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Abstract. Anisotropically refined mixed finite elements are beneficial for the

resolution of local features such as boundary layers. Unfortunately, the stabil-
ity of the resulting scheme is highly sensitive to the aspect ratio of the elements.
Previous analysis revealed that the degeneration arises from a relatively small

number of spurious (piecewise constant) pressure modes. The present article
is concerned with resolving the problem of how to suppress the spurious pres-
sure modes in order to restore stability yet at the same time not incurring any
deterioration in the approximation properties of the reduced pressure space.

Two results are presented. The first gives the minimal constraints on the
pressure space needed to restore stability with respect to aspect ratio and
shows that the approximation properties of the constrained pressure space
and the unconstrained pressure space are essentially identical. Alternatively,

one can impose the constraint weakly through the use of a stabilised finite ele-
ment scheme. A second result shows that the stabilised finite element scheme
is robust with respect to the aspect ratio of the elements and produces an ap-
proximation that satisfies an error bound of the same type to the mixed finite
element scheme using the constrained space.

1. Introduction and Main Result

Consider Stokes equations on a polygonal domain Ω ⊂ R2

−∆u+ grad p = f , divu = 0 in Ω (1)

subject to u = 0 on ∂Ω and 〈p〉Ω = 0, where 〈p〉ω denotes the mean value of p
over ω ⊂ Ω, and f ∈ L2(Ω) is a given source term. Throughout, we use standard
notations for Sobolev spaces [1].

The variational form of (1) consists of seeking u ∈ V = H1
0 (Ω) and p ∈ M =

L2
0(Ω) such that

B(u, p;v, q) = (f ,v)Ω for all (v, q) ∈ V ×M (2)

where

B(u, p;v, q) = (gradu, gradv)Ω − (div v, p)Ω − (divu, q)Ω. (3)

The well-posedness of problem (2) is a consequence of the inf-sup condition [9, pp.
58–61]:

inf
q∈M

sup
v∈V

(div v, q)Ω
|v|H1(Ω)‖q‖Ω

= βΩ > 0. (4)

This result is established, for example, in [8, Lemma III.3.1].
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Figure 1. A typical example of an anisotropically refined mesh
of the type considered in the present work.

Let P be a conforming partition of Ω into the union of closed parallelograms such
that the non-empty intersection of distinct elements K and K ′ is either a single
common point or a single common edge of both elements. For k ≥ 1, a mixed finite
element approximation of the Stokes problem is sought using the spaces

V P = {v ∈ V : v ◦ FK ∈ Q2
k+1 ∀K ∈ P} (5)

and

MP = {q ∈ M : q ◦ FK ∈ Pk−1 ∀K ∈ P} (6)

where FK : [0, 1]2 → K ∈ P is an invertible affine transformation.
The pair V P × MP is known [5, 14] to satisfy a discrete version of (4) with a

positive constant βP. As a consequence, there exists a unique mixed finite element
approximation uP ∈ V P and pP ∈ MP such that

B(uP, pP;v, q) = (f ,v)Ω for all (v, q) ∈ V P ×MP. (7)

In addition to the requirement that the partition be conforming, it is customary
to impose a shape regularity condition on the elements K ∈ P whereby the ratio of
the diameter of the element to the diameter of the largest ball that may be inscribed
in K remains uniformly bounded over all elements in all partitions. However, it
is desirable to allow partitions P in which the elements are highly stretched, or
anisotropic, such as shown in Figure 1. With this in mind, we suppose that an
initial shape regular conforming partition P0 is given and let c ∈ C be a collection
of vertices in P0. An anisotropically refined partition P is permitted whereby the
elements K in the initial partition P0 containing a vertex c ∈ C are replaced by
corner patches as shown in Figure 1 in which the conformity of the refined partition
P has been maintained by inserting edge patches as appropriate. For c ∈ C let Ωc

denote the subdomain defined by Ωc = ∪{K ∈ P0 : c ∈ K} and let ωc = ∪{K ∈
P : c ∈ K}.
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Figure 2. Typical anisotropically refined corner patches Ωc with
the corresponding subsets ωc shown shaded. On the left: a single
corner patch.

We may (by performing one or more uniform subdivisions of the initial partition-
ing P0 prior to inserting corner patches) assume that the regions Ωc are disjoint,
simply connected subregions of the type indicated in Figure 1. The set of elements
K ∈ Ωc∩P0 is shape regular and quasi-uniform of size O(Hc). Furthermore, the set
of elements K ∈ ωc∩P is also shape regular and quasi-uniform of size hc. However,
the refined mesh contains anisotropic elements of aspect ratio ̺c = hc/Hc ≪ 1 in
each patch Ωc. With each node c ∈ C, we arbitrarily select a single inter-element
edge γc ∈ ∂(Ωc\ωc) ∩ ∂ωc. The foregoing assumptions mean that the edge γc is
shared by a shape regular element κc ∈ P of size hc and an anisotropic element
Kc ∈ P of aspect ratio ̺c as illustrated in Figure 2.

The inclusion of stretched elements is beneficial for the resolution of local fea-
tures such as boundary layers. Unfortunately, as numerical observations show, the
discrete inf-sup constant is sensitive to the aspect ratio of the elements in the mesh,
and the order k of the underlying finite elements. A detailed analysis [3] reveals
that

inf
q∈MP

sup
v∈V P

(div v, q)Ω
|v|H1(Ω)‖q‖Ω

= βP ≥ Ck−1/2 min{1, k√̺} (8)

where ̺ = min{̺c : c ∈ C}. Here, and throughout the remainder of this article,
the letter C will be used to represent a generic constant that is independent of any
mesh size, aspect ratio or polynomial degree, and whose value need not be the same
in any two differing instances.

The stability constant in the estimate (8) exhibits a relatively mild degeneration
in the inf-sup constant as the order k is increased which, however, can be alleviated
by augmenting the space V P as described in [3]. Altogether more insidious is
the dependence on the aspect ratio ̺ which, for fixed order k, degenerates as

√
̺.

Figure 3 shows the variation of the actual value of the inf-sup constant as the
aspect ratio of the elements is varied for fixed polynomial order k, and confirms the
behaviour with respect to ̺ in the estimate (8).

The analysis [3] leading to (8) revealed that the degeneration of the inf-sup
constant at high aspect ratio results from a relatively small number of spurious
(piecewise constant) pressure modes identified with the sets ωc associated with
corner patch refinements. This observation suggests that the degeneration might be
alleviated through suppressing the spurious modes present in the discrete pressure
space. Naturally, removing more pressure modes than is absolutely necessary to
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Figure 3. Behaviour of the inf-sup constants βP and β̃P with
respect to the aspect ratio and polynomial degree k = 4 on the
T-mesh shown in Figure 1.

restore stability risks compromising the approximation properties of the pressure
space.

The present article is concerned with resolving the problem of how to suppress
the spurious pressure modes in order to restore stability yet at the same time not
incurring any deterioration in the approximation properties of the reduced pressure
space. Our first result gives the minimal reduction of the pressure space needed to
restore stability with respect to aspect ratio:

Theorem 1. Let M̃P ⊂ MP denote the subspace defined by

M̃P = {q ∈ MP :

∫

γc

JqKds = 0 for c ∈ C} (9)

where JqK is the jump in the pressure q ∈ MP across the edge γc. Then, there exists
a positive constant C, independent of the mesh size, aspect ratio and polynomial
degree, such that

inf
q∈M̃P

sup
v∈V P

(div v, q)Ω
|v|H1(Ω)‖q‖Ω

≥ Cβ̃P > 0, (10)

where

β̃P =





k−1/2, if O(k−1) ≤ √
̺,

k1/2
√
̺, if O(k−2) ≤ √

̺ ≤ O(k−1)

k−3/2, if
√
̺ ≤ O(k−2),

(11)

and

‖u− uP‖H1(Ω) + ‖p− pP‖Ω ≤ Cβ̃−2
P

(
inf

vP∈V P

‖u− vP‖H1(Ω) + inf
q̃P∈M̃P

‖p− q̃P‖Ω
)
.

(12)
Moreover, if p ∈ H1(Ω), then there exists a positive constant C such that

inf
q̃P∈M̃P

‖p− q̃P‖2Ω ≤ C inf
qP∈MP

(‖p− qP‖2Ω + k−2
∑

c∈C

|γc|2‖∂(p− qP)/∂nc‖2κc∪Kc

)

(13)
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Figure 4. Variation of the square of the inf-sup constant with
the aspect ratio and polynomial degree k on the T-mesh shown in
Figure 1 for (a) the mixed finite element scheme V P×MP and (b)

the new mixed finite element scheme V P × M̃P.

where ‖·‖κc∪Kc
indicates the norm evaluated elementwise over κc and Kc.

Clearly β̃P ≥ βP since M̃P ⊂ MP. However, more interestingly, Theorem 1 shows

that the mixed finite element pair V P × M̃P is relatively insensitive to the aspect
ratio of the elements in the sense that if ̺ → 0, for fixed polynomial order k, then
β̃P remains uniformly bounded away from zero. An alternative interpretation of the
result would be that if a fixed mesh is employed, containing anisotropic elements for
which ̺ ≪ 1, and convergence is sought by raising the order k, then the stability of
the resulting method will degenerate as β̃P = O(k−3/2). This compares favourably
with the behaviour βP = Ck−1/2 min{1, k√̺} for the standard scheme given by (8).

The approximation properties of the constrained pressure space M̃P compared
with those of the unconstrained space MP are presented in estimate (13). The
only difference arises from a term involving the derivative of the pressure which
generally gives rise to a lower rate of convergence but in this case is outweighed by
the presence of the multiplicative factor |γc|/k. This means that the approximation

properties of M̃P and MP are essentially identical.
Figure 3 also shows the value of the discrete inf-sup constant for the constrained

pressure space as the aspect ratio is varied for a fixed polynomial degree k = 4.
Remarkably, the simple expedient of adding a single constraint in each corner patch
completely removes the degeneration of the inf-sup constant with the aspect ratio.
The behaviour of the β2

P
and β̃2

P
as both the aspect ratio and the polynomial degree

are varied on the mesh shown in Figure 1 is given in Figure 4. In particular, the
case results shown in Figure 3 correspond to the case k = 4 in Figure 4. It is
observed that for fixed polynomial degree k, the value of β2

P
degrades as ̺ → 0

whilst the value of β̃2
P
remains insensitive to the value of ̺. It is also seen that for

̺ ≪ 1, βP increases with k as predicted by estimate (8) whilst β̃P remains relatively
insensitive.
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Theorem 1 shows that one can seek a mixed finite element approximation from

the space V P × M̃P instead of V P ×MP. Alternatively, one can impose the con-
straint weakly through the use of a stabilised finite element scheme as follows. Let

Bs(u, p;v, q) = B(u, p;v, q)− S(p; q) (14)

where the stabilisation term is given by

S(p; q) =
1

k2

∑

c∈C

∫

γc

JpK ds ·
∫

γc

JqKds. (15)

The stabilised finite element approximation consists of seeking (us
P
, ps

P
) ∈ V P×MP

such that

Bs(u
s
P, p

s
P;v, q) = (f ,v)Ω for all (v, q) ∈ V P ×MP. (16)

The second main result of the present work shows that the stabilised finite element
scheme is robust with respect to the aspect ratio of the elements and produces an
approximation that satisfies an error bound of the same type to the mixed finite

element scheme using the constrained space M̃P:

Theorem 2. For all (w, r) ∈ V P ×MP, there holds

sup
(v,q)∈V P×MP

Bs(w, r;v, q)

|||(v, q)||| ≥ µP |||(w, r)||| , (17)

where µP = Cβ̃2
P

and |||(v, q)|||2 = |v|2H1(Ω) + ‖q‖2Ω. Moreover, if p ∈ H1(Ω), then

there exists a positive constant C, independent of the mesh size, aspect ratio and
polynomial degree, such that

|||(u− us
P, p− psP)||| ≤ (1 + Cβ̃−2

P
)

inf
(vP,pP)∈V P×MP

{
|||(u− vP, p− qP)|||+ k−1(

∑

c∈C

|γc|2‖∂(p− qP)/∂nc‖2κc∪Kc

)1/2

}
.

(18)

The a priori error bound (18) for the stabilised scheme is consistent with the

corresponding bound for the mixed finite element scheme using the pair V P × M̃P

resulting from combining estimates (12) and (13).
Figure 5 shows the inf-sup constant µP of estimate (17) in Theorem 2. Com-

parison with the results shown in Figure 4(b) confirms that the constant in (17)

indeed varies as β̃2
P
.

The practical implementation of the constraint in (9) is readily accomplished by
using a local basis for the pressure in which the average value of the pressure on
the edge γc is a degree of freedom. One would then simply assign the same global
degree of freedom number to the corresponding local degrees of freedom in adjacent
elements.

2. Auxiliary Lemmas

In this section, we collect various technical results used in the proofs of Theo-
rems 1 and 2:
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Figure 5. Behaviour of the inf-sup constant µP appearing in (17)
of the stabilised mixed finite element scheme V P × MP on the
T-mesh shown in Figure 1.

Lemma 1. Let H, h > 0 and k ∈ N. Then, there exists a univariate polynomial
ℓk−1 of degree k − 1 such that ℓk−1(1) = 1 and

∫ 1

−1

ℓk−1(s)
2ds =

2

k2
=

∫ 1

−1

ℓk−1(s)ds. (19)

Moreover, for all q ∈ Pk−1((0, H)× (0, h)),

1

h

∫ h

0

q(0, y)2dy ≤ k2

Hh

∫ h

0

∫ H

0

q(x, y)2dxdy. (20)

Proof. Let ℓk−1 = 2k−2
∑k−1

j=0 (j +
1
2 )Pj , where Pj is the Legendre polynomial of

degree j. Standard properties of Legendre polynomials readily show that ℓk−1

satisfies the conditions claimed.
Moreover, let f be a univariate polynomial of degree k − 1, and write f =∑k−1
j=0 fjPj . Again using standard properties of Legendre polynomials, we obtain

f(1)2 =




k−1∑

j=0

fj




2

≤
k−1∑

j=0

(j +
1

2
) ·

k−1∑

j=0

(j +
1

2
)−1f2

j =
k2

2

∫ 1

−1

f(s)2ds.

Let q be as in the statement of the lemma and, for fixed y ∈ [0, h], insert f(s) =
q((1 + s)H/2, y), s ∈ (−1, 1) into the above inequality. Integrating the resulting
inequality over y ∈ [0, h] gives the second result. �

For the next result, we recall that 〈q〉ω denotes the mean value of q over ω ⊂ Ω:

Lemma 2. Let c ∈ C and suppose edge γc separates elements κc and Kc. Then,
there exists a constant C such that for both choices K = κc and K = Kc there
hold:

|〈q〉γc
| ≤ C|γc|−1‖q‖K + ‖∂q/∂nc‖K for all q ∈ H1(K) (21)

where nc is the unit normal on γc; and

|〈qP〉γc
| ≤ Ck|γc|−1‖qP‖K for all qP ∈ MP. (22)
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Proof. Let K be as in the statement. First suppose q ∈ H1(K). A scaled trace
inequality [2] gives

|γc|−1‖q‖2γc

≤ C‖q‖K
{

1

|K| ‖q‖K +
dK
|K| ‖∂q/∂nc‖K

}

where dK = diam(K) ≤ C|γc|−1|K| and 1/|K| ≤ C|γc|−2. Hence,

〈q〉2γc

≤ |γc|−1‖q‖2γc

≤ C|γc|−1‖q‖K
{
|γc|−1‖q‖K + ‖∂q/∂nc‖K

}

which implies the first assertion.
Turning to the second assertion, suppose qP ∈ MP. Without loss of generality, we

suppose that the edge γc separates an element κc of size hc×hc from an anisotropic
element Kc of size Hc × hc, with hc < Hc. Applying Lemma 1, we conclude that

〈qP〉2γc

≤ |γc|−1‖q‖2γc

≤ k2

|K| ‖qP‖
2
K

and the estimate now follows using 1/|K| ≤ C|γc|−2. �

Let c ∈ C and, without loss of generality, suppose that a local coordinate system
is chosen in which the γc separates elements κc = (0, hc) × (0, hc) and Kc =
(−Hc, 0)× (0, hc). Define χc ∈ MP by the rule

χc(x, y) =





1

|κc|
ℓk−1(1− 2x/hc) in κc

− 1

|Kc|
ℓk−1(2x/Hc + 1) in Kc

0 otherwise,

(23)

where ℓk−1 is the polynomial defined in Lemma 1. Simple computation and Lemma 1
reveals 〈χc〉Ω = 0,

〈JχcK〉γc
=

1

|κc|
+

1

|Kc|
(24)

and

‖χc‖2Ω =
1

k2
〈JχcK〉γc

. (25)

Consequently, we may define a mapping Π̃P : MP → M̃P by the rule

Π̃Pq = q −
∑

c∈C

〈JqK〉γc

〈JχcK〉γc

χc. (26)

The mapping is related to the choice of stabilisation term as follows:

Lemma 3. There exist positive constants C1, C2 such that for all qP ∈ MP,

C1‖qP − Π̃PqP‖2Ω ≤ S(qP, qP) ≤ C2‖qP − Π̃PqP‖2Ω. (27)

Furthermore,

S(qP, qP) ≤ C

{
‖qP‖2Ω
k−2

∑
c∈C

(
‖p− qP‖2κc∪Kc

+ |γc|2‖∂(p− qP)/∂nc‖2κc∪Kc

) (28)

for all p ∈ H1(Ω).
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Proof. Definition (26) gives

‖qP − Π̃PqP‖2Ω =
∑

c∈C

(
1

τc

∫

γc

JqPKds

)2

where τc = |γc|〈JχcK〉γc
/‖χc‖Ω. Equation (25) then implies that τ2

c
= k2|γc|2〈JχcK〉γc

.
Equation (24) and the assumptions on the construction of the partition mean that
there exists positive constants c1 and c2 for which

c1 ≤ |γc|2
|κc|

≤ |γc|2〈JχcK〉γc
≤ 2

|γc|2
|κc|

≤ c2.

Hence c1k
2 ≤ τ2

c
≤ c2k

2, and the first assertion follows using the definition of S(·, ·).
Using the estimate (22) we obtain

|γc|2〈JqPK〉2γc

≤ 2|γc|2〈qP|κc
〉2γc

+ 2|γc|2〈qP|Kc
〉2γc

≤ Ck2‖qP‖2κc∪Kc

,

and hence

S(qP, qP) =
1

k2

∑

c∈C

|γc|2〈JqPK〉2γc

≤ C‖qP‖2Ω

which proves the first part of (28). For the second part, since p ∈ H1(Ω) we have

〈JqPK〉2γc

= 〈Jp− qPK〉2γc

≤ 2〈(p− qP)|Kc
〉2γc

+ 2〈(p− qP)|κc
〉2γc

and applying estimate (21) to both of the terms on the right hand side gives

〈JqPK〉2γc

≤ C
(
|γc|−2‖p− qP‖2κc∪Kc

+ ‖∂(p− qP)/∂nc‖2κc∪Kc

)
.

The result now follows on combining the above estimates. �

3. Proof of Theorem 1

We begin with a useful consequence of Theorem 4.7 in [3]:

Corollary 1. Let M∗

P
= {q ∈ MP : 〈q〉ωc

= 0, c ∈ C}. Then, there is a positive
constant C, independent of any aspect ratio such that for all q ∈ M∗

P
, there exists

v∗ ∈ V P satisfying:

(div v∗, q)Ω = ‖q‖2Ω and |v∗|H1(Ω) ≤ Ck1/2‖q‖Ω, (29)

with v∗|ωc
∈ H1

0 (ωc), c ∈ C.

Proof. Let q ∈ M∗

P
be given. For c ∈ C, let qc denote the restriction of q to ωc

and note that 〈qc〉ωc
vanishes. The partition Pc = {K ∈ P : K ⊂ ωc} of ωc

is comprised of shape regular elements, and it follows that the local mixed finite
element space V Pc

×MPc
is stable independently of the local aspect ratio; i.e. there

exists vc ∈ V Pc
∩H1

0 (ωc) satisifying

(div vc, qc)ωc
= ‖qc‖2ωc

and |vc|H1(ωc) ≤ C‖qc‖ωc
(30)

with C independent of the aspect ratio ̺c. The zero extension of vc to Ω yields
another function (again denoted by vc) belonging to V P and satisfying the same
conditions.

The function qI = q−
∑

c∈C
qc is supported on the subdomain ΩI = Ω\ (∪c∈Cωc)

and 〈qI〉ΩI
vanishes (since q ∈ L2

0(Ω)). Consequently, qI ∈ MPI
where PI = {K ∈

P : K ∈ ΩI} is a partitioning of ΩI . In particular, PI is devoid of corner patches and
therefore, thanks to Theorem 4.7 of [3], the mixed finite element discretisation of
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ΩI is stable independently of any aspect ratio; i.e. there exists vI ∈ V PI
∩H1

0 (ΩI)
satisfying

(div vI , qI)ΩI
= ‖qI‖2ΩI

and |vI |H1(ΩI) ≤ Ck1/2‖qI‖ΩI
(31)

with C independent of any aspect ratio. As before, the zero extension of vI to Ω
yields a function belonging to V P and satisfying the same conditions.

Let v∗ = vI +
∑

c∈C
vc ∈ V P. Hence, thanks to (30)-(31) and disjoint supports,

we obtain

(div v∗, q)Ω = (div vI , qI)ΩI
+
∑

c∈C

(div vc, qc)ωc
= ‖qI‖2ΩI

+
∑

c∈C

‖qc‖2ωc

= ‖q‖2Ω

and

|v∗|2H1(Ω) = |vI |2H1(ΩI)
+
∑

c∈C

|vc|2H1(ωc)
≤ Ck

(
‖qI‖2ΩI

+
∑

c∈C

‖qc‖2ωc

)
≤ Ck‖q‖2Ω

and the result follows as claimed. �

Corollary 1 shows that the instability of high aspect ratio elements originates
from a single spurious pressure mode on each corner patch.

Let q ∈ MP be given and let ΠCq be the piecewise constant function defined by
the rule

ΠCq =

{
〈q〉ΩI

on ΩI

〈q〉ωc
on ωc, c ∈ C.

Note that 〈ΠCq〉Ω = 〈q〉Ω = 0, so that ΠCq ∈ MP and q −ΠCq ∈ M∗

P
.

The next result complements Corollary 1:

Lemma 4. There exists a positive constant C, independent of any aspect ratio such
that

inf
q∈M̃P

sup
v∈V P

(div v, q)Ω
|v|H1(Ω)‖q‖Ω

≥ Ck−3/2. (32)

Proof. Let q ∈ M̃P be given, and decompose

q = q∗ +ΠCq

where q∗ = q−ΠCq ∈ M∗

P
. In view of Corollary 1, there exists a non-zero v∗ ∈ V P

such that

(div v∗, q∗)Ω = ‖q∗‖2Ω and |v∗|H1(Ω) ≤ Ck1/2‖q∗‖Ω. (33)

Moreover, since v∗|ωc
∈ H1

0 (ωc), c ∈ C, we have

(div v∗,ΠCq)Ω = 〈q〉ΩI
(div v∗, 1)ΩI

+
∑

c∈C

〈q〉ωc
(div v∗, 1)ωc

= 0. (34)

Suppose for the moment that there exists a positive constant C for which

‖q‖Ω ≤ Ck‖q∗‖Ω. (35)

The claimed result would then follow at once since, in view of (33) and (34),

(div v∗, q)Ω = (div v∗, q∗)Ω = ‖q∗‖2Ω ≥ Ck−1‖q∗‖Ω‖q‖Ω ≥ Ck−3/2|v∗|H1(Ω)‖q‖Ω.

It therefore suffices to demonstrate (35) holds. Thanks to q ∈ M̃P and the definition
of ΠPq, we obtain

〈q〉ΩI
− 〈q〉ωc

= −〈JΠCqK〉γc
= 〈Jq −ΠCqK〉γc

= 〈Jq∗K〉γc
, c ∈ C (36)
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and hence,
1

2

∑

c∈C

|ωc|〈q〉2ωc

≤ 〈q〉2ΩI

∑

c∈C

|ωc|+
∑

c∈C

|ωc|〈Jq∗K〉2γc

. (37)

Alternatively, equations (36) along with the relations

|ΩI |〈q〉ΩI
+
∑

c∈C

|ωc|〈q〉ωc
= |Ω|〈ΠCq〉Ω = 0

and |ΩI |+
∑

c∈C
|ωc| = |Ω|, give

〈q〉ΩI
=

1

|Ω|
∑

c∈C

|ωc|〈Jq∗K〉γc
.

Consequently,

〈q〉2ΩI
≤ 1

|Ω|

(
∑

c∈C

|ωc|
)

1

|Ω|
∑

c∈C

|ωc|〈Jq∗K〉2γc

,

and with the aid of estimate (37) and (28), we obtain

‖ΠCq‖2Ω = |ΩI |〈q〉2ΩI
+
∑

c∈C

|ωc|〈q〉2ωc

≤ C
∑

c∈C

|ωc|〈Jq∗K〉2γc

≤ Ck2S(q∗, q∗) ≤ Ck2‖q∗‖2Ω.

Hence,

‖q‖2Ω = ‖ΠCq‖2Ω + ‖q∗‖2Ω ≤ Ck2‖q∗‖2Ω
which implies (35) holds. �

Theorem 1 is now proved as follows:

Proof. The expression for β̃P is an immediate consequence of Lemma 4 and the
estimate (33) from [3]. The error bound (12) is proved in [9, Page 114].

It only remains to show the approximation theoretic properties of the space M̃P.

Let p ∈ H1(Ω) and qP ∈ MP be given. Define q̃P = Π̃PqP ∈ M̃P, then

1

2
‖p− q̃P‖2Ω ≤ ‖p− qP‖2Ω + ‖qP − Π̃PqP‖2Ω.

By applying Lemma 3 twice, we obtain

C1‖qP − Π̃PqP‖2Ω
≤ S(qP, qP) ≤ Ck−2

∑

c∈C

(
‖p− qP‖2κc∪Kc

+ |γc|2‖∂(p− qP)/∂nc‖2κc∪Kc

)

and the result follows on collecting estimates. �

4. Proof of Theorem 2

Lemma 5. Let β̃P be as defined in (10), then

sup
v∈V P

(div v, q)Ω
|v|H1(Ω)

≥ β̃P‖Π̃Pq‖Ω − ‖q − Π̃Pq‖Ω. (38)

Proof. Let q ∈ MP, then thanks to Theorem 1 there exists a non-zero v ∈ V P such
that

β̃P|v|H1(Ω)‖Π̃Pq‖Ω ≤ (div v, Π̃Pq)Ω = (div v, q − Π̃Pq)Ω + (div v, q)Ω

≤ |v|H1(Ω)‖q − Π̃Pq‖Ω + (div v, q)Ω,
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and hence

sup
v∈V P

(div v, q)Ω
|v|H1(Ω)

≥ β̃P‖Π̃Pq‖Ω − ‖q − Π̃Pq‖Ω

as claimed. �

Finally, we give the proof of Theorem 2:

Proof. Let (w, r) ∈ V P ×MP be given. The proof consists of selecting a suitable
pair v ∈ V P and q ∈ MP in terms of w and r. The equivalence (27) gives

Bs(w, r;w,−r) = |w|2H1(Ω) + S(r, r) ≥ |w|2H1(Ω) + C1‖r − Π̃Pr‖2Ω. (39)

By Lemma 5, there exists ŵ ∈ V P such that |ŵ|H1(Ω) = 1 and

(div ŵ, r)Ω ≥ β̃P‖Π̃Pr‖Ω − ‖r − Π̃Pr‖Ω,
and hence,

Bs(w, r;−ŵ, 0) = −(gradw, grad ŵ)Ω + (div ŵ, r)Ω

≥ −|w|H1(Ω) + β̃P‖Π̃Pr‖Ω − ‖r − Π̃Pr‖Ω.

Multiplying through by α‖Π̃Pr‖Ω, where α > 0 will be chosen later, and using the

inequality ab ≤ a2β̃P/4 + b2/β̃P, we obtain

Bs(w, r;−α‖Π̃Pr‖Ωŵ, 0) ≥ α

2
β̃P‖Π̃Pr‖2Ω − α

β̃P

|w|2H1(Ω) −
α

β̃P

‖r − Π̃Pr‖2Ω. (40)

Summing (39) and (40) gives

Bs(w, r;w − α‖Π̃Pr‖Ωŵ,−r)

≥ (1− α/β̃P)|w|2H1(Ω) + (C1 − α/β̃P)‖r − Π̃Pr‖2Ω +
1

2
αβ̃P‖Π̃Pr‖2Ω

≥ (min(1, C1)− α/β̃P)(|w|2H1(Ω) + ‖r − Π̃Pr‖2Ω) +
1

2
αβ̃P‖Π̃Pr‖2Ω.

Choosing α = min(1, C1)/(β̃P/2 + 1/β̃P) > 0, we obtain

Bs(w, r;v, q) ≥ 1

2
αβ̃P |||(w, r)||| (|w|2H1(Ω) + ‖r − Π̃Pr‖2Ω + ‖Π̃Pr‖2Ω)1/2 (41)

where v = w − α‖Π̃Pr‖Ωŵ and q = −r. Moreover, since

1

2
‖q‖2Ω ≤ ‖Π̃Pr‖2Ω + ‖r − Π̃Pr‖2Ω

and
1

2
|v|2H1(Ω) ≤ |w|2H1(Ω) + α2‖Π̃Pr‖2Ω,

we deduce that
|||(v, q)||| ≤ C(1 + α) |||(w, r)||| .

In view of (41) we deduce that Theorem 2 holds with stability constant αβ̃P/C(1+

α) ≥ Cβ̃2
P
.

The proof of the a priori error estimate is a variation of the usual argument. Let
(vP, qP) ∈ V P ×MP be given, then

|||(u− us
P, p− psP)||| ≤ |||(u− vP, p− qP)|||+ |||(us

P − vP, p
s
P − qP)||| . (42)

Let (wP, rP) ∈ V P ×MP be non-zero. Direct computation using (16) gives

Bs(u
s
P − vP, p

s
P − qP;wP, rP) = B(u− vP, p− qP;wP, rP) + S(qP, rP).
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The first term is bounded by

B(u− vP, p− qP;wP, rP) ≤ C |||(u− vP, p− qP)||| |||(wP, rP)|||

whilst the second term is bounded using Cauchy-Schwarz and (28)1 and (28)2 to
obtain

S(qP, rP) ≤ Ck−1‖rP‖Ω
{
∑

c∈C

(
‖p− qP‖2κc∪Kc

+ |γc|2‖∂(p− qP)/∂nc‖2κc∪Kc

)
}1/2

.

Hence, using condition (17) gives

β̃2
P |||(us

P − vP, p
s
P − qP||| ≤ C |||(u− vP, p− qP)|||

+ Ck−1

{
∑

c∈C

(
‖p− qP‖2κc∪Kc

+ |γc|2‖∂(p− qP)/∂nc‖2κc∪Kc

)
}1/2

.

The result now follows from (42). �

5. Summary and Related Work

The current work tackles the problem of alleviating the degeneration of the sta-
bility (inf-sup) constant of mixed finite element spaces when anisotropically refined
elements are used. The stability of mixed finite element methods for incompressible
flow on meshes containing anisotropically refined elements has attracted consider-
able attention in both the mathematical and engineering literature. Early articles
addressing this question in the case of triangular elements include [6, 11] whilst [7]
considers the stabilisation of mixed finite element schemes for the Navier-Stokes
equations for quadrilateral elements; related work is presented in [4, 10]. In each
of the above mentioned articles, the starting point was a mixed finite element pair
that was not uniformly inf-sup stable, even for shape regular elements.

Our approach is based on the underlying mixed finite element scheme Qk+1 ×
Pk−1, which was analysed for the case of isotropic (shape regular) meshes in [5,14]
and shown to be uniformly stable in both the mesh-size and the polynomial order k.
It was shown [12,13] that the element remains uniformly stable on meshes contain-
ing anisotropically refined edge patches, but numerical evidence showed that the
stability degenerated with the aspect ratio if anisotropically refined corner patches
are permitted. A detailed analysis [3] showed that the degeneration of the inf-sup
constant is governed by the estimate (8) and, more importantly, that the degener-
ation arises from the presence of a single spurious pressure mode associated with
each of the corner patches. Omitting the spurious pressure mode entirely would
degrade the ability of the remaining pressure modes to adequately capture singular
pressures in the neighbourhood of corners. The present work solves the delicate
problem of constraining the admissible pressure modes sufficiently in order that the
resulting mixed pair is uniformly stable with respect to aspect ratio whilst at the
same time retaining virtually all of the approximation properties of the original
pressure space. Remarkably, it transpires that this is not only possible, but can
be achieved by merely constraining the average value in the pressure jump across
a single edge in the neighbourhood of each corner patch. Moreover, it is shown
how this result can be utilised to modify the underlying variational formulation
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of the discrete problem to obtain a scheme that is uniformly stable for the origi-
nal (unconstrained) mixed finite element scheme, again without compromising the
approximation properties of the resulting finite element approximation.
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