. The TT errors reflect the amount of information discarded in
the truncated KLE tail, which is large for small lc and small otherwise.

The errors in the sparse approach behave in the same way until lc = 0.5, but for lc = 1

and 1.5 the dimension M = 30 is too large, and the instability w.r.t. the overapproximation
takes place.

With fixed M, the exceedance probability is very sensitive to the correlation length.
Truncating the KLE, we reduce the total variance of the random field. For a (quasi)-
Gaussian distribution, a small perturbation of the variance has a small effect on the integral
over the peak region, but may have a very large relative effect on the tail region, which
corresponds to the small exceedance probability.

5.1.5 Experiment with the dispersion σ

The variance of the normally distributed field γ(x,ω) is equal to σ2. Since it enters κ

under the exponential, it influences the variance of κ significantly. In Table 6 we vary σ

from 0.2 to 1 and track the performance of the methods. As expected, the computational
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Table 6: Performance versus σ, log-normal distribution
σ CPU time, sec. rκ ru rχ̂ Eκ Eu P

TT Sparse χ̂ TT Sparse TT Sparse TT
0.2 15.93 1008 0.348 21 31 1 5.69e-5 4.76e-5 4.19e-5 1.30e-5 0
0.4 18.72 968.3 0.341 29 42 1 6.88e-5 8.04e-4 1.40e-4 2.14e-4 0
0.5 21.23 970.1 79.96 32 49 456 6.19e-5 2.02e-3 3.05e-4 5.45e-4 2.95e-4
0.6 24.08 961.5 24.72 34 57 272 9.12e-5 4.42e-3 6.14e-4 1.16e-3 2.30e-3
0.8 31.69 969.1 67.93 39 66 411 4.40e-4 8.33e-2 2.02e-3 2.90e-2 8.02e-2
1.0 50.67 1071 48.44 44 82 363 1.73e-3 4.10e-1 4.96e-3 3.08e-1 9.17e-2

Table 7: Performance versus R, log-normal distribution. The left column shows the number
of spatial degrees of freedom (#DoF) for R = 1, 2, 3.
#DoF CPU time, sec rκ ru rχ̂ Eκ Eu P

TT Sparse χ̂ TT Sparse TT Sparse TT
557 6.40 6.09 1.29 20 39 71 2.00e-4 1.71e-1 3.26e-4 1.45e-1 2.86e-4
2145 8.98 13.7 1.17 20 39 76 1.74e-4 1.89e-3 3.33e-4 5.69e-4 2.90e-4
8417 357 171 0.84 20 40 69 1.65e-4 1.88e-3 3.24e-4 5.64e-4 2.93e-4

complexity grows with σ, as does the contrast in the coefficient. However, we were able to
perform all computations for each value of σ.

5.1.6 Experiment with the spatial grid refinement R

Since the efforts of dealing with the full spatial matrix grow significantly with the grid
refinement, in this test we limit ourselves to M = 10. The principal observations from
Table 7 are that the TT rank and the accuracy2 are stable w.r.t. the grid refinement.
Therefore, we may expect that the TT approach will also be efficient for finer grids, if
we find an efficient way to deal with the spatial dimension. A research on non-intrusive
stochastic Galerkin methods, addressing this issue, has begun recently [22], and we plan to
adopt it in the TT framework in future.

5.1.7 Comparison with the Monte Carlo Method

For the Monte Carlo test, we prepare the TT solution with parameters p = 5 and M = 30.
The results are presented in Table 8. In the left part of the table we show the performance
of the Monte Carlo method with different numbers of simulations: total CPU time (TMC),
errors in the mean and variance of u, and a small exceedance probability with its error.
The right part contains the results of the TT approach: the aggregated CPU time of
construction of the coefficient, operator and solution (Tsolve), the time to compute the
weighted characteristic function (Tχ̂), TT ranks of all data and the probability calculated
from χ̂.

We see that the cost of the TT method is comparable with the cost of 40000 Monte
Carlo tests. That many realizations already provide a good approximation of the mean, a
bit less accurate for the variance, but it is by far not sufficient for a confident estimate of

2Note that the errors are estimated via the Monte Carlo method on the same grids, thus they show the
accuracy of the PCE approximation, not the spatial discretization.
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Table 8: Verification of the Monte Carlo method, log-normal distribution
Nmc TMC, sec. Eū Evaru P∗ EP TT results
102 0.6398 9.23e-3 1.49e-1 0 ∞ Tsolve 96.89 sec.
103 6.1867 1.69e-3 5.97e-2 0 ∞ Tχ̂ 157.0 sec.
104 6.1801·101 5.81e-4 7.12e-3 4.00e-4 5.53e-1 rκ 39
105 6.2319·102 2.91e-4 2.91e-3 4.10e-4 5.15e-1 ru 50
106 6.3071·103 1.23e-4 9.76e-4 4.60e-4 3.51e-1 rχ̂ 432

P 6.214e-4

Table 9: Performance versus p, beta distribution
p CPU time, sec. rκ ru rχ̂ Eκ Eu P

TT Sparse χ̂ TT Sparse TT Sparse TT
1 21.40 1.382 0.059 64 49 1 2.24e-3 5.13e-2 1.14e-2 2.50e-2 0
2 39.87 5.301 0.100 65 50 1 1.92e-4 5.50e-3 7.67e-4 1.28e-3 0
3 57.16 1000 70.98 65 50 445 9.07e-5 1.76e-3 5.01e-4 1.06e-3 1.88e-4
4 76.22 — 21.18 65 50 416 8.81e-5 — 1.41e-4 — 9.84e-5
5 100.6 — 119.7 65 50 428 8.89e-5 — 1.10e-4 — 1.23e-4

the exceedance probability. Therefore, the tensor product methods can be recommended
as a competitive alternative to classical techniques for computing exceedance probabilities.

5.2 Beta distribution

The Hermite expansion (3) of the exp function in the log-normal case yields the coefficients
of the form φi =

c
i!
. Therefore, the PCE coefficient formula (7) resolves to a direct product

of univariate functions of α1, . . . , αM, and the tensor format of the PCE can be constructed
explicitly [18]. To demonstrate the generality of the cross algorithm, we also consider a
more exotic beta-distributed coefficient,

κ(x,ω) = B−1
5,2



1+ erf

(
γ(x,ω)√

2

)

2


+ 1, where Ba,b(z) =

1

B(a, b)

z∫

0

ta−1(1− t)b−1dt.

For the purpose of computing φi, the function B5,2(z) is inverted by the Newton method.

Again, the covariance function is covκ(x, y) = exp
(
−

‖x−y‖2
2l2c

)
.

Since this distribution varies stronger than the log-normal one, for the computation
of the probability (34) we use larger τ = 1.4. All other parameters are the same as in
the experiments with the log-normal coefficient. The performance of both TT and Sparse
approach in case of the beta distribution is shown in Tables 9, 10, 11, 12, 13 for p, M, lc,
the spatial grid level and the Monte Carlo tests, respectively.

We see the same behavior as in the log-normal case. The only significant difference is
the lower error of the Sparse method in the case M = 10, Rl = 1, which is 1.08e-3 for the
beta distribution and 1.45e-1 for the log-normal one.
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Table 10: Performance versus M, beta distribution
M CPU time, sec. rκ ru rχ̂ Eκ Eu P

TT Sparse χ̂ TT Sparse TT Sparse TT
10 9.777 5.796 0.942 34 40 39 1.70e-4 1.65e-3 5.18e-4 1.08e-3 1.95e-4
15 26.46 90.34 25.16 50 48 374 1.03e-4 1.73e-3 4.96e-4 1.08e-3 1.94e-4
20 56.92 986.2 59.57 65 50 413 9.15e-5 1.80e-3 5.08e-4 1.09e-3 1.88e-4
30 156.7 55859 147.9 92 50 452 7.75e-5 7.01e-2 5.12e-4 4.53e-2 1.85e-4

Table 11: Performance versus lc, beta distribution
lc CPU time, sec. rκ ru rχ̂ Eκ Eu P

TT Sparse χ̂ TT Sparse TT Sparse TT
0.1 665.8 55923 0.91 90 48 1 8.7e-3 8.77e-3 7.9e-3 7.92e-3 0
0.3 2983 53783 1.49 177 74 1 1.5e-3 2.02e-3 1.2e-3 1.30e-3 0
0.5 1138 54297 100 132 74 403 1.5e-4 1.71e-3 2.9e-4 8.21e-4 2.47e-23
1.0 158.8 56545 153 92 50 463 7.8e-5 6.92e-2 5.1e-4 4.47e-2 1.96e-04
1.5 62.20 55848 89.5 75 42 409 6.9e-5 7.85e-2 8.3e-4 4.56e-2 2.20e-03

6 Conclusion

We have developed the new block TT cross algorithm to compute the TT approximation of
the polynomial chaos expansion of a random field with the tensor product set of polynomials,
where the polynomial degrees are bounded individually for each random variable. The
random field can be given as a transformation of a Gaussian field by an arbitrary smooth
function. The new algorithm builds the TT approximation of the PCE in a black box
manner. Compared to the previously existing cross methods, the new approach assimilates
all KLE terms simultaneously, which reduces the computational cost significantly.

The uncertain (diffusion) coefficient in the elliptic PDE is approximated via PCE. We
show that the tensor product polynomial set allows a very efficient construction of the
stochastic Galerkin matrix in the TT format, provided the coefficient is precomputed in the
TT format. Interestingly, we can even compute the Galerkin matrix exactly by preparing
the coefficient with two times larger polynomial orders than those employed for the solution.
In the TT format, we can store the Galerkin matrix in the dense form, since the number of
the TT elements O(Mp2r2) is feasible for p ∼ 10. This also means that other polynomial
families, such as the Chebyshev or Laguerre, may be used straightforwardly.

The Galerkin matrix defines a large linear system on the PCE coefficients of the solution
of the stochastic equation. We solve this system in the TT format via the alternating
minimal energy algorithm and calculate the post-processing of the solution, such as the
mean, variance and exceedance probabilities.

We demonstrate that with the new TT approach we can go to a larger number of
random variables (e.g. M = 30) used in the PCE (larger stochastic dimension) and take a
larger order of the polynomial approximation in the stochastic space (p = 5) on a usual PC
desktop computer. For all stages of numerical experiments (computation of the coefficient,
operator, solution and statistical functionals) we report the computational times and the
storage costs (TT ranks), and show that they stay moderate in the investigated range of
parameters.
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Table 12: Performance versus R, beta distribution
#DoF CPU time, sec rκ ru rχ̂ Eκ Eu P

TT Sparse χ̂ TT Sparse TT Sparse TT
557 9.73 5.94 0.94 34 40 39 1.70e-4 1.65e-3 5.21e-4 1.08e-3 1.95e-4
2145 36.2 12.7 0.77 34 41 41 1.56e-4 1.64e-3 5.19e-4 1.08e-3 1.97e-4
8417 378 162 1.12 34 40 43 1.53e-4 1.62e-3 5.07e-4 1.06e-3 1.96e-4

Table 13: Verification of the Monte Carlo method, beta distribution
Nmc TMC, sec. Eū Evaru P∗ EP TT results
102 0.9428 9.12e-3 1.65e-1 0 ∞ Tsolve 278.4014 sec.
103 9.5612 1.04e-3 6.04e-2 0 ∞ Tχ̂ 179.4764 sec.
104 8.849·101 4.38e-4 5.56e-3 0 ∞ rκ 92
105 8.870·102 2.49e-4 3.06e-3 7.00e-5 6.80e-1 ru 50
106 8.883·103 8.16e-5 8.56e-4 1.07e-4 9.94e-2 rχ̂ 406

P 1.1765e-04

In particular, the TT ranks do not grow with the polynomial degree p. This remains in
sharp contrast to the traditional sparse polynomial approximation, where the total polyno-
mial degree is bounded. The cardinality of this sparse polynomial set grows exponentially
with p, but the tensor product decomposition is not possible anymore. This renders the to-
tal computational cost of the sparse PCE approach higher than the cost of the TT method.
Besides, the tensor product PCE is more accurate than the expansion in the sparse set due
to a larger total polynomial degree. Comparison with the classical Monte Carlo method
shows that the TT methods can compute the exceedance probabilities more accurately,
since the TT format approximates the whole stochastic solution implicitly.

Several directions of research can be pursued in the future.
Currently, we store both the matrix and the inverted mean-field preconditioner in the

dense form. This imposes rather severe restrictions on the spatial discretization. The spatial
part of the Galerkin matrix must be dealt with in a more efficient way.

With the tensor product methods the stochastic collocation approach seems very at-
tractive [33]. We may introduce quite large discretization grids in each random variable
θm: additional data compression can be achieved with the QTT approximation [31]. It is
important that the deterministic problems are decoupled in the stochastic collocation. The
cross algorithms can become an efficient non-intrusive approach to stochastic equations.
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