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Abstract

Thresholding iterative methods are recently successfully applied to image deblurring prob-
lems. In this paper, we investigate the modified linearized Bregman algorithm (MLBA) used
in image deblurring problems, with a proper treatment of the boundary artifacts. We con-
sider two standard approaches: the imposition of boundary conditions and the use of the
rectangular blurring matrix.

The fast convergence of the MLBA depends on a regularizing preconditioner that could be
computationally expensive and hence it is usually chosen as a block circulant circulant block
(BCCB) matrix, diagonalized by discrete Fourier transform. We show that the standard
approach based on the BCCB preconditioner may provide low quality restored images and
we propose different preconditioning strategies, that improve the quality of the restoration
and save some computational cost at the same time. Motivated by a recent nonstationary
preconditioned iteration, we propose a new algorithm that combines such method with the
MLBA. We prove that it is a regularizing and convergent method. A variant with a stationary
preconditioner is also considered. Finally, a large number of numerical experiments shows
that our methods provide accurate and fast restorations, when compared with the state of
the art.

1 Introduction

Image deblurring is the process of reconstructing an approximation of an image from blurred
and noisy measurements. By assuming that the point spread function (PSF) is spatially-
invariant, the observed image g(x, y) is related to the true image f(x, y) via the integral
equation

g(x, y) =

+∞∫

−∞

+∞∫

−∞

h(x− x′, y − y′)f(x′, y′) dx′ dy′ + η(x, y), (x, y) ∈ Ω ⊂ R
2, (1)
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where η(x, y) is the noise.
By collocation of the previous integral equation on a uniform grid, we obtain the grayscale

images of the observed image, of the true image, and of the PSF, denoted by G, F , and H ,
respectively. Since collected images are available only in a finite region, the field of view
(FOV), the measured intensities near the boundary are affected by data outside the FOV.
Given an n× n observed image G (for the sake of simplicity we assume square images), and
a p × p PSF with p ≤ n, then F is m × m with m = n + p − 1. Denoting by g and f

the stack ordered vectors corresponding to G and F , the discretization of (1) leads to the
under-determined linear system

g = Af + η, (2)

where the matrix A is of size n2 ×m2. When Imposing proper Boundary Conditions (BCs),
the image A becomes square n2 × n2 and in some cases, depending on the BCs and the
symmetry of the PSF, it can be diagonalized by discrete trigonometric transforms. For
example, the matrix A is block circulant circulant block (BCCB) and it is diagonalizzable
by Discrete Fourier Transform (DFT), when periodic BCs are imposed.

Due to the ill-posedness of (1), A is severely ill-conditioned and may be singular. In such
case, linear systems of equations (2) are commonly referred to as linear discrete ill-posed
problems [24]. Therefore a good approximation of f cannot be obtained from the algebraic
solution (e.g., the least-square solution) of (2), but regularization methods are required. The
basic idea of regularization is to replace the original ill-conditioned problem with a nearby
well-conditioned problem, whose solution approximates the true solution. One of the popular
regularization techniques is the Tikhonov regularization and it amounts in solving

min
f

{‖Af − g‖22 + µ‖f‖22}, (3)

where ‖ · ‖p denotes the vector p-norm, p ≥ 1, and µ > 0 is a regularization parameter to
be chosen. Hereafter, we use ‖ · ‖ ≡ ‖ · ‖2 to denote the ℓ2-norm. The first term in (3)
is usually refereed as fidelity term and the second as regularization term. This approach
is computationally attractive, since it leads to a linear problem and indeed several efficient
methods have been developed for computing its solution and for estimating µ [24]. On the
other hand, the edges of restored image are usually over-smoothed. To overcome this un-
pleasant property, nonlinear strategies have been employed, like total variation (TV) [35]
and thresholding iterative methods [13, 23]. Anyway, several nonlinear regularization meth-
ods have an inner step that apply a least-square regularization and hence can benefit from
strategies previously developed for such simpler model, as we will show in the following.

In this paper we consider a regularization strategy based on wavelet decomposition that
has been recently largely investigated [5, 6, 8, 23, 14, 13]. This approach is motivated
by the fact that most real images usually have sparse approximations under some wavelet
basis. In particular, in this paper we consider the tight frame systems previously used in
[4, 5, 6]. Solving (2) in a tight frame domain, the redundancy of system leads to robust signal
representation in which partial loss of the data can be tolerated without adverse effects. In
order to obtain the sparse approximation, we minimize the weighted ℓ1-norm of the tight
frame coefficients. Let WT be a wavelet or tight-frame synthesis operator (WTW = I), the
wavelets or tight-frame coefficients of the original image f are x such that

f = WTx. (4)

In the following, we will investigate the synthesis approach, but our proposal can be applied
also to the analysis and to the balanced approach described in [6, 37]. Reformulating the
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deblurring problem (2) in terms of frame coefficients

min
x

{µ‖x‖1 + ‖x‖2 : AWTx = g}, (5)

a regularized solution of this problem can be obtained by the Bregman splitting [42]. As for
the iterative soft-thresholding [13, 23] for the unconstrained version of (5) and the Landweber
method for the least-square solution of (2), the Bregman splitting converges very slowly for
image deblurring problems. Hence a preconditioning strategy is usually employed, obtaining
the Modified Linearized Bregman Algorithm (MLBA) [5]. The preconditioner is usually
chosen as a BCCB approximation of (AAT + αI)−1, α > 0, see [5, 6, 37], which is the
simplest regularized version of the inverse of AAT which, also when theoretically available,
cannot be computed due to the severe ill-conditioning of A.

In this paper, we show that the BCCB preconditioner used in the literature leads often to
poor restorations when the matrix A has the rectangular n2×m2 structure or is obtained by
imposing accurate BCs, like antireflective BCs [36]. Note that in real applications we have
to take into account the boundary effects to obtain high quality restorations, otherwise the
restored image is severely affected by ringing effects [27, 31]. This topic has been recently
investigated in connection with nonlinear models based on wavelets or TV in [38, 2, 3], but,
at our knowledge, this is the first time that it is considered in connection with the MLBA.
In this context we propose and discuss other preconditioning strategies for the MLBA with
the synthesis approach. Our preconditioners are inspired by the experience with least-square
regularization where the regularization preconditioning is studied since a long time, see the
seminal paper [26]. In particular a nonstationary preconditioned iteration suggested by [18]
leads to a new algorithm that is no longer a Bregman iteration.

We investigate the following two strategies to define accurate and computationally cheap
preconditioners:

(1) an approximation of the blurring operator in a small Krylov subspace;

(2) a symmetrization of the original PSF H ;

The choice (1) is quite natural and already considered for similar problems (see e.g. [2]),
but we will show that a properly chosen Krylov subspace of small size (say spanned by at
most five vectors), with a proper choice of the initial guess, is usually enough to obtain a
good approximation. The choice (2) can be very useful in many applications where the PSF
is obtained experimentally by measurements and is a perturbation of a symmetric kernel.
In this case the approximated quadrantally symmetric (i.e., symmetric with respect to each
quadrant) PSF leads to a matrix diagonalizable by Discrete Cosine Transform (DCT).

Following the idea to combine preconditioned regularizing iterative methods for least-
square ill-posed problems with the MLBA, we propose a new algorithm based on the recent
proposal in [15, 18]. The nonstationary preconditioner is defined by a parameter computed
by solving a nonlinear problem with a computational cost of O(n2). We observe that this
method can be applied only with square matrices and so only when A is obtained by im-
posing BCs. The new algorithm is no longer a Bregman iteration and we cannot apply the
convergence analysis developed in [5] for the MLBA. Therefore, here we prove its convergence
and its regularization character. Furthermore, when a good value for the parameter in the
preconditioner is available, we provide a variant of the algorithm with a stationary precon-
ditioner which can improve the quality of the restorations even if the previous convergence
analysis does not hold any longer.

A large number of numerical experiments in Section 6 shows that our proposals not only
outperform the standard MLBA with BCCB preconditioning, but are also good competitors
for other recent methods dealing with boundary artifacts proposed in [2, 3].

3



Besides, we mention that the two deblurring models based on the rectangular matrix A
and the imposition of BCs, we have tested also a third strategy based on the enlargement of
the domain to reduce the ringing effects like in [34, 38], but, according to the results in [2],
the quality of the restored images were not better than those obtained with the other two
models, while the CPU time was higher. Hence, we do not discuss further this strategy here.

The paper is organized as follows. In Section 2, we describe the structure of the blurring
matrix A explaining how fast trigonometric transforms can be used in the computations
both for the rectangular matrix and the square matrices arising from the imposition of
classical BCs. Section 3 reviews briefly the synthesis approach and the MLBA for solving
the corresponding minimization problem. In Section 4 we propose possible regularization
preconditioners, combining accurate restorations and a low computational cost. A new
algorithm is proposed in Section 5 combining the MLBA with the method in [18]. Section 6
contains a large number of numerical experiments, comparing our proposal with some state
of the art algorithms, for the restoration of images with unknown boundaries. Concluding
remarks are provided in Section 7.

2 The structure of the blurring matrix

We count mainly three strategies in order to obtain both accurate and fast restorations with
reduced boundary artifacts. In this paper, we just consider two of them: the use of the
original rectangular matrix and the imposition of BCs. As mentioned in the Introduction,
we do not consider the third strategy introduced in [34], since from one side it is equivalent
to the reflective (or Neumann) BCs in the case of quadrantally PSF, cf. [20], and from the
other side, according to several tests that we have performed and the numerical results in
[2], it does not provide a better restoration than the other two strategies, while it usually
requires a larger CPU time.

In this section we describe the structure of the matrix A and how fast computations
with such matrix, like matrix-vector product or least-square solutions, can be implemented.
Firstly we introduce the rectangular n2 × m2 matrix and then the square n2 × n2 matrix
obtained when imposing proper BCs.

2.1 The rectangular matrix

The fact that this matrix is not square prevents the use of Fast Fourier Transform (FFT). To
cope with this difficulty, one can construct an m2 ×m2 blurring matrix Abig that is BCCB,

and hence, the FFT can be used. Let M ∈ R
n2×m2

be a masking matrix which, when applied
to a vector in R

m2

, selects only the entries in the FOV, i.e., their rows are a subset of the
rows of an identity matrix of order m2. The rectangular blurring matrix can be written as

A = MAbig. (6)

Hence the matrix vector Ax can be easily computed by two bi-dimensional FFTs of order
m2, followed by a selection of the pixels inside the FOV. Similarly ATx = AT

bigM
Tx and

thus two FFTs are applied to the zero-padded version of x of size m2. This approach was
used in [2] and it is numerically equivalent to that adopted in [40].

We observe that the matrix M in (6) leads to a matrix A independent of the BCs used
in the definition of Abig. Thus, when the PSF is quadrantally symmetric, we suggest to use
of the DCT instead of the DFT (see the discussion on reflective BCs in the next subsection).
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Zero Periodic Reflective

0 0 0

0 F 0

0 0 0

F F F
F F F
F F F

Frc Fr Frc

Fc F Fc

Frc Fr Frc

Table 1: Pad of the original image F obtained by imposing the classical BCs considered in [27],
with Fc = fliplr(F ), Fr = flipud(F ), and Frc = flipud(fliplr(F )), where fliplr(·) and flipud(·) are
the MATLAB functions that perform the left-right and up-down flip, respectively.

The structure of the matrix A and its representation in (6) allow fast computations of the
matrix vector product with A and AT , but they prevent the use of fast transforms for solving
linear systems with polynomials of AAT as coefficient matrix even when A is full-rank.

2.2 Boundary conditions

The BC approach forces a functional dependency between the elements of f external to the
FOV and those internal to this area. This has the effect of extending F outside of the FOV
without adding any unknowns to the associated image deblurring problem. Therefore, the
matrix A can be written as an n2 × n2 square matrix, whose structure can be exploited by
fast algorithms. If the BC model is not a good approximation of the real world outside the
FOV, the reconstructed image can be severely affected by some unwanted artifacts near the
boundary, called ringing effects [27].

The use of different BCs can be motivated from information on the true image and/or
from the availability of fast transforms to diagonalize the matrix A within O(n2 log(n))
arithmetic operations. Indeed, the matrix-vector product can be always computed by the
2D FFT, after a proper padding of the image to convolve (the resulting image is the inner
n×n part of the convolution), cf. [33], while the availability of fast transforms to diagonalize
the matrix A depends on the BCs. Anyway, the shift-invariant property of the blur leads to
a matrix A that can be well approximated by a BCCB matrix C, which is diagonalized by
DFT, because usually in the applications

A− C = R+N, (7)

where R is a matrix of small rank and N is a matrix of small norm. More precisely, for any
ε > 0 there is a constant cǫ > 0 independent of n and depending only on ǫ and on the PSF,
such that the splitting (7) holds with

rank(R) ≤ cǫ · n, ‖N‖ ≤ ε, (8)

where rank(R) denotes the rank of R (see [25]). Note that n2 is the size of the matrix A.
In the following we recall common BCs that will be used in the numerical tests. For a

detailed description of zero, periodic, and reflective, refer to [27], while for antireflective BC
see the review paper [21] and the original proposal in [36].

Zero (i.e., Dirichlet) BCs assume that the object is zero outside of the FOV. That is, one
assumes that F has been extracted from a larger array padded by zeros (see Table1).
This is a good choice when the true image is mostly zero outside the FOV, as is the
case for many astronomical or medical images with a black background. Unfortunately,
these BCs have a bad effect on reconstructions of images that are nonzero outside the
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border, leading to reconstructed image with severe “ringing” near the boundary. The
corresponding matrix A has a block-Toeplitz-Toeplitz-block (BTTB) structure which
is not diagonalizable by fast trigonometric transforms.

Periodic BCs assume that the observed image repeats in all directions. More specifically,
one assumes that F has been extracted from a larger array of the form in Table 1. The
corresponding matrix A is BCCB and so is always diagonalized by 2D DFT. Clearly, if
the true image is not periodic outside the FOV the reconstructed image will be affected
by severe ringing effects.

Reflective (i.e., Neumann or symmetric) BCs assume that outside the FOV the image is a
mirror image of F [31]. That is, one assumes that F has been extracted from a larger
array symmetrically padded like in Table 1. The matrix A has a block structure that
combines Toeplitz and Hankel structures, but it can be easily diagonalized by the DCT,
when the PSF is quadrantally symmetric [31].

AntiReflective BCs have a more elaborate definition, but have a simple motivation: the
antisymmetric pad yields an extension that preserves the continuity of the normal
derivative [36]. They are given by

F (1− i, j) = 2F (1, j)− F (i+ 1, j), 1 ≤ i ≤ p, 1 ≤ j ≤ n;

F (i, 1− j) = 2F (i, 1)− F (i, j + 1), 1 ≤ i ≤ n, 1 ≤ j ≤ p;

F (n+ i, j) = 2F (n, j)− F (n− i, j), 1 ≤ i ≤ p, 1 ≤ j ≤ n;

F (i, n+ j) = 2F (i, n)− F (i, n− j), 1 ≤ i ≤ n, 1 ≤ j ≤ p;

for the edges, while for the corners the more computationally attractive choice is to
antireflect first in one direction and then in the other [17]. This yields

F (1 − i, 1− j) = 4F (1, 1)− 2F (1, j + 1)− 2F (i+ 1, 1) + F (i+ 1, j + 1),

F (1− i, n+ j) = 4F (1, n)− 2F (1, n− j)− 2F (i+ 1, n) + F (i+ 1, n− j),

F (n+ i, 1− j) = 4F (n, 1)− 2F (n, j + 1)− 2F (n− i, 1) + F (n− i, j + 1),

F (n+ i, n+ j) = 4F (n, n)− 2F (n, n− j)− 2F (n− i, n) + F (n− i, n− j),

for 1 ≤ i, j ≤ p.

The structure of the matrix A is quite involved, but it can be diagonalized by the antire-
flective transform, when the PSF is quadrantally symmetric [1]. Since A is not normal
the antireflective transform is not unitary, but it can be represented as a modification
of the discrete sine transform, formed by adding a uniform sampling of constant and
linear functions to the eigenvector basis preserving an “almost” unitary behaviour [21].1

Due to the structure ofA, the application ofAT could generate artifacts at the boundary
[19]; consequently it was proposed to replace AT by a reblurring matrix A′ obtained
by imposing the same BCs to the PSF rotated by 180◦ [16]. Note that in the case of
zero and periodic BCs A′ = AT . Furthermore, the MATLAB Toolbox RestoreTools
[30] (that we will use in the numerical results) implements the reblurring approach
to overload the matrix-vector product with AT , see [16]. Therefore, for the sake of
notational simplicity and uniformity, in the following the symbol AT has to be intended
as the reblurring matrix A′ in the case of antireflective BCs.

1MATLAB functions for working with antireflective BC (antireflective transform, antisymmetric pad, ecc.)
can be download at http://scienze-como.uninsubria.it/mdonatelli/Software/software.html

6

http://scienze-como.uninsubria.it/mdonatelli/Software/software.html


The reflective BCs will not be considered in the numerical results in Section 6 since they
have the same computational properties of the antireflective BCs, e.g., for quadrantally PSF
simply replace the antireflective transform with the DCT, and usually provide restorations
slightly worser or at least comparable with the antireflective BCs, as we have numerically
observed according to similar results with other regularization strategies [16, 32, 12]. On the
other hand, we have recalled also the reflective BCs to motivate a preconditioner based on
the DCT, instead of the DFT, when the PSF is quadrantally symmetric.

3 MLBA for the synthesis approach

For the synthesis approach [5, 23] the coefficient matrix is

K = AWT ∈ R
n2×s, (9)

where n2 ≤ s, A is the blurring matrix and WT is a tight-frame or wavelet synthesis operator.
Note that using tight-frames WTW = I but WWT 6= I [14]. The use of tight-frames instead
of wavelets is motivated by the fact that the redundancy of tight-frame systems leads to
robust signal representations in which partial loss of the data can be tolerated, without
adverse effects, see e.g. [8].

Denote by x the frame coefficients of the image f according to (4). Let the nonlinear
operator Sµ be defined component-wise as

[Sµ(x)]i = Sµ(xi), (10)

with Sµ the soft-thresholding function

Sµ(xi) = sgn(xi)max {|xi| − µ, 0} .

Note that for image deblurring problems the singular values of A, and so those ofK, decay
exponentially to zero and we cannot assume that K is surjective. Therefore, the deblurring
problem can be reformulated in terms of the frame coefficients x as

min
x∈Rs

{
µ‖x‖1 +

1

2λ
‖x‖2 : arg min

x∈Rs
‖Kx− g‖2

}
. (11)

which is equivalent to (5) if K is surjective.
The following linearized Bregman iteration

{
zn+1 = zn +KT (g −Kxn) ,
xn+1 = λSµ(z

n+1),
(12)

where z0 = x0 = 0, was introduced in [42] to solve problem (11) and later applied to image
deblurring in [5]. A detailed convergence analysis of the linearized Bregman iteration (12)
was given in [7] when K is surjective, but we report here Theorem 3.1 in [5] that does not
require such assumption.

Theorem 1 ([5]). Let K ∈ R
n2×s, n2 < s and let 0 < λ < 1

‖KTK‖ . Then the sequence

{xn+1} generated by (12) converges to the unique solution of (11).

As observed in [7] the convergence speed of (12) depends of the condition number of K
which, as observed before, is very large for image deblurring and hence the method results
to be very slow. To accelerate its convergence in the case of KKT 6= I, in [5] the authors
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modified iteration (12) by replacing KT with K†, where K† denotes the pseudo-inverse of
K. If K is surjective K† = KT (KKT )−1 since n2 ≤ s. For image deblurring problems they
suggested to replace (KKT )† with a symmetric positive definite matrix P such that

P ≈ (KKT )† = (AAT )†. (13)

Then the MLBA for frame-based image deblurring becomes [5]

{
zn+1 = zn +KTP (g−Kxn),
xn+1 = λSµ(z

n+1),
(14)

where z0 = x0 = 0.

Remark 2. The MLBA (14) is the linearized Bregman iteration (12) for the linear system

P 1/2Kx = P 1/2g,

which is a preconditioned version of original linear system Kx = g by the preconditioner
P 1/2. In fact, by replacing K and g in (12) by P 1/2K and P 1/2g, respectively, we obtain (14).

The previous remark is the key observation used in [5] to prove that the MLBA algorithm
converges to a minimizer of

min
x∈Rs

{
µ‖x‖1 +

1

2λ
‖x‖2 : x = arg min

x∈Rs
‖Kx− g‖2P

}
. (15)

Theorem 3 ([5]). Assume P is a symmetric positive definite matrix and let 0 < λ <
1

‖KTPK‖
. Then the sequence {xn+1} generated by the MLBA (14) converges to the unique

solution of (15).

The standard choice for P is

P = (KKT + αI)−1 = (AAT + αI)−1. (16)

In such case

‖KTPK‖ < 1

and hence λ = 1 is a good choice according to Theorem 3. When AAT + αI is not easily
invertible other choices as P can be explored, but usually the quantity ‖KTPK‖ becomes
hard to estimate. Therefore, assuming that P is a good approximation of (AAT +αI)−1, we
set λ = 1 in the algorithm. Anyway, the validity of the assumption ‖KTPK‖ < 1 can be
guaranteed choosing α large enough.

In conclusion, we consider the following version of the MLBA for the synthesis approach

{
zn+1 = zn +WATP (g−AWTxn),
xn+1 = Sµ(z

n+1),
(17)

stopped by the discrepancy principle as in [5], i.e., at the first iteration n = ñ > 0 such that

‖rñ‖ ≤ γδ < ‖rn‖, n = 0, 1, . . . , ñ− 1, (18)

where γ > 1, δ = ‖η‖, and rn = g − AWTxn is the residual at the n-th iteration. Here
z0 = x0 = 0 and we assume that the noise level δ is explicitly known.
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4 On the choice of the preconditioner P

In this section we explore possible choices of P 6= (AAT + αI)−1 which are computationally
attractive. Let A be the rectangular, anti-reflective or BTTB matrix depending on the
chosen treatment of the boundary of the image, and let C be the BCCB obtained from
the same PSF. Since the matrix P in Theorem 3 serves as a preconditioner to accelerate
the convergence, in this section we describe some preconditioning strategies, in order to
combine fast computations with accurate restorations achievable when P ≈ (AAT + αI)−1.
The first proposal in Section 4.1 is the classical approach already used in the literature,
cf. [5, 6, 37]. The second proposal in Section 4.2 is an approximation strategy considered
for similar methods, c.f. [2], but this is the first time that it is explored with MLBA. The
third proposal is inspired by a similar approach used with numerical methods that require
symmetric matrices, see [25, 31].

4.1 BCCB preconditioner

Let C be the matrix obtained imposing periodic BCs. As described in Section 2.2, the matrix
C is diagonalizable by DFT. Hence, the matrix-vector product with the matrix

P = (CCT + αI)−1

can be efficiently computed by FFT and its use was previously proposed in [5].

Algorithm 1.
{

zn+1 = zn +WAT (CCT + αI)−1(g −AWTxn),
xn+1 = Sµ(z

n+1).
(19)

We suggest to replace the DFT with the DCT, in the case of a quadrantally symmetric
PSF like the Gaussian blur. The latter choice not only is motivated by computational
considerations, since the complex DFT is replaced by a real transform (DCT), but also by
the quality of the computed approximation. Indeed, using the DCT the matrix C can be seen
as an approximation of A by imposing reflective BCs instead of periodic BCs, which results
usually in a better approximation and so provides better restorations. The same expedient
will be used for the following preconditioners as well.

Note that ‖(CCT +αI)−1‖ < ‖(AAT +αI)−1‖ is a sufficient condition to apply the The-
orem 3 with λ = 1. This assumption could be hard to be satisfied in practice. Nevertheless,
it is expected that

‖KT (CCT + αI)−1K‖ < 1 (20)

if α is large enough.
In the literature regarding preconditioning of Toeplitz matrices by circulant matrices,

several strategies have been proposed to compute the matrix C, cf. [9]. In this paper
we simply consider the matrix obtained imposing periodic BCs, which corresponds to the
natural Strang preconditioner, since we have not observed numerical differences, when using
other strategies like the optimal Frobenius norm approximation preconditioner [11]. Roughly
speaking, this follows from the fact that the entries of A depend on the value of the pixels
of the PSF according to the shift invariance structure. In particular the central coefficient
of the PSF belongs to the main diagonal of A and the pixels near the center of the PSF
belongs to the central diagonals of the central blocks. Finally, the PSF is almost centered
in the middle of a n× n image and hence every pixel is distant at most n/2 pixels in every
direction (usually much less due to the compact support). Hence the block band and the
band of each block of A are at most n/2.
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4.2 Krylov subspace approximation

The preconditioner in the previous section is essentially defined as an approximation of the
operator A in the Fourier domain. Another strategy, useful also for more general matrices, is
to employ orthogonal or oblique projections into subspaces of small dimension. A common
choice is a proper Krylov subspace.

The matrix vector product tn = (AAT + αI)−1rn can be computed solving the linear
system

(AAT + αI)tn = rn, (21)

whose solution can be approximated by few iterations of conjugate gradient (CG) since
AAT + αI is symmetric and positive definite. One or few steps of CG to approximate the
vector (AAT +αI)−1rn is a common strategy, see e.g. [2]. Here we explore the use of a good
preconditioner associated with a proper choice of the initial guess and the stopping criteria.
We solve (21) by preconditioned CG (PCG) with preconditioner the matrix (CCT + αI)−1

introduced in Section 4.1. This is equivalent to solve the linear system

(CCT + αI)−1/2(AAT + αI)(CCT + αI)−1/2yn = (CCT + αI)−1/2rn, (22)

with yn = (CCT + αI)1/2tn.
The Krylov subspace of size j generated by the matrix B and the vector v is defined by

Kj(B,v) = span{v, Bv, . . . , Bj−1v}, j ∈ N.

We denote by yn
βn

the vector that minimizes the energy norm of the error of the linear system
(22) into the Krylov subspace

Kβn
:= Kβn

(
(CCT + αI)−1/2(AAT + αI)(CCT + αI)−1/2, (CCT + αI)−1/2rn

)
.

Therefore, defining
tnβn

= (CCT + αI)−1/2yn
βn

the following algorithm can be sketched.

Algorithm 2. {
zn+1 = zn +WAT tnβn

,

xn+1 = Sµ(z
n+1).

(23)

Of course a large βn is not practical and also the convergence of the Algorithm 2 could fail
if tnβn

is not a good approximation of tn in (21). However, in practice βn can be taken very
small and the PCG converges very rapidly assuring also the convergence of the Algorithm 2
as numerically confirmed by the results in Section 6. This follows from discussion at the
beginning of Section 2.2 and the well-conditioning of the coefficient matrix of the linear
system (21). Indeed, all the eigenvalues of AAT+αI are in [α, c], with c constant independent
of n and usually c = 1+α, because A arises from the discretization of (1) and, thanks to the
physical properties of the PSF (nonnegative entries and sum of all pixels equal to one), its
largest singular value is bounded by one. If follows that the BCCB preconditioner CCT +αI
is very effective since the spectrum of (CCT +αI)−1/2(AAT +αI)(CCT +αI)−1/2 is clustered
at 1, with O(n) outliers according to equations (7) and (8), while n2 is the total number of
eigenvalues (see [25, 10]).

Moreover, we observe that if the Algorithm 2 is converging then, in the noise free case,
the residual is going to zero (otherwise stagnates around δ) and hence also the solution of
the linear system (21) approaches the zero vector. This has two interesting consequences.
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First, a good initial guess for the PCG is the zero vector since it is a good approximation
of the solution of the linear system (21), at least for n large enough. Second, the size of the
Krylov subspace Kβn

should decreases when n increases reaching the same fixed accuracy in
the approximation of tn (see the following discussion on βn).

Note that the computation of tnβn
requires βn matrix-vector products with AAT +αI and

with CCT +αI. Nevertheless, according to the previous discussion, a small βn, e.g., βn ≤ 5,
is enough. In the numerical results in Section 6 we fix

βn = min{5, βtol}, (24)

where βtol is the number of PCG iterations required for reaching the tolerance 10−3 in
terms of the norm of the relative residual in the linear system (22). We observe that in our
numerical results, βn decreases quickly obtaining βn = 1 for all n > n̄, with n̄ small.

Finally, we note that the preconditioner P obtained by the PCG approximation is not
stationary and changes at each iteration of the MLBA. Therefore, Theorem 3 cannot be
applied. Nevertheless, Algorithm 2 with the condition (24) has been convergent in all our
numerical experiments confirming that tnβn

is a good approximation of tn, at least for n large
enough.

4.3 Preconditioning by symmetrization

The preconditioner in Section 4.1 is related to a different boundary model, namely periodic
BCs, but the deblurring problem and in particular the PSF are the same. Unfortunately,
periodic BCs lead to poor restorations for generic images and for more accurate models, like
reflective or antireflective BCs, the matrix A cannot be diagonalized by fast trigonometric
transforms when the PSF is not quadrantally symmetric. Therefore, in this section we
use a different strategy: the preconditioner is defined by a different PSF that leads to fast
computations with an accurate deblurring model.

We consider a simple implementation of this strategy that can be useful when the PSF
is experimentally measured. Indeed, in some applications, the PSF is nonsymmetric even if
it is just a numerical perturbation of a Gaussian-like blur, cf. Example 1 and [25]. Recall-
ing that for the reflective and antireflective BCs fast transforms (cosine and antireflective,
respectivelly) can be implemented only in the quadrantally symmetric case, a quadrantally

symmetric PSF H̃ can be obtained from the original PSF H by defining

H̃(i, j) =
H(i, j) +H(−i, j) +H(i,−j) +H(−i,−j)

4
, i, j = 1, . . . , n.

Note that H̃ is the optimal Frobenius norm approximation of H in the set of quadrantally
symmetric PSFs, see[31]. Therefore, we consider the matrix Q obtained imposing reflective

BC to H̃ when A is the BTTB or the rectangular matrix, while for A antireflective, Q is
defined imposing antireflective BCs as well. In this way

P = (QQT + αI)−1

can be diagonalized by DCT or by antireflective transform and the MLBA becomes

Algorithm 3.

{
zn+1 = zn +WAT (QQT + αI)−1(g−AWTxn),
xn+1 = Sµ(z

n+1).
(25)
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In analogy to Algorithm 1, ‖(QQT + αI)−1‖ < ‖(AAT + αI)−1‖ is a sufficient condition
to apply Theorem 3 with λ = 1. It is expected that

‖KT (QQT + αI)−1K‖ < 1

if α is large enough.

5 Approximated Tikhonov regularization instead of pre-

conditioning

In this section we propose an approach to approximate K† different from the use of the
matrix P in (13) as suggested in [5]. Motivated by a very recent preconditioning proposal in
[15, 18], we replace the whole matrix K† by a regularized approximation obtained by C.

In [15] the authors suggest to solve the preconditioned linear system

ZAf = Zg,

where Z is a regularized approximation of K†, by a Van Cittert iteration [39], instead
to solve a preconditioned Landweber iteration. Unfortunately, ZA is not symmetric and
the convergence analysis, based on the complex eigenvalues of ZA, is hard to generalize.
Differently, the nonstationary preconditioned iteration proposed in [18] results in a similar
iteration, but an elegant convergence analysis is provided under a minor approximation
assumption.

For P = (AAT + αI)−1, the correction term KTP (g −Kxn) in the MLBA (14) can be
seen as the Tikhonov solution, with parameter α, of the error equation. In detail, zn+1 in
the iteration (14) can be rewritten as

zn+1 = zn + pn, (26)

where

pn = KTP (g −Kxn)

= KT (KKT + αI)−1(g −Kxn)

= (KTK + αI)−1KT (g −Kxn),

since (AAT + αI)−1 = (KKT + αI)−1 and KT (KKT + αI)−1 = (KTK + αI)−1KT . Note
that the correction pn is the solution of the Tikhonov problem

min
p∈Rs

{‖Kp− rn‖2 + α‖p‖2},

which is a regularized approximation of the error equation

Ken = rn (27)

in the noise free case, i.e., δ = 0, where en = x−xn denotes the error at the current iteration.
In real applications δ 6= 0 and so equation (27) is (only) correct up to the perturbation in

the data. Taking this into account, one may as well consider instead of the error equation (27)
the “model equation”

Len = rn , (28)
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where L is an approximation of K, possibly tolerating a slightly larger misfit. Solving (28)
by means of Tikhonov regularization, we find

p̃n = (LTL+ αI)−1LT rn

= WCT (CCT + αI)−1rn,

where we have choosen
L = CWT . (29)

Using p̃n in (26) to replace pn we obtain a new algorithm.

Algorithm 4.
{

zn+1 = zn +WCT (CCT + αI)−1(g−AWTxn),
xn+1 = Sµ(z

n+1).
(30)

As before, the matrix C is chosen as a BCCB in general or diagonalizable by DCT (i.e.,
the reflective BC matrix), when the PSF is quadrantally symmetric. Unfortunately, this
preconditioning strategy cannot be applied to the rectangular matrix approach because, in
such case, C should have the same size of A, but this condition prevents the possibility of
computing p̃n by fast trigonometric transforms.

Remark 4. The iteration (30) uses the preconditioned linear system

WCT (CCT + αI)−1Kx = WCT (CCT + αI)−1g, (31)

to update an aproximation inspired by the linearized Bregman iteration (12), but without
resorting to the normal equations.

Clearly, Algorithm 4 is no longer a MLBA and so a different convergence analysis is re-
quired. Unfortunately, classical results for convex optimization cannot be applied since the
coefficient matrix WCT (CCT +αI)−1K in (31) is not symmetric positive definite. An alter-
native convergence proof could be very hard because also the complex analysis convergence
in [15] cannot be easily combined with the Bregman splitting and soft-thresholding.

Therefore, accordingly to [18], we consider a nonstationary choice of α that allows to
provide a convergence analysis of the resulting algorithm and avoid the a-priori choice of α.
On the other hand, if a good estimation of α is available, then Algorithm 4 can provides
better restorations and hence it is also considered in the numerical results in Section 6.

Assumption 1. Let A,C ∈ R
n2×n2

and W ∈ R
n2×s, n2 ≤ s, such that

‖ (C −A)v‖ ≤ ρ‖Av‖, ∀v ∈ R
n2

, (32a)

and
‖CWT (u− Sµ(u))‖ ≤ ρδ, ∀u ∈ R

s, (32b)

with a fixed 0 < ρ < 1/2, where δ = ‖η‖ is the noise level.

The assumption (32a) is the same spectral equivalence required in [18]. Let L be defined
in (29), then equation (32a) translates into

‖(L−K)u‖ ≤ ρ‖Ku‖, ∀u ∈ R
s. (33)

Instead, the assumption (32b) was not present in [18] and it is equivalent to consider the
soft-threshold parameter µ as a continuous function with respect to the noise level δ, i.e.,
µ = µ(δ), and such that µ(δ) → 0 as δ → 0. This is a common request in many soft-
thresholding based methods, see for instance Theorem 4.1 in [13]. Nevertheless, in this paper
we will not concentrate on µ and will not give any specific δ-dependent rule to compute it.

13



Algorithm. 4–NS. Let z0 be given and set r0 = g − KSµ(z
0). Choose τ = 1+2ρ

1−2ρ with ρ

from (32a), and fix q ∈ (2ρ, 1).
While ‖rn‖ > τδ, let τn = ‖rn‖/δ and let αn be such that

αn‖(CCT + αnI)
−1rn‖ = qn‖rn‖, qn = max{q, 2ρ+ (1 + ρ)/τn}, (34a)

compute {
zn+1 = zn +WCT (CCT + αnI)

−1(g −AWTxn),
xn+1 = Sµ(z

n+1).
(34b)

Note that the iteration (34b) is the same of Algorithm 4 where a nonstationary α is
chosen at every iteration according to (34a). In Corollary 8 we will prove that, if δ > 0, then
Algorithm 4–NS will terminate after n = nδ ≥ 0 iterations with

‖rnδ‖ ≤ τδ < ‖rn‖, n = 0, 1, · · · , nδ − 1, (35)

which is the discrepancy principle (18) with ñ = nδ and γ = τ = (1 + 2ρ)/(1− 2ρ).
The parameter q in Algorithm 4, like in [18], is meant as a safeguard to prevent that the

residual decreases too rapidly. Our theoretical results do not utilize this parameter.

Remark 5. It is not difficult to see that there is a unique positive parameter αn that satisfies
(34a). This parameter can be computed with a few step of an appropriate Newton scheme [22].
Accordingly, parameter αn, and therefore Algorithm 4–NS, are well defined.

We define
hn = LT (LLT + αnI)

−1(g−KSµ(z
n)), (36)

such that (34b) can be compactly rewritten as

{
zn+1 = zn + hn,
xn+1 = Sµ(z

n+1).

For the purpose of the subsequent convergence and regularization results, when δ > 0,
even if it will be always the case, we will highlight by the subscript δ (for instance {xn

δ })
the sequences generated by Algorithm 4–NS, starting from initial data gδ = Af + η affected
by noise, whereas we avoid the subscript (for instance {xn}) for the sequences generated
starting from exact initial data g = Af , i.e., δ = 0.

For the following analysis, instead of working with the error enδ = x − xn
δ , it is useful to

consider the partial error with respect to znδ , namely

ẽnδ = x− znδ . (37)

Proposition 6. Assume that the assumptions (32) are satisfied for some 0 < ρ < 1/2. If
‖rnδ ‖ > τδ and we define τn = ‖rnδ ‖/δ, then it follows that

‖rnδ − Lẽnδ ‖ ≤
(
ρ+

1 + 2ρ

τn

)
‖rnδ ‖ < (1− ρ)‖rnδ ‖, (38)

where ẽn is defined in (37).

Proof. In the free noise case we have g = Kx. As a consequence

rnδ − Lenδ = gδ −Kxn
δ − L(x− znδ ) + Lxn

δ − LSµ(z
n
δ )

= gδ − g+ (K − L)enδ + L(znδ − Sµ(z
n
δ )).
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Using now assumptions (32), in particular (33), and ‖gδ − g‖ ≤ δ, we derive the following
estimate

‖rnδ − Lenδ ‖ ≤ ‖gδ − g‖+ ‖(K − L)enδ ‖+ ‖L(znδ − Sµ(z
n
δ ))‖

≤ ‖gδ − g‖+ ρ‖Kenδ ‖+ ρδ

≤ ‖gδ − g‖+ ρ(‖rnδ ‖+ ‖gδ − g‖+ δ)

≤ (1 + 2ρ)δ + ρ‖rnδ ‖.

The first inequality in (38) now follows from the hypothesis δ = ‖rnδ ‖/τn. The second
inequality follows from ρ+ 1+2ρ

τn
< ρ+ 1+2ρ

τ .

We are going to show that the sequence {xn
δ } approaches x as δ → 0. The proof combines

Proposition 6 with suitable modifications of the results in [18].

Proposition 7. Let ẽnδ be defined in (37). If the assumptions (32) are satisfied, then ‖ẽnδ ‖
of Algorithm 4–NS decreases monotonically for n = 0, 1, . . . , nδ − 1. In particular, we deduce

‖ẽnδ ‖2 − ‖ẽn+1
δ ‖2 ≥ 8ρ2

1 + 2ρ
‖(CCT + αn)

−1rnδ ‖‖rnδ ‖. (39)

Proof. We have

‖ẽnδ ‖2 − ‖ẽn+1
δ ‖2 = 2〈ẽnδ ,hn〉 − ‖hn‖2

= 2〈Lẽnδ , (CCT + αnI)
−1rnδ 〉 − 〈rnδ , CCT (CCT + αnI)

−2rnδ 〉
= 2〈rnδ , (CCT + αnI)

−1rnδ 〉 − 〈rnδ , CCT (CCT + αnI)
−2rnδ 〉

− 2〈rnδ − Lẽnδ , (CCT + αnI)
−1rnδ 〉

≥ 2〈rnδ , (CCT + αnI)
−1rnδ 〉 − 2〈rnδ , CCT (CCT + αnI)

−2rnδ 〉
− 2〈rnδ − Lẽnδ , (CCT + αnI)

−1rnδ 〉
= 2αn〈rnδ , (CCT + αnI)

−2rnδ 〉 − 2〈rnδ − Lẽnδ , (CCT + αnI)
−1rnδ 〉

≥ 2αn〈rnδ , (CCT + αnI)
−2rnδ 〉 − 2‖rnδ − Lẽnδ ‖‖(CCT + αnI)

−1rnδ ‖
= 2‖(CCT + αnI)

−1rnδ ‖
(
‖αn(CCT + αnI)

−1rnδ ‖ − ‖rnδ − Lẽnδ ‖
)

≥ 2‖(CCT + αnI)
−1rnδ ‖

(
qn‖rnδ ‖ −

(
ρ+

1 + 2ρ

τn

)
‖rnδ ‖

)

≥ 8ρ2

1 + 2ρ
‖(CCT + αnI)

−1rnδ ‖‖rnδ ‖,

where the relevant inequalities are a consequence of equation (34a) and Proposition 6. The
last inequality follows from (34a) and τn > τ = (1 + 2ρ)/(1− 2ρ) for ‖rnδ ‖ > τδ.

Corollary 8. Under the assumptions (32), there holds

‖ẽ0δ‖ ≥ 8ρ2

1 + 2ρ

nδ−1∑

n=0

‖(CCT + αnI)
−1rnδ ‖‖rnδ ‖ ≥ c

nδ−1∑

n=0

‖rnδ ‖2 (40)

for some constant c > 0, depending only on ρ and q in (34a).

15



Proof. The following proof is almost the same as Corollary 3 in [18], but we include it to
make the paper self contained.

The first inequality follows by taking the sum of the quantities in (39) from n = 0 up to
n = nδ − 1.

For the second inequality, note that for every α > qn‖C‖2

1−qn
and every σ ∈ σ(C) ⊂ [0, ‖C‖2],

with σ(C) being the spectrum of C, we have

α

σ2 + α
≥ α

‖C‖2 + α
= (1 + ‖C‖2/α)−1 > qn,

and hence,
α‖(CCT + αI)−1rnδ ‖ > qn‖rnδ ‖,

as ‖rnδ ‖ > 0 for n < nδ. This implies that αn in (34a) satisfies 0 < αn ≤ qn‖C‖2

1−qn
, thus

‖(CCT + αnI)
−1rnδ ‖ =

qn
αn

‖rnδ ‖ ≥ (1− qn)

‖C‖2 ‖rnδ ‖.

Now, according to the choice of parameters in Algorithm 4-NS, we deduce
1− qn = min{1− q, 1− 2ρ− (1 + ρ)/τn}, and

1− 2ρ− (1 + ρ)/τn =
1 + 2ρ

τ
− 1 + ρ

τn
>

1 + 2ρ

τ
− 1 + ρ

τ
=

ρ

τ
.

Therefore, there exists c > 0, depending only on ρ and q such that 1−qn ≥ c‖C‖2
(

8ρ2

1+2ρ

)−1

,

and

‖(CCT + αnI)
−1rnδ ‖ ≥ c

(
8ρ2

1 + 2ρ

)−1

‖rnδ ‖ for n = 0, 1, · · · , nδ − 1.

Now the second inequality follows immediately.

From the outer inequality of (40) it can be seen that the sum of the squares of the residual
norms is bounded, and hence, if δ > 0, there must be a first integer nδ < ∞ such that (35)
is fulfilled, i.e., Algorithm 4-NS terminates after finitely many iterations.

Remark 9. Recalling that the soft-threshold parameter µ is taken as a continuous function
with respect to the noise level δ such that µ(δ) → 0 as δ → 0, then the operator g 7→ zn is
continuous for every fixed n.

In the next theorem we are going to give a convergence and regularity result.

Theorem 10. Assume that z0 is not a solution of the linear system

g = AWTx, (41)

and that δm is a sequence of positive real numbers such that δm → 0 as m → ∞. Then,

the sequence {xn(δm)
δm

}m∈N, generated by the discrepancy principle rule (35), converges as

m → ∞ to the solution of (41) which is closest to z0 in Euclidean norm.

Proof. We are going to show convergence for the sequence {zn(δm)
δm

}m∈N and then the thesis
will follow easily from the continuity of Sµ(δ) and Remark 9, i.e.,

lim
m→∞

x
n(δm)
δm

= lim
m→∞

Sµ(δm)(z
n(δm)
δm

) = Slimm→∞ µ(δm)( lim
m→∞

z
n(δm)
δm

) = lim
m→∞

z
n(δm)
δm

.
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The proof of the convergence for the sequence {zn(δm)
δm

} can be divided into two steps: at step
one, we show the convergence in the free noise case δ = 0. In particular, the sequence {zn}
converges to a solution of (41) that is the closest to z0. At the second step, we show that
given a sequence of positive real numbers δm → 0 as m → ∞, then we get a corresponding

sequence {zn(δm)
δm

} converging as m → ∞.
Concerning the first step of the proof, we will not give details since it can be just copied

from [18][Theorem 4]. Indeed, if δ = 0, from Remark 9 it follows that rnδ = rn, and the
sequence {zn} coincides with the one generated by algorithm 1 in [18]. We just say that the
main ingredients are the convergence of the sequence ‖en‖ granted by Proposition 7 and the
convergence to 0 of the sequence ‖rn‖‖(CCT +αnI)

−1rn‖, since general term of a converging
series from Corollary 8. Moreover, in the free noise case the sequence {zn} will not stop, i.e.,
n → ∞, since the discrepancy principle will not be satisfied by any n, in particular nδ → ∞
for δ → 0.

Hence, let x be the converging point of the sequence {zn} and let δm > 0 be a sequence
of positive real numbers converging to 0. For every δm, let n = n(δm) be the first positive

integer such that (35) is satisfied, whose existence is granted by Corollary 8, and let {zn(δm)
δm

}
be the corresponding sequence. For every fixed ǫ > 0, there exists n = n(ǫ) such that

‖x− zn‖ ≤ ǫ/2 for every n > n(ǫ), (42)

and there exists δ = δ(ǫ) for which

‖zn − znδ ‖ ≤ ǫ/2 for every 0 < δ < δ, (43)

due to the continuity of the operator g 7→ zn for every fixed n, see Remark 9. Therefore,
let us choose m = m(ǫ) large enough such that δm < δ and such that n(δm) > n for every
m > m. Such m does exists since δm → 0 and nδ → ∞ for δ → 0. Hence, for every m > m,
we have

‖x− z
n(δm)
δm

‖ = ‖ẽn(δm)
δm

‖
≤ ‖ẽnδm‖
= ‖x− znδm‖
≤ ‖x− zn‖+ ‖zn − znδm‖ ≤ ǫ,

where the first inequality comes from Proposition 7 and the last one from (42) and (43).

6 Numerical results

In this section, we will show the numerical results for image deblurring using our proposed
Algorithms 1–4. We compare them with some available deblurring algorithms, which im-
plement a proper treatment of the boundary artifacts. In particular we consider two of the
algorithms proposed in [2], namely FA-MD for the Frame-based analysis model and TV-MD
for the Total Variation model, and the Algorithm [3] called here FTVd since, in the case of
nonsymmetric PSF, it reduces to an implementation of the algorithm in [41] with the trick
described in [34]. The codes of the previous algorithms are available at the web-page of the
authors and we use the default parameters and stop conditions. The regularization parameter
is chosen by hand in order to provide the best restoration (see the following discussion).

Our tests were done by using MATLAB 7.11.0 (R2010b) with floating-point precision
about 2.22 · 10−16 on a Lenovo laptop with Intel(R) Core(TM) i2 CPU 2.20 GHz and 2
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GB memory. Assuming that the noise level is available or easily estimated, we stop all
Algorithms 1–4 using the discrepancy principle (18) with γ = 10−15. Algorithm 4–NS is
stopped according to the modified discrepancy principle (35). Moreover, for the Algorithm 4–
NS we set

q = 0.5 and ρ = 10−4.

Therefore, q and ρ do not need to be estimated.
The accuracy of the solution is measured by the PSNR value, which is defined as

PSNR = 20 log10
255 · n
‖f − f̃‖

,

with f and f̃ being the original and the restored images in the FOV, respectively. The initial
guess of each algorithm is set to be the zero vector.

To estimate µ and α, since they are mutually dependent and they are related to the
preconditioner, we fix a possible µ (usually the results are not very sensible varying µ if α
is properly chosen) and then the optimum α, which gives the largest PSNR, is chosen by
trial and error. Possible strategies to estimate α will be investigated in future works. Only
for Algorithm4–NS we pay a slightly more attention in the choice of µ since this is the only
parameter of the method. Similarly, for all the other methods considered for comparison,
the regularization parameter is chosen by trial and error, as the one leading to the largest
PSNR.

We take only the more appropriate BCs for each example. In particular, if the image
has a black background, like in astronomical imaging, we consider zero BCs, while when
the image is a generic picture we use antireflective BCs. In the following the “Algorithm
x” is denoted by “Alg-BCx” and “Alg-Rectx”, when A is obtained imposing BCs or is the
rectangular matrix, respectively. We recall that Algorithm 4 is available only for the BC
approach.

6.1 Linear B-spline framelets

The tight-frame used in our tests is the piecewise linear B-spline framelets given in [5].
Namely, given the masks

b0 =
1

4
[1, 2, 1], b1 =

√
2

4
[1, 0, −1], b2 =

1

4
[−1, 2, −1],

we define the 1D filters of size n× n by imposing reflective BCs

B0 =
1

4




3 1 0 . . . 0
1 2 1

. . .
. . .

. . .

1 2 1
0 . . . 0 1 3



, B1 =

1

4




1 −1 0 . . . 0
−1 2 −1

. . .
. . .

. . .

−1 2 −1
0 . . . 0 −1 1



,

and

B2 =
1

4




−1 1 0 . . . 0
−1 0 1

. . .
. . .

. . .

−1 0 1
0 . . . 0 −1 1



.
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(a) true image (b) PSF image (c) observed image (d) Alg-BC1 (e) Alg-BC3

(f) Alg-Rect2 (g) Alg-Rect3 (h) Alg-BC4–NS (i) TV-MD (j) FTVd

Figure 1: Example 1: true image, PSF, observed image, and restored images.

The nine 2D filters are obtained by

Bi,j = Bi ⊗Bj , i, j = 0, 1, 2,

where ⊗ denotes the tensor product operator. Finally, the corresponding tight-frame analysis
operator is

W =




B0,0

B0,1

...
B2,2


 .

Throughout the experiments, the level of the framelet decomposition is 4 like in [5] and
the level of wavelet decomposition is the one used in FA–MD.

6.2 Example 1: Saturn image

The first example is 256× 256 Saturn image in Figure 1 (a) while the astronomical PSF is
taken from the “satellite” test problem in [33] Figure 1 (b). We add a 1% of Gaussian white
noise to obtain the observed image in Figure 1 (c). We assume zero BCs.

Note that Alg-BC3 and Alg-Rect3 use the DCT for the preconditioner, while Alg-BC4
like Alg-BC1 and Alg-Rect1 use FFT, since the PSF is not quadrantally symmetric.

Table 2 reports the PSNR and the CPU time for the different algorithms. Note that
Algorithm 1 provides a poor and time consuming restoration. Moreover, it requires a larger
value of the parameter α with respect to the algorithms 2–4, which is necessary to satisfy
condition (20) and assure the convergence. The algortihms 2 and 3 have the largest PSNR
with reasonable CPU time, in particular Alg-Rect3 seems to be a good choice and Alg-BC3
gives a comparable restoration in about half time. Algorithm 4 gives a slightly lower PSNR
even if the computed restorations are better than Algorithm 1 and the other algorithms from
the literature, keeping also a low CPU time.
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Algorithm PSNR Iter. CPU time(s) Regular. parameter
Alg-BC1 30.97 322 200.99 α = 0.045
Alg-BC2 31.60 9 18.18 α = 0.0004
Alg-BC3 31.56 10 7.07 α = 0.0005
Alg-Rect1 30.95 493 948.94 α = 0.07
Alg-Rect2 31.62 8 22.20 α = 0.0003
Alg-Rect3 31.61 7 13.50 α = 0.0003
Alg-BC4 31.49 29 16.56 α = 0.0018
Alg-BC4–NS 31.25 15 10.32 µ = 6
FA-MD 30.87 90.85 λ = 0.001
TV-MD 31.17 47.61 λ = 0.01
FTVd 30.50 1.75 1/α = 0.0013

Table 2: Example 1: PSNR, number of iterations, and CPU time in seconds for the best
regularization parameter (maximum PSNR) reported in the last column. For our algorithms
µ = 10 except for Alg-BC4–NS.

(a) Alg-BC1 (b) Alg-Rect3 (c) Alg-BC4 (d) FA-MD (e) TV-MD

Figure 2: Example 1: residual image g −Af̃ , where f̃ is computed by different algorithms.

The algorithms in [2] (FA-MD and TV-MD) in this example lead to a larger CPU time,
while the FTVd is very fast but the computed restoration is the worst. Figure 1 shows the
corresponding restored images. To test the quality of the restorations, Figure 2 shows the
residual images defined as g −Af̃ , where f̃ is the restored image.

6.3 Example 2: Galaxy image

We consider another astronomical example with the 256 × 256 image in Figure 3 (a) cor-
rupted by oblique Gaussian blur taken from the “GaussianBlur422” test problem in [33], see
Figure 3 (b). We add a 2% of Gaussian white noise to obtain the observed image in Fig-
ure 3 (c). We impose zero BCs and the computational properties of the different algorithms
are the same as in Example 1.

Table 3 shows that Alg-BC4 is the best algorithm, since it obtains about the same PSNR
of Algorithm 2, but with about 1/4 of the CPU time. The variant Alg-BC4–NS with a
nonstationary choice of the preconditioner results to be very effective and comparable with
the other algorithms based on the BC model avoiding the choice of parameter α. Differently,
the rectangular approach gives a slightly lower PSNR with a larger CPU time. Concerning
the other methods, the same observations reported for Example 1 still apply. Figure 3 shows
some of the corresponding restored images.
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(a) true image (b) PSF image (c) observed image (d) Alg-BC1 (e) Alg-BC3

(f) Alg-Rect3 (g) Alg-BC4 (h) Alg-BC4–NS (i) FA-MD (j) FTVd

Figure 3: Example 2: true image, PSF, observed image, and restored images.

Algorithm PSNR Iter. CPU time(s) Regular. parameter
Alg-BC1 25.02 21 16.57 α = 0.04
Alg-BC2 25.07 12 22.88 α = 0.008
Alg-BC3 25.05 27 17.58 α = 0.02
Alg-Rect1 24.91 25 42.14 α = 0.06
Alg-Rect2 24.98 12 28.21 α = 0.007
Alg-Rect3 24.96 21 36.18 α = 0.01
Alg-BC4 25.06 12 6.21 α = 0.008
Alg-BC4–NS 25.01 29 17.10 µ = 4
FA-MD 24.50 77.05 λ = 0.02
TV-MD 24.55 68.91 λ = 0.09
FTVd 24.62 1.51 1/α = 0.027

Table 3: Example 2: PSNR and CPU time for the best regularization parameter (maximum
PSNR). For our algorithms µ = 10 except for Alg-BC4–NS.
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(a) true image (b) PSF image (c) observed image (d) Alg-BC1 (e) Alg-BC2

(f) Alg-Rect3 (g) Alg-BC4 (h) Alg-BC4–NS (i) FA-MD (j) TV-MD

Figure 4: Example 3: true image, PSF, observed image, and restored images.

6.4 Example 3: Boat image

To set up a scenario of unknown boundaries, the observed image of size 196×196 is obtained
convolving the full (256× 256) image using arbitrary BCs (periodic, for computational con-
venience) and then keeping only the pixels in the FOV 196× 196 (i.e., those not depending
on the BCs). The FOV is denoted by a black box in the true image in Figure 4 (a). 1% of
white Gaussian noise is added to the 196× 196 blurred image.

We impose antireflective BCs owing to the generic structure of that picture. Hence the
preconditioner in Alg-BC3 is diagonalized by the antireflective transform, according to the
structure of the matrix A. Alg-Rect3 uses the DCT as usual, while Alg-BC4 like Alg-BC1
and Alg-Rect1 use FFT since the PSF is not quadrantally symmetric.

Table 4 shows the PSNR and the CPU time for the best restorations shown in Figure 4.
Note that our algorithms with the rectangular matrix are less effective than the antireflective
BC approach, leading to a lower PSNR. To obtain reasonable restorations in the rectangular
case we need a large µ and so we take a different µ for the two deblurring models (BC and
rectangular matrix). The best algorithm results to be Alg-BC4, since it combines a good
restoration with a low CPU time.

6.5 Example 4: Cameraman with Gaussian blur

In this example we consider the classical Cameraman image 256× 256 distorted by a 31× 31
Gaussian blur with standard deviation 2.5 and a 2% of white Gaussian noise (see Figure 5).
The size of the observed image is 226× 226 according to the support of the PSF.

The PSF is quadrantally symmetric and hence, following our discussion in Section 4.1,
Algorithm 1 is implemented using the DCT instead of FFT. Clearly H̃ = H and so Alg-Rect3
reduces to Alg-Rect1 (they are really the same algorithm). We impose antireflective BCs and
hence Alg-BC3 is the standard MLBA (17) with P = (AAT + αI)−1, but recalling that we
are using the reblurring approach where AT is replaced by A′. On the other hand Alg-BC2
is no longer useful since the matrix-vector product with the matrix P = (AAT + αI)−1 can
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Algorithm PSNR Iter. CPU time(s) Regular. parameter
Alg-BC1 29.43 97 34.26 µ = 20, α = 0.37
Alg-BC2 30.11 11 17.21 µ = 20, α = 0.025
Alg-BC3 30.09 10 4.03 µ = 20, α = 0.022
Alg-Rect1 27.19 74 32.63 µ = 200, α = 0.03
Alg-Rect2 27.10 74 45.95 µ = 200, α = 0.03
Alg-Rect3 27.22 74 33.14 µ = 200, α = 0.03
Alg-BC4 30.17 13 3.67 µ = 20, α = 0.03
Alg-BC4–NS 29.77 60 19.57 µ = 30
FA-MD 29.61 15.95 λ = 0.04
TV-MD 29.87 16.74 λ = 0.1
FTVd 28.95 0.73 1/α = 0.0069

Table 4: Example 3: PSNR and CPU time for the best regularization parameter (maximum
PSNR).

(a) true image (b) PSF (31× 31) (c) observed image (d) Alg-BC1 (e) Alg-BC3

(f) Alg-Rect1 (g) Alg-BC4 (h) Alg-BC4–NS (i) TV-MD (j) FTVd

Figure 5: Example 4: true image, PSF, observed image, and restored images.
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Algorithm PSNR Iter. CPU time(s) Regular. parameter
Alg-BC1 23.67 51 20.19 α = 0.05
Alg-BC3 23.74 17 6.03 α = 0.01
Alg-Rect1 23.59 24 12.44 α = 0.02
Alg-Rect2 23.64 17 16.49 α = 0.009
Alg-BC4 23.76 17 5.60 α = 0.01
Alg-BC4–NS 23.53 39 14.78 µ = 40
FA-MD 23.44 14.10 λ = 0.01
TV-MD 23.55 13.37 λ = 0.11
FTVd 23.10 0.89 1/α = 0.0088

Table 5: Example 4: PSNR and CPU time for the best regularization parameter (maximum
PSNR). For our algorithms µ = 40.

(a) Alg-BC1 (b) Alg-BC4 (c) Alg-BC4–NS (d) TV-MD (e) FTVd

Figure 6: Example 4: Nort-East corner of the residual images.

be computed by two antireflective transforms without requiring the PCG: in fact, the use of
preconditioning would represent an unnecessary increase of the CPU time without increasing
the PSNR with respect to Alg-BC3. Finally, Alg-BC4 is implemented by DCT like Alg-BC1.

Table 5 shows that all the compared methods in this example provide comparable results.
Nevertheless, it is interesting to observe that Alg-BC4 gives a slightly better restoration
with a lower CPU time than the standard MLBA, i.e., Alg-BC3. TV-MD computes again a
comparable restoration, but with more than a double CPU time. Figure 5 shows the restored
images.

To test the ability of the different algorithms in dealing with the boundary effects, Figure 6
shows the North-East corner of the residual images. We can see that Alg-BC1 and FTVd
have some ringing effects at the boundary, while Algorithm 4 and TV-MD do not show any
particular distortion at the boundary.

7 Conclusion

In this paper, we have investigated several regularization preconditioning strategies for the
MLBA applied to the synthesis approach with accurate restoration models for image deblur-
ring and unknown boundaries. Our numerical results shows that Alg-BC4, which combines
the favorite BCs (depending on the problem) with an approximated Tikhonov regulariza-
tion preconditioner, represents a robust and effective algorithm. Indeed, it provides accurate
restorations in all our examples with a reduced CPU time also in comparison to the state of
the art algorithms [2, 3] and the standard MLBA when available, cf. Example 4.
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We have investigated only the synthesis approach, but the same preconditioning strategies
can be applied to the analysis and the balanced approach [6, 37] as well. Moreover, possible
future investigations could consider the use of a preconditioner obtained by a small rank ap-
proximation of the PSF as in [29], strategies to estimate the parameter α, and nonstationary
sequences to approximate the best α avoiding its estimation like in [28].
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