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Abstract. This paper outlines an energy-minimization finite-element approach to the model-
ing of equilibrium configurations for nematic liquid crystals in the presence of internal and external
electric fields. The method targets minimization of system free energy based on the electrically and
flexoelectrically augmented Frank-Oseen free energy models. The Hessian, resulting from the lin-
earization of the first-order optimality conditions, is shown to be invertible for both models when
discretized by a mixed finite-element method under certain assumptions. This implies that the inter-
mediate discrete linearizations are well-posed. A coupled multigrid solver with Vanka-type relaxation
is proposed and numerically vetted for approximation of the solution to the linear systems arising
in the linearizations. Two electric model numerical experiments are performed with the proposed
iterative solver. The first compares the algorithm’s solution of a classical Freedericksz transition
problem to the known analytical solution and demonstrates the convergence of the algorithm to the
true solution. The second experiment targets a problem with more complicated boundary condi-
tions, simulating a nano-patterned surface. In addition, numerical simulations incorporating these
nano-patterned boundaries for a flexoelectric model are run with the iterative solver. These simula-
tions verify expected physical behavior predicted by a perturbation model. The algorithm accurately
handles heterogeneous coefficients and efficiently resolves configurations resulting from classical and
complicated boundary conditions relevant in ongoing research.
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1. Introduction. Liquid crystals, whose discovery is attributed to Reinitzer in
1888 [43], are substances that possess mesophases with properties intermediate be-
tween liquids and crystals, existing at different temperatures or solvent concentrations.
The focus of this paper is on nematic liquid crystal phases, which are formed by rod-
like molecules that self-assemble into an ordered structure, such that the molecules
tend to align along a preferred orientation. The preferred average direction at any
point in a domain Ω is known as the director, denoted n(x, y, z) = (n1, n2, n3)T . The
director is taken to be of unit length at every point and headless, that is n and −n
are indistinguishable, reflecting the observed symmetry of the phase.

In addition to their self-structuring properties, nematic liquid crystals are dielec-
trically active. Thus, their configurations are affected by electric fields. Moreover,
since these materials are birefringent, with refractive indices that depend on the po-
larization of light, they can be used to control the propagation of light through a
nematic structure. These traits have led, and continue to lead, to important discover-
ies in display technologies and beyond [28]. Modern applications include nanoparticle
organization, liquid crystal-functionalized polymer fibers [28], and liquid crystal elas-
tomers designed to produce effective actuator devices such as light driven motors [53]
and artificial muscles [49]. Thorough overviews of liquid crystal physics are found
in [9, 17,48].

Many mathematical and computational models of liquid crystal continuum theory
lead to complicated systems involving unit length constrained vector fields. Currently,
the complexity of such systems has restricted the existence of known analytical so-
lutions to simplified geometries in one (1-D) or two dimensions (2-D), often under
strong simplifying assumptions. When coupled with electric fields and other effects,
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far fewer analytical solutions exist, even in 1-D [48]. In addition, associated systems
of partial differential equations, such as the equilibrium equations [19,48], suffer from
non-unique solutions, which must be distinguished via energy arguments. Due to such
difficulties, efficient, theoretically supported, numerical approaches to the modeling
of nematic liquid crystals under free elastic and augmented electric effects are of great
importance. A number of computational techniques for liquid crystal equilibrium
and dynamics problems exist [31, 32, 48, 52], including least-squares finite-element
methods [3] and discrete Lagrange multiplier approaches with simplifying assump-
tions [27, 42]. In addition, numerical experiments involving finite-element methods
with Lagrange multipliers, applied to the equilibrium equations, have been successful
in capturing certain liquid crystal characteristics [41].

In this paper, we propose a method that directly targets energy minimization in
the continuum, via Lagrange multiplier theory on Banach spaces, to resolve liquid
crystal equilibrium configurations in the presence of applied electric fields and inter-
nally induced electric fields due to flexoelectric effects. The approach is derived absent
the often used one-constant approximation [10,42,48,52]; that is, the method described
here, and the accompanying theory, are applicable for a wide range of physical pa-
rameters. This allows for significantly improved modeling of physical phenomena not
captured in many models. Furthermore, most models and analytical approaches rely
on assumptions to reduce the dimensionality of the problem. Here, the method and
theory are suitable for use on 2-D and three dimensional (3-D) domains.

After defining the energy functional to be minimized, first-order optimality con-
ditions are computed. These first-order conditions contain highly nonlinear terms and
are, therefore, linearized with a generalized Newton’s method. The resulting Newton
iteration inherently contains a complicated saddle-point structure [7,42]. The discrete
Hessians associated with finite-element discretization of the Newton linearizations are
shown to be invertible, for both the electric and flexoelectric models, when employing
certain finite-element spaces.

In addition, we discuss a coupled multigrid solver with Vanka-type relaxation for
accurate and efficient resolution of solutions to the saddle-point systems encountered
in the discretization of the linearization systems for both the electric and flexoelectric
models. A full, mesh-cell oriented Vanka-type relaxation technique is elaborated and
implemented. The performance of the multigrid solver is compared to that of a direct
LU decomposition approach. Furthermore, it is applied to a collection of numerical
examples, demonstrating its accuracy and efficiency.

This paper is organized as follows. We first introduce the electric field model under
consideration in Section 2. The method framework is derived and Dirichlet boundary
condition simplifications are discussed in Section 3. In Section 4, the invertibility of
the discretized Hessian for the intermediate Newton linearizations is established. An
extension of the method and associated theory for the flexoelectric model is given in
Section 5. The numerical methodology, iterative solver, and numerical experiments
are detailed in Sections 6 and 7. Finally, Section 8 gives some concluding remarks,
and future work is discussed.

2. Energy Model. To begin defining the full energy model under consideration,
we first discuss the free elastic energy model. At equilibrium, absent any external
forces, fields, or boundary conditions, the free elastic energy present in a liquid crystal
sample is given by an integral functional that depends on the state variables of the
system. A liquid crystal sample tends to the state of lowest free energy. While a
number of free energy models exist [16], this paper considers the Frank-Oseen free
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elastic model [48, 51]. This model represents the free elastic energy density, wF , in a
sample as

wF =
1

2
K1(∇ · n)2 +

1

2
K2(n · ∇ × n)2 +

1

2
K3|n×∇× n|2

+
1

2
(K2 +K4)∇ · [(n · ∇)n− (∇ · n)n]. (2.1)

Throughout this paper, the standard Euclidean inner product and norm are denoted
(·, ·) and | · |, respectively. The Ki, i = 1, 2, 3, 4, are known as the Frank elastic
constants [22], which vary depending on temperature and liquid crystal type. As
in [1], let

Z = κn⊗ n + (I− n⊗ n) = I− (1− κ)n⊗ n,

where κ = K2/K3 with K2,K3 ≥ 0 by Ericksen’s inequalities [20]. In general, we
consider the case that K2,K3 6= 0. Denote the classical L2(Ω) inner product and
norm as 〈·, ·〉0 and ‖ · ‖0, respectively. Using algebraic identities, the fact that n is of
unit length, and integrating the above density function, the total free elastic energy
for a domain Ω is∫

Ω

wF dV =
1

2
(K1 −K2 −K4)‖∇ · n‖20 +

1

2
K3〈Z∇× n,∇× n〉0

+
1

2
(K2 +K4)

(
〈∇n1,

∂n

∂x
〉0 + 〈∇n2,

∂n

∂y
〉0 + 〈∇n3,

∂n

∂z
〉0
)
.

For the special case of full Dirichlet boundary conditions, we consider a fixed
director n at each point on the boundary of Ω. Considering the integration carried
out on the terms in (2.1),

1

2
(K2 +K4)

∫
Ω

∇ · [(n · ∇)n− (∇ · n)n] dV

=
1

2
(K2 +K4)

∫
∂Ω

[(n · ∇)n− (∇ · n)n] · ν dS, (2.2)

by the divergence theorem. Further, since n is fixed along ∂Ω, the energy contributed
by n on the boundary is constant regardless of the configuration of n on the interior
of Ω. Thus, in the minimization to follow, the energy contribution from this term is
ignored. For this reason, (2.2) is often referred to as a null Lagrangian [51]. Note that
the above identity is also applicable to a rectangular domain with mixed Dirichlet
and periodic boundary conditions. Such a domain will be considered in numerical
experiments below.

A number of methods involving computation of liquid crystal equilibria or dy-
namics utilize the so called one-constant approximation that K1 = K2 = K3 and
K4 = 0 [10,42,48,52], in order to significantly simplify the free elastic energy density
to

ŵF =
1

2
K1|∇n|2, where |∇n|2 =

3∑
i,j=1

(
∂ni
∂xj

)2

.

This expression for the free elastic energy density is more amenable to theoretical
development but ignores significant physical characteristics [4, 30]. The following
method is derived without such an assumption.
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This paper extends the approach of [1] to consider electric fields. In the presence
of an electric field, the free energy in a liquid crystal sample is directly affected. This
interaction is strongly coupled as nematic polarization and electric displacement, in
turn, affect the original electric field. The coupling is captured by an auxiliary term
added to the Frank-Oseen equations such that the total system free energy has the
form ∫

Ω

(
wF −

1

2
D ·E

)
dV, (2.3)

where D is the electric displacement vector induced by polarization and E is the local
electric field [17]. The electric displacement vector is written D = ε0ε⊥E+ε0εa(n·E)n.
Here, ε0 > 0 is the permittivity of free space constant. The dielectric anisotropy
constant is εa = ε‖− ε⊥, where the constant variables ε‖ > 0 and ε⊥ > 0 represent the
parallel and perpendicular dielectric permittivity, respectively, specific to the liquid
crystal. If εa > 0, the director is attracted to parallel alignment with the electric field,
and if εa < 0, the director tends to align perpendicular to E. Thus,

D ·E = ε0ε⊥E ·E + ε0εa(n ·E)2.

Therefore, Equation (2.3) is expanded as∫
Ω

(
wF −

1

2
D ·E

)
dV =

∫
Ω

wF dV −
1

2
ε0ε⊥〈E,E〉0 −

1

2
ε0εa〈n ·E,n ·E〉0. (2.4)

The addition of the electric field not only increases the complexity of the functional,
it introduces an inherent saddle-point structure into the equilibria for the liquid crys-
tal samples. Energy minima are those that minimize the contribution of the free
elastic energy, while maximizing the negative contribution of the electric field terms.
Moreover, the relevant Maxwell’s equations for a static electric field, ∇ ·D = 0 and
∇×E = 0, known as Gauss’ and Faraday’s laws, respectively, must be satisfied.

3. Free Energy Minimization. In [1], a general approach for computing the
equilibrium state for n is derived. We apply this methodology to the augmented
elastic-electric free energy. The equilibrium state corresponds to the configuration
which minimizes the system free energy subject to the local constraint that n is of
unit length throughout the sample volume, Ω. That is, the minimizer must satisfy
n·n = 1 pointwise throughout the volume. In light of the necessary Maxwell equations
and the fact that we are considering static fields, we reformulate the system energy
in (2.4) using an electric potential function, φ, such that E = −∇φ, and define the
functional to be minimized as

F1(n, φ) = (K1 −K2 −K4)‖∇ · n‖20 +K3〈Z∇× n,∇× n〉0

+ (K2 +K4)
(
〈∇n1,

∂n

∂x
〉0 + 〈∇n2,

∂n

∂y
〉0 + 〈∇n3,

∂n

∂z
〉0
)

− ε0ε⊥〈∇φ,∇φ〉0 − ε0εa〈n · ∇φ,n · ∇φ〉0. (3.1)

Using a potential function guarantees that Faraday’s law is trivially satisfied. Fur-
thermore, it is not difficult to show that Gauss’ law is satisfied at the minimum of the
above functional.

In the presence of full Dirichlet boundary conditions or a rectangular domain with
mixed Dirichlet and periodic boundary conditions, the functional to be minimized is
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significantly simplified to

F2(n, φ) = K1‖∇ · n‖20 +K3〈Z∇× n,∇× n〉0
− ε0ε⊥〈∇φ,∇φ〉0 − ε0εa〈n · ∇φ,n · ∇φ〉0, (3.2)

by the application of (2.2). However, the functional still contains nonlinear terms
introduced by, for instance, the presence of Z = Z(n).

We proceed with the functional in (3.1) in building a framework for minimiza-
tion under general boundary conditions. However, in the treatment of existence and
uniqueness theory, we assume the application of full Dirichlet or mixed Dirichlet and
periodic boundary conditions and, therefore, utilize the simplified form in (3.2).

As done in [1], we consider the spaces

H(div,Ω) = {v ∈ L2(Ω)3 : ∇ · v ∈ L2(Ω)},
H(curl,Ω) = {v ∈ L2(Ω)3 : ∇× v ∈ L2(Ω)3}.

Define

HDC(Ω) = {v ∈ H(div,Ω) ∩H(curl,Ω) : B(v) = ḡ},

with norm ‖v‖2DC = ‖v‖20 +‖∇·v‖20 +‖∇×v‖20 and appropriate boundary conditions
B(v) = ḡ. Further, let HDC0 (Ω) = {v ∈ H(div,Ω) ∩H(curl,Ω) : B(v) = 0}. Let

H1,g(Ω) = {f ∈ H1(Ω) : B1(f) = g},

where H1(Ω) represents the classical Sobolev space and B1(f) = g is an appropriate
boundary condition expression for φ. Finally, denote the unit sphere as S2. Using
Functional (3.1), the desired minimization becomes

n0, φ0 = argmin
n,φ∈(S2∩HDC(Ω))×H1,g(Ω)

F1(n, φ).

3.1. First-Order Continuum Optimality Conditions. Since n must be of
unit length, it is natural to employ a Lagrange multiplier approach. This length
requirement represents a pointwise equality constraint such that (n,n)−1 = 0. Thus,
following general constrained optimization theory [33], define the Lagrangian

L(n, φ, λ) = F1(n, φ) +

∫
Ω

λ(x)((n,n)− 1) dV,

where λ ∈ L2(Ω). In order to minimize (3.1), we compute the Gâteaux derivatives
of L with respect to n, φ, and λ in the directions v ∈ HDC0 (Ω), ψ ∈ H1,0(Ω), and
γ ∈ L2(Ω), respectively. Hence, necessary continuum first-order optimality conditions
are derived as

Ln[v] =
∂

∂n
L(n, φ, λ)[v] = 0, ∀v ∈ HDC0 (Ω),

Lφ[ψ] =
∂

∂φ
L(n, φ, λ)[ψ] = 0, ∀ψ ∈ H1,0(Ω),

Lλ[γ] =
∂

∂λ
L(n, φ, λ)[γ] = 0, ∀γ ∈ L2(Ω).
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Computing these derivatives yields the variational system

Ln[v] = 2(K1 −K2 −K4)〈∇ · n,∇ · v〉0 + 2K3〈Z∇× n,∇× v〉0

+ 2(K2 −K3)〈n · ∇ × n,v · ∇ × n〉0 + 2(K2 +K4)
(
〈∇n1,

∂v

∂x
〉0

+ 〈∇n2,
∂v

∂y
〉0 + 〈∇n3,

∂v

∂z
〉0
)
− 2ε0εa〈n · ∇φ,v · ∇φ〉0

+ 2

∫
Ω

λ(n,v) dV = 0, ∀v ∈ HDC0 (Ω),

Lφ[ψ] = −2ε0ε⊥〈∇φ,∇ψ〉0 − 2ε0εa〈n · ∇φ,n · ∇ψ〉0 = 0, ∀ψ ∈ H1,0(Ω),

Lλ[γ] =

∫
Ω

γ((n,n)− 1) dV = 0, ∀γ ∈ L2(Ω).

Note that Lφ[ψ] = 0, in the system above, is, in fact, the weak form of Gauss’ law.
Therefore, at the functional minimum both Gauss’ and Faraday’s laws are satisfied.

3.2. Nonlinearities and Newton Linearization. The system above is nonlin-
ear; therefore, Newton iterations are employed by computing a generalized first-order
Taylor series expansion, requiring computation of the Hessian [8, 40]. Let nk, φk,
and λk be the current approximations for n, φ, and λ, respectively. Additionally, let
δn = nk+1 − nk, δφ = φk+1 − φk, and δλ = λk+1 − λk be updates to the current
approximations that we seek to compute. Then, the Newton iterations are denoted Lnn Lnφ Lnλ

Lφn Lφφ Lφλ
Lλn Lλφ Lλλ

 δn
δφ
δλ

 = −

 Ln

Lφ
Lλ

 , (3.3)

where each of the system components are evaluated at nk, φk, and λk. The matrix-
vector multiplication indicates the direction that the derivatives in the Hessian are
taken. For instance, Lλn[γ] · δn = ∂

∂n (Lλ(nk, λk)[γ]) [δn], where the partials indicate
Gâteaux derivatives in the respective variables. Note that Lλλ = Lλφ = Lφλ = 0.
Hence, the Hessian in (3.3) simplifies to a saddle-point matrix, which poses unique
difficulties for the efficient computation of the solution to the resulting linear system.
Such structures commonly appear in constrained optimization and other settings;
for a comprehensive overview of discrete saddle-point problems see [7]. Here, we
focus only on the linearization step rather than the underlying linear solvers. An
efficient iterative solver is discussed below. Considering the other six components of
the Hessian, the derivatives involving λ are

Lλn[γ] · δn = 2

∫
Ω

γ(nk, δn) dV, Lnλ[v] · δλ = 2

∫
Ω

δλ(nk,v) dV.

The second order terms involving φ are

Lφφ[ψ] · δφ = −2ε0ε⊥〈∇δφ,∇ψ〉0 − 2ε0εa〈nk · ∇δφ,nk · ∇ψ〉0,
Lφn[ψ] · δn = −2ε0εa〈nk · ∇φk, δn · ∇ψ〉0 − 2ε0εa〈δn · ∇φk,nk · ∇ψ〉0,
Lnφ[v] · δφ = −2ε0εa〈nk · ∇φk,v · ∇δφ〉0 − 2ε0εa〈nk · ∇δφ,v · ∇φk〉0.
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Finally, the second order derivative with respect to n is

Lnn[v] · δn = 2(K1 −K2 −K4)〈∇ · δn,∇ · v〉0 + 2K3〈Z(nk)∇× δn,∇× v〉0

+ 2(K2 −K3)
(
〈δn · ∇ × v,nk · ∇ × nk〉0

+ 〈nk · ∇ × v, δn · ∇ × nk〉0 + 〈nk · ∇ × nk,v · ∇ × δn〉0

+ 〈nk · ∇ × δn,v · ∇ × nk〉0 + 〈δn · ∇ × nk,v · ∇ × nk〉0
)

+ 2(K2 +K4)
(
〈∇δn1,

∂v

∂x
〉0 + 〈∇δn2,

∂v

∂y
〉0 + 〈∇δn3,

∂v

∂z
〉0
)

− 2ε0εa〈δn · ∇φk,v · ∇φk〉0 + 2

∫
Ω

λk(δn,v) dV.

Completing (3.3) with the above Hessian computations yields a linearized vari-
ational system. For these iterations, we compute δn, δφ, and δλ satisfying (3.3) for
all v ∈ HDC0 (Ω), ψ ∈ H1,0(Ω), and γ ∈ L2(Ω) with the current approximations nk,
φk, and λk. While they typically improve robustness and efficiency, we do not con-
sider the use of line searches or trust regions in the work presented here, leaving this
for future work. If we are considering a system with Dirichlet boundary conditions,
as described above, we eliminate the (K2 + K4) terms from (3.3). This produces a
simplified, but non-trivial, linearization.

4. Well-Posedness of the Discrete Systems. Performing the outlined New-
ton iterations necessitates solving the above linearized systems for the update func-
tions δn, δφ, and δλ. Finite elements are used to numerically approximate these
updates as δnh, δφh, and δλh. Throughout this section, we assume that full Dirich-
let boundary conditions are enforced for n and φ. However, the following theory is
also applicable for a rectangular domain with mixed Dirichlet and periodic bound-
ary conditions. Such a domain is considered for the numerical experiments presented
herein.

We write the bilinear form defined by −Lφφ[ψ]·δφ as c(δφ, ψ) = ε0ε⊥〈∇δφ,∇ψ〉0+
ε0εa〈nk ·∇δφ,nk ·∇ψ〉0 and the form associated with Lλn[γ] · δn as b(δn, γ). Further,
we decompose the bilinear form defined by Lnn[v]·δn into a free elastic term, ã(δn,v),
and an electric component as

a(δn,v) = ã(δn,v)− ε0εa〈δn · ∇φk,v · ∇φk〉0.

Lemma 4.1. Let Ω be a connected, open, bounded domain. If εa ≥ 0, then
c(δφ, ψ) is a coercive bilinear form. For εa < 0, if |nk|2 ≤ β < ε⊥/|εa|, then c(δφ, ψ)
is a coercive bilinear form.

Proof. The proof is split into two cases.

Case 1. εa ≥ 0.
Note that δφ, ψ ∈ H1,0(Ω), with homogeneous Dirichlet boundary conditions. By
the classical Poincaré-Friedrichs’ inequality, there exists a C1 > 0 such that for all
ξ ∈ H1

0 (Ω), ‖ξ‖20 ≤ C1‖∇ξ‖20. Therefore,

‖ξ‖21 ≤ (C1 + 1)‖∇ξ‖20.
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This implies that, for ξ 6= 0,

c(ξ, ξ) = ε0ε⊥〈∇ξ,∇ξ〉0 + ε0εa〈nk · ∇ξ,nk · ∇ξ〉0

≥ ε0ε⊥
C1 + 1

‖ξ‖21 > 0.

Case 2. εa < 0.
Observe that pointwise,

(nk · ∇ξ)2 ≤ |nk|2|∇ξ|2 ≤ β|∇ξ|2.

This implies that 〈nk · ∇ξ,nk · ∇ξ〉0 ≤ β〈∇ξ,∇ξ〉0. Therefore,

c(ξ, ξ) ≥ ε0(ε⊥ − β|εa|)〈∇ξ,∇ξ〉0.

Recall that ε⊥ > 0. Therefore, β < ε⊥/|εa| implies that ε⊥ − β|εa| > 0. Thus, again
applying the Poincaré-Friedrichs’ inequality above for ξ 6= 0,

c(ξ, ξ) ≥ ε0(ε⊥ − β|εa|)
C1 + 1

‖ξ‖21 > 0.

In either case, c(·, ·) is a coercive bilinear form.
There are a number of discretization space triples commonly used to discretize

systems such as the one defined in (3.3), including equal order or mixed finite elements.
Discretizing the Hessian in (3.3) with finite elements leads to the 3× 3 block matrix

M =

 A B1 B2

BT1 −C̃ 0
BT2 0 0

 . (4.1)

Lemma 4.2. Under the assumptions in Lemma 4.1, if the bilinear forms a(·, ·)
and b(·, ·), defined above, are coercive and weakly coercive, respectively, on the relevant
discrete spaces, the matrix in (4.1) is invertible.

Proof. Denoting B =
[
B1 B2

]
(where B2 is associated with b(·, ·)), and C =[

C̃ 0
0 0

]
, the matrix in (4.1) is written as

[
A B
BT −C

]
.

By assumption, a(·, ·) is coercive, and it is clearly symmetric [1]. Therefore, the
associated discretization block, A, is symmetric positive definite. By Lemma 4.1, C̃ is
symmetric positive definite, and, therefore, −C is symmetric negative semi-definite.
Therefore, by [7, Theorem 3.1], if kerC ∩ kerB = {0}, then the matrix in (4.1) is
invertible. Observe that [

C̃ 0
0 0

] [
y
z

]
=

[
C̃y
0

]
= 0

if and only if y = 0. Then, if
[
y z

]T ∈ kerC ∩ kerB, y = 0. However, note that

[
B1 B2

] [ 0
z

]
= B2z.
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Since b(·, ·) is weakly coercive, B2z = 0 if and only if z = 0. So kerC ∩ kerB = {0}.

For the remainder of the paper, let Cφ = sup
x∈Ω
|∇φk|. Furthermore, for Th, a

quadrilateral subdivision of Ω, let Qp denote piecewise C0 polynomials of degree
p ≥ 1 and P0 denote the space of piecewise constants. Define a bubble space

V bh = {v ∈ Cc(Ω)3 : v|T = aT bTnk|T ,∀T ∈ Th},

where Cc(Ω) denotes the space of compactly supported continuous functions on Ω, bT
is the biquadratic bubble function [39] that vanishes on ∂T ∈ Th, and aT is a constant
coefficient associated with bT . Then the discretization spaces considered for δλ and
δn, respectively, are

Πh = P0, (4.2)

Vh = {v ∈ Qm ×Qm ×Qm ⊕ V bh : v = 0 on ∂Ω}. (4.3)

Note that Lemma 3.12 in [1] uses these spaces to show that b(·, ·) is weakly coercive.
The above lemma now allows for the formulation of the following theorem using the
discrete spaces above.

Theorem 4.3. Under the assumptions of Lemmas 3.7 or 3.8 in [1], for κ = 1 or
κ satisfying the small data assumptions in [1, Lemma 3.8], respectively, let α0 > 0 be
such that ã(v,v) ≥ α0‖v‖2DC . With the assumptions of Lemma 3.12 in [1] and those
of Lemma 4.1, if εa ≤ 0 or (α0 − ε0εaC2

φ) > 0, then the matrix defined by (4.1) is
invertible.

Proof. If κ = 1, Lemma 3.7 in [1] implies that such an α0 > 0 exists. Similarly,
if κ satisfies the small data assumptions in [1, Lemma 3.8], then such an α0 > 0 also
exists. If εa ≤ 0, clearly this implies that a(·, ·) is coercive. For εa > 0, note that

〈v · ∇φk,v · ∇φk〉0 =

∫
Ω

(v · ∇φk)2 dV ≤
∫

Ω

|v|2|∇φk|2 dV

≤ C2
φ

∫
Ω

|v|2 dV

≤ C2
φ‖v‖2DC . (4.4)

Hence,

|ε0εa〈v · ∇φk,v · ∇φk〉0| ≤ ε0εaC2
φ‖v‖2DC . (4.5)

Therefore,

a(v,v) ≥ α0‖v‖2DC − ε0εaC2
φ‖v‖2DC

= (α0 − ε0εaC2
φ)‖v‖2DC .

Thus, if (α0 − ε0εaC2
φ) > 0, a(·, ·) is coercive.

Finally, Lemma 3.12 in [1] asserts that b(·, ·) is weakly coercive. Hence, Lemma
4.2 implies that M , as defined in (4.1), is invertible.

Theorem 4.3 implies that no additional inf-sup condition for φ is necessary to
guarantee uniqueness of the solution to the system in (3.3). Moreover, the discretiza-
tion space for φ may be freely chosen without concern for stability.



10 Adler, Atherton, Benson, Emerson, Maclachlan

5. Flexoelectric Augmentation. Flexoelectricity is a property demonstrated
by certain dielectric materials, including liquid crystals. It is a spontaneous po-
larization of the liquid crystal induced by present curvature; it is caused by shape
asymmetry of the constituent molecules of the liquid crystal material. The initial
suggestion of this type of property in liquid crystals was introduced by Meyer [37].
This phenomenon can, for instance, be useful in the conversion of mechanical en-
ergy to electrical energy via large deformations of the boundary containing a liquid
crystal sample [24]. It can also play a significant role in determining the equilibrium
states of liquid crystal samples with patterned surface boundaries. For example, it
is an important effect in the bistable configuration of the Zenithal Bistable Device
(ZBD) [11].

The effect of flexoelectricity on the alignment of a liquid crystal bulk is modeled
by an augmentation of the electric displacement vector D, discussed above, and ad-
ditional terms for the bulk free energy functional. The electric displacement vector is
modified [18] such that

D = ε0ε⊥E + ε0εa(n ·E)n + Pflexo.

Following the notation and sign convention of Rudquist [44] we write

Pflexo = esn(∇ · n) + eb(n×∇× n), (5.1)

where es and eb are material constants specific to the liquid crystal. It is also common
in physics literature to denote these constants as e1 and e3 under a separate sign
convention [17,18,37].

As expressed in [18], the free energy density due to the additional flexoelectric
effects is

−Pflexo ·E. (5.2)

Therefore, using (5.1) and (5.2), the additional free energy contributed by flexoelectric
polarization is given as

−
∫

Ω

es(∇ · n)(E · n) + eb(n×∇× n) ·E dV.

Substituting an electric potential function, E = −∇φ, the flexoelectric free energy
functional to be minimized is expressed,

F3(n, φ) = F1(n, φ) + 2es〈∇ · n,n · ∇φ〉0 + 2eb〈n×∇× n,∇φ〉0. (5.3)

Note that the redefinition of D applies purely to the computation of Gauss’ Law
and does not change the electric energy in F1(n, φ). As above, in the presence of
full Dirichlet or mixed Dirichlet and periodic boundary conditions on a rectangular
domain, the simplification in (2.2) is applied to eliminate the (K2 + K4) terms from
(5.3). Additionally, note that the Maxwell’s equations, ∇·D = 0 and ∇×E = 0, must
still be satisfied. As before, the use of the electric potential implies that Faraday’s law
is automatically satisfied, and it can be shown that a minimizing triple (n∗, φ∗, λ∗)
for the extended functional, (5.3), satisfies Gauss’ law in weak form.

5.1. Flexoelectric System. With the goal of minimizing F3 subject to the
local unit length constraint, define the flexoelectric Lagrangian

L̂(n, φ, λ) = F3(n, φ) +

∫
Ω

λ((n,n)− 1) dV. (5.4)
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As in Section 3.1, in order to minimize (5.4), Gâteaux derivatives for L̂(n, φ, λ) must
be computed. Derivation of this variational system is identical to that of the simple
electric conditions with the exception of the derivative calculations for the additional
flexoelectric energy terms. Therefore, the complete flexoelectric variational system is

L̂n[v] = Ln[v] + 2es
(
〈∇ · n,v · ∇φ〉0 + 〈∇ · v,n · ∇φ〉0

)
+ 2eb

(
〈n×∇× v,∇φ〉0 + 〈v ×∇× n,∇φ〉0

)
= 0, ∀v ∈ HDC0 (Ω),

L̂φ[ψ] = Lφ[ψ] + 2es〈∇ · n,n · ∇ψ〉0 + 2eb〈n×∇× n,∇ψ〉0 = 0, ∀ψ ∈ H1,0(Ω),

L̂λ[γ] = Lλ[γ] = 0, ∀γ ∈ L2(Ω).

Constructing the Newton iterations to address the nonlinearities, as above, yields
a Newton linearization system with a saddle-point structure similar to that of the
electric field case. Since the flexoelectric energy terms are first-order with respect to
φ and do not depend of λ, many of the second order derivatives are the same as the
simple electric case. On the other hand, the mixed partial derivatives involving φ
contain additional terms,

L̂φn[ψ] · δn = Lφn[ψ] · δn + 2es
(
〈∇ · δn,nk · ∇ψ〉0 + 〈∇ · nk, δn · ∇ψ〉0

)
+ 2eb

(
〈nk ×∇× δn,∇ψ〉0 + 〈δn×∇× nk,∇ψ〉0

)
,

L̂nφ[v] · δφ = Lnφ[v] · δφ+ 2es
(
〈∇ · nk,v · ∇δφ〉0 + 〈∇ · v,nk · ∇δφ〉0

)
+ 2eb

(
〈nk ×∇× v,∇δφ〉0 + 〈v ×∇× nk,∇δφ〉0

)
.

Finally, the second order derivative with respect to n also contains additional terms,

L̂nn[v] · δn = Lnn[v] · δn + 2es
(
〈∇ · δn,v · ∇φk〉0 + 〈∇ · v, δn · ∇φk〉0

)
+ 2eb

(
〈δn×∇× v,∇φk〉0 + 〈v ×∇× δn,∇φk〉0

)
.

Completing the system in (3.3) with the above Hessian and right hand side compu-
tations yields the flexoelectric linearized variational system.

5.2. Well-Posedness of the Discrete Flexoelectric Systems. As with the
simple electric linearization, finite elements are used to numerically approximate the
updates as δnh, δφh, and δλh. For simplicity, throughout this section we assume that
full Dirichlet boundary conditions are enforced for n and φ. However, the theory is,
as above, also applicable for a rectangular domain with mixed Dirichlet and periodic
boundary conditions. As in the simple electric case, we define bilinear forms to rep-
resent relevant components of the computed Hessian. The bilinear forms associated
with −L̂φφ[ψ] · δφ and L̂λn[γ] · δn are denoted c(δφ, ψ) and b(δn, γ), respectively, and
are identical to the corresponding components of the simple electric case above. We
again decompose the bilinear form defined by L̂nn[v] · δn into a free elastic term,
ã(δn,v), and a flexoelectric component as

a(δn,v) = ã(δn,v)− ε0εa〈δn · ∇φk,v · ∇φk〉0
+ es

(
〈∇ · δn,v · ∇φk〉0 + 〈∇ · v, δn · ∇φk〉0

)
+ eb

(
〈δn×∇× v,∇φk〉0 + 〈v ×∇× δn,∇φk〉0

)
.

Recalling that Cφ = sup
x∈Ω
|∇φk|, we formulate the following lemma.



12 Adler, Atherton, Benson, Emerson, Maclachlan

Lemma 5.1. Under the assumptions of Lemma 3.7 or 3.8 from [1], let α0 > 0 be
such that ã(v,v) ≥ α0‖v‖2DC . If εa ≤ 0 and α0 > 2Cφ(|eb|+ |es|) or εa > 0 and α0 >
ε0εaC

2
φ + 2Cφ(|eb|+ |es|), then there exists an α1 > 0 such that a(v,v) ≥ α1‖v‖2DC .

Proof. The proof is split into two cases.

Case 1. εa ≤ 0.
Since ε0 > 0 and 〈v · ∇φk,v · ∇φk〉0 is clearly positive definite,

ã(v,v)− ε0εa〈v · ∇φk,v · ∇φk〉0 ≥ α0‖v‖2DC . (5.5)

Note that

|2es〈∇ · v,v · ∇φk〉0| ≤ 2|es|‖∇ · v‖0‖v · ∇φk‖0
≤ 2|es|‖v‖DC‖v · ∇φk‖0.

Furthermore, from (4.4),

‖v · ∇φk‖20 ≤ C2
φ‖v‖2DC .

Hence,

|2es〈∇ · v,v · ∇φk〉0| ≤ 2Cφ|es|‖v‖2DC . (5.6)

Bounding the second relevant term,

|2eb〈v ×∇× v,∇φk〉0| ≤ 2|eb||〈v, (∇× v)×∇φk〉0|
≤ 2|eb|‖v‖0‖(∇× v)×∇φk‖0.

Pointwise,

|(∇× v)×∇φk|2 ≤ |∇ × v|2|∇φk|2.

Therefore,

‖(∇× v)×∇φk‖20 =

∫
Ω

|(∇× v)×∇φk|2 dV ≤
∫

Ω

|∇ × v|2|∇φk|2 dV

≤ C2
φ

∫
Ω

|∇ × v|2 dV

≤ C2
φ‖∇ × v‖20 ≤ C2

φ‖v‖2DC .

Thus,

|2eb〈v ×∇× v,∇φk〉0| ≤ 2Cφ|eb|‖v‖0‖∇ × v‖0
≤ 2Cφ|eb|‖v‖2DC . (5.7)

Gathering the bounds in (5.6)-(5.7),

a(v,v) ≥ α0‖v‖2DC − 2|eb|Cφ‖v‖2DC − 2|es|Cφ‖v‖2DC
= (α0 − 2Cφ(|eb|+ |es|))‖v‖2DC .

Then, set α1 = α0 − 2Cφ(|eb|+ |es|) > 0.
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Case 2. εa > 0.
In this case the additional term, 〈v · ∇φk,v · ∇φk〉0, is important. Recall, from (4.5),
that

|ε0εa〈v · ∇φk,v · ∇φk〉0| ≤ ε0εaC2
φ‖v‖2DC . (5.8)

Employing the bounds in (5.6)-(5.8),

a(v,v) ≥ α0‖v‖2DC − ε0εaC2
φ‖v‖2DC − 2Cφ(|eb|+ |es|)‖v‖2DC

= (α0 − (ε0εaC
2
φ + 2Cφ(|eb|+ |es|)))‖v‖2DC .

Thus, let α1 = α0 − (ε0εaC
2
φ + 2Cφ(|eb|+ |es|)) > 0.

When discretizing the flexoelectric linearization, the 3 × 3 saddle-point block
structure,

M̄ =

 Ā B̄1 B2

B̄T1 −C̃ 0
BT2 0 0

 , (5.9)

described in (4.1) resurfaces. Blocks B2 and C̃ are identical to those in (4.1) as
they are discretizations of the same bilinear forms in the simple electric case. Again,
making use of the discretization spaces defined in (4.2) and (4.3) above, the following
theorem holds.

Theorem 5.2. Under the assumptions of Lemma 3.12 in [1] and Lemmas 4.1
and 5.1, M̄ is invertible.

Proof. Lemma 3.12 in [1] implies that the bilinear form b(δn, γ), associated with
B2, is weakly coercive and Lemma 5.1 implies that a(δn,v) is coercive. Therefore,
Lemma 4.2 implies that M̄ is invertible.

Therefore, as in the simple electric case above, Theorem 5.2 implies that no
additional inf-sup condition for φ is necessary to guarantee uniqueness of the solution
to the system in (3.3), and the discretization space for φ may be freely chosen without
concern for stability.

6. Numerical Methodology. The algorithm to perform the minimizations dis-
cussed in previous sections has three stages and was developed in [1] for the elastic
case; see Algorithm 1. The outermost phase is nested iteration (NI) [36, 47], which
begins on a specified coarsest grid level. Newton iterations are performed on each
grid, updating the current approximation after each step. The stopping criterion for
the Newton iterations at each level is based on a specified tolerance for the current
approximation’s conformance to the first-order optimality conditions in the standard
Euclidean l2 norm. The resulting approximation is then interpolated to a finer grid.
The current implementation performs uniform grid refinement after each set of New-
ton iterations.

The linear system for each Newton step has the anticipated saddle-point block
structure, detailed in (4.1) and (5.9). For the numerical experiments, the matrices
are inverted using a coupled multigrid approach with Vanka-type relaxation, discussed
below, in order to approximately solve for the discrete updates δnh, δφh, and δλh.
Finally, an incomplete Newton correction is performed. That is, the new iterates are
given by  nk+1

φk+1

λk+1

 =

 nk
φk
λk

+ ω

 δnh
δφh
δλh

 , (6.1)
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where ω ≤ 1. This is to ensure relatively strict adherence to the constraint man-
ifold, which is necessary for the invertibility discussed above. For this algorithm,
ω is chosen to begin at 0.2 on the coarsest grid and increases by 0.2, to a maxi-
mum of 1, after each grid refinement, so that as the approximation converges, larger
Newton steps are taken. The grid management and discretizations are implemented
using the deal.II finite-element library, which is an aggressively optimized and paral-
lelized open-source library widely used in scientific computing [5,6]. In the numerical
tests to follow, Q2–Q2–P0 discretizations are used to approximate δnh, δφh, and
δλh, respectively, on each grid. Note that these spaces differ slightly from those
in the analysis above. However, theoretical and numerical support for the stability
of Q2–P0 discretizations of δn and δλ was given in [1]. Furthermore, the lemmas
proved above demonstrate that the discretization space for δφ, in both the electric
and flexoelectric models, may be arbitrarily chosen without regard for stability.

Algorithm 1: Newton’s method minimization algorithm with NI

0. Initialize (n0, φ0, λ0) on coarse grid.
while Refinement limit not reached do

while First-order optimality conformance threshold not satisfied do
1. Set up discrete linear system (3.3) on current grid, H.
2. Solve for δnH , δφH , and δλH .
3. Compute nk+1, φk+1, and λk+1 as in (6.1).

end
4. Uniformly refine the grid.
5. Interpolate nH → nh, φH → φh, and λH → λh.

end

6.1. Coupled Multigrid with Vanka-type Relaxation. Significant research
into the development of efficient iterative solvers for block structures such as those
arising in (4.1) and (5.9) exists. Here, we discuss the implementation and results for a
coupled multigrid method with Vanka-type relaxation. The performance and robust-
ness of such methods have been studied in-depth for block linear systems pertaining
to incompressible flows [25, 26, 29]. Furthermore, these methods have been shown to
achieve desirable convergence rates for systems with coupled saddle-point structures
such as those in (4.1) and (5.9) [2]. In this section, we write the general system to be
solved as

M

 n
φ
λ

 =

 A B1 B2

BT1 −C̃ 0
BT2 0 0

 n
φ
λ

 =

 fn
fφ
fλ

 ,
where M represents a matrix arising for either the electric or flexoelectric models.

Due to the use of cell-centered, discontinuous finite elements for the Lagrange mul-
tiplier, the Vanka-type relaxation techniques herein, originally formulated in [50] for
finite-difference discretizations, are mesh-cell oriented. Therefore, in the construction
of the Vanka-type relaxation block associated with each Lagrange multiplier degree
of freedom, all director and electric potential degrees of freedom associated with the
same cell are considered. Let Nh, Eh, and Qh denote the director, electric potential,
and Lagrange multiplier degrees of freedom, respectively. Define Vhj to be the set
of degrees of freedom associated with mesh cell j. Let Mj be the block of matrix



Nematic Liquid Crystal Energy Minimization 15

M formed by extracting the rows and columns of M corresponding to the degrees of
freedom in Vhj . Hence,

Mj =

 Aj B1,j B2,j

BT1,j −C̃j 0
BT2,j 0 0

 , (6.2)

with dimension |Vhj |×|Vhj |. Solution values for degrees of freedom in Vhj are updated
as  ni+1

φi+1

λi+1


j

=

 ni
φi
λi


j

+ ζM−1
j

 fn
fφ
fλ

−M
 ni
φi
λi


j

,

where the subscript j restricts the vectors to the appropriate rows. Thus, a single
relaxation step consists of a loop over all mesh elements in the domain.

Within the underlying multigrid method, we use standard finite-element inter-
polation operators and Galerkin coarsening. For additional details on the numerical
implementation of the multigrid method and associated relaxation schemes, see [2].

The relaxation and convergence properties of element-wise Vanka-type relaxation
techniques have been studied analytically for the Poisson, Stokes, and Navier-Stokes
equations in [34, 35, 38, 45, 46]. Moreover, numerical experiments have shown good
performance for electrically coupled systems with similar structure to those considered
here [2]. An “economy” Vanka-type relaxation approach, as described in [2], is also
quite effective for these problems but does not prove to be as efficient as the full Vanka
relaxation described above. Therefore, only the full Vanka-type relaxation scheme is
considered below.

In the following section, the performance of the multigrid methods using the full
Vanka-type relaxation technique is compared against that of using the UMFPACK
LU decomposition [12–15], linked through the deal.II library, as an exact solver. Addi-
tionally, we consider a number of problems involving both the electric and flexoelectric
models examined above and apply the coupled multigrid algorithm.

7. Numerical Results. The general test problem in this section considers a
classical domain with two parallel substrates placed at distance d = 1 apart. The
substrates run parallel to the xz-plane and perpendicular to the y-axis. It is assumed
that this domain represents a uniform slab in the xy-plane. That is, n may have a non-
zero z component but ∂n

∂z = 0. Hence, we consider the 2-D domain Ω = {(x, y) | 0 ≤
x, y ≤ 1}. The problem assumes periodic boundary conditions at the edges x = 0 and
x = 1. Dirichlet boundary conditions are enforced on the y-boundaries. As discussed
above, the simplification outlined in (3.2) is relevant for this domain and boundary
conditions.

7.1. Full Vanka Relaxation Studies. In this section, we present results of re-
laxation parameter and solve time studies comparing the performance of the multigrid
method using full Vanka-type relaxation against that of the UMFPACK LU decom-
position exact solver. The studies were performed on a flexoelectric problem with
relevant constants detailed in Table 7.1. Letting r = 0.25 and s = 0.95, the boundary
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conditions were

n1 = 0, (7.1)

n2 = cos
(
r(π + 2 tan−1(Xm)− 2 tan−1(Xp))

)
, (7.2)

n3 = sin
(
r(π + 2 tan−1(Xm)− 2 tan−1(Xp))

)
, (7.3)

where Xm = −s sin(2π(x+r))
−s cos(2π(x+r))−1 and Xp = −s sin(2π(x+r))

−s cos(2π(x+r))+1 . Such boundary conditions

are meant to simulate nano-patterned surfaces important in current research [3, 4];
see the substrate boundaries in Figure 7.1b. Even in the absence of electric fields,
such patterned surfaces result in complicated director configurations throughout the
interior of Ω.

Elastic Constants K1 = 1 K2 = 4 K3 = 1 κ = 4 ε0 = 1.42809

Electric Constants ε‖ = 7 ε⊥ = 7 εa = 0 es = 0.5 eb = 0.5

Table 7.1: Relevant liquid crystal constants for Vanka-type relaxation studies.

The first set of studies focus on determining the optimal Vanka relaxation param-
eter ζ. For these numerical experiments, the multigrid convergence tolerance, which
is based on the ratio of the current solution’s residual to that of the initial guess, is
10−6 for each grid level and Newton step. The relaxation parameter for the full Vanka
approach is varied from ζ = 0.1 to ζ = 1.1 in increments of 0.05. The corresponding
average multigrid iteration counts for a 512 × 512 grid and a selection of ζ values is
displayed in Figure 7.1a alongside the final computed solution in Figure 7.1b. For the
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Fig. 7.1: (a) The average number of multigrid iterations for varying ζ relaxation
parameters on a 512× 512 grid. (b) The final computed solution for the test problem on
512× 512 mesh (restricted for visualization).

figure, relaxation parameters smaller than 0.3 are not included, as they resulted in
iteration counts of over 100 before the multigrid residual tolerance was satisfied. The
studies indicate that a relaxation parameter of ζ = 1.00 is optimal for convergence.
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The second set of numerical experiments compares the system solve times for
the Vanka-type solver against the performance of the UMFPACK LU decomposition
solver utilized by deal.II. The experiments compare the linear solvers, on the above
problem, with full nested iteration beginning on an 8× 8 grid uniformly refining to a
512× 512 mesh. For both solvers considered, we report the total time to solution, in-
cluding both the setup and solve phases of the algorithms, but neglect some overhead
associated with converting data formats and interfacing libraries. The optimal relax-
ation parameter, ζ = 1.00, was used for the full Vanka-type relaxation technique. We
consider multigrid methods using standard residual-based stopping tolerances, fixed
on all grids, of reduction in the linear residual by factors of 10−8, 10−6, and 10−4.

Solver\Grid 8× 8 16× 16 32× 32 64× 64 128× 128 256× 256 512× 512

LU 0.02 0.11 0.57 2.67 12.03 55.78 275.86

Full 1e-8 0.05 0.23 1.17 4.87 20.18 82.77 337.84

Full 1e-6 0.05 0.20 0.91 3.78 16.72 66.38 276.91

Full 1e-4 0.04 0.17 0.74 3.06 13.13 54.39 214.14

Table 7.2: Comparison of average time to solution (in seconds) with LU decomposition
(LU) and full Vanka relaxation (Full) for varying grid sizes. Numbers following the
relaxation type indicate the multigrid residual tolerance. Bold face numbers indicate
improved time to solution compared with the LU decomposition solver.

Table 7.2 displays the average time to solution for the linear systems arising on
successive grids. In the table, the multigrid solve timing is scaling nearly perfectly
with grid size, while the LU decomposition solve times are growing at a faster rate.
For the present timings, the LU decomposition solver is approximately scaling with a
factor of 5, and has an expected asymptotic scaling factor of 8. The table also displays
a clear confluence of the solve time for LU decomposition and the Vanka-type solver.
For a multigrid residual tolerance of 10−4, the time to solution becomes nearly equal to
that of the LU decomposition solver as early as the 128× 128 grid. Moreover, though
the applied Vanka-type relaxation method is an approximate linear solver, the number
of overall Newton steps does not increase for any of the experiments compared to the
direct solver. Therefore, the method is robust with respect to adjustments in the
multigrid tolerance.

The results of these studies suggest that the full Vanka-type relaxation method
discussed above is an effective, efficient, and scalable iterative solver applicable to the
coupled saddle-point linear systems arising in the discretization of the electric and
flexoelectric models. Furthermore, the relaxation technique exhibits notable perfor-
mance for a range of multigrid residual tolerances and relaxation parameters. In the
numerical simulations to follow, full Vanka relaxation is applied with a relaxation
parameter of 1.00 and a multigrid residual tolerance of 10−6 for assured accuracy.

7.2. Simple Electric Freedericksz Transition Results. The first liquid crys-
tal numerical experiment considers simple director boundary conditions, such that n,
along both of the substrates, lies uniformly parallel to the x-axis. The boundary
conditions for the electric potential, φ, are such that φ = 0 on the lower substrate at
y = 0 and φ = 1 at y = 1. The relevant constants for the problem are detailed in
Table 7.3. Since the electric anisotropy constant, εa, is positive, the expected behavior
for the liquid crystal configuration is a Freedericksz transition [23, 54] so long as the
applied field is strong enough to overcome the inherent elastic effects of the system.
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That is, for an applied voltage above a critical threshold, known as a Freedericksz
threshold [48], the liquid crystal configuration will depart from uniform alignment
parallel to the x-axis and instead tilt in the direction of the applied field. The prob-
lem considered has an analytical solution [48, pg. 92-93] demonstrating this behavior.

The critical voltage is given by Vc = π
√

K1

ε0εa
. For the constants detailed in Table 7.3,

this implies a Freedericksz threshold of 0.7752. Thus, the anticipated solution should
demonstrate a true Freedericksz transition away from uniform free elastic alignment.
Indeed, the final computed solution in Figure 7.2, displayed alongside the initial guess
for the algorithm, displays the expected transition.

Elastic Constants K1 = 1 K2 = 0.62903 K3 = 1.32258 κ = 0.475608

Electric Constants ε0 = 1.42809 ε‖ = 18.5 ε⊥ = 7 εa = 11.5

Table 7.3: Relevant liquid crystal constants for Freedericksz transition problem.

(a) (b)

Fig. 7.2: (a) Initial guess on 8× 8 mesh with initial free energy of 26.767 and (b) resolved
solution on 512× 512 mesh (restricted for visualization) with final free energy of -5.330 for
Freedericksz transition.

The problem is solved on a 8 × 8 coarse grid with six successive uniform re-
finements resulting in a 512 × 512 fine grid. The minimized functional energy is
F2 = −5.330, compared to the initial guess energy of 26.767. Figure 7.3a details the
number of Newton iterations necessary to reduce the (nonlinear) residual below the
given tolerance, 10−3, on each grid. Note that a sizable majority of the Newton iter-
ation computations are isolated to the coarsest grids, with the finest grids requiring
only one Newton iteration to reach the tolerance limit. Without the use of nested
iteration, the algorithm requires 53 Newton steps on the finest grid, alone, to reach
a similar error measure. The nested-iteration-Newton-multigrid method achieves an
accurate solution in 10.5 minutes, compared to a total run time of over 5 hours for
standard Newton-multigrid. This corresponds to a speed up factor of 29.6 or a work
requirement for the nested iterations equivalent to 1.79 times that of assembling and
solving a single linearization step on the finest grid.

Also detailed in Figure 7.3b is the reduction in overall L2-error comparing the
analytical solution to the resolved solution on each grid. Note that the error is approx-
imately reduced by a full order of magnitude on each successive grid, corresponding
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Fig. 7.3: (a) Newton iterations and (b) L2-error per grid for the Freedericksz transition.

to approximately O(h3) reductions in overall error. Moreover, for the finer grids, a
single Newton step was sufficient to achieve such a reduction.

7.3. Electric Field with Patterned Boundary Conditions Results. In the
second liquid crystal run, the nano-patterned boundary conditions described by (7.1)
- (7.3) are applied. The same constants outlined in Table 7.3 are also used for this
problem. However, a stronger voltage such that φ = 2 on the substrate at y = 1 is
applied. Along the other substrate, φ remains equal to 0. The final solution, as well
as the initial guess, are displayed in Figure 7.4. For this problem, the grid progression
again begins on an 8 × 8 grid ascending uniformly to a 512 × 512 fine grid. The
minimized functional energy is F2 = −41.960, compared to the initial guess energy of
−31.141.

(a) (b)

Fig. 7.4: (a) Initial guess on 8× 8 mesh with initial free energy of −31.141 and (b)
resolved solution on 512× 512 mesh (restricted for visualization) with final free energy of
-41.960 for nano-patterned boundary.

In Table 7.4, the number of Newton iterations per grid is detailed as well as
the conformance of the solution to the first-order optimality conditions after the first
and final Newton steps, respectively, on each grid. As with the previous example,
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Grid Dim. Newton Iter. Init. Res. Final Res. Deviation in |n|2 Final Energy

8× 8 44 12.27e-00 6.79e-04 -1.11e-01, 6.11e-02 -42.701

16× 16 16 2.01e-00 5.74e-04 -7.64e-02, 4.24e-02 -42.170

32× 32 9 9.91e-01 2.60e-04 -4.60e-02, 2.92e-02 -41.963

64× 64 5 5.52e-01 1.76e-04 -1.80e-02, 1.31e-02 -41.950

128× 128 2 2.36e-01 3.13e-09 -3.63e-03, 2.89e-03 -41.960

256× 256 2 7.26e-02 1.65e-10 -4.92e-04, 3.62e-04 -41.960

512× 512 2 1.87e-02 6.10e-12 -7.37e-05, 6.39e-05 -41.960

Table 7.4: Grid and solution progression for electric problem and a nano-patterned
boundary with initial and final residuals for the first-order optimality conditions, minimum
and maximum director deviations from unit length at the quadrature nodes, and final
functional energy on each grid.

much of the computational work is relegated to the coarsest grids. Here, the total
work required is approximately 5.10 times that of assembling and solving a single lin-
earization step on the finest grid. In contrast, without nested iteration, the algorithm
requires 52 Newton steps on the 512 × 512 fine grid, alone, to satisfy the tolerance
limit. While the nested-iteration-Newton-multigrid method achieves convergence in
30.4 minutes, the standard Newton-multigrid total run time is over 5.3 hours. Also
shown in Table 7.4, the minimum and maximum director deviations from unit length
at the quadrature nodes is descending towards zero.

Due to the sizable applied electric field, and the elastic influence of the central
boundary condition pattern aligned with the electric field, the expected configuration
is a quick transition from the boundary conditions to uniform alignment with the field.
That is, the strength of the Freedericksz transition on the interior of Ω is augmented by
the presence of this type of patterned boundary condition. This behavior is accurately
resolved in the computed solution.

7.4. Flexoelectric Phenomena. As discussed above, internally generated elec-
tric fields due to flexoelectricity are an important physical aspect of liquid crystal
configurations. This polarization due to curvature can significantly affect stable liq-
uid crystal configurations in the presence of certain boundary conditions, such as
patterned surfaces that cause large distortions in the nematic. These may also cause
physical phenomenon such as bistability [3, 4, 11] that are important for display ap-
plications.

The following numerical results utilize similar boundary conditions to those in
(7.1)-(7.3) with an extra parameter1, ϕ, which has the effect of varying the imposed
azimuthal director angle along the x-axis of the outer, vertically-aligned strips on the
boundary,

n1 = sin(ϕ) sin
(
r(π + 2 tan−1(Xm)− 2 tan−1(Xp))

)
,

n2 = cos
(
r(π + 2 tan−1(Xm)− 2 tan−1(Xp))

)
,

n3 = cos(ϕ) sin
(
r(π + 2 tan−1(Xm)− 2 tan−1(Xp))

)
.

The NI progression from 8 × 8 grids to 512 × 512 grids persists for each of the sim-
ulations. Due to the complexity of the flexoelectric systems, the nonlinear residual
stopping tolerance is decreased to 10−5.

1Note that, here, ϕ is utilized for the azimuthal angle whereas in [3], φ was used.
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Fig. 7.6: Final flexoelectric energies with nano-patterned boundary conditions for varying
Rudquist constants es and eb. Each line corresponds to a different ϕ value.

In the first experiment, we isolate the influence of flexoelectricity on the config-
uration by removing elastic anisotropy, setting K1 = K2 = K3 = 1, and using a
small dielectric anisotropy ε‖ = 7 and ε⊥ = 6.9. For both experiments, as above,
ε0 = 1.42809. The computed free energy as a function of the azimuthal angle ϕ is
shown in Figure 7.5, revealing that ϕ = 0 and ϕ = π are the minima, correspond-
ing to alignment along the length of the stripes. Hence, flexoelectricity serves as an
aligning effect in the presence of the patterned surface. Also displayed in the figure
is the free energy of a perturbation solution similar to the one derived in [3] (note, a
different unit convention and sign error exists in [3]). There, the perturbation solution
is valid for a single semi-infinite planar-vertical junction. In the numerical computa-
tion, the director profile for the striped cell consists of four junctions per unit cell.
Thus, we approximate the perturbation by adding the mirror image and doubling.
If the junctions are well separated from each other, the cell thickness is larger than
the penetration depth of the nematic, and the length of the surface planar-vertical



22 Adler, Atherton, Benson, Emerson, Maclachlan

transition is very small, this is a valid approximation. Even within this limitation,
though, the computed energies trace the characteristics of the perturbation solution
quite closely, verifying the alignment influence of flexoelectricity. Therefore, when
considering internally induced electric fields in the presence of nano-patterned bound-
aries, the algorithm’s computed free energies capture the qualitative prediction from
the perturbation solution, but do so with a quantitative accuracy that is not readily
matched by perturbation techniques.

For the second experiment, ε‖ = 7 and ε⊥ = 7. By including anisotropic elastic
constants, it is possible to promote alignment perpendicular to the stripes, if K1,K3 <
K2, or parallel to the length of the stripes, if K1,K3 > K2. We use K1 = K3 =
1 and K2 = 4 to select perpendicular alignment and simulate the configurations
with ϕ ∈ {0, π8 ,

π
4 ,

3π
8 ,

π
2 } for varying values of the flexoelectric constants; the results

are displayed in Figure 7.6 . As can be seen, for (eb − es)/K1 = 10, the overall
minimum of the free energy lies at an azimuthal angle ϕ = π/2 as expected. As
the flexoelectric parameter is increased however, the configurations with different
azimuthal angle increase at different rates; for example at a critical value of (eb −
es)/K1 ≈ 17.5, the solutions for ϕ = 0 and ϕ = π/2 become degenerate. Hence, as
the strength of the flexoelectric effect is increased, the azimuthal angle corresponding
to the ground state gradually rotates because flexoelectricity and elastic anisotropy
favor opposing configurations. The phenomenon is important for applications because
it may lead to multiple stable configurations in some regions of the parameter space,
or a significant renormalization of the anchoring behavior for materials with large
flexoelectric response. These phenomena allow engineers to control the ground states
and, potentially, the switching response by adjusting the pattern. The above efficient
numerical model would be a valuable tool in identifying the parameters that lead to
the desired effect.

8. Summary and Future Work. We have discussed a constrained minimiza-
tion approach to solving for liquid crystal equilibrium configurations in the presence
of applied and internal electric fields. Such minimization is founded upon the electri-
cally and flexoelectrically augmented Frank-Oseen models. Due to the nonlinearity of
the continuum first-order optimality conditions, Newton linearizations were needed.
The discrete Hessian arising in the finite-element discretization of these linearized
systems was shown to be invertible, for both models, under certain assumptions on
the bilinear forms. Using the finite-element spaces discussed in [1], these assumptions
are satisfied. Additionally, an efficient iterative solvers utilizing a Vanka-type relax-
ation technique was implemented and shown to possess desirable solve timings and
convergence properties for highly refined meshes.

Numerical results demonstrated the accuracy and efficiency of the algorithm in
resolving both classical and complicated features induced by applied and internal
electric fields. The method efficiently captured expected, complicated, physical phe-
nomenon due to flexoelectric effects. In addition, the minimization approach over-
comes some difficulties inherent to the liquid crystal equilibrium problem, such as
the nonlinear unit length director constraint and effectively deals with heterogeneous
Frank constants. The algorithm also productively utilizes nested iterations to reduce
computational costs by isolating much of the computational work to the coarsest grids.
Future work will include the study of effective adaptive refinement and linearization
tolerance schemes. Further, investigation of line search and trust region algorithms
and their performance will be undertaken.
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