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Abstract. A robust and efficient time integrator for dynamical tensor approximation in the
tensor train or matrix product state format is presented. The method is based on splitting the
projector onto the tangent space of the tensor manifold. The algorithm can be used for updating
time-dependent tensors in the given data-sparse tensor train / matrix product state format and
for computing an approximate solution to high-dimensional tensor differential equations within this
data-sparse format. The formulation, implementation and theoretical properties of the proposed
integrator are studied, and numerical experiments with problems from quantum molecular dynamics
and with iterative processes in the tensor train format are included.
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1. Introduction. There has been much interest lately in the development of
data-sparse tensor formats for high-dimensional problems ranging from quantum me-
chanics to information retrieval; see, e.g., the monograph [5] and references therein.
A very promising tensor format is provided by tensor trains (TT) [26, 27], which are
also known as matrix product states (MPS) in the theoretical physics literature [29]

In the present paper we deal with the problem of computing an approximation
to a time-dependent large tensor A(t), t0 ≤ t ≤ t within the TT/MPS format. This
includes the situation where the tensor A(t) is known explicitly but in a less data-
sparse format and we require an approximation of lower complexity. Alternatively,
the tensor A(t) could also be defined implicitly as the solution of a tensor differential

equation
.
A = F (t, A), where

.
denotes d/dt. Such a situation typically arises from a

space discretization of a high-dimensional evolutionary partial differential equation.
In both situations, such an approximation can be obtained by the principle of dy-

namical low-rank: Given an approximation manifold M, the desired time-dependent
approximation Y (t) ∈M is computed as

‖
.
Y (t)−

.
A(t)‖ = min or ‖

.
Y (t)− F (t, Y (t))‖ = min,

where
.
A and F are given. This is known as the Dirac–Frenkel time-dependent varia-

tional principle in physics; see [17, 18]. In our case,M consists of TT/MPS tensors of
fixed rank and its manifold structure and tangent space were studied in [12]. For ‖ · ‖
the Euclidean norm, the minimizations from above lead to the following differential
equations on M:

.
Y (t) = PY (t)

.
A(t) and

.
Y (t) = PY (t) F (t, Y (t)) (1.1)

where PY is the orthogonal projection onto the tangent space ofM at Y (see §3 for a
definition of PY ). This time-dependent variational principle on fixed-rank TT/MPS
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manifolds is studied in [20], where the explicit differential equations are derived and
their approximation properties are analyzed. We further refer to [7] for a discussion
of time-dependent matrix product state approximations in the physical literature.

A conceptually related, but technically simpler situation arises in the dynamical
low-rank approximation of matrices [15]. There, the time-dependent variational prin-
ciple is applied on manifolds of matrices of a fixed rank, in order to update low-rank
approximations to time-dependent large data matrices or to approximate solutions
to matrix differential equations by low-rank matrices. The arising differential equa-
tions for the low-rank factorization need to be solved numerically, which becomes a
challenge in the (often occurring) presence of small singular values in the approxima-
tion. While standard numerical integrators such as explicit or implicit Runge–Kutta
methods then perform poorly, a novel splitting integrator proposed and studied in
[19] shows robustness properties under ill-conditioning that are not shared by any
standard numerical integrator. The integrator of [19] is based on splitting the orthog-
onal projector onto the tangent space of the low-rank matrix manifold. It provides
a simple, computationally efficient update of the low-rank factorization in every time
step.

In the present paper we extend the projector-splitting integrator of [19] from the
matrix case to the TT/MPS case in the time-dependent approximation (1.1).

After collecting the necessary prerequisites on tensor trains / matrix product
states in §2, we study the orthogonal projection onto the tangent space of the fixed-
rank TT/MPS manifold in §3. We show that the projector admits an additive de-
composition of a simple structure. In §4 we formulate the algorithm for the splitting
integrator based on the decomposition of the projector. In §5 we show that this inte-
grator inherits from the matrix case an exactness property that gives an indication of
the remarkable robustness of the integrator in the presence of small singular values. In
§6 we discuss details of the implementation and present numerical experiments from
quantum dynamics and from the application of the integrator to iterative processes
in the TT/MPS format.

2. Tensor trains / matrix product states: prerequisites. We present the
tensor train or matrix product state formats, together with their normalized rep-
resentations that we will use throughout the paper. Although our presentation is
self-contained, its content is not original and can be found in, e.g, [26, 12].

2.1. Notation and unfoldings.

Norm and inner product of tensors. The norm of a tensor X ∈ Rn1×···×nd ,
as considered here, is the Euclidean norm of the vector x that carries the entries
X(`1, . . . , `d) of X. The inner product 〈X,Y 〉 of two tensors X,Y ∈ Rn1×···×nd is the
Euclidean inner product of the two corresponding vectors x and y.

Unfolding and reconstruction. The ith unfolding of a tensor X ∈ Rn1×···×nd is
the matrix X〈i〉 ∈ R(n1···ni)×(ni+1···nd) that aligns all entries X(`1, . . . , `d) with fixed

`1, . . . , `i in a row of X〈i〉, and rows and columns are ordered colexicographically. The
inverse of unfolding is reconstructing, which we denote as

X = Teni(X
〈i〉),

that is, the tensor X ∈ Rn1×···×nd has the ith unfolding X〈i〉 ∈ R(n1...ni)×(ni+1...nd).
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TT/MPS format. A tensor X ∈ Rn1×···×nd is in the TT/MPS format if there
exist core tensors Ci ∈ Rri−1×ni×ri with r0 = rd = 1 such that

X(`1, . . . , `d) =

r1∑
j1=1

· · ·
rd−1∑

jd−1=1

C1(1, `1, j1) · C2(j1, `2, j2) · · ·Cd(jd−1, `d, 1)

for `i = 1, . . . , ni and i = 1, . . . , d. Equivalently, we have

X(`1, . . . , `d) = C1(`1) · · ·Cd(`d),

where the ri−1 × ri matrices Ci(`i) are defined as the slices Ci(:, `i, :).

Observe that X can be parametrized by
∑d

i=1 niri−1ri ≤ dNR2 degrees of free-
dom, where N = max{ni} and R = max{ri}. In high-dimensional applications where
TT/MPS tensors are practically relevant, R is constant or only mildly dependent on
d. Hence for large d, one obtains a considerable reduction in the degrees of freedom
compared to a general tensor of size Nd.

Left and right unfoldings. For any core tensor Ci ∈ Rri−1×ni×ri , we denote

C<
i =

 Ci(:, 1, :)
...

Ci(:, ni, :)

 ∈ R(ri−1ni)×ri , C>
i =

Ci(:, :, 1)ᵀ

...
Ci(:, :, ri)

ᵀ

 ∈ R(rini)×ri−1 .

The matrix C<
i is called the left unfolding of Ci and C>

i is the right unfolding.
TT/MPS rank. We call a vector r = (1, r1, . . . , rd−1, 1) the TT/MPS rank of a

tensor X ∈ Rn1×···×nd if

rank X〈i〉 = ri, (i = 1, . . . , d− 1).

In case ri ≤ min{
∏i

j=1 nj ,
∏d

j=i+1 nj}, this implies that X can be represented in the

TT/MPS format with core tensors Ci ∈ Rri−1×ni×ri of full multi-linear rank, that is,

rank C<
i = ri and rank C>

i = ri−1, (i = 1, . . . , d).

In addition, it is known (see [12, Lem. 4]) that for fixed r such a full-rank condition
on the core tensors implies that the set

M = {X ∈ Rn1×···×nd : TT/MPS rank of X is r} (2.1)

is a smooth embedded submanifold in Rn1×···×nd .
Partial products. Define the left partial product X≤i ∈ Rn1×···×ni×ri as

X≤i(`1, . . . , `i, :) = C1(`1) · · ·Ci(`i)

and the right partial product X≥i+1 ∈ Rri×ni+1×···×nd as

X≥i+1(:, `i+1, . . . , `d) = Ci+1(`i+1) · · ·Cd(`d).

See also Fig. 2.1(a) for their graphical representation in terms of a tensor network.
Let a particular unfolding of each of these partial products be denoted as

X≤i ∈ R(n1···ni)×ri , X≥i+1 ∈ R(ni+1···nd)×ri .
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X≥4X≤2

X

(a)

X

(b) Q≥4Q≤3 S3

Fig. 2.1. A 5 dimensional TT/MPS tensor X. Panel (a) indicates specific left and right
partial products of X. Panel (b) depicts the third recursive SVD of X. Observe that left and right
orthogonalized cores are denoted using G# and H# respectively.

The elementwise relation X(`1, . . . , `d) = X≤i(`1, . . . , `i, :)X≥i+1(:, `i+1, . . . , `d) then
translates into

X〈i〉 = X≤i Xᵀ
≥i+1.

Recursive construction. We note the recurrence relations

X≤i = (Ini
⊗X≤i−1)C<

i (i = 1, . . . , d) (2.2)

starting from X≤0 = 1, and

X≥i = (X≥i+1 ⊗ Ini)C
>
i (i = 1, . . . , d) (2.3)

with X≥d+1 = 1. Here ⊗ denotes the standard Kronecker product.
Combining the above formulas we note

X〈i〉 = (Ini
⊗X≤i−1)C<

i Xᵀ
≥i+1, (2.4)

which will be an important formula later. Using the recurrence relations for X≥i we
also obtain

X〈i−1〉 = X≤i−1C
>ᵀ
i (X≥i+1 ⊗ Ini)

ᵀ, (2.5)

which together with the previous formula allows us to pass from the (i− 1)th to the
ith unfolding.

2.2. Left and right orthogonalizations. Thanks to the recursive relations
(2.2) and (2.3), it is possible to compute the QR decompositions of the matrices X≤i
and X≥i efficiently.

Let us explain the case for X≤i in detail. First, compute a QR factorization (the
< in Q<

1 is just notational for now but will become clear in §2.3),

X≤1 = C<
1 = Q<

1 R1, with Q<ᵀ
1 Q<

1 = Ir1 , Q<
1 ∈ Rn1×r1 , R1 ∈ Rr1×r1 ,

and insert it into the recurrence relation (2.2) to obtain

X≤2 = (In2
⊗Q<

1 R1)C<
2 = (In2

⊗Q<
1 )(In2

⊗R1)C<
2 .

Next, make another QR decomposition

(In2
⊗R1)C<

2 = Q<
2 R2, with Q<ᵀ

2 Q<
2 = Ir2 , Q<

2 ∈ R(r1n2)×r2 , R2 ∈ Rr2×r2 ,

so that we have obtained a QR decomposition of

X≤2 = Q≤2R2 with Q≤2 = (In2 ⊗Q<
1 )Q<

2 .
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These orthogonalizations can be continued in the same way for i = 2, 3, . . .. Putting
Q≤0 = 1, we have obtained for each i = 1, . . . , d the QR decompositions

X≤i = Q≤iRi with Q≤i = (Ini
⊗Q≤i−1)Q<

i

where the matrices Q<
i ∈ R(ri−1ni)×ri and Ri ∈ Rri×ri are obtained recursively from

QR decompositions of lower-dimensional matrices (Ini
⊗Ri−1)C<

i = Q<
i Ri. We call

the left partial product X≤i in that case left-orthogonalized.
In a completely analogous way, we can obtain a right-orthogonalized X≥i as fol-

lows. Denote Q≥d+1 = 1. Then, starting with X≥d = C>
d = Q>

d Rd, we can use (2.3)
to obtain the QR decompositions

X≥i = Q≥iRi with Q≥i = (Q≥i+1 ⊗ Ini
)Q>

i , (2.6)

where the matrices Q>
i ∈ R(rini)×ri−1 and Ri ∈ Rri−1×ri−1 are recursively obtained

from (Ri+1⊗Ini
)C>

i = Q>
i Ri. We remark that these Ri are in general different than

those obtained while orthogonalizing from the left.
Observe that when X≤i is left-orthogonalized, then so is X≤j for any j < i. Since

X≤d = X〈d〉, we call X left orthogonal if X≤d is left-orthogonalized. As is evident
from Fig. 2.1, such a left orthogonal X is recursively computed by modifying the
cores Ci from left to right during a so-called forward sweep. Likewise, we call X right
orthogonal if X≥1 = X〈1〉 is right-orthogonalized which is obtained by a backward
sweep from right to left.

2.3. Recursive SVD. Suppose that X≤i = Q≤iRi and X≥i+1 = Q≥i+1Ri+1

are QR decompositions obtained from left and right orthogonalizations, we then have
the following SVD-like decomposition

X〈i〉 = Q≤iSiQ
ᵀ
≥i+1, with Si = RiR

ᵀ
i+1 ∈ Rri×ri . (2.7)

The matrix Si can be chosen diagonal, although we do not insist that it is. Since
the orthonormal matrices Q≤i and Q≥i+1 satisfy the recursive relations as explained

before, we call (2.7) a recursive SVD of X〈i〉, or the ith recursive SVD of X. The
graphical representation of such a recursive SVD is depicted in Fig. 2.1(b).

This recursiveness can be used for the SVD of X〈i+1〉. By (2.6), we can write

X〈i〉 = (Q≤iSi)Q
>ᵀ
i+1(Q≥i+2 ⊗ Ini+1)ᵀ. (2.8)

To obtain a decomposition of X〈i+1〉 by means of the relations (2.5) and (2.4), we
identify (2.8) with (2.5) (hence, i− 1 takes the role of i and C>ᵀ

i that of Q>ᵀ
i+1). The

corresponding expression for (2.4) then becomes

X〈i+1〉 = (Ini+1
⊗Q≤iSi)Q

<
i+1Q

ᵀ
≥i+2, (2.9)

which we can also write as

X〈i+1〉 = (Ini+1 ⊗Q≤i)(Ini+1 ⊗ Si)Q
<
i+1Q

ᵀ
≥i+2. (2.10)

Hence, after a QR decomposition

(Ini+1 ⊗ Si)Q
<
i+1 = Q

<

i+1Si+1, (2.11)
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we obtain the (i+ 1)th recursive SVD

X〈i+1〉 = Q≤i+1Si+1Q
ᵀ
≥i+2 with Q≤i+1 = (Ini+1

⊗Q≤i)Q
<

i+1.

A similar relation holds between X〈i〉 and X〈i−1〉. Let

X〈i〉 = Q≤iSiQ
ᵀ
≥i+1 = (Ini

⊗Q≤i−1)Q<
i (Q≥i+1S

ᵀ
i )ᵀ, (2.12)

then using the QR decomposition

(Sᵀ
i ⊗ Ini)Q

>
i = Q

>

i S
ᵀ
i

we can write

X〈i−1〉 = Q≤i−1SiQ
ᵀ
≥i where Q≥i = (Q≥i+1 ⊗ Ini)Q

>

i . (2.13)

3. Orthogonal projection onto the tangent space. LetM be the embedded
manifold of tensors of a given TT/MPS rank r; see (2.1). In this section, we derive
an explicit formula for the orthogonal projection onto the tangent space TXM at
X ∈M,

PX : Rn1×···×nd → TXM.

With the Euclidean inner product, the projection PX(Z) for arbitrary Z ∈ Rn1×···×nd

has the following equivalent variational definition:

〈PX(Z), δX〉 = 〈Z, δX〉 ∀ δX ∈ TXM.

Before we state the theorem, we recall a useful parametrization of TXM as intro-
duced in [12]. Let X ∈M be left orthogonal, that is, in the decompositions

X〈i〉 = (Ini ⊗X≤i−1) C<
i Xᵀ

≥i+1,

the matrices satisfy for all i = 1, . . . , d− 1

Xᵀ
≤iX≤i = Iri and C<ᵀ

i C<
i = Iri . (3.1)

Define then for i = 1, . . . , d− 1 the subspaces

Vi =
{

Teni

[
(Ini
⊗X≤i−1) δC<

i Xᵀ
≥i+1

]
: δCi ∈ Rri−1×ni×ri and C<ᵀ

i δC<
i = 0

}
and also the subspace

Vd =
{

Tend

[
(Ind

⊗X≤d−1) δC<
d

]
: δCd ∈ Rrd−1×nd×rd

}
.

Observe that these subspaces represent the first-order variations in Ci in all the rep-
resentations (3.1) together with the so-called gauge conditions C<ᵀ

i δC<
i = 0 when

i 6= d; there is no gauge condition for i = d. Now, [12, Thm. 4] states that

TXM = V1 ⊕ V2 ⊕ · · · ⊕ Vd.

In other words, every δX ∈ TXM admits the unique orthogonal1 decomposition

δX =

d∑
i=1

δXi, with δXi ∈ Vi, and 〈δXi, δXj〉 = δij .

1The orthogonality of the Vi spaces is only implicitly present in [12, Thm. 4]; it is however not
difficult to prove it explicitly thanks to the left-orthogonalization and the gauge conditions.
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Now we are ready to state the formula for PX . It uses the orthogonal projections
onto the range of X≤i, denoted as P≤i, and onto the range of X≥i, denoted as P≥i.
With the QR decompositions X≤i = Q≤iRi and X≥i = Q≥iR

′
i , these projections

become

P≤i = Q≤iQ
ᵀ
≤i, and P≥i = Q≥iQ

ᵀ
≥i.

We set P≤0 = 1 and P≥d+1 = 1.
Theorem 3.1. Let M be the manifold of fixed rank TT/MPS tensors. Then, the

orthogonal projection onto the tangent space of M at X ∈M is given by

PX(Z) =

d−1∑
i=1

Teni

[
(Ini ⊗P≤i−1)Z〈i〉P≥i+1 −P≤iZ

〈i〉P≥i+1

]
+ Tend

[
(Ind

⊗P≤d−1)Z〈d〉
]

for any Z ∈ Rn1×···×nd .
Proof. We assume that X is given by (3.1). For given Z ∈ Rn1×···×nd , we aim to

determine δU = PX(Z) ∈ TXM such that

〈δU, δX〉 = 〈Z, δX〉 ∀ δX ∈ TXM. (3.2)

Writing δU =
∑d

j=1 δUj with δUj ∈ Vj , this means that we need to determine matrices

δB<
j in the unfoldings

δU
〈j〉
j = (Inj

⊗X≤j−1) δB<
j Xᵀ

≥j+1,

such that the gauge conditions are satisfied

C<ᵀ
j δB<

j = 0 (j = 1, . . . , d− 1).

Fix an i between 1 and d. Since Vi is orthogonal to Vj when j 6= i, choosing any
δX = δXi ∈ Vi in (3.2) implies

〈δUi, δXi〉 = 〈Z, δXi〉 ∀ δXi ∈ Vi. (3.3)

Parametrize δXi ∈ Vi as

δX
〈i〉
i = (Ini

⊗X≤i−1) δC<
i Xᵀ

≥i+1

with δC<
i satisfying the gauge condition for i 6= d. Then, the left-hand side of (3.3)

becomes

〈δUi, δXi〉 = 〈δU〈i〉i , δX
〈i〉
i 〉

= 〈(Ini
⊗X≤i−1) δB<

i Xᵀ
≥i+1, (Ini

⊗X≤i−1) δC<
i Xᵀ

≥i+1〉
= 〈δB<

i Xᵀ
≥i+1X≥i+1, δC

<
i 〉,

since X is left orthogonal. Likewise, for the right-hand side we get

〈Z, δXi〉 = 〈Z〈i〉, δX〈i〉i 〉

= 〈(Ini ⊗X≤i−1)ᵀZ〈i〉X≥i+1, δC
<
i 〉.



8 CH. LUBICH, I.V. OSELEDETS AND B. VANDEREYCKEN

Hence, for all matrices δC<
i satisfying the gauge conditions, we must have

〈δB<
i Xᵀ
≥i+1X≥i+1, δC

<
i 〉 = 〈(Ini

⊗X≤i−1)ᵀZ〈i〉X≥i+1, δC
<
i 〉,

which implies, with P<
i the orthogonal projector onto the range of C<

i for i =
1, . . . , d− 1 and with P<

i = 0 for i = d,

δB<
i = (Ii −P<

i )(Ini
⊗X≤i−1)ᵀZ〈i〉X≥i+1(Xᵀ

≥i+1X≥i+1)−1,

where Ii = Iniri−1 . Inserting this expression into the formula for δU
〈i〉
i gives us

δU
〈i〉
i = (Ini

⊗X≤i−1) (Ii −P<
i )(Ini

⊗X≤i−1)ᵀZ〈i〉X≥i+1 (Xᵀ
≥i+1X≥i+1)−1 Xᵀ

≥i+1.

Since P≤i−1 = X≤i−1X
ᵀ
≤i−1, P≤i = (Ini

⊗X≤i−1)P<
i (Ini

⊗X≤i−1)ᵀ and P≥i+1 =

X≥i+1(Xᵀ
≥i+1X≥i+1)−1Xᵀ

≥i+1, this simplifies to

δU
〈i〉
i = (Ini

⊗P≤i−1 −P≤i)Z
〈i〉P≥i+1 (i = 1, . . . , d− 1),

δU
〈d〉
d = (Ind

⊗P≤d−1)Z〈i〉.

Now δU =
∑d

i=1 δUi satisfies the projection condition (3.2).
Although the formula in Theorem 3.1 lends itself well to practical implementation,

its cumbersome notation is a nuisance. We therefore introduce a simpler notation for
the forthcoming derivations.

Corollary 3.2. For i = 0, . . . , d+ 1, define the orthogonal projectors

P≤i : Rn1×···×nd → TXM, Z 7→ Teni(P≤iZ
〈i〉)

P≥i : Rn1×···×nd → TXM, Z 7→ Teni−1(Z〈i−1〉P≥i).

Then, the projector PX in Theorem 3.1 satisfies

PX =

d−1∑
i=1

(P≤i−1P≥i+1 − P≤iP≥i+1) + P≤d−1P≥d+1.

In addition, P≤i and P≥j commute for i < j.
Proof. The fact that P≤i commutes with P≥j follows from the observation that

for any Z ∈ Rn1×···×nd , P≤i(Z) acts on the rows of Z〈i〉—and hence also on the rows

of Z〈j〉—while P≥j(Z) acts on the columns of Z〈j〉.
To write PX using the new notation, we need to work out the term

P≥i+1(P≤i−1(Z)) = P≥i+1

[
Teni−1(P≤i−1Z

〈i−1〉)
]

= Teni

[
Y〈i〉P≥i+1

]
,

with Y = Teni−1(P≤i−1Z
〈i−1〉). Denote the mode-1 matricization of a tensor by

·(1); see [16, §2.4] for a definition. Then, define the tensors Ẑ and Ŷ , both of size

(n1 · · ·ni−1) × ni × (ni+1 · · ·nd), such that Ẑ(1) = Z〈i−1〉 and Ŷ(1) = Y〈i−1〉. In
addition, let ×1 denote the mode-1 multilinear product of a tensor with a matrix; see
[16, §2.5]. Then, using [16, p. 426] to compute matricizations of multilinear products,
we get

(Ẑ ×1 P≤i−1)(1) = P≤i−1Ẑ
(1) = P≤i−1Z

〈i−1〉 = Y〈i−1〉 = Ŷ(1).
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Hence, we see that Ŷ = Ẑ ×1 P≤i−1. Using the notation ·(1,2) = ·(3)T (see again [16,
§2.4]), we obtain

Ŷ(1,2) = (Ẑ ×1 P≤i−1)(1,2) = (Ini
⊗P≤i−1)Ẑ(1,2).

Now, observe that because of the colexicographical ordering of unfoldings and matri-
cizations, we have Ẑ(1,2) = Z〈i〉 and Ŷ(1,2) = Y〈i〉 and this gives

P≥i+1(P≤i−1(Z)) = Teni

[
Y〈i〉P≥i+1

]
= Teni

[
(Ini ⊗P≤i−1)Z〈i〉P≥i+1

]
.

The term P≤iP≥i+1 is straightforward, and this finishes the proof.

4. Projector-splitting integrator. We now consider the main topic of this
paper: a numerical integrator for the dynamical TT/MPS approximation

.
Y (t) = PY (t)(

.
A(t)), Y (t0) = Y0 ∈M (4.1)

of a given time-dependent tensor A(t) ∈ Rn1×···×nd .

Our integrator is a Lie–Trotter splitting of the vector field PY (
.
A). The splitting

itself is suggested by the sum in Corollary 3.2: using Y in the role of X, we can write

PY (
.
A) = P+

1 (
.
A)− P−1 (

.
A) + P+

2 (
.
A)− P−2 (

.
A) + · · · − P−d−1(

.
A) + P+

d (
.
A)

with the orthogonal projectors

P+
i (Z) = P≤i−1 P≥i+1(Z) = Teni

[
(Ini
⊗P≤i−1)Z〈i〉P≥i+1

]
, (1 ≤ i ≤ d),

(4.2)

P−i (Z) = P≤i P≥i+1(Z) = Teni

[
P≤iZ

〈i〉P≥i+1

]
, (1 ≤ i ≤ d− 1).

(4.3)

By standard theory (see, e.g., [8, II.5]), any splitting of this sum results in a first-
order integrator, and composing it with the adjoint gives a second-order integrator,
also known as the Strang splitting. Somewhat remarkably, we shall show in Thm. 4.1
that these split differential equations can be solved in closed form. Furthermore, if
they are solved from left to right (or from right to left), the whole scheme can be
implemented very efficiently.

4.1. Abstract formulation and closed-form solutions. Let t1 − t0 > 0 be
the step size. One full step of the splitting integrator solves in consecutive order the
following initial value problems over the time interval [t0, t1]:

.
Y +
1 = +P+

1 (
.
A), Y +

1 (t0) = Y0;
.
Y −1 = −P−1 (

.
A), Y −1 (t0) = Y +

1 (t1);

...
.
Y +
i = +P+

i (
.
A), Y +

i (t0) = Y −i−1(t1);
.
Y −i = −P−i (

.
A), Y −i (t0) = Y +

i (t1);

...
.
Y +
d = +P+

d (
.
A), Y +

d (t0) = Y −d−1(t1).
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Here, Y0 = Y (t0) is the initial value of (4.1) and Y +
d (t1) is the final approximation

for Y (t1). Observe that one full step consists of 2d− 1 substeps.
We remark that the projectors P+

i , P
−
i depend on the current value of Y +

i (t) or
Y −i (t); hence, they are in general time-dependent. For notational convenience, we do
not denote this dependence explicitly since the following result states we can actually
take them to be time-independent as long as they are updated after every substep.
In addition, it shows how these substeps can be solved in closed form.

Theorem 4.1. Let ∆A = A(t1) − A(t0). The initial value problems from above
satisfy

Y +
i (t1) = Y +

i (t0) + P+
i (∆A) and Y −i (t1) = Y −i (t0)− P−i (∆A),

where P+
i and P−i are the projectors at Y +

i (t0) and Y −i (t0), respectively.
In particular, if Y +

i (t0) has the recursive SVD

[Y +
i (t0)]〈i〉 = Q≤iSiQ

ᵀ
≥i+1 = (Ini

⊗Q≤i−1)Q<
i SiQ

ᵀ
≥i+1,

with Q≤0 = Q≥d+1 = 1, then

[Y +
i (t1)]〈i〉 = (Ini

⊗Q≤i−1)
{

Q<
i Si + (Ini

⊗Qᵀ
≤i−1)[∆A]〈i〉Q≥i+1

}
Qᵀ
≥i+1.

Likewise, if Y −i (t0) has the recursive SVD

[Y −i (t0)]〈i〉 = Q≤iSiQ
ᵀ
≥i+1,

then

[Y −i (t1)]〈i〉 = Q≤i

{
Si −Qᵀ

≤i[∆A]〈i〉Q≥i+1

}
Qᵀ
≥i+1.

These results are furthermore valid for any ordering of the initial value problems.
Proof. First, observe that each P+

i and P−i maps onto the current tangent space of
M and that Y0 ∈M. Hence, each Y +

i (t) and Y −i (t) will stay onM. We may therefore
assume that Y +

i (t) and Y −i (t) admit TT/MPS decompositions of equal TT/MPS rank
for t ∈ [t0, t1].

By writing Y +
i (t) in a time-dependent recursive SVD,

[Y +
i (t)]〈i〉 = (I⊗Q≤i−1(t))Q<

i (t)Si(t)Q
ᵀ
≥i+1(t),

we see from (4.2) that

[P+
i (

.
A)]〈i〉 = (I⊗Q≤i−1(t)Qᵀ

≤i−1(t)) [
.
A ]〈i〉Q≥i+1(t)Qᵀ

≥i+1(t).

Hence the differential equation
.
Y +
i = P+

i (
.
A) implies

(I⊗
.
Q≤i−1(t))Q<

i (t)Si(t)Q
ᵀ
≥i+1(t) + (I⊗Q≤i−1(t))

d

dt
[Q<

i (t)Si(t)] Qᵀ
≥i+1(t)

+ (I⊗Q≤i−1(t))Q<
i (t)Si(t)

.
Qᵀ
≥i+1(t)

= (I⊗Q≤i−1(t))(I⊗Qᵀ
≤i−1(t))[

.
A ]〈i〉Q≥i+1(t)Qᵀ

≥i+1(t).

By choosing
.
Q≤i−1(t) = 0 and

.
Q≥i+1(t) = 0, the above identity is satisfied when

d

dt
[Q<

i (t)Si(t)] = (I⊗Qᵀ
≤i−1(t))[

.
A ]〈i〉Q≥i+1(t). (4.4)
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Using the initial condition Y +
i (0), the solution of these differential equations becomes

Q≤i−1(t) = Q≤i−1(0), Q≥i+1(t) = Q≥i+1(0),

Q<
i (t)Si(t) = Q<

i (0)Si(0) + (I⊗Qᵀ
≤i−1(0))[A(t)−A(0)]〈i〉Q≥i+1(0),

which proves the statement for [Y +
i (t1)]〈i〉. Now, writing

[Y +
i (t1)]〈i〉 = (I⊗Q≤i−1) Q<

i Si Qᵀ
≥i+1 + (I⊗Q≤i−1Q

ᵀ
≤i−1) [∆A]〈i〉Q≥i+1 Qᵀ

≥i+1

= [Y +
i (0)]〈i〉 + (I⊗P≤i−1)[∆A]〈i〉P≥i+1,

we have also proven the first statement of the theorem.
Since the previous derivation is valid for any initial condition, it does not depend

on a specific ordering of the initial value problems. The derivation for Y −i (t1) is
analogous to that of Y +

i (t1).
In a similar way as for the proof of Corollary 3.2, one can show that the projec-

tor (4.2) also satisfies

P+
i (Z) = Teni−1

[
P≤i−1Z

〈i−1〉(P≥i+1 ⊗ Ini
)
]
, (1 ≤ i ≤ d). (4.5)

This definition is useful when Y +
i (t0) is given as (see §4.3)

[Y +
i (t0)]〈i−1〉 = Q≤i−1Si−1Q

>ᵀ
i (Qᵀ

≥i+1 ⊗ Ini
).

In that case, we have

[Y +
i (t1)]〈i−1〉 = Q≤i−1

{
Si−1Q

>ᵀ
i + Qᵀ

≤i−1[∆A]〈i−1〉(Q≥i+1 ⊗ Ini
)
}

(Qᵀ
≥i+1 ⊗ Ini

).

(4.6)

4.2. Efficient implementation as a sweeping algorithm. Theorem 4.1 can
be turned into an efficient scheme by updating the cores of the tensor Y (t0) from
left to right. Our explanation will be high level, focusing only on pointing out which
cores stay constant and which need to be updated throughout the sweep. A graphical
depiction of the resulting procedure using tensor networks is given in Fig. 4.1. More
detailed implementation issues are deferred to §6.1.

Preparation of Y0. Before solving the substeps, we prepare the starting value Y0
as follows. Write Y = Y0 for notational convenience and suppose

Y〈1〉(t0) = Y≤1(t0) Yᵀ
≥2(t0).

By orthogonalization from the right we decompose Y≥2(t0) = Q≥2(t0)R2(t0), so that
we obtain the right-orthogonalized factorization

Y〈1〉(t0) = K<
1 (t0)Qᵀ

≥2(t0)

with K<
1 (t0) = Y≤1(t0)Rᵀ

2(t0) ∈ Rn1×r1 the first core of Y (t0).
Computation of Y +

1 . Denote Y = Y +
1 . Since Qᵀ

≥2(t0)Q≥2(t0) = Ir1 , we have that

P≥2(t0) = Q≥2(t0)Qᵀ
≥2(t0). Applying Theorem 4.1 gives

Y〈1〉(t1) = K<
1 (t1) Qᵀ

≥2(t0),

with

K<
1 (t1) = K<

1 (t0) +
(
A〈1〉(t1)−A〈1〉(t0)

)
Q≥2(t0).
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Observe that compared to Y (t0) only the first core K1(t1) of Y (t1) is changed, while
all the others (that is, those that make up Q≥2(t0)) stay constant. Hence, after
computing the QR decomposition

K<
1 (t1) = Q<

1 (t1)R1(t1),

we obtain a recursive SVD for Y (t1) = Y +
1 (t1),

Y〈1〉(t1) = Q≤1(t1)R1(t1)Qᵀ
≥2(t0) with Q≤1(t1) = Q<

1 (t1).

Computation of Y −i with i = 1, . . . , d − 1. The computation for Y −1 follows the
same pattern as for arbitrary Y −i , so we explain it directly for Y −i .

We require that the initial value Y −i (t0) = Y +
i (t1) is available as a recursive SVD

in node i. This is obviously true for Y +
1 (t1) and one can verify by induction that it

is also true for Y +
i (t1) with i > 1, whose computation is explained below. Denoting

Y = Y −i , we have in particular

Y〈i〉(t0) = Q≤i(t1)Ri(t1)Qᵀ
≥i+1(t0),

with Qᵀ
≤i(t1)Q≤i(t1) = Iri = Qᵀ

≥i+1(t0)Q≥i+1(t0). This means we can directly apply
Theorem 4.1 for the computation of Y (t1) and obtain

Y〈i〉(t1) = Q≤i(t1)Si(t1)Qᵀ
≥i+1(t0), (4.7)

where Si(t1) ∈ Rri×ri is given as

Si(t1) = Ri(t1)−Qᵀ
≤i(t1)

(
A〈i〉(t)−A〈i〉(t0)

)
Q≥i+1(t0). (4.8)

Observe that we maintain a recursive SVD in i for Y −i (t1) without having to orthog-
onalize the matrices Q≤i(t1) or Q≥i+1(t0).

Computation of Y +
i with i = 2, . . . , d. In this case, the initial value Y +

i (t0) =
Y −i−1(t1) is available as a recursive SVD in node i − 1. Denoting Y = Y +

i , then it is
easily verified by induction that

Y〈i−1〉(t0) = Q≤i−1(t1) Si−1(t1) Qᵀ
≥i(t0),

with Qᵀ
≤i−1(t1)Q≤i−1(t1) = Iri−1

= Qᵀ
≥i(t0)Q≥i(t0). Recalling the relations (2.8)

and (2.10), we can transform this (i− 1)th unfolding into the ith unfolding,

Y〈i〉(t0) = (Ini ⊗Q≤i−1(t1)) K<
i (t0) Qᵀ

≥i+1(t0) (4.9)

where K<
i (t0) = (Ini ⊗ Si−1(t1))Q<

i (t0) is the left unfolding of the ith core Ki(t0) of
Y (t0). Theorem 4.1 then leads to

Y〈i〉(t1) = (Ini
⊗Q≤i−1(t1))K<

i (t1) Qᵀ
≥i+1(t0), (4.10)

where K<
i (t1) ∈ R(ri−1ni)×ri is given by

K<
i (t1) = K<

i (t0) + (Ini
⊗Qᵀ

≤i−1(t1))
(
A〈i〉(t1)−A〈i〉(t0)

)
Q≥i+1(t0).

Since now only the ith core Ki(t1) of Y (t1) has changed, one QR decomposition

K<
i (t1) = Q<

i (t1)Ri(t1), (4.11)
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Ki(t1) = Ki(t0) + ∆+
i

Ki(t0)

Qi(t1)

Q≥i+1(t0)

Y +
i (t0)

=

Ri(t1)

Q≤i−1(t1)

=

∆+
i

A(t1)−A(t0)

Q≥i+1(t0)Q≤i−1(t1)

Q≤i(t1)

=

∆−i

A(t1)−A(t0)

Q≥i+1(t0)Q≤i(t1)

1) Compute contraction

2) Update core

3) Orthogonalize

5) Update core

4) Compute contraction

Si(t1) = Ri(t1)−∆−i

6) Prepare for Y +
i+1

Ki+1(t0) Q≥i+2(t0)Q≤i(t1)

0) Prepared for Y +
i

Y +
i (t1)

Y −i (t0)

Y −i (t1)

Y +
i+1(t0)

Fig. 4.1. The two sweeping algorithms update the cores selectively throughout the time stepping
computations. Shown for the forward sweep when computing Y +

i and Y −i .

suffices to obtain a recursive SVD of Y +
i (t1) = Y (t1) at node i,

Y〈i〉(t1) = Q≤i(t1)Ri(t1)Qᵀ
≥i+1(t0), with Q≤i(t1) = (Ini

⊗Q≤i−1(t1))Q<
i (t1).

Next time step. The final step Y +
d (t1) will be an approximation to Y (t1) and

consists of a left-orthogonal Q≤d(t1). If we now want to continue with the time
stepper to approximate Y (t2) for t2 > t1, we need to apply the scheme again using
Y +
d (t1) as initial value. This requires a new orthogonalization procedure from right

to left, since the initial value for the sweep has to be right orthogonalized.

4.3. Second-order scheme by a back-and-forth sweep. In many cases, it is
advisable to compose the scheme from above with its adjoint instead of only orthogo-



14 CH. LUBICH, I.V. OSELEDETS AND B. VANDEREYCKEN

nalizing and continuing with the next step. In particular, the Strang splitting consists
of first computing the original splitting scheme on t ∈ [t0, t1/2] with t1/2 = (t1 + t0)/2
and then applying the adjoint of this scheme on t ∈ [t1/2, t1]. The result will be a
symmetric time stepper of order two; see, e.g., [8, II.5].

For our splitting, the adjoint step is simply solving the split differential equations
in reverse order. Since Theorem 4.1 is independent of the ordering of the differential
equations, we can again use its closed-form solutions to derive an efficient sweeping
algorithm for this adjoint step. We briefly explain the first three steps and refer to
Algorithm 1 for the full second-order scheme. Observe that this scheme can be seen
as a full back-and-forth sweep.

Denote the final step of the forward sweep on t ∈ [t0, t1/2] by Ŷ = Y +
d (t1/2). It

satisfies (recall that t1 takes the role of t1/2 in the derivations above)

Ŷ
〈d〉

(t1/2) = (Ind
⊗Q≤d−1(t1/2))K<

d (t1/2).

with

K<
d (t1/2) = K<

d (t0) + (Ind
⊗Qᵀ

≤d−1(t1/2))
(
A〈d〉(t1/2)−A〈d〉(t0)

)
.

The first substep of the adjoint scheme consists of solving

.
Y +
d = P+

d (
.
A), Y +

d (t1/2) = Ŷ ,

for t ∈ [t1/2, t1]. Denote Y = Y +
d . We can directly apply Theorem 4.1 to obtain

Y〈d〉(t1) = (Ind
⊗Q≤d−1(t1/2))K<

d (t1)

with

K<
d (t1) = K<

d (t1/2) + (Ind
⊗Qᵀ

≤d−1(t1/2))
(
A〈d〉(t1)−A〈d〉(t1/2)

)
= K<

d (t0) + (Ind
⊗Qᵀ

≤d−1(t1/2))
(
A〈d〉(t1)−A〈d〉(t0)

)
.

Hence, the last substep of the forward sweep and the first of the backward sweep can
be combined into one.

The second substep amounts to solving

.
Y −d−1 = −P−d−1(

.
A), Y −d−1(t1/2) = Y +

d (t1).

Let Y = Y −d−1. Then we can write the initial condition as

Y〈d−1〉(t1/2) = Q≤d−1(t1/2)K>
d (t1)ᵀ

and using the QR decomposition K>
d (t1) = Q>

d (t1)Rd−1(t1) also as

Y〈d−1〉(t1/2) = Q≤d−1(t1/2)Rᵀ
d−1(t1)Qᵀ

≥d(t1),

where Q≥d(t1) = Q>
d (t1). Applying Theorem 4.1, we obtain

Y〈d−1〉(t1) = Q≤d−1(t1/2)Sᵀ
d−1(t1)Qᵀ

≥d(t1),

where

Sᵀ
d−1(t1) = Rᵀ

d−1(t1)−Qᵀ
≤d−1(t1/2)

(
A〈d−1〉(t1)−A〈d−1〉(t1/2)

)
Q≥d(t1).
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For the third substep

.
Y +
d−1 = P−d−1(

.
A), Y +

d−1(t1/2) = Y −d−1(t1),

we denote Y = Y +
d−1. In this case, unfold using (2.12) and (2.13) the computed

quantity Yd−1(t1) from above as

Y〈d−2〉(t1) = Q≤d−2(t1/2)K>ᵀ
d−1(t1/2)(Qᵀ

≥d(t1)⊗ Ind−1
),

with K>ᵀ
d−1(t1/2) = Q>ᵀ

d−1(t1/2)(Sᵀ
d−1(t1)⊗ Ind−1

). From here on, all subsequent com-

putations are straightforward if we use (4.6) to compute Y +
i (t1).

Algorithm 1: Step of the split projector integrator of second order

Data: K1(t0) ∈ Rr0×n1×r1 , Qi(t0) ∈ Rri−1×ni×ri with Q>ᵀ
i (t0)Q>

i (t0) = Iri−1

for i = 2, . . . , d; t0, t1
Result: K1(t1) ∈ Rr0×n1×r1 , Qi(t1) ∈ Rri−1×ni×ri with

Q>ᵀ
i (t1)Q>

i (t1) = Iri−1
for i = 2, . . . , d

begin
1 set t1/2 = (t0 + t1)/2. . Initialization

2 set ∆L = A(t1/2)−A(t0) and ∆R = A(t1)−A(t1/2).

3 set K<
1 (t1/2) = K<

1 (t0) + ∆
〈1〉
L Q≥2(t0). . Forward

4 compute QR factorization K<
1 (t1/2) = Q<

1 (t1/2)R1(t1/2).

5 set Q≤1(t1/2) = Q<
1 (t1/2).

6 set S1(t1/2) = R1(t1/2)−Qᵀ
≤1(t1/2)∆

〈1〉
L Q≥2(t0).

7 for i = 2 to d− 1 do
8 set K<

i (t0) = (Ini
⊗ Si−1(t1/2))Q<

i (t0).

9 set K<
i (t1/2) = K<

i (t0) + (Ini ⊗Qᵀ
≤i−1(t1/2))∆

〈i〉
L Q≥i+1(t0).

10 compute QR factorization K<
i (t1/2) = Q<

i (t1/2)Ri(t1/2)

11 set Q≤i(t1/2) = (Ini
⊗Q≤i−1(t1/2))Q<

i (t1/2)

12 set Si(t1/2) = Ri(t1/2)−Qᵀ
≤i(t1/2)∆

〈i〉
L Q≥i+1(t0)

13 set K<
d (t1) = K<

d (t0) + (Ind
⊗Qᵀ

≤d−1(t1/2))
(
∆
〈d〉
L + ∆

〈d〉
R

)
. Backward

14 compute QR factorization K>
d (t1) = Q>

d (t1)Rd−1(t1)

15 set Q≥d(t1) = Q>
d (t1)

16 set Sd−1(t1) = Rd−1(t1)−Qᵀ
≥d(t1)(∆

〈d−1〉
R )ᵀQ≤d−1(t1/2)

17 for i = d− 1 down to 2 do
18 set K>

i (t1/2) = (Si(t1)⊗ Ini
)Q>

i (t1/2)

19 set K>
i (t1) = K>

i (t1/2) + (Qᵀ
≥i+1(t1)⊗ Ini)(∆

〈i−1〉
R )ᵀQ≤i−1(t1/2)

20 compute QR factorization K>
i (t1) = Q>

i (t1)Ri−1(t1)

21 set Q≥i(t1) = (Q≥i+1(t1)⊗ Ini
)Q>

i (t1)

22 set Si−1(t1) = Ri−1(t1)−Qᵀ
≥i(t1)(∆

〈i−1〉
R )ᵀQ≤i−1(t1/2)

23 set K>
1 (t1/2) = (S1(t1)⊗ In1

)Q>
1 (t1/2)

24 set K>
1 (t1) = K>

1 (t1/2) + (Qᵀ
≥2(t1)⊗ In1

)(∆
〈0〉
R )ᵀ
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5. Exactness property of the integrator. We show that the splitting inte-
grator is exact when A(t) is a tensor of constant TT/MPS rank r. This is similar to
Theorem 4.1 in [19] for the matrix case, except that in our case we require the rank of
A(t) to be exactly r and not merely bounded by r. Note, however, that the positive
singular values of unfoldings of A(t) can be arbitrarily small.

Theorem 5.1. Suppose A(t) ∈ M for t ∈ [t0, t1]. Then, for sufficiently small
t1− t0 > 0 the splitting integrators of orders one and two are exact when started from
Y0 = A(t0). For example, Y +

d (t1) = A(t1) for the first-order integrator.
The proof of this theorem follows trivially from the following lemma.
Lemma 5.2. Suppose A(t) ∈M for t ∈ [t0, t1] with recursive SVDs

[A(t)]〈i〉 = Q≤i(t) Si(t) Qᵀ
≥i+1(t) for i = 0, 1, . . . , d.

Let Y0 = A(t0), then for sufficiently small t1 − t0 > 0 the consecutive steps in the
splitting integrator of §4.1 satisfy

Y +
i (t1) = P

(0)
≥i+1A(t1) and Y −i (t1) = P

(1)
≤i A(t0) for i = 1, 2, . . . , d,

where

P
(0)
≥i+1Z = Teni

(
Z〈i〉Q≥i+1(t0)Qᵀ

≥i+1(t0)
)
,

P
(1)
≤i Z = Teni

(
Q≤i(t1)Qᵀ

≤i(t1)Z〈i〉
)
.

Before proving this lemma, we point out that the assumption of sufficiently small
t1− t0 is only because the matrices Qᵀ

≤i−1(t1)Q≤i−1(t0) and Qᵀ
≥i(t1)Q≥i(t0) need to

be invertible. Since the full column-rank matrices Q≤i(t) and Q≥i(t) can be chosen
continuous functions in t, this is always satisfied for t1 − t0 sufficiently small. It may
however also hold for larger values of t1 − t0.

Proof. The proof proceeds by induction on i from left to right. Since Y +
1 (t0) =

A(t0), we can include the case for Y +
1 (t1) in our proof below for general i by putting

Y −0 (t1) = Y +
0 (t0) and P

(1)
≤0 = 1.

Now, suppose the statement to be true for i > 1. Then, Y +
i (t0) = Y −i−1(t1) =

P
(1)
≤i−1A(t0), which gives

[Y+
i (t0)]〈i−1〉 = Q≤i−1(t1) Qᵀ

≤i−1(t1)Q≤i−1(t0)Si−1(t0) Qᵀ
≥i(t0)

= Q≤i−1(t1) S+
i−1 Qᵀ

≥i(t0).

Observe that Y +
i (t0) ∈ M since S+

i−1 = Qᵀ
≤i−1(t1)Q≤i−1(t0)Si−1(t0) is of full rank

for t1 − t0 sufficiently small. Hence, from (2.8)–(2.10) we obtain

[Y+
i (t0)]〈i〉 = (Ini ⊗Q≤i−1(t1)) (Ini ⊗ S+

i−1) Q<ᵀ
i (t0) Qᵀ

≥i+1(t0).

Comparing to (4.2), we see that the projector onto the tangent space at Y +
i (t0) equals

P+
i = P

(1)
≤i−1 P

(0)
≥i+1 = P

(0)
≥i+1P

(1)
≤i−1. The previous identities give with Theorem 4.1 that

Y +
i (t1) = Y +

i (t0) + P+
i A(t1)− P+

i A(t0)

= P
(1)
≤i−1A(t0) + P

(0)
≥i+1 P

(1)
≤i−1A(t1)− P (1)

≤i−1 P
(0)
≥i+1A(t0) = P

(0)
≥i+1A(t1),
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where we used P
(0)
≥i+1A(t0) = A(t0) and P

(1)
≤i−1A(t1) = A(t1).

Continuing with Y −i (t0) = Y +
i (t1) = P

(0)
≥i+1A(t1), we have

[Y −i (t0)]〈i〉 = Q≤i(t1) Si(t1) Qᵀ
≥i+1(t1)Q≥i+1(t0)Qᵀ

≥i+1(t0)

= Q≤i(t1) S−i Qᵀ
≥i+1(t0).

This is again a recursive SVD with full rank S−i = Si(t1) Qᵀ
≥i+1(t1)Q≥i+1(t0). Com-

paring to (4.3), we have P−i = P
(1)
≤i P

(0)
≥i+1 = P

(0)
≥i+1P

(1)
≤i and Theorem 4.1 gives

Y −i (t1) = Y −i (t0)− P−i A(t1) + P−i A(t0)

= P
(0)
≥i+1A(t1)− P (0)

≥i+1P
(1)
≤i A(t1) + P

(1)
≤i P

(0)
≥i+1A(t0) = P

(1)
≤i A(t0),

where we used P
(1)
≤i A(t1) = A(t1). This concludes the proof.

Now, Theorem 5.1 is a simple corollary.
Proof of Theorem 5.1. For the forward sweep (that is, the first-order scheme),

Lemma 5.2 immediately gives exactness since Y +
d (t1) = P

(0)
≥d+1A(t1) = A(t1) with

Q≥d+1(t0) = 1. The second-order scheme composes this forward sweep with a back-
ward sweep involving the same substeps. It is not difficult to prove the analogous
version of Lemma 5.2 for such a backward ordering such that we establish exactness
for the second-order scheme too.

6. Numerical implementation and experiments. We consider two numer-
ical experiments. First, we use the splitting integrator for the integration of a time-
dependent molecular Schrödinger equation with a model potential. In the second
experiment, we use one step of the splitting integrator as a retraction on the manifold
of TT/MPS tensors and perform a Newton–Schultz iteration for approximate matrix
inversion.

6.1. Implementation details. As explained in §4.2–4.3, the integrator updates
the cores Ki and matrices Si in a forward, and possibly, backward ordering. Except
for the (relatively cheap) orthogonalizations of the cores, the most computationally
intensive part of the algorithm is computing these updates. For example, in the
forward sweep, we need to compute the contractions (see Fig. 4.1)

∆+
i = (I⊗Qᵀ

≤i−1(t1)) [A(t1)−A(t0) ]〈i〉Q≥i+1(t0),

∆−i = Qᵀ
≤i(t1) [A(t1)−A(t0) ]〈i〉Q≥i+1(t0).

It is highly recommended to avoid constructing the matrices Q≤i and Q≥i explicitly

when computing ∆+
i ,∆

−
i and instead exploit their TT/MPS structure. How this can

be done, depends mostly on the structure of the increments A(t1)−A(t0). In particu-
lar, the contractions are computed inexpensively if A(t) is itself a linear combination
of TT/MPS tensors, possibly having different rank than Y , and a sparse tensor.

The computation ofKi and Si changes when the tensor A(t) is not given explicitly,
but determined as the solution of a tensor differential equation

.
A(t) = F (t, A(t)).

In case of a forward sweep, Y +
i (t1) is obtained as the evaluation at t = t1 of

Y +
i (t) = (I⊗Q≤i−1(t1)) K<

i (t) Qᵀ
≥i+1(t0),
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where K<
i (t) = Q<

i (t)Si(t) satisfies (4.4). Hence, for
.
A(t) = F (t, Y (t)), we obtain

.
K<

i = (I⊗Qᵀ
≤i−1(t1)) [F (t, Y +

i (t)) ]〈i〉Q≥i+1(t0).

In an analogous way, the result of the next substep Y −i (t1) is obtained from

Y −i (t) = Q≤i(t1) Si(t) Qᵀ
≥i+1(t0),

.
Si = −Qᵀ

≤i(t1)) [F (t, Y −i (t)) ]〈i〉Q≥i+1(t0).

These differential equations can be solved numerically by a Runge–Kutta method (of
order at least 2 for the second-order splitting integrator). In the important particular
case of an autonomous linear ODE

.
A(t) = F (t, A(t)) = L(A(t)), with linear L : Rn1×···×nd → Rn1×···×nd ,

the above differential equations are constant-coefficient linear differential equations
for K<

i and Si, respectively, which can be solved efficiently with a few iterations of a
Krylov subspace method for computing the action of the operator exponential [9, 30,
10].

6.2. Quantum dynamics in a model potential. Quantum molecular dy-
namics is one of the promising applications of the split projector integrator. As a test
problem, we use the same setup as considered in [24]: the time-dependent Schrödinger
equation with Henon–Heiles potential modeling a coupled oscillator,

i
dψ

dt
= Hψ, ψ(0) = ψ0, (6.1)

where the Hamiltonian operator H has the form

H(q1, . . . , qf ) =

harmonic part︷ ︸︸ ︷
− 1

2
∆ +

1

2

f∑
k=1

q2k +

anharmonic part︷ ︸︸ ︷
λ

f−1∑
k=1

(
q2kqk+1 −

1

3
q3k+1

)
︸ ︷︷ ︸

Henon-Heiles potential V (q1,...,qf )

(6.2)

with λ = 0.111803. As an initial condition ψ0, we choose a product of shifted Gaus-
sians,

ψ0 =

f∏
i=1

exp

(
− (q − 2)2

2

)
.

The correct discretization of such problems is delicate. A standard approach is
to use a Discrete Variable Representation (DVR), specifically, the Sine-DVR scheme
from [3]. In addition, since the problem is defined over the whole space, appropriate
boundary conditions are required. We use complex absorbing potentials (CAP) of the
form (see, for example, [22])

W (q) = iη

f∑
i=1

(
(qi − q(r)i )br+ + (qi − q(l)i )bl−

)
,
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where

z+ =

{
z, if z ≥ 0,

0, otherwise,
and z− =

{
z, if z ≤ 0,

0, otherwise.

The parameters q
(r)
i and q

(l)
i specify the effective boundary of the domain. CAP

reduces the reflection from the boundary back to the domain, but the system is no
longer conservative. For the Henon–Heiles example from above we have chosen

η = −1, q
(l)
i = −6, q

(r)
i = 6, br = bl = 3.

We compute the dynamics using the second-order splitting integrator where the
(linear) local problems for Ki,Si are integrated using the Expokit package [30] with
a relative accuracy of 10−8.

In order to evaluate the accuracy and efficiency of our proposed splitting inte-
grator, we performed a preliminary comparison with the multi-configuration time-
dependent Hartree (MCTDH) package [32]. The MCTDH method [22] is the de-facto
standard for doing high-dimensional quantum molecular dynamics simulations. For
the detailed description of MCTDH, we refer to [22, 23, 2, 21].

As numerical experiment, we run MCTDH for the 10-dimensional Henon–Heiles
problem from above with mode-folding. This can be considered as a first step of
the hierarchical Tucker format (in this context called the multilayer MCTDH de-
composition) with 32 basis functions in each mode, and the resulting function was
approximated by a 5-dimensional tensor with mode sizes equal to 18. The final time
was T = 60. Our splitting integrator solved the same Henon–Heiles problem but now
using the second-order splitting integrator with a fixed time step h = 0.01. Except
that we use the TT/MPS manifold for our scheme instead of a Tucker-type manifold
as in MCDTH, all other computational parameters are the same.

In Fig. 6.1 we see the vibrational spectrum of a molecule, which is obtained as
follows. After the dynamical low-rank approximation ψ(t) is computed, we evaluate
the autocorrelation function a(t) = 〈ψ(t), ψ(0)〉, and compute its Fourier transform
â(ξ). The absolute value of â(ξ) gives the information about the energy spectrum of
the operator. If the dynamics is approximated sufficiently accurately, the function
â(ξ) is approximated as a sum of delta functions located at the eigenvalues of H.
This method can be considered as a method to approximate many eigenvalues of H
by using only one solution of the dynamical problem, which is not typical to standard
numerical analysis, but often used in chemistry.

We see in Fig. 6.1 that the computed spectra are very similar, but the MCTDH
computation took 54 354 seconds, whereas the splitting integrator scheme took only
4 425 seconds. A detailed comparison of the splitting scheme and MCTDH for quan-
tum molecular dynamics will be presented elsewhere. This will include different bench-
mark problems and a comparison with the multilayer version of the MCTDH.
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Fig. 6.1. Spectrum computed by the second-order splitting integrator and by the MCTDH package

6.3. Approximate matrix inversion. Optimization on low-rank tensor man-
ifolds is another promising application of the splitting integrator scheme and can be
rather easily incorporated. Consider some iterative process of the form

Yk+1 = Yk + ∆k k = 0, . . . (6.3)

where ∆k is the update. In order to obtain approximations Zk ∈ M of Yk in the
TT/MPS format, one typically retracts the new iterate back to M,

Zk+1 = Pr(Zk + ∆k),

with Pr : Rn1×···×nd → M a retraction; see [1]. A widely used choice for Pr is the
quasi-optimal projection computed by TT-SVD [26]. Instead, we propose the cheaper
alternative of one step of Algorithm 1 with A(t1) − A(t0) = ∆k as Pr. In practice,
the intermediate quantities in Algorithm 1 have to be computed without forming ∆k

explicitly. This can be done, for example, when ∆k is a TT/MPS tensor of low-rank
as explained in §6.1.

An important example of (6.3) is the Newton–Schultz iteration for the approxi-
mate matrix inversion (see, e.g., [6]),

Yk+1 = 2Yk − YkAYk, k = 0, . . . . (6.4)

It is well-known that iteration (6.4) converges quadratically provided that ρ(I−AY0) ≤
1, where ρ(·) is the spectral radius of the matrix. The matrix A is supposed to have
low TT/MPS rank when seen as a tensor. This typically arises from a discretization
of a high-dimensional operator on a tensor grid. In our numerical experiments we
have taken the M -dimensional Laplace operator with Dirichlet boundary conditions,
discretized by the usual second-order central finite difference on a uniform grid with
2d points in each mode.
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As a low-rank format, we used the quantized TT-format (QTT) [25, 14] which
coincides with a Md-dimensional TT/MPS format with all dimensions ni = 2. It is
known [13] that in this format the matrix A is represented with QTT-ranks bounded
by 4. Since A is symmetric positive definite, as an initial guess we choose Y0 = αI
with a sufficiently small α. The splitting integrator is applied with ∆k = Yk−YkAYk.
It requires a certain amount of technical work to implement all the operations involved
in the QTT format, but the final complexity is linear in the dimension of the tensor
(but of course, has high polynomial complexity with respect to the rank). To put the
solution onto the right manifold we artificially add a zero tensor to the initial guess,
which has rank 1, and formally apply the splitting integrator.

As first numerical result, we compare the projector-splitting scheme to the stan-
dard approach where after each step of the Newton-Schultz iteration we project onto
a manifold of tensors with bounded TT/MPS ranks r using the TT-SVD,

Yk+1 = Pr(2Yk − YkAYk).

The parameters are set as M = 2, d = 7, r = 20, α = 10−2. The convergence of the
relative residual ‖AYk − I‖/‖AY0 − I‖ in the Frobenius norm for the two methods is
presented in Fig. 6.2. The splitting method has slightly better accuracy and, more
importantly, is significantly faster.
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Split proj: 6.3 sec.

Standard: 287.2 sec.

Fig. 6.2. Convergence of split projector method and the SVD-based projection method for
D = 2, d = 7, α = 10−2, r = 20

During the numerical experiments we observed that the residual always decreases
until the point when the manifold is insufficient to hold a good approximation to
an inverse, and then it either stabilizes or diverges. The exact explanation of this
behavior is out of the scope of the current paper but could probably be solved using
a proper line-search on M as in [1]. Fig. 6.3 shows the convergence behavior for
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Fig. 6.3. The relative residual vs. iteration number for the approximate inversion using
TT/MPS rank r of the M-dimensional Laplace operator on a uniform grid with 27 = 128 points in
each dimension. Fixed starting guess Y0 = αI with α = 10−6.

different M and r, with d and α fixed. Fig. 6.4 shows the convergence behavior with
respect to different α and d. Finally, Fig. 6.5 shows that the code has good scaling
with d and M .

7. Conclusion. We have presented and studied a robust and computationally
efficient integrator for updating tensors in the tensor train or matrix product state
format and for approximately solving tensor differential equations with the approxi-
mations retaining the data-sparse tensor train format. Quantum dynamics and tensor
optimization appear as promising application areas.

It appears possible to extend this approach to the manifold of hierarchical Tucker
tensors of fixed rank [31] and its dynamical approximation [20]. This will be reported
elsewhere. In addition, the integrator shares a close resemblance to alternating least
squares (ALS) or one-site DMRG (see, e.g., [11, 4] and for a geometric analysis [28])
when the time step goes to infinity. This requires further investigation.
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TT/MPS rank 30 of the 2-dimensional Laplace operator a uniform grid with 2d points in each
dimension. Starting guesses are Y0 = αI.

101 102

Total dimension M · d

10−1

100

101

102

103

T
im

e(
se
c)

r = 1

r = 10

r = 20

r = 30

r = 40

Linear scaling

Fig. 6.5. Time in log-log scale as a function of the total dimension Md of the tensor



24 CH. LUBICH, I.V. OSELEDETS AND B. VANDEREYCKEN

REFERENCES

[1] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms on Matrix Manifolds,
Princeton University Press, Princeton, NJ, 2008.
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