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Abstract

In this paper ISS small-gain theorems for discrete-time systems are stated, which do
not require input-to-state stability (ISS) of each subsystem. This approach weakens con-
servatism in ISS small-gain theory, and for the class of exponentially ISS systems we are
able to prove that the proposed relaxed small-gain theorems are non-conservative in a
sense to be made precise. The proofs of the small-gain theorems rely on the construction
of a dissipative finite-step ISS Lyapunov function which is introduced in this work. Fur-
thermore, dissipative finite-step ISS Lyapunov functions, as relaxations of ISS Lyapunov
functions, are shown to be sufficient and necessary to conclude ISS of the overall system.

Keywords: input-to-state stability, Lyapunov methods, small-gain conditions, discrete-time non-

linear systems, large-scale interconnections

1 Introduction

Large-scale systems form an important class of systems with various applications such as
formation control, logistics, consensus dynamics, networked control systems to name a few.
While stability conditions for such large-scale systems have already been studied in the 1970s
and early 1980s cf. [30, 33, 36] based on linear gains and Lyapunov techniques, nonlinear
approaches are more recent. An efficient tool in the analysis of large-scale nonlinear control
systems is the concept of input-to-state stability (ISS) as introduced in [34], and the intro-
duction of ISS Lyapunov functions in [34, 35]. The concept of ISS was originally formulated
for continuous-time systems, but has also been established for discrete-time control systems
([22, 20]) of the form x(k + 1) = G(x(k), u(k)), as considered in this work.

As ISS Lyapunov functions are assumed to decrease at each step (while neglecting the
input) the search for ISS Lyapunov functions is a hard task, in general. To relax this as-
sumption we introduce the concept of dissipative finite-step ISS Lyapunov functions, where
the function is assumed to decrease after a finite time, rather than at each time step. This
approach originates from [1] and was recently used in [28, 9, 8] for the stability analysis of
discrete-time systems without inputs.

We provide, in a first step, an equivalent characterization of input-to-state stability in
terms of the existence of a dissipative finite-step ISS Lyapunov function. The sufficiency
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part follows the lines of [20, Lemma 3.5], which shows that the existence of a continuous
(dissipative) ISS Lyapunov function implies ISS of the system. Necessity is shown using a
converse ISS Lyapunov theorem [20, 26]. Moreover, for the case of exponential ISS systems,
we show that any norm is a dissipative finite-step ISS Lyapunov function.

In this paper, we follow the nomenclature of [33] and say that a large-scale system is
defined through the interconnection of a number of smaller components. For such systems
there exist small-gain type conditions guaranteeing the ISS property for the interconnected
system. Whereas small-gain theorems have a long history, the first ISS versions in a trajectory-
based formulation and in a Lyapunov-based formulation are given in [19] and [18], respectively.
In both cases the results are stated for systems consisting of two subsystems. These results
have been extended to large-scale interconnections in [5] and [6].

The first ISS small-gain theorems for discrete-time systems were presented in [20], which
parallel the results of [19] and [18] for continuous-time systems. For interconnections con-
sisting of more than two subsystems, small-gain theorems are presented in [17] and in [5],
whereas in [17] ISS was defined in a maximum formulation and in [5] the results are given in
a summation formulation. Further extensions to the formulation via maximization or sum-
mation are ISS formulations via monotone aggregation functions. In this formulation, the
ISS small-gain results are shown to hold in a more general form, see [31]. In [6] the authors
present an ISS small-gain theorem in a Lyapunov-based formulation that allows to construct
an overall ISS Lyapunov function. This paper also discusses various examples showing that
depending on the system class different formulations of the ISS property are natural. In [29]
a discrete-time version in a maximum formulation is shown and ISS Lyapunov functions for
the overall system are constructed.

The classical idea of ISS small-gain theory is that the interconnection of ISS subsystems
is ISS if the influence of the subsystems on each other is small enough. This is a sufficient
criterion, but the requirement of all systems being ISS is not necessary, even for linear systems
as we recall in Section 5. Hence, classical small-gain theorems come with a certain conser-
vatism. The main purpose of this work to reduce conservatism in ISS small-gain theory.
This is achieved in the sense that we will not require each subsystem to be ISS. Indeed, each
subsystem may be unstable when decoupled from the other subsystems. This is a crucial
difference to classical ISS small-gain results, where it is implicitly assumed that the other
subsystems act as perturbations. Here the subsystems may have a stabilizing effect on each
other.

The requirement imposed is that Lyapunov-type functions for the subsystems have to
decrease after a finite time. This relaxation also includes previous ISS small-gain theorems
and applies to a larger class of interconnected systems. Furthermore, if the overall system is
expISS, i.e., solutions of the unperturbed system are decaying exponentially, the ISS small-
gain theorems are indeed non-conservative, i.e., they are also necessary.

The proof of the ISS small-gain theorems presented give further insight in the systems be-
havior. For the sufficiency part a dissipative finite-step ISS Lyapunov function is constructed
from the Lyapunov-type functions and the gain functions involved. On the other hand, for
expISS systems suitable Lyapunov-type and gain functions are derived. This in particular
implies a constructive methodology for applications. However, if the overall system is ISS but
not expISS the application of the results is challenging to implement.

To illustrate this methodology we consider a nonlinear discrete-time system consisting of
two subsystems that are not both ISS. To the best of the authors’ knowledge previous ISS
small-gain theorems do not apply in this situation. Following the proposed methodology we

2



derive a dissipative finite-step ISS Lyapunov function to show ISS of the overall system.
The outline of this work is as follows. The preliminaries are given in Section 2, followed

by the problem statement including the definition of a dissipative finite-step ISS Lyapunov
function, in Section 3. The sufficiency of the existence of dissipative finite-step ISS Lyapunov
functions to conclude ISS is stated in Section 4. In this section we also state a particular
converse finite-step ISS Lyapunov theorem that shows that for any expISS system any norm
is a dissipative finite-step ISS Lyapunov function. Section 5 contains the main results. First,
in Section 5.1 ISS small-gain theorems are presented that do not require each system to admit
an ISS Lyapunov function. In Section 5.2, we show the non-conservativeness of the relaxed
ISS small-gain theorems for the class of expISS systems, by stating a converse of the presented
ISS small-gain theorems. We close the paper in Section 6 with an illustrative example.

2 Preliminaries

2.1 Notation and conventions

By N we denote the natural numbers and we assume 0 ∈ N. Let R denote the field of real
numbers, R+ the set of nonnegative real numbers and R

n the vector space of real column
vectors of length n; further Rn

+ := (R+)n denotes the positive orthant. For any vector v ∈ R
n

we denote by [v]i its ith component. Then R
n induces a partial order for vectors v,w ∈ R

n

as follows: We define v ≥ w : ⇐⇒ [v]i ≥ [w]i and v > w : ⇐⇒ [v]i > [w]i, each for all
i ∈ {1, . . . , n}. Further; v 6≥ w : ⇐⇒ there exists an index i ∈ {1, . . . , n} such that [v]i < [w]i.

By | · | we denote an arbitrary fixed monotonic norm on R
n, i.e., if v,w ∈ R

n
+ with w ≥ v

then |w| ≥ |v|. For xi ∈ R
ni , i ∈ {1, . . . , N} let (x1, . . . , xN ) := (x⊤1 , . . . , x

⊤
N )⊤. For a

sequence {u(k)}k∈N with u(k) ∈ R
m, we define ‖u‖∞ := supk∈N{|u(k)|} ∈ R+ ∪ {∞}. If u(·)

is bounded, i.e., ‖u‖∞ < ∞, then u(·) ∈ l∞(Rm).
We will make use of the following consequence of the equivalence of norms in R

n: For any
norm | · | on R

n there exists a constant κ ≥ 1 such that for all x = (x1, . . . , xN ) ∈ R
n with

xi ∈ R
ni and n =

∑N
i=1 ni, it holds

|x| ≤ κ max
i∈{1,...,N}

|xi|, (1)

where |xi| := |(0, . . . , 0, xi, 0 . . . , 0)|. In particular, if | · | is a p-norm then κ = N1/p is the
smallest constant satisfying (1).

2.2 Comparison functions and induced monotone maps

It has become standard to use comparison functions to state stability properties of nonlinear
systems. Here we use functions of class K,K∞,  L,KL. For a definition see [23].

A K∞-function α is called sub-additive, if for any s1, s2 ∈ R+ it holds

α(s1 + s2) ≤ α(s1) + α(s2).

In the following lemma we collect some facts about K∞-functions, which are useful not
only in the particular proofs of this work. Note that the symbol ◦ denotes the composition
of two functions.

Lemma 2.1 (i) [10, Prop. 3] The pair (K∞, ◦) is a non-commutative group. In particular,
for α,α1, α2 ∈ K∞ the inverse α−1 ∈ K∞ exists, and α1 ◦ α2 ∈ K∞.
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(ii) For α1, α2, α3 ∈ K∞ we have

α1(max{α2, α3}) = max{α1 ◦ α2, α1 ◦ α3}.

For any two functions α1, α2 : R+ → R+ we write α1 < α2 (resp. α1 ≤ α2) if α1(s) < α2(s)
(resp. α1(s) ≤ α2(s)) for all s > 0. A continuous function η : R+ → R+ is called positive
definite, if η(0) = 0 and η(s) > 0 for all s > 0. By id we denote the identity function id(s) = s
for all s ∈ R+, and by 0 : R+ 7→ 0 we denote the zero function.

Given γij ∈ K∞ ∪ {0} for i, j ∈ {1, . . . , n}, we define the map Γ⊕ : Rn
+ → R

n
+ by

Γ⊕(s) :=






max {γ11([s]1), . . . , γ1n([s]n)}
...

max {γn1([s]1), . . . , γnn([s]n)}




 . (2)

For the kth iteration of this map we write Γk
⊕. Note that Γ⊕ is monotone, i.e., Γ⊕(s1) ≤ Γ⊕(s2)

for all s1, s2 ∈ R
n
+ with s1 ≤ s2, also Γ⊕(0) = 0.

2.3 Small-gain conditions

Consider the map Γ⊕ from (2), let δi ∈ K∞,Di = (id +δi), i ∈ {1, . . . , n}, and define the
diagonal operator D : Rn

+ → R
n
+ by

D(s) := (D1([s]1), . . . ,Dn([s]n))⊤ . (3)

Definition 2.2 The map Γ⊕ from (2) satisfies the small-gain condition if

Γ⊕(s) 6≥ s for all s ∈ R
n
+\{0}. (4)

The map Γ⊕ satisfies the strong small-gain condition if there exists a diagonal operator D as
in (3) such that

(D ◦ Γ⊕)(s) 6≥ s for all s ∈ R
n
+\{0}. (5)

The condition Γ⊕(s) 6≥ s for all s ∈ R
n
+\{0}, or for short Γ⊕ 6≥ id, means that for any

s > 0 the the image Γ⊕(s) is decreasing in at least one component i∗ ∈ {1, . . . , n}, i.e.,
[Γ⊕(s)]i∗ < [s]i∗ . Furthermore, we can assume that all functions δi ∈ K∞ of the diagonal
operator D are identical, by setting δ(s) := mini δi(s). We will then write D = diag(id +δ).
For any factorization D = DII ◦DI with diagonal operators DI ,DII : Rn

+ → R
n
+ as defined

above, it holds that D ◦ Γ⊕ 6≥ id ⇐⇒ DI ◦ Γ⊕ ◦ DII 6≥ id, and, in particular, D ◦ Γ⊕ 6≥
id ⇐⇒ Γ⊕ ◦D 6≥ id.

As shown in [6, Theorem 5.2] the (strong) small-gain condition (4) (resp. (5)) implies the
existence of a so-called Ω-path σ̃ with respect to Γ⊕ (resp. D ◦ Γ⊕) ([6, Definition 5.1]). The
essential property of Ω-paths used in this work is that σ̃ = (σ̃1, . . . , σ̃n) ∈ Kn

∞, and satisfies
Γ⊕(σ̃(r)) < σ̃(r) (resp. (D ◦ Γ⊕)(σ̃(r)) < σ̃(r)) for all r > 0. The numerical construction of
Ω-paths can be performed using the algorithm proposed in [11]. A simple calculation shows
that if σ̃ is an Ω-path with respect to D ◦Γ⊕ if and only if D−1

II ◦ σ̃ is an Ω-path with respect
to DI ◦ Γ⊕ ◦DII , where D = DII ◦DI is split as above.
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Remark 2.3 Condition (4) originates from [5] and is in fact equivalent to the equilibrium
s∗ = 0 of the system s(k+ 1) = Γ⊕(s(k)) being globally asymptotically stable (GAS1), see [32,
Theorem 6.4]. The idea comes from the linear case with Γ ∈ R

n×n
+ , where the following is

equivalent (see [32, Lemma 1.1] and [5, Section 4.5]):

(i) for the spectral radius it holds ρ(Γ) < 1;

(ii) Γs 6≥ s for all s ∈ R
n
+\{0};

(iii) Γk → 0 for k → ∞;

(iv) the origin of the system s(k + 1) = Γ(s(k)) is GAS.

For the map Γ⊕ defined in (2) we have the following equivalent condition, which gives the
possibility to check the small-gain condition (see [32, Theorem 6.4]).

Proposition 2.4 The map Γ⊕ : Rn
+ → R

n
+ defined in (2) satisfies the small-gain condition

(4) if and only if all cycles in the corresponding graph of Γ⊕ are weakly contracting, i.e.,
γi0i1 ◦ γi1i2 ◦ . . . ◦ γiki0 < id for k ∈ N, ij 6= il for j 6= l.

Note that it is sufficient that all minimal cycles of the graph of Γ⊕ are weakly contracting,
which means that ij 6= il for all j, l ∈ {0, . . . , k}. Thus, k < n.

3 Problem statement

We consider discrete-time systems of the form

x(k + 1) = G(x(k), u(k)), k ∈ N. (6)

Here u(k) ∈ R
m denotes the input at time k ∈ N. Note that an input is a function u : N → R

m.
By x(k, ξ, u(·)) ∈ R

n we denote the solution of (6) at time k ∈ N, starting in x(0) = ξ ∈ R
n

with input u(·).
Throughout this work the map G : Rn × R

m → R
n satisfies the following standing as-

sumption.

Assumption 3.1 The function G in (6) is globally K-bounded, i.e., there exist functions
ω1, ω2 ∈ K such that for all ξ ∈ R

n and µ ∈ R
m we have

|G(ξ, µ)| ≤ ω1(|ξ|) + ω2(|µ|). (7)

Assumption 3.1 implies continuity of G in (0, 0), but it does not require the map G to be
continuous elsewhere (as assumed e.g. in [20, 21, 29]) or (locally) Lipschitz (as assumed e.g.
in [2, 1]). For further remarks on Assumption 3.1 see Remark 3.3 and Appendix A.2.

Definition 3.2 We call system (6) input-to-state stable if there exist β ∈ KL and γ ∈ K
such that for all initial states ξ ∈ R

n, all inputs u(·) ∈ l∞(Rm) and all k ∈ N

|x(k, ξ, u(·))| ≤ β(|ξ|, k) + γ(‖u‖∞). (8)

1see Remark 3.5 for a definition
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If the KL-function β in (8) can be chosen as

β(r, t) = Cκtr (9)

with C ≥ 1 and κ ∈ [0, 1), then system (6) is called exponentially input-to-state stable (ex-
pISS).

An alternative definition of ISS replaces the sum in (8) by the maximum. Indeed, both
definitions are equivalent, and the equivalence even holds for more general definitions of ISS
using monotone aggregation functions, see [12, Proposition 2.5].

Remark 3.3 Since we are interested in checking the ISS property of system (6), it is clear
that the existence of functions ω1, ω2 ∈ K satisfying (7) in Assumption 3.1 is no restriction,
since every ISS system necessarily satisfies (7). In particular, by (8), we have

|G(ξ, µ)| = |x(1, ξ, µ)| ≤ β(|ξ|, 1) + γ(|µ|)

and we may choose ω1(·) = β(·, 1) and ω2(·) = γ(·) to obtain (7). Moreover, for expISS
systems we can take ω1(s) = Cκs where C ≥ 1 and κ ∈ [0, 1) stem from (9). In other words,
any expISS system is globally K-bounded with a linear function ω1 ∈ K.

The following lemma shows that by a suitable change of coordinates, i.e., a homeomor-
phism T : Rn → R

n with T (0) = 0 (see e.g. [24]), we can always assume that ω1 ∈ K in (7)
is linear.

Lemma 3.4 Consider system (6) and let Assumption 3.1 hold. Then there exists a change
of coordinates T such that for z(k) := T (x(k)) the system

z(k + 1) = G̃(z(k), u(k)), ∀k ∈ N (10)

satisfies (7) with linear ω1 ∈ K.

Proof. Consider a change of coordinates T : Rn → R
n, and define z(k) := T (x(k)),

where x(k) comes from (6). Then z satisfies (10) with

G̃(z, u) = T (G(T−1(z), u)).

Note that G̃(0, 0) = 0 since T and its inverse fix the origin. Furthermore, let ω1, ω2 ∈ K
satisfy (7) for the map G. Without loss of generality, we assume that (2ω1 − id) ∈ K∞, else
increase ω1. Take any λ > 1. By [25, Lemma 19] there exists a K∞-function ϕ satisfying

ϕ(2ω1(s)) = λϕ(s) ∀s ≥ 0. (11)

Define T (x) := ϕ(|x|) x
|x| for x 6= 0, and T (0) = 0. Clearly, T is continuous for x 6= 0. On

the other hand, |T (x)| = ϕ(|x|), so continuity of T in zero is implied by continuity of ϕ and
ϕ(0) = 0. With z = T (x) a direct computation, using again that |z| = ϕ(|x|) and that x and
z are on the same ray, yields T−1(z) := ϕ−1(|z|) z

|z| for z 6= 0 and T−1(0) = 0. By the same
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arguments as above also T−1 is continuous. Hence, T is a homeomorphism. Moreover, we
obtain the following estimate

|G̃(ξ̃, µ̃)| = ϕ
(

|G
(

ϕ−1(|ξ̃|) ξ̃

|ξ̃|
, µ̃
)

|
) (7)

≤ ϕ
(

ω1(ϕ
−1(|ξ̃|)) + ω2(|µ̃|)

)

≤ ϕ
(

2ω1(ϕ
−1(|ξ̃|))

)

+ ϕ (2ω2(|µ̃|)) (11)
= λ|ξ̃| + ϕ (2ω2(|µ̃|)) .

So, G̃ satisfies (7) with the linear function ω1(s) = λs, s ∈ R+, which concludes the proof. �

Remark 3.5 We further note that ISS implies global asymptotic stability of the origin with
0 input (0-GAS), i.e., the existence of a class-KL function β such that for all ξ ∈ R

n and all
k ∈ N,

|x(k, ξ, 0)| ≤ β(|ξ|, k).

In [3] the author shows that for discrete-time systems (6) with continuous dynamics integral
input-to-state stability (iISS) is equivalent to 0-GAS. Note that this is not true in continuous
time.

To prove ISS of system (6) the concept of ISS Lyapunov functions is widely used (see e.g.
[20]). Note that in the following definition we do not require continuity of the ISS Lyapunov
function. To shorten notation, we call a function W : Rn → R+ proper and positive definite
if there exist α1, α2 ∈ K∞ such that for all ξ ∈ R

n

α1(|ξ|) ≤ W (ξ) ≤ α2(|ξ|).

Definition 3.6 A proper and positive definite function W : Rn → R+ is called a dissipative
ISS Lyapunov function for system (6) if there exist σ ∈ K and a positive definite function ρ
with (id−ρ) ∈ K∞ such that for any ξ ∈ R

n, µ ∈ R
m

W (G(ξ, µ)) ≤ ρ(W (ξ)) + σ(|µ|). (12)

Remark 3.7 (i) In many prior works (e.g. [20, 29]) the definition of a dissipative ISS
Lyapunov function requires the existence of a function α3 ∈ K∞ and a function σ ∈ K such
that

W (G(ξ, µ)) −W (ξ) ≤ −α3(|ξ|) + σ(|µ|) (13)

holds for all ξ ∈ R
n, µ ∈ R

m. Let us briefly explain, that this requirement is equivalent to
Definition 3.6. First, from (13) and the positive definiteness of W we get 0 ≤ W (G(ξ, µ)) ≤
W (ξ) − α3(|ξ|) + σ(|µ|) ≤ (id−α3 ◦ α−1

2 )(W (ξ)) + σ(|µ|) = ρ(W (ξ)) + σ(|µ|) with ρ :=
(id−α3 ◦ α−1

2 ) positive definite, and (id−ρ) = α3 ◦ α−1
2 ∈ K∞. So (13) implies (12). To

show the other implication, note that since 0 ≤ W (G(ξ, µ)) ≤ (α2 − α3)(|ξ|) + σ(|µ|) holds it
follows that α2(s) ≥ α3(s) for all s ∈ R+ by taking µ = 0. Let (12) hold with positive definite
function ρ satisfying (id−ρ) ∈ K∞, then we get W (G(ξ, µ)) −W (ξ) ≤ −α3(|ξ|) + σ(|µ|) for
α3 := (id−ρ) ◦ α1 ∈ K∞, which is (13).

(ii) For systems with external inputs u there are usually two forms of ISS Lyapunov functions.
The first one is the dissipative form of Definition 3.6. The other type are frequently called

7



implication-form ISS Lyapunov functions. These are proper and positive definite function
W : Rn → R+ satisfying

|ξ| ≥ χ(|µ|) ⇒ W (G(ξ, µ)) ≤ ρ̄(W (ξ)). (14)

for all ξ ∈ R
n, µ ∈ R

m, and some positive definite function ρ̄ < id and χ ∈ K.
If the function G in (6) is continuous then conditions (12) and (14) are equivalent, see [20,

Remark 3.3] and [14, Proposition 3.3 and 3.6]. So the existence of a dissipative or implication-
form ISS Lyapunov function implies ISS of the system if the dynamics are continuous.

If G is discontinuous then the equivalence between the existence of dissipative and implication-
form ISS Lyapunov functions is no longer satisfied. Indeed, any dissipative ISS Lyapunov
function is an implication-form ISS Lyapunov function, but the converse does not hold in gen-
eral, see [14]. In particular, for discontinuous dynamics, an implication-form ISS Lyapunov
function is not sufficient to conclude ISS, see also [27, Remark 2.1] and [14, Example 3.7].

(iii) To prove ISS of system (6), the authors in [14, Proposition 2.4] have shown that the
assumption (id−ρ) ∈ K∞ in Definition 3.6 can be weakened to the condition (id−ρ) ∈ K and
sup(id−ρ) > supσ. Moreover, for any ISS system (6) there exists a dissipative ISS Lyapunov
function W with linear decrease function ρ, see [14, Theorem 2.6].

We relax the condition (12) in Definition 3.6 by replacing the solution after one time step
G(ξ, µ) = x(1, ξ, µ) by the solution after a finite number of time steps. This relaxation was
recently introduced in [28, 9, 8] for systems without inputs. In the context of ISS, i.e., for
systems with inputs, this concept appears to be new.

Definition 3.8 A proper and positive definite function V : Rn → R+ is called a dissipative
finite-step ISS Lyapunov function for system (6) if there exist an M ∈ N, σ ∈ K, a positive
definite function ρ with (id−ρ) ∈ K∞ such that for any ξ ∈ R

n, u(·) ∈ l∞(Rm)

V (x(M, ξ, u(·))) ≤ ρ(V (ξ)) + σ(‖u‖∞). (15)

At first glance the task of finding an ISS Lyapunov function appears to have become
easier, as we are only required to satisfy a condition after a finite number of steps. We
will show later that there is some truth to this point of view, in that it is possible to show
that a simple class of functions always yields a dissipative finite-step ISS Lyapunov function.
Unfortunately, there is now a new general question: It is not sufficient to know a dissipative
finite-step ISS Lyapunov function, but we also require to know the constant M , which may
be hard to characterize.

In the next section we study properties of dissipative finite-step ISS Lyapunov functions.

4 Dissipative Finite-Step ISS Lyapunov Theorems

We start this section by proving that the existence of a dissipative finite-step ISS Lyapunov
function is sufficient to conclude ISS of system (6). As any dissipative ISS Lyapunov function
is a particular dissipative finite-step ISS Lyapunov function, this result is closely related to [20,
Lemma 3.5]. Furthermore, the class of dissipative ISS Lyapunov functions is a strict subset of
the class of dissipative finite-step ISS Lyapunov functions. Hence, this result is more general
than showing that the existence of a dissipative ISS Lyapunov function implies ISS of the
underlying system. The proof requires a comparison lemma and an additional lemma, which
are given in the appendix.
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Theorem 4.1 If there exists a dissipative finite-step ISS Lyapunov function for system (6)
then system (6) is ISS.

The proof follows the lines of [20, Lemma 3.5], which establishes that for continuous
dynamics the existence of a continuous dissipative ISS Lyapunov function implies ISS of the
system. Note that in this work we consider global K-boundedness of the system dynamics
instead of continuity such as in [20].

Proof. Let V be a dissipative finite-step ISS Lyapunov function satisfying Definition 3.8
for system (6) with suitable α1, α2 ∈ K∞, M ∈ N, σ ∈ K, and a positive definite function ρ
with (id−ρ) ∈ K∞. Let ξ ∈ R

n and fix any input u(·) ∈ l∞(Rm). We abbreviate the state
x(k) := x(k, ξ, u(·)). Let ν ∈ K∞ be such that id−ν ∈ K∞ and consider the set

∆ :=
{
ξ ∈ R

n : V (ξ) ≤ δ := (id−ρ)−1 ◦ ν−1 ◦ σ(‖u‖∞)
}
.

We will now show that for any k ∈ N with x(k) ∈ ∆ we have x(k + lM) ∈ ∆ for all l ∈ N.
Using (15), a direct computation yields

V (x(k + M)) ≤ ρ(V (x(k))) + σ(‖u‖∞) ≤ ρ(δ) + σ(‖u‖∞)

= −(id−ν) ◦ (id−ρ)(δ) + δ − ν ◦ (id−ρ)(δ) + σ(‖u‖∞)

= −(id−ν) ◦ (id−ρ)(δ) + δ ≤ δ.

Hence, x(k + M) ∈ ∆ and by induction we get x(k + lM) ∈ ∆ for all l ∈ N.
Let j0 ∈ N ∪ {∞} satisfy j0 := min{k ∈ N : x(k), . . . , x(k + M − 1) ∈ ∆}. By definition

of j0 and by the above consideration, we see that x(k) ∈ ∆ for all k ≥ j0. Thus, we have

V (x(k)) ≤ (id−ρ)−1 ◦ ν−1 ◦ σ(‖u‖∞) =: γ̃(‖u‖∞). (16)

For k < j0, we have to consider two cases.
First, if x(k) ∈ ∆ then by definition of ∆ we have V (x(k)) ≤ γ̃(‖u‖∞). Secondly, if

x(k) 6∈ ∆ let l ∈ N and k0 ∈ {0, . . . ,M − 1} satisfy k = lM + k0. Since x(k0) ∈ ∆
implies x(lM + k0) ∈ ∆, we conclude x(k0) 6∈ ∆. Hence, by definition of ∆, V (x(k0)) >
(id−ρ)−1 ◦ ν−1 ◦ σ(‖u‖∞), or, equivalently, σ(‖u‖∞) < ν ◦ (id−ρ) ◦ V (x(k0)), which implies

V (x(k0 + M)) ≤ ρ(V (x(k0))) + σ(‖u‖∞)

< ρ(V (x(k0))) + ν ◦ (id−ρ) ◦ V (x(k0))

= (ρ + ν ◦ (id−ρ)) ◦ V (x(k0)).

Note that the function χ := (ρ + ν ◦ (id−ρ)) satisfies χ = id−(id−ν) ◦ (id−ρ) < id. Let
L := sup{l ∈ N : V (x(lM + k0)) 6∈ ∆}. Then we have for all l ∈ {0, . . . , L}

V (x((l + 1)M + k0)) ≤ χ(V (x(lM + k0))).

Note that the function χ = ρ + ν ◦ (id−ρ) is continuous, positive definite and unbounded as
ν, (id−ρ) ∈ K∞, and it satisfies χ(0) = 0. Hence, we can without loss of generality assume
that χ ∈ K∞, else pick χ̃ ∈ K∞ satisfying χ ≤ χ̃ < id. Applying Lemma A.1 there exists a
KL-function βk0 satisfying

V (x(lM + k0)) ≤ βk0(V (x(k0)), lM + k0)
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for all l ∈ {0, . . . , L}. Moreover, for all l > L, we have V (x(lM + k0)) ∈ ∆ implying
V (x(lM + k0)) ≤ γ̃(‖u‖∞). Thus, for all l ∈ N, we have

V (x(lM + k0)) ≤ max {βk0 (V (x(k0)), lM + k0) , γ̃(‖u‖∞)} . (17)

It is important to note that both γ̃ and χ are independent on the choice of ξ ∈ R
n and

u(·) ∈ l∞(Rm). In addition, by the proof of Lemma A.1, also βk0 ∈ KL does not depend on
ξ ∈ R

n and u(·) ∈ l∞(Rm). Hence, (17) holds for all solutions x(k).
Define the KL-function

β̃(s, r) := max
k0∈{0,...,M−1}

βk0(s, r)

and V max
M (ξ, u(·)) := maxj∈{0,...,M−1} V (x(j, ξ, u(·))). Then for all k ∈ N, all ξ ∈ R

n and all
u(·) ∈ l∞(Rm) we have

V (x(k)) ≤ max
{

β̃(V max
M (ξ, u(·)), k), γ̃(‖u‖∞)

}

.

Consider ϑj, ζj ∈ K from Lemma A.3 and define ϑ̃ := maxj∈{0,...,M−1} α2(2ϑj) and ζ̃ :=
maxj∈{0,...,M−1} α2(2ζj). Then for all ξ ∈ R

n and u(·) ∈ l∞(Rm) we get

V max
M (ξ, u(·)) ≤ max

j∈{0,...,M−1}
α2(|x(j)|) ≤ ϑ̃(|ξ|) + ζ̃(‖u‖∞).

So all in all we have for all k ∈ N, all ξ ∈ R
n and all u(·) ∈ l∞,

V (x(k)) ≤ max
{

β̃(ϑ̃(|ξ|) + ζ̃(‖u‖∞), k), γ̃(‖u‖∞)
}

≤ max
{

β̃(2ϑ̃(|ξ|), k) + β̃(2ζ̃(‖u‖∞), 0), γ̃(‖u‖∞)
}

≤ β̃(2ϑ̃(|ξ|), k) +
(

β̃(2ζ̃(‖u‖∞), 0) + γ̃(‖u‖∞)
)

.

Hence, we get (8) by defining β(s, r) := α−1
1 (2β̃(2ϑ̃(s), r)) and

γ(s) := α−1
1

(

2(β̃(2ζ̃(‖u‖∞), 0) + γ̃(‖u‖∞))
)

. Note that for fixed r ≥ 0, β(·, r) is a K-function

as the composition of K-functions, and for fixed s > 0, β(s, ·) ∈  L, since the composition of K-
and  L-functions is of class  L (see [15, Section 24], [23, Section 2]), so really β ∈ KL. Further
note that the summation of class-K functions yields a class-K function, so γ ∈ K. �

Remark 4.2 To clarify the concept of dissipative finite-step ISS Lyapunov functions we now
discuss the connection to higher order iterates of system (6).

Let G : Rn × R
m → R

n from (6) be given. Then, for any i ∈ N with i ≥ 1, we define the
ith iterate of G, denoted by Gi : Rn × (Rm)i → R

n, as follows:

ξ ∈ R
n, w1 = u1 ∈ R

m 7→ G1(ξ, w1) := G(ξ, u1),

ξ ∈ R
n, wi := (u1, . . . , ui) ∈ (Rm)i 7→ Gi(ξ, wi) := G(Gi−1(ξ, wi−1), ui)

with i ∈ N, i ≥ 2. Now fix any M ∈ N, and consider the system

x̄(k + 1) = GM (x̄(k), wM (k)) (18)
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with state x̄ ∈ R
n and input function wM (·) = (u1(·), . . . , uM (·)) taking values in (Rm)M .

Firstly, for any k ∈ N there exist unique l ∈ N and i ∈ {1, . . . ,M} such that k = lM + i. For
u : N → R

m define ui, i ∈ {1, ..,M}, by

ui(l) := u(lM + i), l ∈ N,

we call (18) the M -iteration corresponding to system (6). Note that ‖wM‖∞ := max{‖u1‖∞ , . . . , ‖uM‖∞} =
‖u‖∞. It is not difficult to see that for all j ∈ N and all ξ ∈ R

n we have

x(jM, ξ, u(·)) = x̄(j, ξ, wM (·)). (19)

Thus, if system (6) is ISS, i.e., it satisfies (8), then also the M -iteration (18) is ISS and
satisfies

|x̄(j, ξ, wM (·))| (19)= |x(jM, ξ, u(·))| ≤ β(|ξ|, jM) + γ(‖u‖∞) =: β̄(|ξ|, j) + γ(‖wM‖∞).

Moreover, a dissipative finite-step ISS Lyapunov function for system (6) with suitable M ∈ N

is also a dissipative ISS Lyapunov function for the M -iteration (18).
Conversely, let system (18) be ISS then there exists a dissipative ISS Lyapunov function

V for system (18) (see e.g. [20, Theorem 1] for continuous GM or [14, Lemma 2.3] for
discontinuous GM ). From (19) we see that V is also a dissipative finite-step ISS Lyapunov
function for system (6), and by Theorem 4.1 we conclude that system (6) is ISS.

Summarizing, we obtain the following corollary.

Corollary 4.3 System (6) is ISS if and only if the M -iteration (18) is ISS. In particular, a
function V : Rn → R+ is a dissipative Lyapunov function for system (18) if and only if it is
a dissipative finite-step Lyapunov function for system (6).

As finding a (dissipative) ISS Lyapunov function is a hard task, we will see in the remain-
der of this work that finding a dissipative finite-step ISS Lyapunov function (or, equivalently, a
dissipative Lyapunov function for a corresponding M -iteration) is sometimes easier. Further-
more, if we impose stronger conditions on the dissipative finite-step ISS Lyapunov function
and the dynamics, then we can conclude an exponential decay of the bound on the system’s
state.

Theorem 4.4 Let system (6) be globally K-bounded with linear ω1 ∈ K∞. If there exists a
dissipative finite-step ISS Lyapunov function V for system (6) satisfying for any ξ ∈ R

n and
u(·) ∈ l∞(Rm)

a|ξ|λ ≤ V (ξ) ≤ b|ξ|λ,
V (x(M, ξ, u(·))) ≤ cV (ξ) + d ‖u‖∞

with b ≥ a > 0, c ∈ [0, 1) and d, λ > 0, then system (6) is expISS.

Proof. The proof follows the lines of the proof of Theorem 4.1. Hence, we will omit the
detailed proof, and only give a sketch.

Consider the linear global K-bound ω1 ∈ K∞. We assume that ω2 ∈ K is a linear function,
too. This assumption is only for simplifying the proof, but does not change the result. First
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note that in the proof of Theorem 4.1 we can choose ν(s) = hs with h ∈ (0, 1), and since ρ
and σ are linear K∞-functions, we obtain that γ̃(s) := (id−ρ)−1 ◦ ν−1 ◦ σ(s) = d

h(1−c)s is a

linear function. Furthermore, in the case that x(k) 6∈ ∆, we see that

V (x(k + M, ξ, u(·))) ≤ (c + h(1 − c))V (x(k, ξ, u(·))).

Define κ̃ := (c + h(1 − c)) < 1. In this case using the comparison Lemma A.2 we obtain the
estimate

V (x(k, ξ, u(·))) ≤ (κ̃1/M)
k

κ̃ V max
M (ξ, u(·)),

where V max
M (ξ, u(·)) := maxj∈{0,...,M−1} V (x(j, ξ, u(·))). Let ω1(s) := w1s and ω2(s) := w2s

for s ∈ R+ and w1, w2 > 0. Using Lemma A.4, the estimate (39) is satisfied for ϑj(s) = wj
1s

and ζj(s) = w2
∑j−1

i=0 w
i
1s. Thus,

V (x(j, ξ, u(·)))≤b (|x(j, ξ, u(·))|)λ≤b

(

wj
1|ξ|+w2

j−1
∑

i=0

wi
1 ‖u‖∞

)λ

=b (w̃1|ξ|+w̃2 ‖u‖∞)λ

with w̃1 := maxj∈{0,...,M−1}w
j
1, and w̃2 := maxj∈{0,...,M−1}w2

∑j−1
i=0 w

i
1, and hence,

V (x(k, ξ, u(·))) ≤ max
j∈{0,...,M−1}

κ̃k/M

κ̃
b

(

wj
1|ξ| + w2

j−1
∑

i=0

wi
1 ‖u‖∞

)λ

≤ b
κ̃ κ̃

k/M (w̃1|ξ| + w̃2 ‖u‖∞)λ .

This implies that for all ξ ∈ R
n and all u(·) ∈ l∞(Rm) we have

|x(k, ξ, u(·))| ≤
(
a−1V (x(k, ξ, u(·)))

)1/λ ≤
(

b
aκ̃ κ̃

k/M
)1/λ

(w̃1|ξ| + w̃2 ‖u‖∞)

≤
(

bω̃
1/λ
1

aκ̃

)λ

κk|ξ| +

(

bω̃
1/λ
2

aκ̃

)λ

‖u‖∞ ,

with κ := κ̃1/λM < 1. So, system (6) satisfies (8) with β as in (9), where C =

(

bω̃
1/λ
1

aκ̃

)λ

and

κ < 1 as defined above. Hence, system (6) is expISS. �

While Theorem 4.1 shows the sufficiency of the existence of dissipative finite-step ISS Lya-
punov functions to conclude ISS of system (6), we are now interested in the necessity. At this
stage we can exploit the fact that any dissipative ISS Lyapunov function as defined in Defini-
tion 3.6 is a particular dissipative finite-step ISS Lyapunov function satisfying Definition 3.8
with M = 1.

Proposition 4.5 If system (6) is ISS then there exists a dissipative finite-step ISS Lyapunov
function for system (6).

Proof. If the right-hand side G : Rn × R
m → R

n of system (6) is continuous, then [20,
Theorem 1] implies the existence of a smooth function V : R

n → R+ satisfying α1(|ξ|) ≤
V (ξ) ≤ α2(|ξ|) and V (G(ξ, µ)) − V (ξ) ≤ −α3(|ξ|) + σ(|µ|) for all ξ ∈ R

n, µ ∈ R
m, and
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suitable α1, α2, α3 ∈ K∞, σ ∈ K. Then with Remark 3.7 and M = 1 it is easy to see that V
is a dissipative finite-step ISS Lyapunov function. This result also applies to discontinuous
dynamics, see [14, Lemma 2.3]. �

Obviously, Proposition 4.5 makes use of the converse ISS Lyapunov theorem in [20, 14] to
guarantee the existence of a dissipative (finite-step) ISS Lyapunov function.

For the case of expISS systems of the form (6), it turns out that norms are dissipative
finite-step ISS Lyapunov functions.

Theorem 4.6 If system (6) is expISS then the function V : Rn→R+ defined by

V (ξ) := |ξ|, ξ ∈ R
n (20)

is a dissipative finite-step ISS Lyapunov function for system (6).

Proof. System (6) is expISS if it satisfies (8) with (9) for constants C ≥ 1 and κ ∈ [0, 1).
Take M ∈ N such that CκM < 1, and V as defined in (20). Clearly, V is proper and positive
definite with α1 = α2 = id ∈ K∞. On the other hand, for any ξ ∈ R

n, we have

V (x(M, ξ, u(·))) = |x(M, ξ, u(·))| ≤ CκM |ξ| + γ(‖u‖∞)

= CκMV (ξ) + γ(‖u‖∞) =: ρ(V (ξ)) + σ(‖u‖∞)

where ρ(s) := CκMs < s for all s > 0, since CκM < 1. Note that (id−ρ)(s) = (1 −CκM )s ∈
K∞ and σ := γ ∈ K∞, which shows (15). So V defined in (20) is a dissipative finite-step ISS
Lyapunov function for system (6). �

We emphasize that the hard task in Theorem 4.6 is finding a sufficiently large M ∈ N.
However, Theorem 4.6 suggests to take the norm as a candidate for a dissipative finite-step
ISS Lyapunov function. Verification for this candidate function to be a dissipative finite-step
ISS Lyapunov function can be done as outlined in the following procedure.

Procedure 4.7 Consider system (6) and assume that Assumption 3.1 holds.

[1] Set k = 1.

[2] Check
|x(k, ξ, u(·))| ≤ c|ξ| + σ(|u|[0,k])

for all ξ ∈ R
n, u(·) ∈ l∞(Rm) with suitable c ∈ [0, 1) and σ ∈ K∞. If the inequality

holds set M = k; else set k = k + 1 and repeat.

If this procedure is successful, then V (ξ) := |ξ| is a dissipative finite-step ISS Lyapunov
function for system (6). By Theorem 4.4 system (6) is expISS.

At this point we should mention that the procedure just described is far from being an
algorithm. The question how to really perform item [2], which should result in global bounds,
would depend on the existence of suitable analytic or numerical bounds which may or may
not exist depending on the system class at hand. For easy examples this can surely be done
by hand. How to address this question systematically would depend on specific situations
and we will not discuss this issue here. It is clear that in general this is a very hard task.
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5 Relaxed ISS Small-Gain Theorems

In this section we consider system (6) split into N subsystems of the form

xi(k + 1) = gi(x1(k), . . . , xN (k), u(k)), k ∈ N, (21)

with xi(0) ∈ R
ni and gi : Rn1 × . . . × R

nN × R
m → R

ni for i ∈ {1, . . . , N}. We further let
n =

∑N
i=1 ni, x = (x1, . . . , xN ) ∈ R

n, then with G = (g1, . . . , gN ) we call (6) the overall
system of the subsystems (21). In this sense (21) is what we call a large-scale system.

A typical assumption of classical (Lyapunov-based) small-gain theorems is the requirement
that each subsystem (21) has to admit an ISS Lyapunov function (see e.g. [16, 6, 29]). This
assumption comes from the fact that in small-gain theory the influence of the other subsystems
is considered as disturbance. This is quite conservative as can be seen from the following linear
system

x(k + 1) =

(
1.5 1
−2 −1

)

x(k), k ∈ N.

As the spectral radius of the matrix is equal to
√

2/2 the origin is GAS. But the first decoupled
subsystem x1(k + 1) = 1.5x1(k) is unstable. So classical small-gain theorems cannot be
applied.

The aim of this section is to derive an ISS small-gain theorem which relaxes the assumption
of classical (Lyapunov-based) ISS small-gain theorems. We assume that each system has to
admit a Lyapunov-type function that decreases after a finite number of time steps rather than
at each time step. Here it is important to note that these decrease conditions are formulated
for the interconnected system, not for the decoupled system. The latter is a standard feature
of the classical approach. So the Lyapunov-type functions proposed here do not require 0-GAS
of the origin of the subsystems.

The results in this section are based on the small-gain theorems presented in [13, 9]
for systems without inputs, and the construction of (finite-step) ISS Lyapunov functions
presented in [6]. The section is divided in two parts. In Section 5.1, we prove ISS of system (6)
by constructing an overall dissipative finite-step ISS Lyapunov function. In Section 5.2, we
show that the relaxed small-gain theorems derived are necessary at least for expISS systems.

5.1 Dissipative ISS small-gain theorems

We start with the case that the effect of the external input u can be captured via maximization.

Theorem 5.1 Let (6) be given by the interconnection of the subsystems in (21). Assume
that there exist an M ∈ N, M ≥ 1, functions Vi : Rni → R+, γij ∈ K∞ ∪ {0}, γiu ∈ K ∪ {0},
and positive definite functions δi, with di := (id +δi) ∈ K∞, for i, j ∈ {1, . . . , N} such that
with Γ⊕ defined in (2), and the diagonal operator D defined by D = diag(di) the following
conditions hold.

(i) For all i ∈ {1, . . . , N}, the functions Vi are proper and positive definite.

(ii) For all ξ = (ξ1, . . . , ξN ) ∈ R
n with ξi ∈ R

ni, i ∈ {1, . . . , N} and u(·) ∈ l∞(Rm) it holds
that






V1(x1(M, ξ, u(·)))
...

VN(xN (M, ξ, u(·)))




 ≤ max







Γ⊕











V1(ξ1)
...

VN (ξN )









 ,






γ1u(‖u‖∞)
...

γNu(‖u‖∞)












.
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(iii) The small-gain condition2 Γ⊕ ◦D 6≥ id holds.

Then there exists an Ω-path σ̃ ∈ KN
∞ for Γ⊕ ◦ D. Moreover, if for all i ∈ {1, . . . , N} there

exists a K∞-function α̂i satisfying

σ̃−1
i ◦ d−1

i ◦ σ̃i = σ̃−1
i ◦ (id +δi)

−1 ◦ σ̃i = id−α̂i (22)

then the function V : Rn → R+ defined by

V (ξ) := max
i

(σ̃−1
i ◦ d−1

i )(Vi(ξi)). (23)

is a dissipative finite-step ISS Lyapunov function for system (6). In particular, system (6) is
ISS.

Let us briefly discuss the differences in the assumptions of Theorem 5.1 when compared
to the small-gain theorem for the maximization case e.g. from [6]. First there is of course
the finite-step condition (ii), but this is not surprising. What is conceptually new is that a
strong small-gain condition Γ⊕ ◦D 6≥ id is required and in addition we need the existence of
the functions α̂i satisfying (22). This is by no means automatic. If ISS of all subsystems is
assumed as in [6] then in the maximization case the condition Γ⊕ 6≥ id is sufficient. In our
proof we use the stronger condition and we suspect that this extra robustness required is not
merely a result of our technique of proof. Rather, it is essential to deal with possibly unstable
subsystems. We explicitly point out the step where the new condition (22) is needed in the
proof.

Proof. Assume that Vi and γij, γiu satisfy the hypothesis of the theorem. Denote
γu(·) := (γ1u(·), . . . , γNu(·))⊤. Then from condition (iii) and [6, Theorem 5.2-(iii)] it follows
that there exists an Ω-path σ̃ ∈ KN

∞ such that

(Γ⊕ ◦D)(σ̃(s)) < σ̃(s)

holds for all s > 0. In particular,

max
i,j∈{1,...,N}

σ̃−1
i ◦ γij ◦ dj ◦ σ̃j < id . (24)

In the following let i, j ∈ {1, . . . , N}. Let V : Rn → R+ be defined as in (23). The aim is
to show that V is a dissipative finite-step ISS Lyapunov function for the overall system (6).
Recall that condition (i) implies the existence of α1i, α2i ∈ K∞ such that for all ξi ∈ R

ni we
have α1i(|ξi|) ≤ Vi(ξi) ≤ α2i(|ξi|). Thus,

V (ξ) ≥ max
i

(σ̃−1
i ◦ d−1

i )(α1i(|ξi|)) ≥ α1(|ξ|)

with α1 := minj σ̃
−1
j ◦ d−1

j ◦α1j ◦ 1
κ id ∈ K∞, where κ ≥ 1 comes from (1). On the other hand

we have
V (ξ) ≤ max

i
(σ̃−1

i ◦ d−1
i )(α2i(|ξi|)) ≤ α2(|ξ|)

2Note that the strong small-gain condition in Definition 2.2 requires the functions δi in the diagonal operator
to be of class K∞, whereas here we only require δi to be positive definite.
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with α2 := maxi σ̃
−1
i ◦ d−1

i ◦ α2i ∈ K∞, which shows V defined in (23) is proper and positive
definite. To show the decay of V , i.e., an inequality of the form (15), we define σ := maxi σ̃

−1
i ◦

d−1
i ◦ γiu, and obtain

V (x(M, ξ, u(·))) = max
i

(σ̃−1
i ◦ d−1

i )(Vi(xi(M, ξ, u(·))))
cond. (ii)

≤ max
i

(σ̃−1
i ◦ d−1

i )

(

max

{

max
j

γij(Vj(ξj)), γiu(‖u‖∞)

})

= max

{

max
i,j

σ̃−1
i ◦ d−1

i ◦ γij(Vj(ξj)),max
i

σ̃−1
i ◦ d−1

i ◦ γiu(‖u‖∞)

}

≤ max

{

max
i,j

(
σ̃−1
i ◦d−1

i ◦σ̃i
)

︸ ︷︷ ︸

=id−α̂i by (22)

◦
(
σ̃−1
i ◦γij ◦dj◦σ̃j

)

︸ ︷︷ ︸

<id by (24)

◦
(

σ̃−1
j ◦d−1

j ◦Vj(ξj)
)

︸ ︷︷ ︸

≤V (ξ)

, σ(‖u‖∞)

}

< max

{

max
i

(id−α̂i)(V (ξ)), σ(‖u‖∞)

}

.

Define ρ := maxi(id−α̂i), then ρ ∈ K∞ by (22), and satisfies id−ρ = mini α̂i ∈ K∞. Noticing
that the maximum can be upper bounded by summation, this shows that V is a dissipative
finite-step ISS Lyapunov function as defined in Definition 3.8. Then from Theorem 4.1 we
conclude that system (6) is ISS. �

Remark 5.2 (i) To understand the assumptions imposed in Theorem 5.1 consider the case
that M = 1 and δi ∈ K∞, i ∈ {1, . . . , N}. First, by condition (ii), we have for any i ∈
{1, . . . , N}

Vi(xi(1, ξ, u(·))) ≤ max

{

max
j∈{1,...,N}

γij(Vj(ξj)), γiu‖u‖∞
}

. (25)

From the small-gain condition (iii) we conclude that γii ◦ (id +δi) < id by considering the ith
unit vector. Hence, since δi ∈ K∞, we have γii < (id +δi)

−1 = id−δ̂i with δ̂i ∈ K∞, where
the last equality follows from [32, Lemma 2.4]. Thus, we can write (25) as

Vi(xi(1, ξ, u(·))) ≤ (id−δ̂i
︸ ︷︷ ︸

=:ρi

)(Vi(ξi)) +

N∑

j=1
j 6=i

γij(Vj(ξj)) + γiu‖u‖∞.

Together with condition (i) this implies that the functions Vi are dissipative ISS Lyapunov
functions for the subsystem (21) with respect to both internal and external inputs. Therefore,
if M = 1 and δi ∈ K∞ then Theorem 5.1 is a dissipative small-gain theorem for discrete-time
systems in the classical sense, see also Remark 5.5.

(ii) If M = 1 and the functions δi are only positive definite then the functions Vi are
not necessarily dissipative ISS Lyapunov functions, as we cannot ensure that the decay of Vi

in terms of the function ρi satisfies id−ρi ∈ K∞. Thus, in Theorem 5.1, even in the case
M = 1, we do not necessarily assume that the subsystems are ISS.

(iii) Now consider the case M > 1. In Theorem 5.1, the internal inputs xj may have
an stabilizing effect on system xi in the first M time steps, whereas the external input u is
considered as a disturbance. Thus, the subsystems do not have to be ISS, while the overall
system is ISS. This observation is essential as it extends the classical idea of small-gain
theory. In particular, the subsystems (21) can be 0-input unstable, i.e., the origin of the
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system xi(k + 1) = gi(0, . . . , 0, xi(k), 0, . . . , 0) can be unstable. See also Section 6 devoted to
the discussion of an example.

In the following example we show that condition (22), which quantifies the robustness
given by the scaling matrix D, is not trivially satisfied, even if δi ∈ K∞.

Example 5.3 Consider the functions

σ̃(s) := es − 1, σ̃−1(s) = log(s + 1), δ̂(s) = (s + 1)



1 −
(

1

s + 1

) 1
s+1



 .

It is not hard to see that σ̃, σ̃−1 ∈ K∞. Moreover, by [7, Appendix A.3], also δ̂ ∈ K∞ and
(id−δ̂) ∈ K∞. Similarly as in [32, Lemma 2.4], there exists3 a function δ ∈ K∞ such that
(id +δ)−1 = id−δ̂. Hence, we have for all s ∈ R+

σ̃−1 ◦ (id +δ)−1 ◦ σ̃(s) = σ̃−1 ◦ (id−δ̂) ◦ σ̃(s) = s(1 − e−s).

As lims→∞ s(1 − e−s) − s = 0, there cannot exist a K∞-function α̂ satisfying (22).

In condition (ii) of Theorem 5.1 the effect of internal and external inputs is captured via
maximization. Next, we replace the maximum in condition (ii) of Theorem 5.1 by a sum. Note
that in the case of summation, the small-gain condition invoked in Theorem 5.1 is not strong
enough to ensure that V defined in (23) is a dissipative finite-step ISS Lyapunov function (see
[6]), so we also have to change condition (iii) of Theorem 5.1. In particular, we assume that
the functions δi are of class K∞, and not only positive definite. We recall from Section 2.3
that if the diagonal operator D = diag(id +δi) is factorized into

D = D2 ◦D1, Dj = diag(id +δij), δij ∈ K∞, i ∈ {1, . . . , N}, j ∈ {1, 2} (26)

then D ◦ Γ⊕ 6≥ id is equivalent to D1 ◦ Γ⊕ ◦D2 6≥ id.

Theorem 5.4 Let (6) be given by the interconnection of the subsystems in (21). Let δi, δi1 , δi2 ∈
K∞ for i ∈ {1, . . . , N} and D := diag(di) := diag(id +δi) satisfy (26). Assume that there
exist an M ∈ N, M ≥ 1, functions Vi : Rni → R+, γij ∈ K∞ ∪ {0}, and γiu ∈ K ∪ {0} for
i, j ∈ {1, . . . , N} such that with Γ⊕ defined in (2) the following conditions hold.

(i) For all i ∈ {1, . . . , N}, the functions Vi are proper and positive definite.

(ii) For all ξ ∈ R
n and u(·) ∈ l∞(Rm) it holds that






V1(x1(M, ξ, u(·)))
...

VN (xN (M, ξ, u(·)))




 ≤ Γ⊕











V1(ξ1)
...

VN (ξN )









+






γ1u(‖u‖∞)
...

γNu(‖u‖∞)




 .

(iii) The strong small-gain condition D ◦ Γ⊕ 6≥ id is satisfied.

3Note that [32, Lemma 2.4] argues that if δ ∈ K∞ is given, there exists a suitable δ̂ ∈ K∞ satisfying
(id+δ)−1 = id−δ̂. Conversely, for any δ̂ ∈ K∞ with (id−δ̂) ∈ K∞ the existence of a δ ∈ K∞ satisfying
(id−δ)−1 = id−δ̂ follows by defining δ = δ̂ ◦ (id−δ̂)−1 ∈ K∞.
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Then there exists an Ω-path σ̃ ∈ KN
∞ for D1 ◦ Γ⊕ ◦ D2. Moreover, if for all i ∈ {1, . . . , N}

there exists a K∞-function α̂i satisfying

σ̃−1
i ◦ d−1

i2 ◦ σ̃i = id−α̂i (27)

then the function V : Rn → R+ defined by

V (ξ) := max
i

(σ̃−1
i ◦ d−1

i2 )(Vi(ξi)) (28)

is a dissipative finite-step ISS Lyapunov function for system (6). In particular, system (6) is
ISS.

Again note the difference in the assumptions when compared to the small-gain theorem
for the summation case e.g. from [6]. Now a factorization property for the operator D
is required. This imposes extra conditions as discussed in Remark 5.6. Again these extra
conditions appear to be necessary to treat the potential instability of subsystems.

Proof. In Section 2.3 we have shown that D ◦ Γ⊕ 6≥ id if and only if D1 ◦ Γ⊕ ◦D2 6≥ id.
By [6, Theorem 5.2-(iii)] it follows that there exists an Ω-path σ̃ ∈ KN

∞ for D1 ◦ Γ⊕ ◦ D2

satisfying
(D1 ◦ Γ⊕ ◦D2)(σ̃(r)) < σ̃(r) ∀r > 0,

or, equivalently, for all i ∈ {1, . . . , N},

max
j∈{1,...,N}

di1 ◦ γij ◦ dj2 ◦ σ̃j(r) < σ̃i(r) ∀r > 0. (29)

We show that this inequality implies the existence of a function ϕ ∈ K∞ such that for all
r > 0, we have

max
i,j

σ̃−1
i ◦ (γij ◦ dj2 ◦ σ̃j(r) + γiu ◦ ϕ(r)) < r. (30)

To do this, we assume, without loss of generality4, that γiu ∈ K∞. Since di1 = id +δi1 with
δi1 ∈ K∞ for all i ∈ {1, . . . , N}, we can write (29) as

max
j∈{1,...,N}

γij ◦ dj2 ◦ σ̃j(r) + max
j∈{1,...,N}

δi1 ◦ γij ◦ dj2 ◦ σ̃j(r) < σ̃i(r). (31)

Let i ∈ {1, . . . , N}. We consider two cases:

(i) If γij = 0 for all j ∈ {1, . . . , N}, define

ϕi := 1
2γ

−1
iu ◦ σ̃i ∈ K∞.

(ii) If γij ∈ K∞ for at least one j ∈ {1, . . . , N}, define

ϕi := max
j∈{1,...,N}

γ−1
iu ◦ δi1 ◦ γij ◦ dj2 ◦ σ̃j ∈ K∞.

Note that we need δi1 ∈ K∞ for ϕi to be of class K∞, as opposed to proof of Theorem 5.1,
where we only needed positive definiteness.

4 If γiu ∈ K\K∞ take any K∞-function upper bounding γiu. If γiu = 0, take e.g. γiu = id.

18



For both cases, the definition of ϕi ∈ K∞ together with (31) implies

max
j∈{1,...,N}

γij ◦ dj2 ◦ σ̃j(r) + γiu ◦ ϕi(r) < σ̃i(r).

for all r > 0. Then it is not hard to see that ϕ := mini∈{1,...,N} ϕi ∈ K∞ satisfies (30) for all
r > 0.

In the following let i, j ∈ {1, . . . , N}. Consider the function V from (28). First note that
V is proper and positive definite, which follows directly from the proof of Theorem 5.1. To
show the decay of V , i.e., an inequality of the form (15), we use (30), and obtain

V (x(M, ξ, u(·))) = max
i

(σ̃−1
i ◦ d−1

i2 )(Vi(xi(M, ξ, u(·))))
cond. (ii)

≤ max
i

(σ̃−1
i ◦ d−1

i2 )

(

max
j

γij(Vj(ξj)) + γiu(‖u‖∞)

)

(27)
= max

i,j
(id−α̂i) ◦ σ̃−1

i (γij(Vj(ξj)) + γiu(‖u‖∞))

= max
i,j

(id−α̂i)◦σ̃−1
i






γij◦dj2◦σ̃j◦

(

σ̃−1
j ◦d−1

j2 ◦ Vj(ξj′)
)

︸ ︷︷ ︸

≤V (ξ)

+γiu◦ϕ◦ϕ−1(‖u‖∞)







(30)
< max

i
(id−α̂i)

(
max{V (ξ), ϕ−1(‖u‖∞)}

)

≤ max
i

(id−α̂i)(V (ξ)) + max
i

(id−α̂i)(ϕ
−1(‖u‖∞)).

Define ρ := maxi(id−α̂i) and σ := maxi(id−α̂i) ◦ ϕ−1, then id−ρ = mini α̂i ∈ K∞.
Hence, (15) is satisfied. Again, as in the proof of Theorem 5.1, this shows that V is a
dissipative finite-step ISS Lyapunov function as defined in Definition 3.8. From Theorem 4.1
we conclude that system (6) is ISS. �

Remark 5.5 If Theorem 5.1 (resp. Theorem 5.4) is satisfied with M = 1, then the dissipa-
tive finite-step ISS Lyapunov function V in (23) (resp. (28)) is a dissipative ISS Lyapunov
function. In particular, we obtain the following special cases: If Theorem 5.4 is satisfied for
M = 1 then this gives a dissipative-form discrete-time version of [6, Corollary 5.6]. On the
other hand, for M = 1, Theorem 5.1 includes the ISS variant of [17, Theorem 3] as a special
case.

Remark 5.6 Whether or not condition (27) in Theorem 5.1 is satisfied depends on the fac-
torization (26). Let D1,D2 as well as D̂1, D̂2 be two compositions of D as in (26), i.e.,
D2 ◦ D1 = D = D̂2 ◦ D̂1. A direct computation shows that if σ̃ ∈ KN

∞ is an Ω-path for
D1 ◦ Γ⊕ ◦D2 then σ̂ := D̂1 ◦D−1

1 ◦ σ̃ ∈ KN
∞ is an Ω-path for D̂1 ◦ Γ⊕ ◦ D̂2. Moreover, if we

assume that (27) holds for D1,D2, then we have

σ̂−1
i ◦ d̂−1

i2 ◦ σ̂i = (σ̃−1
i ◦ d−1

i2 ◦ σ̃i) ◦ (σ̃−1
i ◦ d̂i1 ◦ d−1

i1 ◦ σ̃i)
= (id−α̂i) ◦ (σ̃−1

i ◦ d̂i1 ◦ d−1
i1 ◦ σ̃i)

with α̂i ∈ K∞, i ∈ {1, . . . , N}. Unfortunately, from this equation we cannot conclude that a
condition of the form (27) holds for the decomposition D̂1, D̂2 and the Ω-path σ̂ as defined
above.
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An approach for finding a suitable decomposition is the following. Consider the special
case of the decomposition (26) with D2 = diag(id) and D1 = D = diag(di). Let σ̃ ∈ KN

∞

be an Ω-path for D1 ◦ Γ⊕ ◦ D2 = D ◦ Γ⊕. Following the same steps as above, we see that
σ̂ = D̂1 ◦D−1 ◦ σ̃ ∈ KN

∞ is an Ω-path for D̂1 ◦ Γ⊕ ◦ D̂2. Moreover, as D = D̂2 ◦ D̂1 implies
d−1
i = d̂−1

i1 ◦ d̂−1
i2 , we see that

σ̂−1
i ◦ d̂−1

i2 ◦ σ̂i = (σ̃−1
i ◦ di ◦ d̂−1

i1 ) ◦ (d̂i1 ◦ d−1
i ) ◦ (d̂i1 ◦ d−1

i ◦ σ̃i)
= (σ̃−1

i d̂i1 ◦ d−1
i ◦ σ̃i)

= σ̃−1
i d̂−1

i2 ◦ σ̃i.

Hence, a condition of the form (27) holds for the decomposition D̂1, D̂2 with Ω-path σ̂ ∈ KN
∞

if and only there exist K∞-functions α̂i, i ∈ {1, . . . , N} satisfying

σ̃−1
i ◦ d̂−1

i2 ◦ σ̃i = id−α̂i. (32)

Hence, to find a “good” decomposition D̂1, D̂2 of D, i.e., a decomposition for which (27) holds,
we can try to find K∞-functions d̂−1

i2 = (id +δ̂i2)−1, i ∈ {1, . . . , N} that satisfy

(i) equation (32) for suitable α̂i ∈ K∞;

(ii) d̂i2 ◦ d̂i1 = di = id +δi with suitable d̂i1 = id +δ̂i1.

It is an open question, how to characterize the cases in which there exists a decomposition
satisfying these two conditions.

In Theorem 5.1 we introduced the diagonal operator D and assumed (22). In the following
corollary we impose further assumptions such that we do not need the diagonal operator D.
Under these stronger assumptions, system (6) is shown to be expISS.

Corollary 5.7 Let (6) be given by the interconnection of the subsystems in (21). Assume
there exist an M ∈ N, M ≥ 1, linear functions γij ∈ K∞, and functions Vi : R

ni → R+

satisfying condition (i) of Theorem 5.1 with linear functions α1i, α2i. Let condition (ii) of
Theorem 5.1 hold, and instead of condition (iii) of Theorem 5.1 let the small-gain condi-
tion (4) hold. Furthermore, assume that the K-function ω1 in Assumption 3.1 is linear.
Then system (6) is expISS.

Proof. We follow the proof of Theorem 5.1. By the small-gain condition (4) there exists
an Ω-path σ̃ ∈ KN

∞ satisfying Γ⊕(σ̃)(r) < σ̃(r) for all r > 0, see [6]. Moreover, as the functions
γij ∈ K∞ are linear for all i, j ∈ {1, . . . , N}, we can also assume the Ω-path functions σ̃i ∈ K∞

to be linear, see [11]. Thus, the function

V (ξ) := max
i

σ̃−1
i (Vi(ξi)) (33)

has linear bounds α1 and α2. Furthermore, since σ̃i and γij are linear functions, we obtain (15)
with the linear function ρ := maxi,j σ̃

−1
i ◦ γij ◦ σ̃j < id, and σ := maxi σ̃

−1
i ◦ γiu. Clearly,

(id−ρ) ∈ K∞ by linearity of ρ. Thus, V is a dissipative finite-step ISS Lyapunov function
for system (6). Since ω1 in Assumption 3.1 is linear, we can apply Theorem 4.4 to show that
system (6) is expISS. �

By Remark 3.3, the requirement that ω1 is linear is necessary for the system to be expISS.
A similar reasoning as in Corollary 5.7 applies in the case, where the external input enters

additively.
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Corollary 5.8 Let (6) be given by the interconnection of the subsystems in (21). Assume
there exist an M ∈ N, M ≥ 1, linear functions γij ∈ K∞, and functions Vi : R

ni → R+

satisfying condition (i) of Theorem 5.4 with linear functions α1i, α2i. Let condition (ii) of
Theorem 5.4 and the small-gain condition (4) hold. Furthermore, assume that ω1 in Assump-
tion 3.1 is linear. Then system (6) is expISS.

Proof. We omit the details as the proof follows the lines of the proof of Theorem 5.4
combined with the argumentation of the proof of Corollary 5.7.

First, the small-gain condition implies the existence of an Ω-path σ̃ ∈ KN
∞, which is linear

as the functions γij are linear. In particular, Γ⊕(σ̃(r)) < σ(r) for all r > 0. Next, note that
the function V defined in (33) has linear bounds as shown in the proof of Corollary 5.7. It
satisfies

V (x(M, ξ, u(·))) ≤ ρ(V (ξ)) + σ(‖u‖∞)

with ρ := maxi,j σ̃
−1
i ◦γij ◦ σ̃j and σ := maxi σ̃

−1
i ◦γiu, which can be seen by a straightforward

calculation, invoking condition (ii) of Theorem 5.4 and the linearity of the Ω-path σ̃. Again
as in the proof of Corollary 5.7, (id−ρ) ∈ K∞ by linearity of ρ. Thus, V defined in (33) is a
dissipative finite-step ISS Lyapunov function for system (6). Since ω1 in Assumption 3.1 is
linear, we can apply Theorem 4.4, and the result follows. �

In this section we have presented sufficient criteria to conclude ISS, whereas in the next
section we will study the necessity of these relaxed small-gain results.

5.2 Non-conservative expISS Small-Gain Theorems

In the remainder of this section we show that the relaxation of classical small-gain theorems
given in Theorems 5.1 and 5.4 is non-conservative at least for expISS systems.

Theorem 5.9 Let system (6) be given by the interconnection of the subsystems in (21). Then
system (6) is expISS if and only if

(i) Assumption 3.1 holds with linear ω1, and

(ii) there exist an M ∈ N, M ≥ 1, linear functions γij ∈ K∞, proper and positive definite
functions Vi : Rni → R+ with linear bounds α1i, α2i ∈ K∞ such that the following holds:

(a) condition (ii) of Theorem 5.1 (and thus also condition (ii) of Theorem 5.4);

(b) the small-gain condition (4).

Proof. Sufficiency is shown in Corollary 5.7 and Corollary 5.8, so we only have to
prove necessity. Since system (6) is expISS, global K-boundedness holds with linear ω1, see
Remark 3.3. Furthermore, the function V (ξ) := |ξ|, ξ ∈ R

n is a dissipative finite-step ISS
Lyapunov function for system (6) by Theorem 4.6. Hence, there exist M̃ ∈ N, σ ∈ K and
c < 1 such that for all ξ ∈ R

n and all u(·) ∈ l∞(Rm) we have

|x(M̃ , ξ, u(·))| ≤ c|ξ| + σ(‖u‖∞). (34)

Define Vi(ξi) := |ξi| for i ∈ {1, . . . , N}, where the norm for ξi ∈ R
ni is defined in the prelim-

inaries. Then Vi is proper and positive definite with α1i = α2i = id for all i ∈ {1, . . . , N}.
Take κ ≥ 1 from (1), and define

l := min{ℓ ∈ N : cℓκ < 1
2},
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which exists as c ∈ [0, 1). Then we have

Vi(xi(lM̃ , ξ, u(·))) = |xi(lM̃ , ξ, u(·))| ≤ |x(lM̃ , ξ, u(·))|
(34)

≤ c|x((l − 1)M̃ , ξ, u(·))| + σ(‖u‖∞)

(34)

≤ cl|ξ| +
l∑

j′=1

cj
′−1σ(‖u‖∞)

(1)

≤ max
j

clκ|ξj | +

l∑

j′=1

cj
′−1σ(‖u‖∞)

≤ max

{

max
j

γij(ξj), γiu(‖u‖∞)

}

≤ max
j

γij(ξj) + γiu(‖u‖∞)

with γiu(·) := 2
∑l

j=1 c
j−1σ(·), and γij := 2clκ id. The last inequality shows condition (ii)

of Theorem 5.4, while the second last inequality shows condition (ii) of Theorem 5.1 for
M = lM̃ . Finally, by definition of l ∈ N, we have γij < id for all i, j ∈ {1, . . . , N}. Hence,
Proposition 2.4 implies the small-gain condition (4). This proves the theorem. �

Theorem 5.9 is proved in a constructive way, i.e., it is shown that under the assumption
that system (6) is expISS we can choose the Lyapunov-type functions Vi : R

ni → R+ as
norms, i.e., Vi(·) = | · |. Then there exist an M ∈ N and linear gains γij ∈ K∞ satisfying
condition (ii) of Theorem 5.1, and thus also condition (ii) of Theorem 5.4, as well as the
small-gain condition (4). This suggests the following procedure.

Procedure 5.10 Consider (6) as the overall system of the subsystems (21). Check that
Assumption 3.1 is satisfied with a linear ω1 (else the origin of system (6) cannot be expISS,
see Remark 3.3). Define Vi(ξi) := |ξi| for ξi ∈ R

ni, and set k = 1.

[1] Compute γiu ∈ K∞ and linear functions γij ∈ K∞ ∪ {0} satisfying

Vi(xi(k, ξ, u(·))) = |xi(k, ξ, u(·))| ≤ max
j∈{1,...,N}

γij|ξj | + γiu(‖u‖∞).

[2] Check the small-gain condition (4) with Γ⊕ defined in (2). If (4) is violated set k = k+1
and repeat with [1].

If this procedure is successful, then expISS of the overall system (6) is shown by Theorem 5.9.
Moreover, a dissipative finite-step ISS Lyapunov function can be constructed via (33).

Remark 5.11 Although Procedure 5.10 is straightforward, even for simple classes of systems,
finding a suitable M ∈ N may be computationally intractable, as it was shown in [4]. A
systematic way to find a suitable number M ∈ N for certain classes of systems is discussed
in [8].

In the next section we consider a nonlinear system and show how Procedure 5.10 can be
applied.
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6 Example

In Section 5 the conservatism of classical small-gain theorems was illustrated by a linear ex-
ample without external inputs, where the origin is GAS, but where the decoupled subsystems’
origin are not 0-GAS. In this section we consider a nonlinear example with external inputs
and show how the relaxed small-gain theorem from Section 5 can be applied.

Consider the nonlinear system

x1(k + 1) = x1(k) − 0.3x2(k) + u(k)

x2(k + 1) = x1(k) + 0.3
x22(k)

1 + x22(k)

(35)

with x1(·), x2(·), u(·) ∈ l∞(R). We will show that this system is ISS by constructing a suitable
dissipative finite-step ISS Lyapunov function following Procedure 5.10. Note that the origin
of the first subsystem decoupled from the second subsystem with zero input is not 0-GAS,5

hence not ISS. So we cannot find an ISS Lyapunov function for this subsystem.
The converse small-gain results in Section 5.2 suggest to prove ISS by a search for suitable

functions Vi and γij ∈ K∞ that satisfy the conditions of one of the small-gains theorems of
this section (eg. Theorem 5.1 or Corollary 5.7). Here we follow Procedure 5.10.

First, the right-hand side G of (35) is globally K-bounded, since

‖G(ξ, µ)‖∞ ≤ max{|ξ1| + 0.3|ξ2| + |µ|, |ξ1| + 0.3
ξ2
2

1+ξ2
2

} ≤ 1.3 ‖ξ‖∞ + |µ|,

where we used that for all x ∈ R we have

x2

1+x2 ≤ |x|
2 . (36)

Let Vi(ξi) := |ξi|, i ∈ {1, 2}. Then we compute for all ξ ∈ R
2,

V1(x1(1, ξ, u(·))) = |ξ1 − 0.3ξ2 + u(0)| ≤ max {2V1(ξ1), 0.6V2(ξ2)} + ‖u‖∞ ,

V2(x2(1, ξ, u(·))) = |ξ1 + 0.3
ξ2
2

1+ξ2
2

| ≤ max
{

2V1(ξ1), 0.6
V2

2
(ξ2)

1+V2

2
(ξ2)

}

.

Since γ11(s) = 2s, the small-gain condition is violated and we cannot conclude stability.
Intuitively, this was expected from the above observation that the origin of the first subsystem
is not ISS.

Computing solutions x(k, ξ, u(·)) with initial condition ξ ∈ R
2 and input u(·) ∈ l∞(R) we

see that for k = 3 we have

x(3, ξ, u(·)) =


















0.4ξ1−0.21ξ2−0.09
ξ2
2

1+ξ2
2

−0.09

(ξ1+0.3
ξ2
2

1+ξ2
2

)2

1+(ξ1+0.3
ξ2
2

1+ξ2
2

)2
+0.7u(0)+u(1)+u(2)

0.7ξ1−0.3ξ2−0.09
ξ2
2

1+ξ2
2

+0.3









ξ1−0.3ξ2+0.3

(ξ1+0.3
ξ2
2

1+ξ2
2

)2

1+(ξ1+0.3
ξ2
2

1+ξ2
2

)2









2

1+









ξ1−0.3ξ2+0.3

(ξ1+0.3
ξ2
2

1+ξ2
2

)2

1+(ξ1+0.3
ξ2
2

1+ξ2
2

)2









2 +u(0)+u(1)


















.

5We could also make the first system 0-input unstable by letting x1(k+1) = (1+ ǫ)x1(k)− 0.3x2(k)+ u(k)
and ǫ > 0 small enough, and obtain the same conclusion, see also [9]. But here we let ǫ = 0 to simplify
computations.
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Using (36) we compute

V1(x1(3, ξ, u(·))) ≤ 0.4|ξ1| + 0.21|ξ2| + 0.09
2 |ξ2| + 0.09

2

(
|ξ1| + 0.3

2 |ξ2|
)

+ 0.7|u(0)| + |u(1)| + |u(2)|
= max{0.89V1(ξ1), 0.5235V2(ξ2)} + 2.7 ‖u‖∞ ,

V2(x2(3, ξ, u(·))) ≤ 0.7|ξ1| + 0.3|ξ2| + 0.09
2 |ξ2| + 0.3

2

(
|ξ1| + 0.3|ξ2| + 0.3

2 (|ξ1|+ 0.3
2 |ξ2|)

)

+ |u(0)| + |u(1)|
= max{1.745V1(ξ1), 0.78675V2(ξ2)} + 2 ‖u‖∞ .

From this we derive the linear functions

γ11(s) = 0.89s, γ12(s) = 0.5235s, γ1u(s) = 2.7s,

γ21(s) = 1.745s, γ22(s) = 0.78675s, γ2u(s) = 2s.

This yields the map Γ⊕ : R2
+ → R

2
+ from (2) as

Γ⊕((s1, s2)) =

(
max{0.89s1, 0.5235s2}

max{1.745s1, 0.78675s2}

)

. (37)

Since γ11 < id, γ22 < id and γ12 ◦ γ21 < id, we conclude from the cycle condition, Proposi-
tion 2.4, that the small-gain condition (4) is satisfied. Hence, from Corollary 5.8 we can now
conclude that the origin of system (35) is expISS.

Remark 6.1 The small-gain results in Section 5, and in particular Corollary 5.8, prove the
ISS property of the interconnected system (6) by constructing a dissipative finite-step ISS Lya-
punov function. The following shows that this construction is straightforward to implement.

Consider system (35) and the map Γ⊕ derived in (37). We use the method proposed in
[11] to compute an Ω-path σ̃(r) := ( 0.5r

0.9r ) that satisfies

Γ⊕(σ̃(r)) =

(
0.47115r
0.8725r

)

<

(
0.5r
0.9r

)

= σ̃(r)

for all r > 0. From the proof of Corollary 5.8 we can now conclude that

V (ξ) := max
i

σ̃−1
i (Vi(ξi)) = max{2|ξ1|, 109 |ξ2|}

is a dissipative finite-step ISS Lyapunov function for the overall system (35). In particular,
following the proof of Corollary 5.8, we compute

ρ(s) := max
i,j∈{1,2}

σ̃−1
i ◦ γij ◦ σ̃j(s) = 0.9695s,

and,
σ(s) := max

i∈{1,2}
σ̃−1
i ◦ γiu = 5.4s

for which V satisfies V (x(3, ξ, u(·)) ≤ ρ(V (ξ)) + σ(‖u‖∞) for all ξ ∈ R
2.

24



Remark 6.2 Although the construction of the dissipative finite-step ISS Lyapunov function
via the small-gain approach (Procedure 5.10) requires the computation of an Ω-path, we believe
that for large-scale interconnections the small-gain approach is still more advisable than a di-
rect search for a dissipative finite-step ISS Lyapunov function (e.g. following Procedure 4.7).
The reason for this belief is that the choice of a suitable natural number M in Procedure 4.7
might be, in general, much higher than the choice for a suitable natural number M in Proce-
dure 5.10.

For instance, consider system (35). As shown above, Procedure 5.10 can be applied for
M = 3. On the other hand, to make computations of norm estimates simpler, consider the
1-norm | · |1. Then we obtain

|x(3, ξ, u(·))| ≤ 1.2225|ξ1| + 0.655125|ξ2 | + 4.7 ‖u‖∞

by following similar computations as above using (36). Hence, V (·) := | · |1 cannot be a
dissipative finite-step ISS Lyapunov function with M = 3. Similar estimates also show that
V is not a dissipative finite-step ISS Lyapunov function for M < 3. Thus, Procedure 4.7 for
V (·) := | · |1 requires that M > 3.

7 Conclusion

In this work we introduced the notion of dissipative finite-step ISS Lyapunov functions as a
relaxation of ISS Lyapunov functions. These finite-step ISS Lyapunov functions were shown
to be necessary and sufficient to conclude ISS of the underlying discrete-time system. In
particular, for expISS system, norms are always dissipative finite-step ISS Lyapunov functions.
Furthermore, we stated relaxed ISS small-gain theorems that drop the common assumption of
small-gain theorems that the subsystems are ISS. ISS of the overall systems was then proven by
constructing a dissipative finite-step ISS Lyapunov function. For the class of expISS systems,
these small-gain theorems are shown to be non-conservative, i.e., necessary and sufficient to
conclude ISS of the overall system. An example showed how the results can be applied.

A

The proofs in Section 4 require the following lemmas.

A.1 A comparison lemma

The following lemma is a particular comparison lemma for finite-step dynamics.

Lemma A.1 Let M ∈ N\{0}, L ∈ N ∪ {∞}, k0 ∈ {0, . . . ,M − 1}, and y : N → R+ be a
function satisfying

y ((l + 1)M + k0) ≤ χ (y(lM + k0)) , ∀ l ∈ {0, . . . , L}, (38)

where χ ∈ K∞ satisfies χ < id. Then there exists a KL-function βk0 such that the function y
also satisfies

y(lM + k0) ≤ βk0(y(k0), lM + k0), ∀ l ∈ {0, . . . , L}.
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In addition, if (38) is satisfied for all k0 ∈ {0, . . . ,M −1} then there exists a KL-function
β such that with ymax

M := max{y(0), . . . , y(M − 1)} we have

y(k) ≤ β(ymax
M , k), ∀k ∈ {0, . . . , (L + 1)M − 1}.

Proof. Let M ∈ N\{0}, L ∈ N ∪ {∞} and k0 ∈ {0, . . . ,M − 1}. From (38) and the
monotonicity property of χ ∈ K∞, we obtain

y ((l + 1)M + k0) ≤ χ (y(lM + k0)) ≤ . . . ≤ χl+1(y(k0))

for all l ∈ {0, . . . , L}. Note that since χ < id we have χl > χl+1, and χl(s) → 0 as l → ∞
for any s ∈ R+. Define tk0,l := lM + k0 and t+k0,l := (l + 1)M + k0 for all l ∈ N. Let
βk0 : R+ ×R+ → R+ be defined by

βk0(s, r) :=

{
1
M

(
(tk0,0 − r)χ−1(s) + (r + M − k0) id(s)

)
r ∈ [0, tk0,0), s ≥ 0

1
M

(

(t+k0,l − r)χl(s) + (r − tk0,l)χ
l+1(s)

)

r ∈ [tk0,l, t
+
k0,l

), s ≥ 0.

Note that this construction is similar to the one proposed in [21, Lemma 4.3]. Clearly, βk0 is
continuous and βk0(·, r) is a K-function for any fixed r ≥ 0. On the other hand, for any fixed
s ≥ 0, βk0(s, ·) is an  L-function, as it is linear affine on any interval [tk0,l, t

+
k0,l

] and strictly
decreasing by

βk0(s, tk0,l) = χl(s) > χl+1(s) = βk0(s, t+k0,l).

Hence, βk0 ∈ KL. Moreover, for all l ∈ {0, . . . , L} we have

y(lM + k0) ≤ χl(y(k0)) = βk0 (y(k0), lM + k0) ,

which shows the first assertion of the lemma.
Now let (38) be satisfied for all k0 ∈ {0, . . . ,M − 1}. Define

β(s, r) := max
k0∈{0,...,M−1}

βk0(s, r),

which is again a function of class KL. For any k ∈ {0, . . . , (L + 1)M − 1} there exist unique
l ∈ {0, . . . , L} and k0 ∈ {0, . . . ,M − 1} such that k = lM + k0, and we have

y(k) = y(lM + k0) ≤ χl(y(k0)) = βk0(y(k0), lM + k0) ≤ βk0(ymax
M , k) ≤ β(ymax

M , k)

with ymax
M := max{y(0), . . . , y(M − 1)}. This concludes the proof. �

If the function χ in Lemma A.1 is linear, then the KL-function β has a simpler form as
we will see in the next lemma.

Lemma A.2 Let the assumptions of Lemma A.1 be satisfied for all k0 ∈ {0, . . . ,M − 1}
with χ(s) = θs and θ ∈ (0, 1). Let ymax

M := max{y(0), . . . , y(M − 1)}, then for all k ∈
{0, . . . , (L + 1)M − 1} we have

y(k) ≤ ymax
M

θ
θk/M .

Proof. A direct computation yields that for any k0 ∈ {0, . . . ,M − 1}, and any l ∈
{0, . . . , L} we have y(lM + k0) ≤ χ(y((l − 1)M + k0)) ≤ χl(y(k0)) = θly(k0). Hence, for any
k = lM + k0 ≤ (L + 1)M − 1, with l ∈ {0, . . . , L} and k0 ∈ {0, . . . ,M − 1} we have

y(k) ≤ max
k0∈{0,...,M−1}

{y(k0)θl} ≤ ymax
M θk/M−1.

This proves the lemma. �
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A.2 Bounds on trajectories

As noted in Remark 3.3 the requirement on the existence of K-functions ω1, ω2 satisfying (7)
in Assumption 3.1 is a necessary condition for system (6) to be ISS. The following lemma
states that under the assumption of global K-boundedness any trajectory of system (6) has
a global K-bound for any time step. This result is needed in Theorem 4.1 to show that the
existence of a dissipative finite-step ISS Lyapunov function implies ISS of system (6).

Lemma A.3 Let system (6) satisfy Assumption 3.1. Then for any j ∈ N there exist K-
functions ϑj, ζj such that for all ξ ∈ R

n, and all u(·) ∈ l∞(Rm) we have

|x(j, ξ, u(·))| ≤ ϑj(|ξ|) + ζj(‖u‖∞). (39)

Before we prove this lemma we note that, as shown in Remark 3.3, any trajectory of an
ISS system has a uniform global K-bound, i.e., (39) is satisfied by taking ϑj(·) = β(·, 1) and
ζj(·) = γ(·). On the other hand, if the system is not globally stable then we cannot find
uniform global K-bounds upper bounding the functions ϑj ∈ K, j ∈ N, and ζj ∈ K, j ∈ N,
in (39).

Proof. We prove the result by induction. Take any ξ ∈ R
n and any input u(·) ∈ l∞(Rm).

For j = 0 we have |x(0, ξ, u(·))| = |ξ| satisfying (39) with ϑ0 = id and arbitrary ζ0 ∈ K. For
j = 1 it follows by Assumption 3.1 that |x(1, ξ, u(·))| ≤ ω1(|ξ|) + ω2(‖u‖∞). So we can take
ϑ1 := ω1 and ζ1 := ω2.
Now assume that there exist ϑj, ζj ∈ K satisfying (39) for some j ∈ N. Then

|x(j + 1, ξ, u(·))| = |G(x(j, ξ, u(·)), u(j))| ≤ ω1(|x(j, ξ, u(·))|) + ω2(‖u‖∞)

≤ ω1(ϑj(|ξ|) + ζj(‖u‖∞)) + ω2(‖u‖∞)

≤ ω1(2ϑj(|ξ|)) + ω1(2ζj(‖u‖∞)) + ω2(‖u‖∞) =: ϑj+1(|ξ|) + ζj+1(‖u‖∞).

By induction, the assertion holds for all j ∈ N. �

If the functions ω1, ω2 in (7) are linear then the functions ϑj, ζj in Lemma A.3 are also
linear, and have an explicit construction in terms of ω1, ω2.

Lemma A.4 Let system (6) satisfy Assumption 3.1 with linear functions ω1(s) := w1s
and ω2(s) = w2s, where w1, w2 > 0. Then (39) is satisfied with ϑj(s) = wj

1s and ζj =

w2
∑j−1

i=0 w
i
1s.

Proof. The proof follows using the variation of constants formula. �
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