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Abstract

We initiate the study of quantum Locally Testable Codes (qLTCs). We provide a definition to-

gether with a simplification, denoted sLTCs, for the special case of stabilizer codes, and provide

some basic results using those definitions. The most crucial parameter of such codes is their sound-

ness, R(δ), namely, the probability that a randomly chosen constraint is violated as a function of

the distance of a word from the code (δ, the relative distance from the code, is called the proximity).

We then proceed to study limitations on qLTCs. In our first main result we prove a surprising,

inherently quantum, property of sLTCs: for small values of proximity, the better the small-set ex-

pansion of the interaction graph of the constraints, the less sound the qLTC becomes. This stands in

sharp contrast to the classical setting. The complementary, more intuitive, result also holds: an up-

per bound on the soundness when the code is defined on bad small-set expanders (a bound which

turns out to be far more difficult to show in the quantum case). Together we arrive at a quantum

upper-bound on the soundness of stabilizer qLTCs set on any graph, which does not hold in the

classical case. Many open questions are raised regarding what possible parameters are achievable

for qLTCs. In the appendix we also define a quantum analogue of PCPs of proximity (PCPPs) and

point out that the result of [15] by which PCPPs imply LTCs with related parameters, carries over

to the sLTCs. This creates a first link between qLTCs and quantum PCPs [6].

1 Introduction

Quantum error correcting codes have played a crucial role in quantum complexity theory (see, e.g.,

[32, 33, 11, 12]) and their study is a vastly growing field (see, e.g.,[31, 51, 52, 41, 42, 49, 27]); they are

related to a variety of issues including resilience to noise and fault tolerance, quantum cryptography,

topological order, multi-particle entanglement, and more.

Here, we initiate the study of the quantum analogue of Locally Testable Codes (LTCs). LTCs,

first defined in [28, 46, 1], are a particularly interesting class of error correcting codes which played

an instrumental role in all proofs of the celebrated PCP theorem [5, 8, 24]; their study had inspired

the definition of property testing [29] and the understanding of their limitations and possible con-

structions has developed into a very interesting field of its own (see for example Goldreich’s survey

[30]).

To define LTCs, consider the following question: given a code of n-bit strings, defined by O(1)-

local constraints, and a word which is of distance δn > 0 from the code (we say it has proximity δ),

what is the probability that a randomly chosen constraint is violated? We denote by R(δ) (called the
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soundness) the lower bound on the probability that any word of proximity δ from the code will violate

a randomly chosen constraint.

LTCs of excellent soundness at proximities larger than some constant are known, most notably

the Reed-Muller code [43], the Hadamard code [9], and Hastad’s long-code [36] which were used

in the PCP proofs of [5, 8, 24]. Though of excellent soundness, these codes are not so satisfying

when considering other parameters of interest. For example, the rates of the Hadamard and long

code are exponentially and doubly exponentially small, respectively. Much research [28, 46] was

devoted to optimizing the parameters of LTCs, maintaining constant relative distance and constant

query complexity (namely, the number of bits in each constraint), and improving the rate. The best

known LTCs in this respect are [24, 16] which have constant distance, constant query complexity,

and rates which are 1/polylog. It is a major open question (called the c3 problem [34]) whether good

(namely, constant relative rate and distance) LTCs exist.

1.1 Quantum Locally Testable Codes - Definition and Motivation

To the best of our knowledge the quantum analogue of LTCs was not defined before. We provide

a definition of general quantum Locally Testable Codes (qLTCs) in Definition 14. To define qLTCs,

we recall that a quantum code defined by O(1)-local constraints can be viewed as the groundspace

(namely, the zero eigenspace) of a local Hamiltonian H =
∑m

i=1 Πi whose local terms are projec-

tions, which we will refer to as the quantum constraints. We define Quantum Locally Testable Codes

(qLTCs) with soundness R(δ) as those codes for which when a state Ψ is within distance at least δn

from the code space, its average energy with respect to the constraints, 1
m 〈ψ|H|ψ〉, is at least R(δ)

(for an exact definition see Subsection 3). The average energy is the natural and commonly used

analogue, in quantum Hamiltonian complexity, of the probability to detect a violation in a randomly

chosen constraint (see for example [6]).

This definition sets the stage for a wide range of interesting questions. What are the limitations on

quantum LTCs, and what are possible constructions? Are there qLTCs which achieve, or get close to,

the best classical LTCs in terms of parameters, or are the quantum versions of those codes inherently

limited by some quantum phenomenon? What can we learn from qLTCs regarding the notion of local

testability of proofs, a notion which in the classical setting is tightly related to that of LTCs [30], and

which is still widely evasive in the quantum setting [6]?

Our motivation in introducing qLTCs in order to study the above questions stems not only from

trying to import the interesting classical local-testability paradigm into the quantum setting, but also

from their strong relations to questions which are of inherent interest to quantum information, quan-

tum complexity as well as to quantum physics. We highlight here several such connections.

An important motivation is to gain insight into the widely open quantum PCP conjecture [2], a

quantum analogue of the PCP theorem; it states, roughly, that it is quantum-NP hard to approximate

the ground energies of local Hamiltonians even to within a constant fraction. This conjecture is tightly

related to deep questions about multiparticle entanglement, and there has been much recent work

attempting to make progress on it (see the recent survey [6] and references therein). In the classical

setting, LTCs have been instrumental in PCP theory [5, 8, 24] and are intimately related to the notion

of local testability of proofs [30], and understanding the limitations of their quantum counterparts

might shed light on the qPCP problem.

Another important open question is that of the feasibility of quantum self correcting memory. This

is a medium in which a quantum state is maintained almost in tact for a long time without active error
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correction, even at constant temperatures; errors are corrected passively by the interaction with the

environment. Clearly such a system is of high practical as well as theoretical interest, and the topic

has been studied extensively in recent years (e.g., [18, 21, 22, 23, 19, 35, 50]). It is of major interest

to devise feasible constructions of quantum self correcting memory. A crucial role in this area is

played by the energy barrier of the quantum code, which is the amount of energy required in order to

move from one codeword to an orthogonal one. This notion, which has also been studied extensively

(see, e.g., [44]), is tightly related to the soundness of the code, which can be viewed as the energy

cost of large errors; understanding qLTCs might thus provide insights into possible constructions of

self-correcting memories.

A fundamental open question related to both of the above is whether multiparticle entanglement

can be made robust at room temperatures. The question was formalized by Hastings in terms of

the NLTS (No Low-energy Trivial States) conjecture [37], which, roughly, states that there exist lo-

cal Hamiltonians such that all their low-energy states are highly entangled. Such Hamiltonians are

necessary for the qPCP conjecture to hold ([37], and see also [6]). NLTS Hamiltonians and qLTCs

seem related: while in qLTCs, low energies imply closeness to the code, in NLTS Hamiltonians they

imply high entanglement, which is well known to be necessary for code states. Indeed, some weak

connections between the two notions were already proven 1.

In the following, we will investigate the behavior of qLTCs in various scenarios. The behavior of

LTCs is usually explored in one of two contexts: as an error-correcting code, or in relation to locally

testable proofs (see [30]); depending on the context, one is interested in different parameters. In

particular, in the context of error correction, the interesting regime of proximities, namely distance of

the word from the code, is at most half the distance of the code; in this regime, the error can still be

corrected. In the context of PCPs, on the other hand, much larger distances can be of interest, since a

cheating prover may provide witnesses of arbitrary distance from the code. At any given point, we

will mention the range which we will be considering.

1.2 Contributions

1.2.1 Definition and Basic Examples

We provide a general definition of qLTCs in Definition 14. Being probably the richest and most well-

studied class of quantum codes, stabilizer codes [31] are compelling to work with. We thus provide a

simpler definition for stabilizer LTCs (denoted sLTC – Definition 15) and prove that it coincides with

the definition of qLTCs on stabilizer codes, in Claim 3.

An illuminating example to consider is Kitaev’s 2D toric code [39], which turns out to have very

bad soundness, since a string-like error of any length – e.g., an error made of Pauli operators applied

on a Θ(
√
n) long line-segment of qubits – only violates two constraints - those that intersect its two

edges. So, at small (up to 1/
√
n) values of proximity, the soundness is bounded from above by 1/

√
n.

One can in fact extend this phenomenon to derive bounds on the soundness for constant values of

proximity.

Another illuminating example is the Quantum Reed-Muller codes [48]. Certain classical Reed-

Muller code are known to have good (constant) soundness [4]. Quantum Reed-Muller codes can be

constructed using classical Reed-Muller codes and their dual, in the usual CSS paradigm [45]. By

construction, the resulting code will inherit its soundness from one of the two classical codes that

1One can show that qLTCs do not have tensor-product states with small (constant) mean energy.
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defines the CSS code – the one with the worse soundness. Unfortunately, the rate and distance of the

quantum Reed-Muller codes are much worse even than the optimal classical Reed-Muller codes, as

is expected from CSS codes [45] (more details will be provided in the journal version).

1.2.2 Bound on the soundness of sLTCs on small set expanders

We provide two upper bounds on the soundness of qLTCs at low, constant values of proximities

δ > 0. We focus on sLTC’s on n qudits, which are good quantum codes, defined by m k = O(1)-local

check terms, where each qudit participates in DL = O(1) constraints. For such codes, we consider

bounds on the soundness at values of proximities which are at most some constant; this constant is

a function of k,DL, and in particular, δ < 1/k. Usually, in the classical setting, it is much easier to

derive LTCs whose soundness is good (large) for those small proximity values. Here, we show that

in this supposedly easier range of parameters, qLTCs are severely limited compared to their classical

counterparts.

To make the statement of the results simpler, we observe that the soundness R(δ), is bounded

above by the number of constraints that touch the erred qudits, divided by m: hence it is at most

δnDL/m = kδ (using DLn = km). It is more informative to present our results in terms of the

relative soundness r(δ) = R(δ)/kδ, which is the soundness normalized by its maximal value (for exact

definition see Definition 16).

Our first main result proves that good qLTCs exhibit a severe limitation on their relative sound-

ness, when set on good expanders. More precisely, consider the bi-partite graph of the code defined

with n bits on the left side, m constraints on the other side, and edges connecting each constraint

to all of its bits. We say that the bi-partite graph is an ε small-set expander if every small (size

k = O(1)) subset of bits, is examined nearly by as many constraints as it possibly can, namely, by

at least (1 − ε)kDL constraints. Theorem 1 shows that in the quantum setting, when the underlying

bi-partite graph of the sLTC code is an ε small set expander, the relative soundness is O(ε). In other

words, the better the expansion, the worse the soundness. This holds for all proximities smaller than

some constant δ0. More formally, we show:

Theorem 1 Let C be a good stabilizer code, on n d-dimensional qudits, of relative distance > 0, and a k-local

generating set G ⊂ Πn
d , such that each qudit is examined byDL generators. Put δ0 = min

{

1
k3·DL

, 1
2ndist(C)

}

.

Suppose the bi-partite interaction graph of G is ε-small set expanding, for ε < 1/2. Then, for all 0 < δ < δ0,

we have r(δ) ≤ 2ε.

See subsection 3 for exact definitions of Stabilizer codes and their generators, and Definition 16 for

the exact definition of relative soundness.

Theorem 1 stands in sharp contrast to the classical domain. Classically, codes can easily be con-

structed on good expanders so that for small proximities their soundness is excellent; We provide

an explicit such example whose relative soundness is arbitrarily close to 1 by plugging the lossless

expanders constructed in [20], into the expander code construction of Sipser and Spielman [47]. This

implies good classical codes with constant query complexity and with almost optimal soundness for

any proximity δ smaller than some constant (see Claim (5 in Appendix C).
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1.2.3 Bound on the soundness of general qLTCs

Our second main result is an upper bound on the relative soundness which holds for sLTCs set on

any underlying bi-partite graph, not necessarily small-set expanders.

Theorem 2 (Roughly) For any good stabilizer code C of k-local terms (k ≥ 4) over d-dimensional qudits,

where each qudit interacts with O(1) local terms, errors of fractional weight δ < δ0 ≤ 1, for δ0 = Ω(1) have

relative soundness at most α(d)(1 − γgap) for some constant function γgap = γgap(k, d) > 0.

α(d) in the above theorem is defined to be 1 − 1/d2; this is a technical upper bound on the relative

soundness of qLTCs defined on d-dimensional qudits, stemming quite easily from the size of the

alphabet d (see subsection 5.1); Theorem 2 shows that the soundness is further bounded by some

seemingly deeper quantum phenomenon. We stress that this upperbound, which is not exhibited in

classical codes, is found in the range of parameters of δ (small constants) in which it is supposed to

be easiest to achieve soundness for LTCs, e.g., our Claim 5.

1.2.4 Quantum PCPs of Proximity

LTCs are tightly connected [30] to PCP’s of proximity (PCPPs), which are proof systems defined very

similarly to PCPs (See [15]). For the reader familiar with PCPs, they too consider a verifier who gets

access to an untrusted proof, however, PCPPs differ from PCPs in two important aspects: first, they

are weaker, in the sense that they are required to reject only inputs that are far from the language,

whereas in PCPs any input out of the language should be rejected. On the other hand, the verifier is

charged not only for the number of queries out of the proof, but also for the number queries out of

(part of) the input. For a formal definition see Appendix G.

Ben Sasson et. al [15] provide a standard construction of an LTC from a PCPP. Given a PCPP for

membership in a code, and an error correcting code C , they construct an LTC code C ′, which inherits

its soundness parameter from the soundness parameter of the PCPP and its distance from the code

C (Construction 4.3, and Proposition 4.4 in [15], see Appendix G).

In Appendix G, we suggest a definition of quantum PCPPs, and show that a similar result to

that of [15] holds in the quantum setting. The meaning of the definition of qPCPP and of the above

described connection, and their relevance and importance to the quantum PCP conjecture, are far

from clear (see for example [6] for doubts regarding the classical approach to proving the quantum

PCP conjecture, and the direct applicability of quantum Error correcting codes in this context). Still

we provide these definitions and results in the appendix, to make the point that a syntactic connection

does carry over also in the quantum regime. It is a widely open question to give deep meaning to the

connection between qLTCs and quantum local testability of proofs, as is known in the classical case

[30].

1.3 Overview of Proofs of Theorems 1 and 2

1.3.1 Bounds on sLTC codes on Expanders

To prove theorem 1, we want to use good small-set expansion in order to construct an error which

will not have a large energy penalty (namely, will not violate too many constraints) but which will

be of large weight. More precisely, the error should have a large weight modulo the centralizer of the

stabilizer group (see Definition 15), and yet should not violate too many stabilizer generators (recall
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that an error violates a stabilizer generator, or constraint, if it does not commute with it; see definition

7).

The key idea is that in a small-set expander, intersections between stabilizer generators which

consist of more than one qudit are rare (See fact 2). The size of the intersection matters since for

two generators that intersect on a single qubit, the restrictions of those operators to that qubit must

commute, because the two generators commute overall (see definition 7). We note that it cannot be

that all generators when restricted to a given qudit commute, because this would mean this qubit is

trivial for the code (see remark at the end of Subsection 2.3). An error defined on a qudit in such

a way that it commutes with the majority of the generators acting on it, will violate only a small

fraction of the constraints acting on that qudit.

To extend this to errors of larger weight (up to some small constant fraction), we apply the above

idea to each of the generators in a large “sparse” set of generators, namely a set in which each two

terms are of at least some constant distance apart in the interaction bi-partite graph. (formally, a 1-

independent set of terms; see Definition 18). It is not difficult to see that due to the distance between

the generators, the error weight remains large even modulo the centralizer.

1.3.2 Upper bound on soundness for stabilizer sLTCs on any graph

To prove theorem 2, we want to prove that regardless of the graph they are set on, the relative sound-

ness of qLTCs is bounded from above by some constant strictly smaller than 1. We use the bound of

theorem (1) (the ”surprising” side) augmented with a claim that quantum stabilizer codes not only

suffer from the quantum effect of Theorem (1) but also cannot avoid the classical effect by which

codes with poor small-set expansion have low soundness, namely that large error patterns are ex-

amined by relatively few check terms, so the number of constraints they violate is relatively low.

Together, this means that for any underlying graph, whether a good or a bad small set expander, the

relative soundness is non-trivially bounded.

While in the classical case, the fact that poor expansion implies poor relative soundness, is very

easy to argue, in the quantum case the proof turns out to be quite non-trivial, but still a similar phe-

nomenon holds. Let us clarify what we’re trying to show. We want to show that if the expansion

is bad, one can construct an error of large weight but which does not have large relative penalty.

Suppose we would like to show that the soundness function r(δ) is small, for some range of prox-

imity values (0, δ0]. Consider a set of qudits S whose fractional size is some δ ∈ (0, δ0], and which

has positive expansion error ε > 0. A priori, if we have an error supported on S, then the maximal

number of violations is at most |S|DL(1 − ε), by the assumption on the expansion. This might seem

as though it proves the result trivially. The technical problem here, however, is that an error on S

may just ”seem” to be large, whereas possibly, may be represented much more succinctly modulo the

centralizer group. This problem is, once again, inherently quantum - it corresponds, essentially, to

showing that a given error has large weight even modulo to the dual code, namely the code spanned

by the generators themselves. We would hence like to devise an error pattern, that cannot be down-

sized significantly by operations in the centralizer group, but would still ”sense” the non-expanding

nature of S, and hence have fewer-than-optimal violations.

To this end we prove the Onion fact (Fact 7) which might be of interest of its own. It states that

given an error on at most k/2 of the k qudits supporting a generator, its weight cannot be reduced

modulo the centralizer within the k-neighborhood of the generator (the k neighborhood is, roughly,

the qudits belonging to the set of terms of distance k from that generator in the interaction graph).
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The “Onion” in the name is due to the fact that the proof (given in Subsection 5.3.3) works via some

hybrid argument on the onion-like layers Γ(i)(u) surrounding the qudits of a generator u.

Our idea is to concentrate the error on a large set of far away generators whose k-neighborhoods

are non-intersecting (we call those generators “islands”). We now argue as follows. If we draw

a random error on the qudits belonging to these ”islands”, with probability calibrated so that the

expected number of errors per ”island”, is, say, 1 error, the following will occur: on one hand, many

islands have more than one error, so they “sense” the sub-optimality of expansion. On the other

hand, only a meager fraction, exponentially small in k, of the ”islands” with at least two errors, will

have more than k/2 errors; only those, by the Onion fact (fact 7) can be potentially reduced modulo

the centralizer. Hence with high probability, the weight of the random error, cannot be significantly

reduced modulo the centralizer, yet it still has less-than-optimal number of violations due to the

expansion.

1.4 Related work

Theorem 1 is related to our recent result [3] in which it was shown that when a quantum local Hamil-

tonian, whose terms mutually commute, is set on a good small-set expander, then the approximation

of its ground energy lies in NP. In that result, the better the small-set expansion, the better the approx-

imation. In other words, as the expansion improves, the problem becomes less interesting from the

quantum point of view. Another result of the same spirit was derived by Brandao and Harrow [17]

for non-commuting 2-local Hamiltonians on standard expanders. In both results good expansion

poses a limitation on the expressiveness of quantum constraint systems. We note that the starting

point of both the proof of our Theorem 1 and the result of [3] are Facts 1 and 2 regarding the percent-

age of unique neighbors in good small set expanders; however, the proofs proceed from that point

onwards in very different directions.

Dinur and Kaufman [26] showed that classical LTC codes must be set on a good small-set ex-

pander. More precisely, given a code with soundness R(δ) = ρ · δ for all δ > δ0 for some constant δ0,

the edge expansion of the underlying graph is at least cρ, for some constant c. This might seem to

provide another classical contrast to our Theorem 1, in addition to our Claim 5. However, [26] does

not use bi-partite graph expansion but rather the graph in which an edge connects any two nodes

that participate in a common constraint; the two notions of expansion are very different and hence

direct comparison to the [26] result is not possible.

1.5 Discussion and Further directions

Many open questions arise regarding qLTCs. Can we find other qLTCs with much better parameters

than those mentioned in this article? It is a natural starting point to check known quantum codes

that have good self-correcting properties, or high energy barrier [35, 44]. Do qLTCs exist with param-

eters which are as good as those of [24, 16], namely, constant distance, constant query complexity,

constant soundness for all proximities larger than some constant δ0 > 0, and rate which is inverse

polylogarithmic? If not, can we prove appropriate upper bounds on qLTCs?

The upper bounds we provided here point to an inherently quantum phenomenon, which consti-

tutes an obstacle against local testability for qLTCs in the low-proximity range of parameters. Both of

our main theorems, reflect, in fact, a deeper phenomenon called monogamy of entanglement which was

identified also in [3] for commuting local Hamiltonians, and [17] for 2-local general Hamiltonians. Es-
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sentially, this phenomenon limits the amount of entanglement that a single qudit with O(1) quantum

levels can ”handle”. In quantum codes, based on commuting check terms, the entanglement of code

states arises from the fact that the operators actually do not commute per qubit, but only over sets of

qubits. Incidentally, per-qubit non-commutativity is also the phenomenon responsible for the energy

”penalty” received by certain (sparse) errors. Hence, in cases where monogamy of entanglement is

a significant factor, for example in small-set expander geometry, we witness an inherent decline in

the energy ”penalty” of such errors, thus upper-bounding the quantum local testability. It is thus

the combination of monogamy of entanglement in small-set expanders, and the poor local testability of

non-expanders, that are responsible for the apparently quantum phenomenon. Whether Theorem 2

hints at a more profound limitation on quantum local testability, that holds also for larger values of

δ, calls for further research. Perhaps refuting the c3 open problem is doable in the quantum case?

Finally, the link between quantum local testability of proofs and qLTCs, so crucial in the classical

world [30], is far from clear in the quantum setting. We have merely touched upon it (see the result

of quantum PCPPs in the appendix), however, much further clarification of this connection, is called

for.

Organization of paper In Section 2 we provide the necessary background on quantum error cor-

recting codes and on small-set expanders. Section 3 provides definitions of quantum locally testable

codes (qLTCs) and stabilizer qLTCs , and basic results. Section 4 provides bounds on the soundness

of quantum LTCs on small-set expanders, and Section 5 provides an absolute bound on soundness

of stabilizer LTCs regardless of the expansion of their underlying graph. Finally, In the Appendices

we provide several proofs which are on the more technical side. In Appendix G we provide our

definition of quantum PCPPs and the construction and proof of the induced qLTC.

2 Background

2.1 The Pauli groups

Definition 1 Pauli Group

The group Πn is the n-fold tensor product of Pauli operators A1 ⊗ A2 ⊗ . . . ⊗ An, where Ai ∈ {I,X, Y, Z},

along with multiplicative factors ±1,±i with matrix multiplication as group operation.

The Pauli group can be generalized to particles of any dimensionality d:

Definition 2 The Pauli group generalized to Fd

Let Xk
d : |i〉 7→ |(i + k) (mod d)〉, P ℓ

d |j〉 7→ wjℓ
d |j〉 be the generalized bit and phase flip operators on the d-

dimensional Hilbert space, where wd = e2πi/d is the primitive d-th root of unity. Let Πd be the group generated

by these operators and all roots of unity of order d. The group Πn
d is the n-fold tensor product of Pauli operators

A1 ⊗A2 ⊗ . . . ⊗An, where Ai ∈
{

Xk
dP

ℓ
d

}

along with these multiplicative factors.

The weight of a Pauli operator is defined to be the number of locations where it is non-identity.

2.2 General Quantum Error Correction

Definition 3 Quantum Code

A quantum code on n qudits is given by a set of (m) projections Πi. The code is defined to be the simultaneous

0 eigenstates of all those projections.
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Definition 4 Quantum Error detection 1[40]

Let C ⊆ H be a quantum code on n qudits. Let ΠC be the orthogonal projection onto C . We say that the set of

errors E is detectable by C if for any E ∈ E , we have:

ΠCEΠC = γEΠC , (1)

where γE is some constant which may depend on E.

Definition 5 Quantum Error detection 2[40]

A set E is detectable by C , if for any |ψ〉, |φ〉 ∈ C with 〈ψ|φ〉 = 0, and any E ∈ E , 〈ψ|E|φ〉 = 0.

Claim 1 [40] Definitions (5) and (4) are equivalent:

The proof can be found in the Appendix. Definition (5) gives rise to the following natural defini-

tion:

Definition 6 Distance of a code[40]

Let C be a quantum code detecting error set E ⊂ Πn
d . C has distance dist(C) if for any two orthogonal code

states |φ〉, |ψ〉, and any E ∈ E of weight at most dist(C)− 1, we have 〈φ|E|ψ〉 = 0.

2.3 Stabilizer Quantum Error Correcting Codes

Definition 7 Stabilizer Code

A stabilizer code C is defined by an Abelian subgroup A = A(G) ⊂ Πn
d , generated by a set G ⊂ Πn

d . The

codespace is defined as the mutual 1-eigenspace of all elements in G (we require that −I /∈ G so that this

codespace is not empty). An element E ∈ Πn
d is said to be an error if it does not commute with at least one

element of G, i.e. E /∈ Z(G), where Z(G) is the centralizer of G. An element E ∈ Πn
d is said to be a logical

operation, if it commutes with all of G, but is not generated by G, i.e., E ∈ Z(G)− A. A stabilizer code is said

to be k-local if each term g ∈ G is an element of Πn
d , with weight exactly k.

To fit with the terminology of Definition 3, consider for each generator g the projection Πg which

projects on the orthogonal subspace to the 1 eigenspace of g.

Definition 8 Succinct representation

A k-local set of generators G is said to be succinct, if there does not exist a different generating set G′, such that

A(G) = A(G′) and wt(g) < k for some g ∈ G′.

The following is a well known fact [31] which will be useful later on, and we prove it in appendix

(D).

Lemma 1 Stabilizer Decomposition

Let C be a stabilizer code on n qudits, and consider the sets EC = {E|φ〉, |φ〉 ∈ C} with E ∈ Πn
d . Then

two sets EC , E′C are either orthogonal or equal to each other, and {EC}E∈Πn
d

span the entire Hilbert space.

Moreover, consider the partition of the entire Hilbert space to sets of states which are mutual eigenvectors of all

generators of C with exactly the same set of eigenvalues for each generator. Then this partition is exactly the

partition derived by the EC’s, and two orthogonal EC’s have two lists of eigenvalues which differ on at least

one generator. In particular, any n qudit state |ψ〉 may be written as a sum of orthogonal vectors

|ψ〉 =
∑

i

Ei|ηi〉,

where Ei ∈ Πn
d and |ηi〉 ∈ C .
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Definition 9 Weight of an error in stabilizer codes

Let C be a stabilizer code on n d-dimensional qudits, with generating set G ⊂ Πn
d . For E ∈ Πn

d , we denote:

1. The number of locations in which E is non-identity - by wt(E).

2. The weight of E modulo the group A(G) - by wtG(E): wtG(E) = minf∈A(G){wt(fE)}.

3. The weight of E modulo the centralizer Z(G) - by wtZ(G)(E): wtZ(G)(E) = minz∈Z(G){wt(zE)}.

The above claims give rise to the following definition of distance in a stabilizer code:

Definition 10 Distance of a stabilizer code

Let C be a k-local stabilizer code on n d-dimensional qudits, with generating set G ⊂ Πn
d . The distance of C is

defined as the minimal weight of any logical operation on C :

dist(C) = minE∈Z(G)−A(G)wt(E).

Claim 2 Equivalence of distance definitions A stabilizer code C has dist(C) ≥ ρ by definition 10, iff it

has distance ≥ ρ by definition 6.

The proof is given in the appendix subsection (E). A code C on n qudits is said to have a constant

relative distance δ > 0, if its distance is at least δn. We will make use of the following assumption

which we isolate so that we can refer to it later on:

Remark: If there is a qudit q such that all states in the code look like |α〉 tensor with some state on

the remaining qudits, for some fixed one-qudit state |α〉 of that qudit q, we say that q is trivial for the

code. We will assume in the remainder of the paper that for all codes we handle, no qudits are trivial

for the code, since such qudits can be simply discarded.

2.4 Interaction graphs and their expansion

We assume in the rest of the paper that each qudit participates in exactly DL constraints. We define

bi-partite expanders, similar to [47], [20], who used them to construct locally-testable classical codes.

Note that we require expansion to hold only for sets of constant size k.

Definition 11 Bi-Partite Interaction Graph

Let C be a quantum code on n d-dimensional qudits, whose check terms {Πi}i are k-local. We define the bi-

partite interaction graph of C G = G(C) = (L,R;E) as follows: the nodes L correspond to the qudits, the

nodes R correspond to the check terms, and the set of edges connect each constraint Πi ∈ R to all the qudits in

L on which it acts non-trivially. We note that G is left DL-regular, and right k-regular.

Definition 12 Bi-partite expansion

Let G = (L,R;E) be a bi-partite graph, that is left DL-regular, right k-regular. A subset of qudits S ⊆ L is

said to be ε-expanding, if |Γ(S)| ≥ |S|DL(1 − ε), where Γ(S) is the set of neighbors of S in this graph. ε is

called the expansion error for this set. G is said to be ε-small-set-expanding, if every subset S ⊆ L, |S| ≤ k

has expansion error at most ε.

We state two technical facts on good bi-partite expanders that will be useful later on. The proofs

are in the appendix (B).
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Fact 1 Consider S ⊆ L in a bi-partite graph G(L,R : E) and let S be ε-expanding, for ε < 1
2 . Then a fraction

at most 2ε of all vertices of Γ(S) have degree strictly larger than 1 in S.

Fact 2 Let S ⊆ L in a bi-partite graph G = (L,R;E), such that S is ε expanding, for ε < 1
2 . Then there

exists a vertex q ∈ S, such that the fraction of neighbors of q with at least two neighbors in S is at most 2ε.

2.5 Notation

We denote as follows. d is the dimension of the qudits involved. For a bi-partite graph we denote

G = (L,R;E), L denotes the left set of vertices of size |L| = n (corresponding to qudits), R denotes

the right vertices |R| = m (corresponding to constraints), and E is the set of edges between L and

R. DL will denote the left degree of a bi-partite graph. k will denote the locality of the constraints,

namely the right degree of the graph. Given S ⊆ R (or L) in a bi-partite graph, Γ(S) denotes the

neighbor set of S in L (or R). N (q) will denote the qudit-neighborhood of a qudit q in L, namely all

the qudits participating in all the constraints acting on q (so, Nq = Γ(2)(q)). We will use ε to denote

the expansion error for bi-partite graphs (as in Definition 12). We will use δ (and sometimes µ) to

denote the proximity, namely, the relative distance of a word from a code.

3 Locally-testable quantum codes

In this section we define locally testable quantum codes, both in the general case, and in the specific

case of stabilizer codes. We then show that our definitions coincide for stabilizer codes.

3.1 Local testability of general quantum codes

We first generalize definition (6), from a definition of distance of a code to a definition of distance from

a code:

Definition 13 Distance from a quantum code

Let C be a quantum code detecting error set E ⊂ Πn
d . For any two orthogonal states |φ〉, |ψ〉 ∈ H, we define the

Hamming distance between them distC(|φ〉, |ψ〉) as the maximal integer ρ, such that for any E ∈ E , with

wt(E) ≤ ρ − 1, we have 〈ψ|E|φ〉 = 0. Similarly, given a state |φ〉 orthogonal to C , we say that the distance

of |φ〉 from C denoted by dist(|φ〉, C) is the minimum over all |ψ〉 ∈ C of distC(|φ〉, |ψ〉).
We note here that the distance of a state from the code in the above, can be much larger than the

distance of the code. This, akin to the classical case, where locally-testable codes are required to identify

words far from the code, even if they cannot be (uniquely) decoded, so that these codes can be used

as proof systems.

Definition 14 Quantum Locally Testable Codes (qLTC)

Let R = R(δ) be some function R(δ) : [0, 1] 7→ [0, 1], this is called the soundness function. Let C be a

quantum code on n d-dimensional qudits, defined as the groundspace of H =
∑m

i=1Π
i
C , where Πi

C are m

k-local projections for some constant k. We say that C is quantum locally testable with soundness R(δ), if:

∀δ > 0, |Ψ〉 : dist(|Ψ〉, C) ≥ δn 7→ 1

m
〈Ψ|H|Ψ〉 ≥ R(δ).

The query complexity of the code is defined to be k.
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3.2 Local testability of quantum stabilizer codes

We now show that local testability defined above (Definition 14) has a natural interpretation in the

context of stabilizer codes.

Definition 15 Local Testability for Stabilizer Codes (sLTC)

Let R(δ) be some function R(δ) : [0, 1] 7→ [0, 1]. We say that a stabilizer code C on n d-dimensional qudits

is an sLTC with query complexity k and soundness R(δ), if there exists a generating set G for C , where each

element has support k, such that the following holds: for any E ∈ Πn
d with wtZ(G)(E) ≥ δn, a uniformly

random generator g ∈ G does not commute with E w.p. at least R(δ).

3.2.1 Equivalence of definitions of locally testable codes

We now show that the definition of stabilizer locally testable codes (Definition 15) is in fact a special

case of the general quantum locally testable codes (Definition 14).

Claim 3

1. If C is a Stabilizer code with generating set G, which is an sLTC with query complexity k, and soundness

R(δ), then the set of projections {Πg}g∈G , where I−Πg is the projection on the 1-eigenspace of g, defines

a qLTC with query complexity k, and soundness R(δ).

2. If C is a qLTC with query complexity k, and soundness R(δ), defined by a set of projections {Πg}g∈G ,

such that the set {I −Πg}g∈G spans an Abelian subgroup of Πn
d , then C is also an sLTC with query

complexity k, and soundness R(δ).

Proof: sLTC 7→ qLTC

By definition of a stabilizer code, for any |φ〉 ∈ C , we have g|φ〉 = |φ〉 for all g ∈ G, so Πg|φ〉 = 0 for

all g ∈ G. Next, consider a state |φ〉 orthogonal to C , such that dist(|φ〉, C) ≥ δn. We would now like

to show that a projection chosen randomly from {Πg}g∈G is violated by |φ〉 with probability at least

R(δ). Consider the following orthogonal decomposition of φ as implied by lemma (1):

|φ〉 =
∑

i

αi|αi〉 =
∑

i

αiEi|ηi〉, (2)

where Ei ∈ Πn
d , |ηi〉 ∈ C , and Ei|ηi〉 are orthogonal. We claim that for each i, wtZ(G)(Ei) ≥ δn:

otherwise, it is easy to see that there exists some E′ ∈ Πn
d , wt(E′) < δn, such that for at least one i, we

have E′Ei ∈ Z(G). Since for any J ∈ Z(G), JC = C , we have that alternatively, E′|αi〉 ∈ C . Since E′

is unitary, and the |αi〉’s are orthogonal, then the E′|αi〉’s are orthogonal, thus E′|φ〉 has a non-zero

projection on C . Contrary to the assumption that dist(|φ〉, C) ≥ δn.

IfEi and g ∈ G do not commute, Eig = ωgEi, for some ω 6= 1. In particular, Ei|ηi〉 is a ω eigenstate

of g. This means it is orthogonal to the 1-eigenspace of g, and therefore:

〈αi|Πg|αi〉 = 1.

Yet, by the sLTC property of C , for each i, Ei does not commute with a fraction at least R(δ) of the

generators of G. Thus, a randomly chosen check term is violated by |αi〉 with probability at leastR(δ),

so
1

|G|
∑

g∈G
〈αi|Πg|αi〉 ≥ R(δ).
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Since by lemma (1) the decomposition above coincides with the simultaneous eigenbasis of G, we

have:
1

|G| 〈φ|
∑

g∈G
Πg|φ〉 =

1

|G|
∑

i

∑

g∈G
|αi|2〈αi|Πg|αi〉 ≥ R(δ).

qLTC 7→ sLTC

First, by definition, the set of states that are in the mutual groundspace of the Πg’s, are stabilized (i.e.

eigenvalue 1) w.r.t. the terms G, and vice versa. Now, let E ∈ Πn
d , whose weight modulo Z(G) is at

least δn. Let |φ〉 ∈ C be any code state, and denote |ψ〉 = E|φ〉. We claim that dist(|ψ〉, C) ≥ δn.

Otherwise there exists E′ ∈ Πn, wt(E′) < δn, such that E′|ψ〉 has a non-zero projection on C , hence

E′E|φ〉 has a nonzero projection on C , so by lemma (1), we have that E′EC = C . Therefore, E′E
commutes with all G, and hence E′E ∈ Z(G), which implies that wtZ(G)(E) < δn, in contradiction.

By the qLTC property of C , we have

〈ψ|
∑

g∈G
Πg|ψ〉 ≥ |G| · R(δ). (3)

Since |ψ〉 = E|φ〉, then for any generator g g|ψ〉 = gE|φ〉 = ωEg|φ〉 = ωE|φ〉, for some ω ∈ C. So

for any g ∈ G |ψ〉 is some eigenstate of g. Hence |ψ〉 is either in the 1-eigenspace of Πg or in its

0-eigenspace, so by equation (3) it violates a fraction at least R(δ) of all generators G.

4 Bound on the soundness of stabilizer LTCs on small-set expanders

In this section we prove theorem 1. We define the relative soundness formally:

Definition 16 Relative Soundness Define

r(δ) : [0, 1] 7→ [0, 1],

as follows: r(δ) = R(δ)/Θ(δ), where Θ(δ) ≡ min{δk, 1}.

We note that in the all the following, we will be interested in δ < 1/k and in this range r(δ) = R(δ)/kδ.

4.1 A useful fact about restrictions of stabilizers

Definition 17 Restriction of stabilizers

For a E ∈ Πn
d , let E|q denote the q-th component of the tensor product E, and let E|−q denote the tensor

product of all terms except the q-th. Similarly, for a generating set G, we denote by G|q as the set {g|q , g ∈ G},

and similarly for G|−q .

We now prove a useful fact: that the restrictions to a given qudit q of all the generators of a stabilizer

code with absolute distance strictly larger than 1 cannot all commute.

Fact 3 Let C be a stabilizer code with absolute minimal distance strictly larger than 1. Then for any qudit q,

and any generator g acting on q, there exists another generator h(q) acting on q such that [g|q, h|q ] 6= 0.
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Proof: Assume on the negative, that there is a qudit q, and a generator g, such that for all other

generators h, we have [g|q, h|q] = 0. Let Q = g|q . We have that Q′ = Q ⊗ I−q, namely the tensor

product with identity on the other qubits, commutes with all g ∈ G, and thus Q′ ∈ Z(G). However,

Q′ cannot be inside A(G), since otherwise q is in some constant state (the 1 eigenvector of Q) |α〉
for all code states, and thus q is trivial for the code (see remark at the end of Subsection 2.3). Hence,

Q′ ∈ Z(G)−A(G), so the distance of the code by definition (10) is 1, in contradiction to our assumption.

4.2 Proof of Theorem 1

In the proof we will make use of ”sparse” sets of constraints, defined as follows.

Definition 18 1-independent set of constraints

For a given constraint u, consider Γ3(u), the set of qudits acted upon by constraints which act on qudits in u.

A set of constraints U is said to be 1-independent if for any two constraints u,w ∈ U , Γ3(u) ∩ Γ3(w) = Φ.

Proof: (Of theorem 1)

Generating the error We want to construct an error E ∈ Πn
d , wtZ(G)(E) ≥ δn, that will not violate

too many constraints in G. Let C be a stabilizer code with a k-local generating set G, such that the

bi-partite interaction graph of C is an ε small-set bi-partite expander. Let U be a 1-independent set

of constraints of size δn. We note that since δ ≤ 1
k3DL

a 1-independent set of this size must exist, by

a simple greedy algorithm. For a given constraint u ∈ U , and i ∈ [k], let αi(u) denote the number of

generators g ∈ G that act on a qudit i in u and intersect u in at least one other qudit. Then for each

u ∈ U we define q(u) to be a qudit of minimal αi(u) over all i ∈ [k]. Let T = {q(u)|u ∈ U}. Let us

define an error pattern:

E =
⊗

u∈U
u|q(u).

We first note that E /∈ Z(G); This is true by Fact (3): for each qudit q in the support of E, E|q does

not commute with h|q for some h ∈ G. But since T is induced by a 1-independent set, h does not

touch any other qudit in the support ofE except q, so this implies [h,E] = [h|q, E|q] 6= 0. We will now

show that E has large weight modulo Z(G), but is penalized by a relatively small fraction of G.

Weight Analysis By definition, we have that wt(E) = |T | = |U | = δn. We claim that:

wtZ(G)(E) = |T | (4)

Since δ was chosen to be smaller than half the distance of the code C , wtZ(G)(E) = wtG(E) and so it

suffices to lower-bound wtG(E).

Suppose on the negative that wtG(E) < |T |. Then there exists ∆ ∈ A(G), such that E′ = ∆E has

wt(E′) < |T |. Since the weight of E′ is strictly smaller than that of E, there must be one qudit q0
in T , s.t. on the neighborhood N (q0) the weight of E′ is strictly smaller than that of E, which is 1;

namely, E′ must be equal to the identity on all the qudits in the qudit- neighborhood of q0. Here, we

have used the fact that the qudit-neighborhoods of different qudits in T are non-intersecting. This

is true by the fact that the qudits were chosen by picking one qudit from each constraint out of a

1-independent set of constraints (definition 18). This means that ∆ must be equal to the inverse of
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E on this neighborhood. But this inverse is exactly the following: It is equal to E|−1
q0 on q0, and to

the identity on all other qudits in the neighborhood. By construction , E|q0 on q0, (and therefore also

E−1|q0 = ∆q0) does not commute with h|q0 , for some h ∈ G. Since ∆ is identity on all qudits of h other

than q0, this implies that ∆ does not commute with h, in contradiction to the fact that ∆ ∈ A(G).

soundness Analysis We upper-bound the number of generators that do not commute with E. For

each u ∈ U , the number of generators g ∈ G that do not commute withE|q(u) is at most the number of

generators that share at least two qudits with u. By fact (2) there exists a qudit q ∈ Γ(u) such that the

fraction of its check terms with at least two qudits in Γ(u) is at most 2ε; since we chose q(u) to be the

qudit that minimizes that fraction over all qudits on which u acts, we have that for q(u), the fraction

of terms acting on it that intersect u with at least 2 qudits is at most 2ε. Thus, the absolute number

of generators acting on q(u) that intersect u in at least two qudits is at most 2εDL. Hence the overall

number of generators violated byE is at most 2ε|T |DL. By Equation 4 this is equal to 2εDLwtZ(G)(E).

Using DLn = mk, we have R(δ) ≤ 2εkδ and so r(δ) ≤ 2ε.

We now show that a slightly stronger version of the above theorem holds. This version will be

used for showing Theorem (2).

Claim 4 LetC be a good stabilizer code, with a k-local succinct generating set, where each qubit is examined by

DL constraints. If there exists a 1-independent set of constraints U ⊆ R, s.t. |U | = δn for some 0 < δ < 1/k,

and Γ(U), the set of qudits that the constraints in U act on satisfies |Γ(Γ(U))| ≥ |Γ(U)|DL(1 − ε), then for

any δ′ ≤ δ we have that r(δ′) ≤ 2ε.

Proof: For a set S ⊆ L, let Γ1(S) denote the number of neighbors of S having a single neighbor in

S, and let Γ≥2(S) ≡ Γ(S) − Γ1(S). Put S = Γ(U), and let S =
⊔k

i=1 Si, denote a partition of S into

k disjoint sets, where each Si takes a single (arbitray) qubit from each Γ(u), u ∈ U . By assumption,

|Γ(S)| ≥ |S|DL(1− ε), whereas the total degree of S is |S|DL. Hence, |Γ≥2(S)| ≤ |S|DLε, so |Γ1(S)| ≥
|S|DL(1 − 2ε). Since each unique neighbor of S examines exactly one partition Sj , there exists a

partition S0 examined by at least |S0|DL(1− 2ε) = δnDL(1− 2ε), constraints from Γ1(S).

Now, given any δ′ ≤ δ, let S′
0 be a subset of S0 of size δ′n, maximizing the ratio Γ1(S

′)/|S′|, over

all sets S′ ⊆ S0 of this size. Since each element of Γ1(S) examines just one element of S, such a set

exists, with ratio at least DL(1 − 2ε). A tensor-product error E defined by taking, for each u ∈ U the

restriction to its qubit in S′
0, we have by equation (4) wtZ(G)(E) = δ′n, whereas the maximal penalty

is at most 2εDLδ
′n. Since δ′ ≤ δ < 1/k it follows that r(δ′) ≤ 2ε.

5 An upper-bound on soundness

We now show an absolute constant strictly less than 1, upper-bounding the relative soundness of any

good quantum stabilizer code spanned by k-local generators, whose qudits are acted upon by DL

stabilizers each. We start with an easy alphabet based upper bound.

5.1 Alphabet-based bound on soundness

In attempting to understand soundness of good stabilizer codes, one must first account for limitations

on the soundness that seem almost trivial, and occur even when there is just a single error.
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Definition 19 Single error soundness

Let t(d) = 1/(d2 − 1); The single error relative soundness in dimension d is defined to be α(d) = 1− t(d).

The motivation for the above definition is as follows. For any qudit q, there always existsQ ∈ Πd,

Q 6= I , such that a fraction at least t(d) of the generators touching q are equal to Q when restricted to

q. If we consider a single-qudit error on q to be equal to Q, then it would commute with t(d) of the

generators acting on q; thus they can violate at most α(d) of the constraints acting on q. Hence, one

can expect that it is possible to construct an error of linear weight, whose relative soundness r(δ) is

bounded by the single error relative soundness using qudits whose neighboring constraints are far

from each other.

Indeed, we show:

Fact 4 Alphabet bound on soundness

For any good stabilizer code C on n d-dimensional qudits, with a k-local succinct generating set G, whose

left-degree is DL, we have r(δ) ≤ α(d), for any δ ≤ 1/(k3DL).

Proof: Similarly to Theorem (1), given the parameters assumed in the statement of the fact, there

exists a 1-independent set of constraints U of size δn. For each constraint u ∈ U we select arbitrarily

some qubit q = q(u) ∈ Γ(u) and examine the restrictions to q of all stabilizers acting non-trivially on

q. Let P (q) denote the set of all such restrictions. Let MAJ(q) denote the element of Πd that appears

a maximal number of times in P (q). We then set E =
⊗

u∈U MAJ(q(u)). We first realize that E is an

error: we want to show that there exists a generator g such that E and g do not commute. Otherwise,

E commutes with all generators; Since by construction, each generator intersects E with at most one

qudit, this means that the restrictions to q also commute: [E|q, g|q ] = 0 for all q(u) acted upon by

E. This is a contradiction by Fact (3); hence, there must be a generator which does not commute

with E, so E is indeed an error. Similarly to the proof of Equation (4) in the proof of Theorem

(1), we also have wtZ(G)(E) = δn. Furthermore, for each qudit q, the fraction of generators on q,

whose restriction to q does not commute with E|q is at most α(d), since the number of appearances

of E|q = MAJ(q) in P (q) is at least t(d) = 1 − α(d). Hence the number of violated constraints is at

most α(d) · |U | ·DL = α(d)δnDL. Since δ < 1/k it follows that r(δ) ≤ α(d).

We note that classically, there is no direct analogue to the requirement of non-commutativity to

achieve constraint violation. No analogue of the α(d) thus exists.

5.2 Separation from alphabet-based soundness

In this section we show that the alphabet-based bound on the relative soundness in fact cannot be

achieved, and the relative soundness is further bounded by a constant factor strictly less than 1,

which is due to what seems to be an inherently quantum phenomenon. We will use the geometry

of the underlying interaction graph to achieve this separation, by treating differently expanding in-

stances and non-expanding instances. Before stating the main theorem of this section, we require a

generalization of definition 18 and a simple fact.

Definition 20 t-independent set of constraints Let C be a quantum code with a set of k-local constraints,

whose underlying bi-partite graph isG(C) = (L,R;E). A set of constraints U ⊆ R is said to be t-independent

if for any a, b ∈ U we have Γ(2t+1)(u) ∩ Γ(2t+1)(v) = Φ.
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The following fact can be easily derived by a greedy algorithm:

Fact 5 Let η = η(k,DL) = k−(2k+1)D
−(2k−1)
L . For any quantum code C whose bi-partite graph G(C) is left

DL-regular, and right k-regular, there exists a k-independent set of size at least ηn.

Proof: Pick a constraint u, remove all constraints in Γ(4k)(u), and repeat. The number of constraints

we have removed for each constraint is (kDL)
2k . Hence, we can proceed for m/(kDL)

2k steps. We

get that the fraction of constraints is at least k−(2k)D
−(2k)
L , and since mk = nDL, we get the desired

result.

Theorem (2) Let C be a stabilizer code on n d-dimensional qudits, of minimal distance at least k, and a k-local

(k ≥ 4) succinct generating set G ⊂ Πn
d , where the right degree of the interaction graph of G is DL. Then there

exists a function γgap = γgap(k) > min
{

10−3, 0.01/k
}

such that for any δ ≤ min{dist(C)/2n, η/10}, (for

η as defined in Fact 5) we have r(δ′) ≤ α(d) (1− γgap). where δ′ ∈ (0.99δ, 1.01δ).

The proof of the theorem will use, on one hand, claim (4) which upper-bounds the soundness of

expanding instances, and on the other hand a lemma on non-expanding instances,which tries to

”mimic” the behavior of the classical setting, in which non-expanding topologies suffer from poor

soundness. We now state this lemma:

Lemma 2 Let C be a stabilizer code on n qudits of dimension d, with minimal distance at least k and a k-

local (k ≥ 4) succinct generating set G, where the left degree of the interaction graph of G is DL. Let γgap =

γgap(k) = min
{

10−3, 0.01/k
}

. If there exists a k-independent set U of size |U | = δn, with δ < dist(C)/2n,

such that the bi-partite expansion error of Γ(U) is at least ε = 0.32, i.e. |Γ(Γ(U))| = |Γ(U)|DL(1 − ε′) for

some ε′ ≥ 0.32 then

r(δ′) ≤ α(d) · (1− γgap),

for some δ′ ∈ (0.099δ, 0.101δ).

The proof of this Lemma is technically non-trivial, and we defer it to a separate section. From this

lemma, it is easy to show theorem (2):

Proof: (of theorem 2) The parameters of the theorem allow us to apply directly fact (5); hence there

exists a k-independent set S of size at least ηn, for η as defined in Fact (5). Since δ ≤ η/10 there exists

a k-independent set S of size 10δ. Now, either:

1. S has expansion error at least 0.32. By lemma (2), we have

r(µ) < α(d)(1 − γgap),

for some µ ∈ (0.099 · (10δ), 0.101 · (10δ)) = (0.99δ, 1.01δ), and γgap(k) from lemma (2), which is

at least min
{

10−3, 0.01/k
}

.

2. The set S is ε-expanding for ε < 0.32. In which case, since S is in particular R-independent,

then by claim (4), the soundness r(δ′) ≤ 2ε < 2/3 − 0.01 ≤ α(d) − 0.01, for all δ′ ≤ |S|/n. In

particular r(µ) < α(d)(1 − 0.01/k).

Taking the higher of these two bounds we get the desired upper-bound for r(µ).
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5.3 Proof of Lemma (2)

In the following we first define the error; We provide the proof that the expected penalty of this error

is small in fact (6), then state and prove the Onion fact in sub-subsection 5.3.3 and use it to prove Fact

(8), in which we show that the error has large weight modulo the group. Finally we combine all the

above to finish the proof of the lemma.

5.3.1 Constructing the error

Let U ⊆ R be a k-independent set as promised by the conditions of the lemma. Then |U | = δn, and

denoting S = Γ(U), we have that |S| = δnk. Therefore, |Γ(S)| = |S|DL(1− ε′), for some ε′ ≥ 0.32. Let

E be the following random error process: for each qudit of S independently, we apply I w.p. 1 − p

for p = 1/(10k), and one of the other elements of Πd with equal probability p · t(d), where t is defined

in Definition (19).

E =
⊗

i∈S
Ei, where Ei =

{

Ii w.p. 1− 1/(10k)

Xk
dP

l
d w.p. t/(10k)

We note here that the choice of p is such that on average, each k-tuple has only a small number of

errors; the expectation of the number of errors is an absolute constant 1/10 (not a fraction of k). This

will help, later on, to lower-bound the weight of the error modulo the group.

5.3.2 Analyzing Penalty

We first claim, that on average, E has a relatively small penalty w.r.t. G, using the fact that the expan-

sion error is at least 0.32 as in the condition of Lemma 2. For any E , let penalty(E) denote the number

of generators of G that do not commute with E .

Fact 6

EE [Penalty(E)] ≤ pα|S|DL (1− 0.02/k)

Proof: LetG = (L,R;E) denote the bi-partite graph corresponding to G, withR being the generators

of G and L the qudits. Let S = Γ(U) be as before. Let the error process E be the one defined above.

For any constraint c ∈ Γ(S) which is violated when applied to this error, observe that there must be

a qudit i ∈ supp(c) such that [c|i, Ei] 6= 0. We now would like to bound the number of constraints

violated by E using this observation, and linearity of expectation.

For an edge e ∈ E connecting a qudit i in S and a constraint c in Γ(S), let x(e) denote the binary

variable which is 1, iff the error term Ei on does not commute with c|i. In other words, an edge

marked by 1 is an edge whose qudit causes its constraint to be violated. By construction, for each

e ∈ E which connects the qudit i and the constraint c we have

EE [x(e)] = p(1− t). (5)

This is true since a constraint c restricted to the qudit i, c|i does not commute with the error restricted

to the same qudit i, Ei, iff both Ei is non-identity (which happens with probability p) and is not equal

to c|i.
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If we had just added now x(e) over all edges going out of S (whose number is |S|DL), then by

linearity of expectation, this would have given an upper bound on the expected number of violated

constraint equal to

∑

e

p(1− t) = p|S|DLα(d). (6)

Unfortunately this upper bound does not suffice; to strengthen it we would now like to take

advantage of the fact that many of those edges go to the same constraint, due to the fact that the

expansion is bad; thus, instead of simply summing these expectation values, we take advantage of

the fact that two qudits touching the same constraint cannot contribute twice to its violation. Observe

that it may even be the case that some edges may cause constraints to become ”unviolated”, so the

actual bound may be even lower.

Let Einj ⊆ E be a subset of the edges between S to Γ(S) chosen by picking a single edge for each

constraint in Γ(S). For an edge e ∈ E let c(e) denote the constraint incident on e, and let einj(c(e))

denote the edge in Einj that is connected to c(e).

We now bound the expectation by subtracting x(e) from the sum, if the Boolean variable x(einj(c(e)))

is 1; this avoids counting the violation of the same constraint twice due to the two edges. We have:

EE [Penalty] ≤ EE





∑

e∈Einj

x(e) +
∑

e/∈Einj

(1− x(einj(c(e)))) · x(e)



 .

Expanding the above by linearity of expectation:

E [Penalty] ≤
∑

e∈Einj

EE [x(e)] +
∑

e/∈Einj

EE [x(e)]−
∑

e/∈Einj

EE [x(einj(c(e))) · x(e)] =

∑

e∈E
EE [x(e)] +

∑

e/∈Einj

EE [x(einj(c(e))) · x(e)] .

We have already calculated the first term in the sum in Equation 6; We now lower bound the

correction given by the second term. We use the fact that for any e /∈ Einj

EE [x(einj(c(e))x(e)] = EE [x(einj(c(e)))]EE [x(e)]

since E is independent between different qudits. We can thus substitute Equation 5, and get:

EE [Penalty] ≤ pα|S|DL − |S|DLε(pα)
2.

where we have used the fact that |E\Einj | = |S|DLε. This is equal to

pα|S|DL(1− pαε).

Using p = 1/(10k), ε ≥ 0.32, α(d) ≥ 2/3, we get the desired bound.
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5.3.3 The Onion fact (7)

Fact 7 Onion fact

Let C be a stabilizer code on n qudits with a succinct generating set G of locality k, such that dist(C) ≥ k. Let

E ∈ Πn
d s.t. supp(E) ⊆ Γ(u) for some generator u ∈ G. Finally let ∆ ∈ A(G), and let EG = ∆ ·E. Then, for

any i ∈ [k], if wt(E|Γ(u)) = i, then wt(EG |Γ(2k+1)(u)) ≥ min {i, k − i}.

Proof: If ∆|Γ(u) = I then

wt
(

EG |Γ(2k+1)(u)

)

≥ wt
(

EG |Γ(u)
)

= wt
(

E|Γ(u)
)

= i, (7)

so in this case we are done.

Otherwise, ∆|Γ(u) is non-identity, and so has at least one non-identity coordinate. Since ∆ is

non-identity, by the assumption on the succinctness of G we have wt(∆) ≥ k.

Moreover, we claim that wt
(

∆|Γ(2k+1)(u)

)

≥ k. Otherwise, consider the following process. Start

with the generator u, and consider the qudits in Γ(u). Now add the qudits in Γ(3)(u) (namely the

qudits that are acted upon by generators intersecting u). Then add the next level, and so on for k

levels, by which point we have added all qudits belonging to Γ(2k+1)(u). By the pigeonhole principle,

if wt
(

∆|Γ(2k+1)(u)

)

< k, then there must exist a level t, 1 ≤ t ≤ k, such that ∆ has zero support on

qudits added in this level.

We now claim that ∆̃ = ∆|Γ(2(t−1)+1)(u), is in the centralizer Z(G) but its weight is less than k. This,

together with the fact that ∆̃ /∈ A(G), shown in the next paragraph, contradicts the assumption that

dist(C) ≥ k. To see that ∆̃ is in the centralizer, we observe first that ∆ commutes with all elements of

G that act only on qudits in Γ(t−1)(u), and since ∆̃ agrees with ∆ on Γ(2(t−1)+1)(u), ∆̃ also commutes

with them. We also observe that ∆̃ trivially commutes with all elements in G whose support does not

intersect Γ(2(t−1)+1)(u). Hence we only need to worry about those terms that act on at least one qudit

in Γ(2t+1)(u) − Γ(2(t−1)+1)(u) and at least one qudit in Γ(2(t−1)+1)(u). Let v be some such term. Note

that v does not act on any qudit outside Γ(2t+1)(u) by definition. We know that ∆ commutes with v.

But by the choice of t, we know that ∆ is trivial on those qudits added at the t-th level, and hence ∆

restricted to Γ(2t+1)(u) (which contains the qudits of v) is the same as ∆ restricted to Γ(2(t−1)+1)(u).

And so ∆ restricted to Γ(2(t−1)+1)(u) commutes with v.

We showed that ∆̃ is in Z(G). If it also belongs to A(G), this contradicts succinctness of G; oth-

erwise it is in Z(G) − A(G) implying the distance of C is at most k − 1, contrary to assumption.

This means that wt
(

∆|Γ(2k+1)(u)

)

≥ k. Therefore, we now know by the triangle inequality on the

Hamming distance, that

wt
(

EG |Γ(2k+1)(u)

)

≥ wt
(

∆|Γ(2k+1)(u)

)

− wt
(

E|Γ(2k+1)(u)

)

= (8)

wt
(

∆|Γ(2k+1)(u)

)

− wt
(

E|Γ(u)
)

≥ k − i.

Taking the minimal of the bounds from Equations (7),(8) completes the proof.

5.3.4 Analyzing error weight

We note that the expected weight of E is p|S| and since |S| is linear in n, by Chernoff the proba-

bility that the weight of E is smaller by more than than a constant fraction than this expectation is
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2−Ω(n). We need to show a similar bound on the weight modulo the centralizer group; given that

δ < dist(C)/2n we only need to bound the weight modulo A(G). Let ∆ ∈ A be some element in the

stabilizer group and let EG = ∆ · E . We now need to lower-bound wt(EG).

Fact 8 For integer k, let k̂ = ⌊k/2⌋ + 1. Let y(k) : [4,∞] 7→ R be the function:

y(k) =



















1− 2(−k̂+1)log(k)+k−2.3k̂+4.54 k ≥ 12

0.9999 6 ≤ k ≤ 11

0.9992 k = 5

0.9985 k = 4

We claim:

ProbE (wt(EG) < |S|py(k)) = 2−Ω(n).

Proof: (Sketch.The detailed proof can be found in Appendix (F).) The proof builds on the onion

fact (7) as follows: the onion fact shows that ”islands” with fewer than k/2 errors cannot ”lose” error

weight modulo the centralizer of G. The proof uses standard probabilistic arguments, to argue, that

the random error pattern we chose, is such, that the vast majority of islands, have fewer than this

threshold error weight, and so the overall error weight is virtually unharmed.

5.3.5 Concluding the proof of lemma (2)

Proof: By fact (6) the average penalty of E is small, i.e.

E [Penalty(E)] ≤ |S|DLpα(1 − 0.02/k) , P.

Yet, by fact (8) w.p. exponentially close to 1, we have

wt(EG) ≥ |S|py(k) ,Wlow ≥ |S|p · 0.99.

Similarly, by the Hoeffding bound w.p. exponentially close to 1, we have

wt(EG) < |S|p(1 + 0.01) ,Whigh.

Since all penalties are non-negative, we conclude that conditioned on |wt(EG)/(|S|p) − 1| < 0.01,

we have E [Penalty(E)] ≤ P + 2−Ω(n). Therefore, there must exist an error E , whose weight modulo

G deviates by a fraction at most 0.01 from |S|p, and whose penalty is at most P + 2−Ω(n).

We would like to bound the soundness of this error, which is the ratio of the penalty to its relative

weight times DL. We get that its soundness is at most

r =
P + 2−Ω(n)

DLWlow
≤ 1

DL
· |S|DLpα(1− 0.019/k)

|S|py(k) = α

(

1− 0.019/k

y(k)

)

. (9)

We now note that in the last expression, for all k ≥ 12, the ratio 1−0.019/k
y(k) is at most 1− 0.01/k. For

all values of 4 ≤ k < 12 we substitute the appropriate value of y(k) and get similarly that the ratio
1−0.019/k

y(k) is at most 1− 10−3. Hence, the soundness of the error, r is at most α(d)(1− γgap) where γgap
is as defined in the statement of theorem (2).
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A Proof of Claim 1

We prove that Definitions (5) and (4) are equivalent:

Proof: If definition (4) holds then for any E ∈ E , and any two orthogonal states of the code |φ〉, |ψ〉
have

〈φ|E|ψ〉 = 〈φ|ΠCEΠC |ψ〉 = γE〈φ|ΠC |ψ〉 = γE〈φ|ψ〉 = γE0 = 0.

On the other hand, suppose that for any two orthogonal states |φ〉, |ψ〉 in the code, and any E ∈ E ,

we have 〈φ|E|ψ〉 = 0. Choose some orthogonal basis of the code C {|bi〉}mi=1. Then for each of these

basis vectors, we have 〈bi|E|bj〉 = 0, for i 6= j. Hence, in particular, the operatorE|C , i.e., E restricted

to C , is a diagonal matrix diag(λ1, . . . , λm). We claim, further that E|C = γEI , for some constant γE ,

and hence ΠCEΠC = γEΠC . Suppose, on the negative, that there exist two eigenvalues of E|C that

are different, say λ1 6= λ2. Consider the orthogonal states |φ〉 = 1√
2
(|b1〉+ |b2〉), |ψ〉 = 1√

2
(|b1〉 − |b2〉).

Then |φ〉, |ψ〉 are in the code by linear closure, and are orthogonal, and yet

〈φ|E|ψ〉 = 1

2
〈b1|E|b1〉 −

1

2
〈b1|E|b2〉+

1

2
〈b2|E|b1〉 −

1

2
〈b2|E|b2〉 =

1

2
(λ1 − λ2) 6= 0,

contrary to our assumption on E.

B Proofs of geometrical facts on small-set expanders

B.1 Proof of fact (1):

For S ⊆ R let Γ1(S) ⊆ Γ(S) denote the subset of the neighbors of S with exactly one neighbor in S.

Similarly, let Γ≥2(S) denote the subset of neighbors with at least two neighbors in S.

Proof: The average degree of a vertex in Γ(S) w.r.t. |S| is at most DLS
DLS(1−ε) =

1
1−ε . Let α1 denote the

fraction |Γ1(S)|/|Γ(S)|, where Γ1(S) is the set of neighbors of S with degree exactly 1 with respect to

S. Then
1

1− ε
≥ α11 + (1− α1)m,

where m is the average degree of a vertex with at least two neighbors in S. Then by simple algebra

α1(m) ≥ 1− 1

m− 1
· ε

1− ε
,

so α1(m) is a monotonously increasing function of m, and since m ≥ 2, then α1 is minimized for

m = 2. Hence,

α1 ≥ 1− ε

1− ε
.

and since ε < 1/2 we have:

α1 ≥ 1− ε(1 + 2ε) ≥ 1− 2ε.
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B.2 Proof of fact (2):

Proof: By definition, we have |Γ(S)| ≥ |S|DL(1−ε). LetEinj ⊆ E(S) be a subset of the edges incident

on S such that each u ∈ Γ(S) has a single neighbor in S connected by an edge of Einj . Then Einj

is of size |Γ(S)| which is at least |S|DL(1 − ε). Also |E(S)| = |S|DL, thus |E(S) − Einj| ≤ |S|DLε.

Therefore |Γ≥2(S)| ≤ |S|DLε. Hence, Γ1(S) = Γ(S)−Γ≥2(S) is of size at least |S|DL(1−ε)−|S|DLε =

|S|DL(1− 2ε). Therefore, when ε < 1/2 there exists a vertex v ∈ S with at least DL(1− 2ε) neighbors

in Γ1(S). Since v has DL neighbors in Γ(S), then the fraction of neighbors of v with at least two

neighbors in S is at most 2ε, when ε < 1
2 .

C Existence of arbitrarily sound classical LTCs on small-set expanders

Claim 5 For any ε ∈ (0, 1/2), and r ∈ (0, 1) there exists a constant δ = δ(r, ε), such that there exists an

explicit infinite family of codes {Cε(n)}n∈N, of n bits, of constant fractional rate r, and constant fractional

distance d = d(ε, r), whose check terms are of locality whose expectation is equal to a constant k, and all errors

of weight less than δn have soundness r(δ) ≥ 1 − 3ε. Moreover, the underlying graph of these codes is an ε

small-set expander.

Proof: The construction of [20], generates explicitly for any ε, r a left-DL-regular bi-partite graph

G = (L,R;E) such that |R|/|L| = 1 − r, and for any subset S ⊆ L, |S| ≤ |L|δ the neighbor set of S is

of size at least |S|DL(1 − ε), where DL is the left degree of G. Note that since the left degree is DL,

the average right degree is DL|L|/|R| = DL
1

1−r , which is a constant given that DL is a constant.

The code is defined by assigning to each right node a parity check over its incident vertices. Let

us lower bound the rate of this code: it is at least r = (|L| − |R|)/|L|, since each constraint in R at

most halves the dimension of the codespace. The minimal distance of the code is at least δ, since any

non-zero word of weight at most δ is rejected, since there exists at least one check term that ”sees”

just a single bit at state 1, by Fact (1).

Hence, these are so-called ”good” codes. Furthermore, their soundness is at least 1 − 3ε since an

error on a set of bits S of size |S| ≤ δn, is examined by at least |S|DL(1− ε) constraints. By Fact (1) at

least 1 − 2ε of those constraints, examine S in exactly one location; all constraints that touch a given

error set S in exactly one location will be violated; hence the total number of constraints that will be

violated is at least |S|DL(1 − ε)(1 − 2ε) ≥ |S|DL(1 − 3ε). Therefore, the soundness function R(δ′) is

at least (1− 3ε)δ′k, for all δ′ ∈ [0, δ].

D Proof of Lemma (1): decomposition to cosets of a stabilizer code

Proof: For any E ∈ Πn
d , and any g ∈ G, we have Eg = ωgE, where ω ∈ C. Therefore, for any |η〉 in

C , we have E|η〉 is an ω eigenstate of g. Then for any E ∈ Πn
d , we have that EC is some simultaneous

eigenspace of G. But, since Πn
d , spans over C all unitaries on n qudits, then it must be that every

simultaneous eigenspace of G is equal to EC for some E ∈ Πn
d . In particular, any state |φ〉 may be

written as a sum

|φ〉 =
∑

i

Ei|ηi〉,

where Ei ∈ Πn
d , and |ηi〉 ∈ C .
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E Proof of Claim (2) Equivalence of definitions of code distance

We prove that a stabilizer codeC has dist(C) ≥ ρ by definition 10, iff it has distance ≥ ρ by definition

6.

Proof: If the minimal weight of a Pauli in Z(G)−A(G) has weight at least ρ, then all terms E ∈ Πn
d of

weight strictly less than ρ (namely, at most ρ− 1) are either spanned by G, or outside Z(G). Take any

two orthogonal code states |φ〉, |ψ〉. If E ∈ A(G) then all code states are stabilized by E, so we have

〈φ|E|ψ〉 = 1 · 〈φ|ψ〉 = 0. If E /∈ Z(G), E does not commute with some generator, so in particular, E

does not preserve the simultaneous 1-eigenspace of all generators, namely, the code. By lemma (1),

this implies that EC is orthogonal to C . Thus we have in this case as well : 〈φ|E|ψ〉 = 0. Hence the

minimal distance of the code, according to definition (6) is at least d.

Proving the converse, assume that dist(C) < ρ, i.e. minE∈Z(G)−A(G)wt(E) < ρ. Then, there exists

E ∈ Πn
d , of weight less than ρ, that commutes with all generators of G but not spanned by them, so

there exists some state |φ〉 ∈ C , such that E|φ〉 6= |φ〉, yet E|φ〉 ∈ C , (see [31], p. 27). Thus, there exists

a non-zero projection of E|φ〉 on some other code state |ψ〉 orthogonal to |φ〉. Therefore, 〈ψ|E|φ〉 6= 0,

contrary to definition (5).

F Lower-bound on weight: proof of Fact (8)

Proof: Let x ∼ B(k, p = 1/(10k)) denote a random variable which is the sum of k i.i.d Boolean

variables, each equal to 1 with probability p; in other words, x is a binomial process;B(i) = Prob(x =

i). Let U be a k-independent set of size Ω(n), and E be the error process defined in Subsection (5.3.1).

LetUi =
{

u ∈ U |wt(E|Γ(u)) = i
}

be the set of generators which have exactly i erroneous qudits. Using

the Hoeffding bound, for a given i ∈ [k] and a given any constant χ > 0, we have

ProbE

(∣

∣

∣

∣

|Ui|
|U | −B(i)

∣

∣

∣

∣

≥ χ

)

= 2−Ω(n) (10)

By the union bound, we have that for any constant χ > 0:

ProbE

(

∃i, s.t.
∣

∣

∣

∣

|Ui|
|U | −B(i)

∣

∣

∣

∣

≥ χ

)

= 2−Ω(n). (11)

Since the set U is a k-independent set, then the sets
{

Γ(k)(u)
}

u∈U are non-intersecting so

wt(EG) ≥
∑

u∈U
wt

(

EG |Γ(k)(u)

)

, (12)

By the Onion fact (Fact 7), for each u ∈ Ui we have wt
(

EG |Γ(k)(u)

)

≥ min {i, k − i}, hence

wt(EG) ≥
∑

i∈[k]
|Ui|min {i, k − i} =

|S|
k

∑

i∈[k]

|Ui|
|U |min {i, k − i}

using k|U | = |S|. Using equation (11) w.p. close to 1 we have

wt(EG) ≥
|S|
k

∑

i∈[k]
(B(i)− χ)min {i, k − i} ≥ |S|

k





∑

i∈[k]
B(i)min {i, k − i} − 2−k2



 , (13)
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for χ = 2−k2/k2.

We separate the rest of the proof to two cases: k ≥ 12 and 4 ≤ k < 12. We start with the case

k ≥ 12. Recall k̂ = ⌊k/2⌋ + 1. Let

Aloss =
∑

i≥k̂

B(i)(2i − k).

Then by equation (13) we have that with probability exponentially close to 1

wt(EG) ≥
|S|
k





∑

i∈[k]
B(i)i−Aloss − 2−k2



 =
|S|
k

(

pk − 2−k2 −Aloss

)

(14)

In the rest of the proof for k ≥ 12 we upper-bound Aloss and substitute in the above equation to

derive the desired result. Using an upper-bound of the binomial, we have:

B(k̂) =

(

k

k̂

)

pk̂(1− p)k̂ ≤ 2k · (10k)−k̂(1− p)k̂ ≤ k−k̂10−k̂2k ≤ 2−k̂log(k)+k−3.3k̂, (15)

For any i ≥ k̂ and p < 1/2 we have

B(i+ 1) = B(i)

(

k − i

i+ 1

)(

p

1− p

)

< B(i)
p

1− p
< 2pB(i) (16)

Substituting equations (16) and (15) in the expression for Aloss we have:

Aloss =
k

∑

i≥k̂

B(i)(2i − k) ≤ 2−k̂log(k)+k−3.3k̂
k

∑

i≥k̂

(2p)(i−k̂)(2i− k) (17)

≤ 2−k̂log(k)+k−3.3k̂+1+k̂
k

∑

i≥k̂

(p)(i−k̂)(i− ⌊k/2⌋) (18)

Changing summation i− ⌊k/2⌋ 7→ j we have the above is at most:

2−k̂log(k)+k−2.3k̂+1

⌈k/2⌉
∑

j≥1

p−j+1j ≤ 2−k̂log(k)+k−2.3k̂+1

⌈k/2⌉
∑

j≥1

p−j+1k (19)

≤ 2−k̂log(k)+k−2.3k̂+1k

⌈k/2⌉
∑

j≥1

p−j+1 ≤ 2−k̂log(k)+k−2.3k̂+1k · 1.1 ≤ 2(−k̂+1)log(k)+k−2.3k̂+1.2, (20)

where in the last inequality we bound the sum by
∑

i≥0 1/p
i, and set p = 1/(10k) ≤ 1/100, using

k ≥ 12. Substituting this value in (14) we have that with probability 2−Ω(n) close to 1,

wt(EG) ≥
|S|
k

(

pk − 2−k2 − 2(−k̂+1)log(k)+k−2.3k̂+1.2
)

=

≥ |S|
k

(

pk − 2(−k̂+1)log(k)+k−2.3k̂+1.21
)

where in the last inequality we used again k ≥ 12. Continuing, using p = 1
10k the above bound is

equal to

= |S|p
(

1− 2(−k̂+1)log(k)+k−2.3k̂+1.21+log2(10)
)

≥ |S|py(k),
for all k ≥ 12. For values of 4 ≤ k < 12 we substitute directly k in Equation (13), evaluate, and show

it is at least |S|py(k).
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G Quantum PCP of Proximity

G.1 Classical PCPs of Proximity

We begin by presenting the definitions following [15]. A pair languageL is a subset of {0, 1}n×{0, 1}ℓ
for ℓ = poly(n). For a pair language L, let L(x) = {y|(x, y) ∈ L}.

Definition 21 PCP of proximity (PCPP)

For functions s, δ : Z+ 7→ [0, 1], a verifier V = V (x) is a probabilistically checkable proof of proximity (PCPP)

system for a pair language L with proximity parameter δ and soundness error s if the following two conditions

hold for every pair of strings (x, y) ∈ {0, 1}n × {0, 1}ℓ:

1. Completeness: If (x, y) ∈ L there exists π such that V (x) accepts oracle y ◦ π with probability 1.

2. Soundness: If y is δ(|x|)-far from L(x), then for every π, the verifier V (x) accepts oracle y ◦ π with

probability at most than s(|x|).

If s and δ are not specified, then both can be assumed to be constants in (0, 1).

The query complexity of the verifier V is defined to be the number of coordinates that V queries

out of y and π. V is not charged for reading x but is charged for reading y even though it is part of

the input. We notice that this is a more stringent restriction that in the case of a PCP proof; however,

the requirements on the proof system are weaker - V is supposed to reject only word which are far

from words in the language.

A good pair language to keep in mind is CIRCUIT-VAL, i.e. the pairs (x, y), where x is a circuit

on n bits of polynomial size, and y is a string on n bits, and (x, y) ∈ L if x(y) = 1, i.e. the circuit

x evaluates to 1 on input y. Though this problem lies in P, a simple argument (Proposition 2.4 in

[15]) shows that a PCPP for CIRCUIT-VAL, implies a PCP for the NP complete decision language

CIRCUIT-SAT, the set of all x, for which there exists y, such that x(y) = 1.

G.2 From PCPPs to LTCs

Given a PCPP, [15] provides a standard construction of an LTC with related parameters, as follows.

Given is a PCPP for membership in a code, namely, for the pair language of (C,w), a code and a

member in that code. Suppose the proximity parameter of the PCPP is δ, the soundness s and the

query complexity k. Suppose also that we are given a code C with distance D. Then, one can con-

struct an error correcting code C ′ which is an LTC with k-local constraints, whose weighted distance

is D, and whose soundness is proportional to the soundness s.

C ′ is defined as the strings w ◦ π for all w in C , where π is the proximity proof of w. If one defines

the distance by weighting only the coordinates in the first register, then C ′ trivially has the same

distance as C2 The local test for the code C ′ as an LTC are the k-local tests performed by the verifier

of the PCPP; Consider now a word w′ ◦ π′ which is δ-far from any w ◦ π in the code C ′, where the

distance is measured again by taking into account only the coordinates of the left register. This means

that w′ is δ-far from a word in the code C , then the tests will reject the word w′ ◦ π′ with probability

s, which will thus be the soundness of the code for proximity δ.

2In [15] this choice of definition of distance is referred to as equivalent to the one used in [15], in which many repetitions

of the string w are taken, so that the weight of the error on the second, proof, register becomes negligible.
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G.3 Quantum PCPPs

We now define the quantum analogue of PCP’s of proximity. We consider quantum pair languages

L ⊆ {0, 1}n ⊗ Hprf , where Hprf is a Hilbert space of ℓ d-dimensional qudits, for ℓ = poly(n). For a

quantum pair language L let L(x) = Span {|ψ〉 ∈ Hprf , (x, |ψ〉) ∈ L}.

Definition 22 Quantum PCP of proximity

Fix functions s, δ : Z+ 7→ [0, 1]. Let V = V (x) be a function from n bit strings x to sets of m k-local

projections {Πi}mi=1, each acting on Hprf ⊗ Hpxmty. V is a quantum probabilistically checkable proof of

proximity (qPCPP) system, for a quantum pair language L, with proximity parameter δ and soundness error

s, if the following two conditions hold for every pair (x, |ψ〉):

1. Completeness: If (x, |ψ〉) ∈ L, there exists |w〉 ∈ Hpxmty, such that for all check terms Πi ∈ V (x)

Πi (|ψ〉 ⊗ |w〉) = 0.

2. Soundness: If |φ〉 is a quantum state in Hprf ⊗ Hpxmty whose reduced density matrix to Hprf is sup-

ported on states, each of distance at least δ(|x|) from L(x), then

1

m

∑

i

〈φ|Πi|φ〉 ≥ s(|x|) : .

G.4 From qPCPPs to qLTCs

Given is a qPCPP for membership in a quantum code on ℓ qudits, namely, for the pair language L

comprised of pairs (C, |ψ〉): a code (described by n bits), and an ℓ qudit state in the code. Suppose L

has a qPCP of proximity with parameters δ, s for some functions s, δ : Z+ 7→ [0, 1], with projections

Πi. Let C ′ be the codespace ⊆ Hprf ⊗Hpxmty , defined as:

Span {|φ〉 ⊗ |Π(φ)〉 s.t. |φ〉 ∈ C} ,

where |Π(φ)〉 is some proof of proximity for |φ〉 from the qPCPP. Let distprf denote the distance from

the codespace as in definition (13) except it only counts non-identity Paulis acting on the register

Hprf .

Claim 6 C ′ is a qLTC with query complexity k and soundness R(δ) = s (where the proximity δ is defined

with respect to the distance distprf ).

Proof: Set {Πi}mi=1 as the check terms for L(C). These are k-local terms, so C ′ has query complexity

k. By definition of the quantum PCP of proximity, for any state |φ〉 in the codespace of C ′, we have

Πi|φ〉 = 0, for any Πi ∈ V (C ′). Let us assume now that distprf(|φ〉, C ′) ≥ δ(|C|) ·ℓ. Then by Definition

13, for any Pauli operatorE acting on Hprf ⊗Hpxmty, whose support on Hprf is at most δ(|C|) · ℓ− 1,

we have that E|φ〉 is still orthogonal to C ′. In particular, for any E whose support is contained in

Hprf , and whose weight is at most δ(|C|) · ℓ− 1, we have that E|φ〉 is still orthogonal to C ′. It is easy

to see that the reduced state of |φ〉 to Hprf is a mixture of orthogonal states {|ηi〉}i, each of which is at

least δ(|C|) · ℓ-far from C . By virtue of the soundness of the qPCPP, |φ〉 will be rejected by the check

terms Πi with probability at least s(|C|).

30


	1 Introduction
	1.1 Quantum Locally Testable Codes - Definition and Motivation
	1.2 Contributions
	1.2.1 Definition and Basic Examples
	1.2.2 Bound on the soundness of sLTCs on small set expanders
	1.2.3 Bound on the soundness of general qLTCs
	1.2.4 Quantum PCPs of Proximity

	1.3 Overview of Proofs of Theorems ?? and ??
	1.3.1 Bounds on sLTC codes on Expanders
	1.3.2 Upper bound on soundness for stabilizer sLTCs on any graph

	1.4 Related work
	1.5 Discussion and Further directions

	2 Background
	2.1 The Pauli groups
	2.2 General Quantum Error Correction
	2.3 Stabilizer Quantum Error Correcting Codes
	2.4 Interaction graphs and their expansion
	2.5 Notation

	3 Locally-testable quantum codes
	3.1 Local testability of general quantum codes
	3.2 Local testability of quantum stabilizer codes
	3.2.1 Equivalence of definitions of locally testable codes


	4 Bound on the soundness of stabilizer LTCs on small-set expanders
	4.1 A useful fact about restrictions of stabilizers
	4.2 Proof of Theorem ??

	5 An upper-bound on soundness
	5.1 Alphabet-based bound on soundness
	5.2 Separation from alphabet-based soundness
	5.3 Proof of Lemma (??)
	5.3.1 Constructing the error
	5.3.2 Analyzing Penalty
	5.3.3 The Onion fact (??)
	5.3.4 Analyzing error weight
	5.3.5 Concluding the proof of lemma (??)


	6 Acknowledgements
	A Proof of Claim ??
	B Proofs of geometrical facts on small-set expanders
	B.1 Proof of fact (??):
	B.2 Proof of fact (??):

	C Existence of arbitrarily sound classical LTCs on small-set expanders
	D Proof of Lemma (??): decomposition to cosets of a stabilizer code
	E Proof of Claim (??) Equivalence of definitions of code distance
	F Lower-bound on weight: proof of Fact (??)
	G Quantum PCP of Proximity
	G.1 Classical PCPs of Proximity
	G.2 From PCPPs to LTCs
	G.3 Quantum PCPPs
	G.4 From qPCPPs to qLTCs


