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Abstract

In most relevant cases in the Bayesian analysis of ODE inverse prob-
lems, a numerical solver needs to be used. Therefore, we cannot work with
the exact theoretical posterior distribution but only with an approximate
posterior deriving from the error in the numerical solver. To compare a
numerical and the theoretical posterior distributions we propose to use
Bayes Factors (BF), considering both of them as models for the data at
hand. We prove that the theoretical vs a numerical posterior BF tends to
1, in the same order (of the step size used) as the numerical forward map
solver does. For higher order solvers (eg. Runge-Kutta) the Bayes Factor
is already nearly 1 for step sizes that would take far less computational
effort. Considerable CPU time may be saved by using coarser solvers that
nevertheless produce practically error free posteriors. Two examples are
presented where nearly 90% CPU time is saved while all inference results
are identical to using a solver with a much finer time step.

KEYWORD: Inverse Problems; Bayesian Inference; Bayes Factors; Numer-
ical Analysis of ODE’s.

1 Introduction

1.1 Context and issues

In a comprehensive review of recent publications on the Bayesian Analysis of
Inverse Problems it is clear that there is a consistent growth of interest in the
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uncertainty quantification approach provided by the Bayesian paradigm. How-
ever, we also notice that some of the potential strength of the Bayesian approach
is currently underexploited, namely, 1) prediction, 2) model selection and (let
alone) 3) decision making under uncertainty. Recent reviews on the Bayesian
Analysis of inverse problems (Mohammad-Djafari, 2006; Kaipio and Fox, 2011;
Watzenig and Fox, 2009; Kaipio and Fox, 2011; Woodbury, 2011) do not dis-
cuss these former points in detail. We have now access to important theoretical
results on the definition of posterior distributions in infinite dimensions and
regularity conditions for correct approximate schemes through numerical, finite
dimension posteriors (eg. Schwab and Stuart, 2012) that provide a sound theo-
retical background to the field. There are several applications in the (Bayesian
dominated) field of image processing of various kinds (Zhu et al., 2011; Cai et al.,
2011; Fall et al., 2011; Chama et al., 2012; Kolehmainen et al., 2007; Nissinen
et al., 2011; Kozawa et al., 2012, to mention some recent references), and also
we find a whole range of emerging application areas in the Bayesian Analysis
of inverse problems (Calvetti et al., 2006; Keats et al., 2010; Cui et al., 2011;
Wan and Zabaras, 2011; Hazelton, 2010; Kaipio and Fox, 2011). However, only
a handful of publications mentions or uses Bayesian predicting tools, that is,
the posterior (predictive) distribution of yet to observe variables (Vehtari and
Lampinen, 2000; Somersalo et al., 2003; Kaipio and Fox, 2011; Capistrán et al.,
2012), and even less consider formally the model selection and model compari-
son tools developed in Bayesian statistics. We intend to contribute to the formal
and more systematic use of the latter in the context of Inverse Problems.

Predictive power is always a desirable property of mathematical models and
inference, beyond parameter estimation, for model parameters that may or may
not have straightforward physical meaning. We believe that comparing forward
models as statistical models is the way to proceed when predictive power is of
main interest. The Bayesian model comparison and model averaging tools, in
particular pairwise model comparison using Bayes Factors, is in such case the
main tool to be used in this context, as far as predictive power is concerned
(Hoeting et al., 1999). In particular, this idea should be used when analyzing
the numerical vs. the theoretical versions of the resulting posterior distribution.
That is, the forward map, defined as the solution of a system of ODE’s (or
PDE’s), represents a complex regressor that is only theoretically defined. The
actual usage of the model necessarily involves a numerical solver that includes
an approximation error depending on the solver step size h. Therefore, there
is a theoretical posterior distribution PΘ|Y (θ|y) and the approximate PhΘ|Y (θ|y)

posterior. Recently a series of papers (eg. Schwab and Stuart, 2012) discuss
regularity conditions under which the latter tends to the former as the approx-
imation error tends to zero, using a suitable metric. A metric comparison (ie.
||PΘ|Y (·|y)−PhΘ|Y (·|y)||) is useful to proving the required convergence theorems,
but more practical considerations will be needed when evaluating the relative
benefits of a numerical approach with a particular solver step size h (for data
y).

We believe that both PΘ|Y (·|y) and PhΘ|Y (·|y) (and Phi

Θ|Y (·|y) for any other
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hi) should be compared as models, being PΘ|Y (·|y) the reference but compu-
tationally very expensive or even only theoretically available model and the
approximate, for various solver precisions h1, h2, . . ., as alternative, less compu-
tationally demanding computing models. Bayes factors may then be used to
establish a sound comparison, to balance predictive power on the one hand vs.
solver CPU time on the other, to establish a useful solver precision (that may
even be far less precise than common usage but achieve comparable results rel-
ative to the observations errors, the model characteristics etc. for the problem
at hand). One difficulty here is that in most real applications the theoretical
model is unavailable. We therefore establish how to approximate the Bayes fac-
tors, without having the theoretical reference model, using solely the numerical
solver approximation rates.

1.2 Notation

Assume that we observe a process y = (y1, . . . , yn) at the discrete times t1, . . . , tn ∈
[0, T [n such that

yi = f(Xθ(ti)) + εi, εi ∼i.i.d. N (0, σ2) (M) (1)

where Xθ is the solution of the following system of ordinary differential equa-
tions, namely the Forward Model,

dXθ

dt
= F (Xθ, t, θ); Xθ(t0) = X0. (2)

θ ∈ Θ ⊂ Rd is a vector of unknown parameters. F : Rp × [0, T [×Θ 7→ Rp is
a known function, whose regularity properties ensure the existence of a unique
solution of the initial value problem (2) (the regularity conditions of F will be
discussed in Section 2).

f : Rp → Rk in (1) is the observation function. Many types of observation
functions f can be considered, modeling for instance the observation of a single
component of the p-vector Xθ(t) or a (linear) combination of the components. In
this paper, for the sake of simplicity, we consider a one dimensional observations
problem only, that is k = 1. Generalizations of our results to multivariate
observations are possible and will be briefly mentioned in the Section 6.

Any statistical decision from the data y –such as estimation, prediction
or model selection– relies on the likelihood function (in a Bayesian and other
paradigms)

PY|φ(y|θ, σ) = σ−n(2π)−n/2 exp

{
− 1

2σ2

n∑
i=1

(yi − f(Xθ(ti)))
2

}
(3)

whose expression involves the computation of Xθ, a solution of (2). However,
except in very simple cases, an explicit expression of the solution is in general
not available (although its existence is ensured by regularity assumptions on F ).
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As a consequence, in practice, the system (2) is solved using a numerical solver
and the inference is performed, not on the previous “exact” model but on an
approximate model, namely

yi = f(Xh
θ (ti)) + εi, εi ∼i.i.d. N (0, σ2) (Mh) (4)

where Xh
θ denotes the approximate solution of (2) supplied by the numerical

solver (h being a precision parameter of the solver). The new likelihood derived
from model Mh is thus

PhY|φ(y|θ, σ) = σ−n(2π)−n/2 exp

{
− 1

2σ2

n∑
i=1

(yi − f(Xh
θ (ti)))

2

}
. (5)

Changing from the original statistical model is obviously not without con-
sequences. Since there is no alternative but to use the approximate model
above (4), there exists a real need in understanding and controlling related
consequences. In a Bayesian paradigm, any decision is based on the posterior
distribution. A first natural choice is to compare the posterior distributions
calculated from models (M) and (Mh). Such a study has been proposed by,
for example, Donnet and Samson (2007). However, when comparing models in
a Bayesian context, the natural tools are Bayes Factors. In this work, we recall
their importance, propose an efficient way to compute them in this context and
study some theoretical aspects of their calculation when the exact model is not
available.

The paper is organized as follows. In Section 2 we discuss the choice of
a solver and its required properties from a Bayesian Inverse Problem point of
view. Bayesian inference is presented in Section 3 and some control results
on the posterior distributions are cited in Subsection 3.2. Bayes factors are
introduced and our main theoretical results are developed in Section 4 . Our
results are illustrated both with a simulation study and with real data in Section
5. Finally, a discussion of the paper is presented in Section 6.

2 ODE solvers from a Bayesian Inverse problem
point of view

Bayesian analysis for inverse problems strongly relies on the numerical approx-
imation of the underlying ODE system. One can choose to use a standard
(more or less advanced) implemented solver as a black-box in a sense assuming
that no approximation is made on the model. But in our approach, we aim at
understanding the influence of this approximation. As a consequence, we are
interested in the inherent properties of the numerical solver. When it comes
to qualifing a numerical solver, three properties arise, namely its error (local or
global), its stability and its stiffness. The three of them are addressed in the
following section although global error is surely the most important one as far
as the purposes of the paper are concern.
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Only a restricted number of nonlinear ODEs has a solution in closed form.
Consequently, there is a plethora of numerical methods to solve the initial value
problem (2). Noteworthy are time-stepping methods based on Taylor approxi-
mation of the function F , multi-step methods and Runge-Kutta methods. These
methods span through many orders of local accuracy. Beside the order of ac-
curacy, standard requirements for a numerical method are consistency, conver-
gence, and stability (Iserles, 1996; Quarteroni et al., 2007). However, even when
these latter conditions hold, a common concern in the numerical solution of the
initial value problem (2) is error control.

Two types of error can be considered, namely the local and the global errors.
In the following, we use the theory developed in Quarteroni et al. (2007) to
discuss the relationship between local and global errors for one-step Euler and
fourth order explicit Runge-Kutta methods.

Let h be the step size of the method. We define a time grid as tn+1 = tn+h,
for some fixed h > 0. Let Xθ,n be the solver approximation of Xθ(tn). One-step
Euler and fourth order explicit Runge-Kutta methods have the form

Xθ,n+1 = Xθ,n + hK(tn, Xθ,n, h, F ), (6)

where

K(tn, Xθ,n, h, F ) =

{
K1 for Euler
1
6 (K1 + 2K2 + 2K3 +K4) for 4th ord. Runge-Kutta,

(7)
with

K1 = F (Xθ,n, tn, θ) K2 = F (Xθ + 1
2hK1, tn + 1

2h, θ)
K3 = F (Xθ + 1

2hK2, tn + 1
2h, θ) K4 = F (Xθ + hK1, tn + h, θ).

(There is also a 2nd order Rungue-Kutta, which will be used in Section 5.1, but
we avoid presenting its details.)

Local truncation error en is the error made in one step of the numerical
method, that is

en = eh(tn, θ) = ||Xθ(tn)−Xθ(tn−1)− hK(tn, Xθ(tn−1), h, F )||2.

Global error En is the difference between the computed solution and the true
solution at any given value of t belonging to the grid

En = Eh(tn, θ) = ||Xθ(tn)−Xθ,n||2.

For (order one) Euler and fourth order Runge-Kutta methods en is O(h2) and
O(h5) respectively (we avoid the details for order two Rungue-Kutta, for which
indeed en is O(h3)). Proposition 1 establishes a relationship between global and
local error for one-step numerical methods like Euler and Runge-Kutta.
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Assumption 1. We assume throughout the paper that the function F in the
right hand side of the initial value problem (2) is continuously differentiable
with respect to Xθ on a parallelepiped R = {: t0 ≤ t ≤ t0 + a, ||Xθ −X0||2 ≤ b}
for each θ. Hence a unique solution of the initial value problem exists in a
neighborhood of (t0, X0) for each θ. F as above implies K is Lipschitz continuous
on Xθ, i.e. there is L ∈ R+∗ such that if (t, x), (t, y) ∈ R, then

||K(t, x, h, F )−K(t, y, h, F )||2 ≤ L||x− y||2.

Proposition 1. Assume that Assumption 1 holds and for the solver at hand
and the local truncation error en is O(hp+1). Then the global truncation error
is O(hp).

Proof. We have

En = ||Xθ(tn)−Xθ,n||2 = ||Xθ(tn)−Xθ,n−1 − hK(tn, Xθ,n−1, h, F )||2.

Adding and susbtracting the term Xθ(tn−1) +hK(tn, Xθ(tn−1), h, F ) we obtain

En ≤ en + ||Xθ(tn−1)−Xθ,n−1||2 + h||K(tn, Xθ(tn−1), h, F )−K(tn, Xθ,n−1, h, F )||2
≤ en + En−1 + hL||Xθ(tn−1)−Xθ,n−1||2
≤ en + En−1(1 + hL).

Consequently

En ≤ en + en−1(1 + hL) + . . .+ e1(1 + hL)n−1

≤ Hhp+1 1− (1 + hL)n

1− (1 + hL)
=
H

L
hp{(1 + hL)n − 1}.

Therefore, since h = l
n (l = tn − t1),

En ≤
H

L
hp
{(

1 +
lL

n

)n
− 1

}
≤ H

L
elLhp.

From Proposition 1, we deduce that, for any explicit one-step method of
order p such as Euler (p = 1) and Runge-Kutta (p = 2 or p = 4) schemes, the
global error is of order O(hp) for h small enough. If we set Xh

θ (tn) = Xθ,n, note
that we have proved that

max
t∈{t1,t2,...,tn}

||Xθ(t)−Xh
θ (t)|| ≤ Cθhp

since H and L above depend on θ. This global error order control will be needed
in Sections 3.2 and 4.2 to prove our main result.

In the numerical community, the control of the error means keeping the error
en or En under a fixed level (beyond the above mentioned asimptotic results),
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along the application of the scheme. The local error en can be controlled directly,
using for instance, the “Milne device” (Iserles, 1996). However, there are not
known general methods to control global error En, although some methods exist
to estimate it, for instance, those relying on adjoint state analysis, see Cao and
Petzold (2004); Lang and Verwer (2007). In the results that follow we do not
require an estimation of this global (or local) error, solely the knowledge of the
global error order for the solver at hand.

Another important issue in the numerical solution of problem (2) is stiff-
ness. According to Lambert (1991), if a numerical method with finite region
of absolute stability applied to system (2) is forced to use in a certain interval
in t a steplength excessively small in relation to the smoothness of the exact
solution in that interval, then system (2) is said to be stiff in that interval.
We remark that many systems of ODE modeling real life phenomena are stiff,
see Gutenkunst et al. (2007).

Software implementing time-stepping methods mentioned above must ad-
dress error control, stability and stiffness issues. Actually, local error control
mechanisms can cope with stiffness at the expense of taking very small step-
sizes. Therefore, advanced features like variable order methods, and variable
stepsize methods have been developed and implemented in libraries of common
high level programing languages like R, Matlab and Python-Scipy.

The results shown in this paper assume a fixed step method. We only work
with the Euler and Rugue-Kutta methods (orders p = 1, 2, 4 respectively).

3 Bayesian inference for inverse problems: prac-
tical and theoretical aspects

There are some excellent reviews concerning the Bayesian analysis of Inverse
Problems (Kaipio and Somersalo, 2005; Fox et al., 1999) and for a more detailed
description these or other sources should be consulted. In this section we only
present the particular aspects of the field relevant to the development of our
results.

Any Bayesian statistical decision (such as estimation) is based on the pos-
terior distribution, given by the Bayes formula

PhΦ|Y(θ, σ|y) =
PhY|Φ(y|θ, σ)PΦ(θ, σ)

PhY(y)
(8)

where PΦ(θ, σ) is the prior distribution on (θ, σ) and

PhY(y) =

∫
PhY|Φ(y|θ, σ)PΦ(θ, σ)dθdσ

is the normalization constant, also called the marginal likelihood of data y.
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An estimator of (θ, σ) is derived from some characteristics of the posterior
distribution. Various approaches can be adopted. Either the estimator is taken
as the mode of the posterior distribution, resulting into the MAP estimator
(θ̂MAP , σ̂MAP ) = arg max(θ,σ) P

h
Φ|Y(θ, σ|y) or the estimator derives from the

minimization of a loss function L(θ, σ|η), that is (θ̂, σ̂) = arg min(θ,σ)

∫
L(θ, σ|η)PhΦ|Y(θ, σ|y)dθdσ.

If the loss function L(θ, σ|η) is equal to the L2-distance, then the corresponding

estimator is the posterior mean (θ̂L
2

, σ̂L
2

) =
∫

(θ, σ)PhΦ|Y(θ, σ|y)dθdσ. If the

loss function L(θ|η) is equal to the L1-distance, then the corresponding estima-

tor is the posterior median, that is (θ̂L
1

, σ̂L
1

) = (Fh)−1
Φ|Y

(
1
2

)
, etc. In general,

posterior expectations of all types (ie.
∫
g(φ)PhΦ|Y(φ|y)dφ, for some measurable

function g) are used to explore the posterior distribution, and these include
all marginal distributions for individual parameters or posterior probabilities of
specific regions of interest.

Besides some few simple conjugate models, the normalizing constant PhY(y)
has no explicit analytic expression and therefore the above estimators can not
be directly calculated. If the dimension of Φ is 1 or 2 we could rely on nu-
merical integration to obtain the normalizing constant PhY(y). In larger di-
mensions, the standard solution is to resort to Monte Carlo methods to ap-
proximate the estimators. Let (θ(l), σ(l))i=1...L be a sample from the posterior

distribution, the L2 estimator for instance, is approximated as (θ̂L
2

, σ̂L
2

) =(
1
L

∑M
l=1 θ

(l), 1
L

∑L
l=1 σ

(l)
)

.

Simulation from the posterior distribution is not a direct task and Markov
Chain Monte Carlo algorithms (see Robert and Casella, 2004, for a didactic re-
view) are standard tools to sample from the posterior distribution PhΦ|Y(θ, σ|y).
However, such algorithms have to be carefully designed when the evaluation of
the regression function of the model (and consequently of the likelihood func-
tion) is computationally intensive. In the next section, we recall the basics of
MCMC algorithms and discuss their application to inverse problems and the
calculation of Bayes’ Factors.

3.1 Sampling from the posterior distribution in Inverse
problems

Markov Chain Monte Carlo (MCMC) is specially suited for sampling from com-
plex multidimensional distributions and is ubiquitous in modern Bayesian anal-
yses. We do not intend to present a comprehensive review of MCMC here
but merely state the basic principles to consider some aspects of implement-
ing MCMC in the Inverse Problem context; otherwise the reader is referred to
Robert and Casella (2004). The principle of MCMC algorithms is to gener-
ate a Markov chain whose invariant distribution is the distribution of interest
PhΦ|Y(θ, σ|y). Many versions have been proposed in the literature. Among those,
the Gibbs algorithm and the Metropolis-Hasting algorithms are the most used
and quickly described below.
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The Gibbs sampler is a very popular MCMC algorithm. However, only
in canonical cases (eg. conditional conjugacy) it make sense to be used. In
our Inverse Problem settings, this is not the case and the general Metropolis-
Hastings MCMC algorithm needs to be used instead.

The Metropolis-Hastings (MH) algorithm starts by defining a proposal (or
instrumental) conditional distribution q(φ′|φ), which we are able to simulate
from for any φ in the support of the posterior distribution. At iteration (`):

1. a proposed value φ′ is simulated given the current state of the Markov
Chain φ(`) from the proposal q(·|φ(`));

2. the proposed point φ′ is accepted as the new point in the Markov chain
φ(`+1) with probability ρ(φ(`), φ′):

phi(`+1) =

{
φ′ with probability ρ(φ(`), φ′)
φ′(`) with probability 1− ρ(φ(`), φ′)

where the acceptance probability ρ(φ(`), φ′) is equal to

ρ(φ(`), φ′) = min

{
1,

PhΦ|Y(φ′|y)

PhΦ|Y(φ(`)|y)

q(φ(`)|φ′)
q(φ′|φ(`))

}

= min

{
1,

PhY|Φ(y|φ′)PΦ(φ′)

PhY|Φ(y|φ(`))PΦ(φ(`))

q(φ(`)|φ′)
q(φ′|φ(`))

}
.

Commonly a series of proposal distributions q1, q2, . . . , qm are entertained, lead-
ing to a series of m transition kernels that are systematically or randomly
scanned (the latter leads to the desirable reversibility property) to form an
easily provable convergent chain to the posterior PhΦ|Y(·|y).

In any case, at each iteration of the MH MCMC we need to evaluate the
(unnormalized) posterior (It is therefore crucial to minimize the number of it-
erations in the MCMC and the number of likelihood evaluations).

Optimizing MCMC algorithms (that is to say minimizing the number of
iterations) has been a very active research topic in the last decade. There are
adaptive algorithms (Haario et al., 1998; Atchadé and Rosenthal, 2005) that
try to learn from previous steps of the chain to adapt the proposals q1, . . . , qm.
These methods require additional regularity conditions on the adaptive scheme,
model and prior that might limit their applicability. Christen and Fox (2010)
also propose the t-walk, which self adjusts keeping two points in the parameter
space, and that commonly samples with reasonable efficiency. However, robust,
multipurpose, automatic and optimal methods are still far away in the MCMC
horizon (to make an optimistic metaphor).

When it comes out to inverse problem specifically, various savings can be
considered.
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• First, a naive but straightforward computational economy is to save U (`) =
− logPhY|Φ(y|φ(`))− logPΦ(φ(`)). Indeed, this quantity will be used for any new

simulated value φ′ until the chain reaches a new point φ(`+1). We will see in
Section 4.1 that these quantities can also be recycled for model comparison
purposes. Note that these U (`) are very useful for convergence analysis.

• Second, in this Inverse Problem setting we may exploit the possibility that
a coarser numerical solver with a higher error rate (or equivalently a larger step
size h1) might lead to a far less CPU demanding approximate calculation of
the likelihood Ph1

Y|φ(y|φ(i)). More precisely, Christen and Fox (2005) suggest to

propose a candidate φ′ and test its promising acceptance probability using an
approximate and cheap calculation of the likelihood (using the coarser numerical
solver). If this φ′ has a “good” probability to being accepted, the full blow and
expensive calculation of the likelihood is used to firmly accept or reject φ′. This
two-step or “delay acceptance MH” algorithm may save substantial CPU time
during the MCMC (see Christen and Fox, 2005).

3.2 Theoretical results on the error control of the approx-
imate posterior distribution

After having examined how the standard algorithmic tools for Bayesian inference
can be adapted or designed specifically to the Inverse problem context, we may
want to understand and control the consequences implied by the use of an
approximate model from a theoretical point of view. Such a result can be found
in Donnet and Samson (2007) who compare the posterior distributions of the
exact and approximate models respectively –namely PΦ|Y and PhΦ|Y– through
the total variation distance.

Proposition 2. Assume that φ = (θ, σ) remains in a compact set and that the
numerical scheme of step size h is such that {t1, . . . , tn} ⊂ hN and

max
t∈{t1,...,tn}

‖Xθ(t)−Xh
θ (t)‖Rp ≤ Cθhp. (9)

Also assume that the observation function f is differentiable with a bounded
derivative. Then there exists a constant Cy such that for every (θ, σ) and h
small enough

|PΦ|Y(θ, σ;y)− PhΦ|Y(θ, σ;y)| ≤ Cyπ(θ, σ)hp. (10)

As a consequence,
DT.V (PΦ|Y, P

h
Φ|Y) ≤ Cyh

p (11)

where DT.V is the total variation distance. Moreover,

‖(θ̂L
2

, σ̂L
2

)− (θ̂h,L
2

, σ̂h,L
2

)‖ ≤ hpC ′y (12)
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Proof. Donnet and Samson (2007)’s results are developed for mixed effects mod-
els in a maximum likelihood context but can be adapted to models (1) and (4).
Inequality (10) is derived from Theorem 4 of Donnet and Samson (2007). The
control on the total variation distance is derived directly. The inequality (12)
is obtained as follows

‖(θ̂L2

, σ̂L
2

)− (θ̂h,L
2

, σ̂h,L
2

)‖
= ‖

∫
(θ, σ)PΦ|Y(θ, σ|y)dθ −

∫
(θ, σ)PhΦ|Y(θ, σ|y)dθdσ‖

= ‖
∫

(θ, σ)
[
PΦ|Y(θ, σ|y)− PhΦ|Y(θ, σ|y)

]
dθdσ‖

≤
∫
‖(θ;σ)‖CyPΦ(θ, σ)hpdθdσ

≤ hpCy

∫
‖(θ;σ)‖PΦ(θ, σ)dθdσ

Note that obtaining the same type of control on the MAP estimator requires
additional regularity assumptions on the posterior distributions, such as unic-
ity of the extremum and properties on the second derivatives. This leads to
encourage the use of L2 estimates over the MAP estimates in this context.

Cotter et al. (2010) also proposes control results of the same type. Even if
these results provide interesting theoretical error controls, they rely on unknown
constants and so can not be used as such in practice. In the next section, we
adopt a Bayes factor point of view and highlight that such an approach leads
to results of more practical interest.

4 Model selection and Bayes Factor for inverse
problems

In Bayesian inference, model selection is performed using the Bayes factors
whose principle is recalled here in a general context. Let y be the observations
and let M1 and M2 be two models in competition. Each model Mi is defined
through a likelihood depending on a set of parameters and a prior distribution
on the parameters. More precisely,

(M1)

{
y ∼ P 1

Y|Φ1
(y|φ1)

φ1 ∼ P 1
Φ1

(φ1)
(M2)

{
y ∼ P 2

Y|Φ2
(y|φ2)

φ2 ∼ P 2
Φ2

(φ2)
.

Consider a prior distribution on the set of the models {M1,M2}, the deci-
sion between the competing models M1 and M2 is based on the ratio of their
respective posterior probabilities

P (M2|y)

P (M1|y)
=
P 2
Y(y)

P 1
Y(y)

P (M2)

P (M1)

where P iY(y) is the ‘integrated likelihood’ or the marginal distribution of Y of
model Mi, namely

P iY(y) =

∫
P iY|Φi

(y|φi)PΦi
(φi)dφi.

11



Finally, the comparison of models relies on the computation of the marginal
likelihoods which has been the object of a rich literature. Two approaches may
be cited. One consist in running a specific MCMC to approximate the quantity
of interest (see Han and Carlin, 2001, for a review). The second relies on Monte
Carlo approximations of the marginal likelihood P iY(y) (see for instance Chen
and Shao, 1997).

4.1 Computation of Bayes Factors in an Inverse Problem
context

In our inverse problem context –where each iteration of the MCMC requires the
computationally intensive approximation of an ODE – we would like to avoid
increasing the computational burden by using a specific MCMC and would prefer
recycling the outputs of the MCMC algorithm into a Monte Carlo strategy. An
answer can be found in the Gelfand and Dey’s estimator (Gelfand and Dey,
1994).

More precisely, a standard solution to compute the marginal likelihood is to

propose an estimation based on a Monte Carlo approximation. Let {φ(l)
i }l=1...L

be an i.i.d. sample from a proposal distribution πIS then the following estimator

p̂i =
1

L

L∑
l=1

P i
Y|Φ(l)

i

(y|φ(l)
i )

PΦi
(φ

(l)
i )

πIS(φ
(l)
i )

supplies a convergent and non biased estimator of P iY(y). However, in the
inverse problems context (when one or both models Mi are defined through
ODE without explicit solution) such a strategy requires the evaluation of the
likelihood and thus the evaluation of an approximate solution of the dynam-

ical system for each newly generated value of parameters φ
(l)
i , which can be

burdensome from a computational time point of view.

The Gelfand and Dey’s estimator is an alternative solution to this situation.
Assume that (as it is in standard situations), PhΦ|Y(θ, σ|y) is sampled using an

intensive Monte Carlo procedure, typically a Metropolis-Hasting MCMC. (Note
that for ease of presentation we avoid the exponent i or h and, notationally, con-
sider the posterior distribution PΦ|Y(θ, σ|y) and estimation of the normalization
constant PY(y))

Assume that the prior distribution PΦ is absolutely continuos w.r.t the
Lebesgue measure, and thus PΦ(θ, σ) and PΦ|Y(θ, σ|y) are densities in the usual
sense. The Gelfand and Dey’s estimator relies on the obvious following expres-
sion

[PY(y)]
−1

=

∫
α(θ, σ)

PY|Φ(y|θ, σ)PΦ(θ, σ)
PΦ|Y(θ, σ|y)dθdσ,

where α is any density (
∫
α(θ, σ)dθdσ = 1) with support containing the support

of the posterior.
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Now, let θ(1), σ(1), θ(2), σ(2), . . . , θ(L), σ(L) be a MCMC sample of the poste-
rior PΦ|Y(θ, σ|y). Considering the above expression, the desired marginal may
be approximated by

P̂Y(y) =

[
1

L

L∑
l=1

α(θ(l), σ(l))

PY|Φ(y|θ(l), σ(l))PΦ(θ(l), σ(l))

]−1

. (13)

The choice of α conditions the quality of the estimator (its variance). If α(θ, σ) =

π(θ, σ), the estimator P̂Y(y) is the harmonic mean which is known to have a
dramatic unstable behaviour (infinite variance) in some cases. Best strategies
are those that use a weighting α density that stabilizes this estimators, for
instance using somehow an α that resembles PY|Φ(y|θ, σ)PΦ(θ, σ). A simple
calculation leads to the fact that using a thinner tailed α (as oppose to the
result in importance sampling) is better suited to obtaing a finite variance for
the estimator above.

Moreover, in an inverse problem context, it is critical to avoid recalculating
the likelihood PY|Φ(y|θ, σ) since it involves numerically solving the ODE system
in (2). As a consequence we propose to proceed as follows.

• At each iteration of a typical MH MCMC, the computation of the prob-
ability of acceptation requires to evaluate PΦ|Y(y|θ(l), σ(l))PΦ(θ(l), σ(l)). After

the burn in period, we save these values, letting Ul = − logPΦ|Y(y|θ(l), σ(l))−
logPΦ(θ(l), σ(l)).

• A small subsample of θ(l), σ(l), typically of size less than 1,000, is then used
to create a Kernel Density Estimate (KDE), which we will use as our weighting
density α. This KDE is (typically) a mixture of Gaussians, with support in the
whole space, and will roughly resemble the posterior PΦ|Y.

• Let Ai = − logα(θ(l), σ(l)), then our estimate becomes

PY(y) ≈

[
1

L

L∑
l=1

exp(Ul −Al)

]−1

.

This procedure is fast and basically is a byproduct of the MCMC sample, with
little CPU burden added. There are robust and fast KDE’s routines available
in popular programming languages like R and Python-Scipy.

Remark 1. Note that PY|Φ(y|θ, σ)PΦ(θ, σ) needs to be known exactly, and be
coded accordingly which is not the case in some situations, for example, when
the prior is not normalized and only implicitly defined etc.

4.2 Comparing the exact and approximate models through
Bayes factors

In section 3.2, we compared the true and approximate models (models 1 and 4)
through a derived quantity, that is to say their corresponding posterior distribu-
tion or the estimators they supplied. However, a more natural way to compare
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models is to use the Bayes factors. Let (M) and (Mh) be the two following
models

(M)

 yi = f(Xθ(ti)) + εi
εi ∼ i.i.d.N (0, σ2)

(θ, σ) ∼ PΦ(θ, σ)
(Mh)

 yi = f(Xh
θ (ti)) + εi

εi ∼ i.i.d.N (0, σ2)
(θ, σ) ∼ PΦ(θ, σ).

ComparingM andMh through a Bayes factor requires to compute the following
quantity

BM,Mh
=

P (M|y)

P (Mh|y)
=

∫
PY|Φ(y|θ, σ)PΦ(θ, σ)dθdσ∫
PhY|Φ(y|θ, σ)PΦ(θ, σ)dθdσ

P (M)

P (Mh)
.

However,
∫
PY|Φ(y|θ, σ)PΦ(θ, σ)dθdσ is not known in general, since it involves

the theoretical model. In order to understand the behavior of the Bayes Factor,
we study BM,Mh

for small h and obtain the following result.

Proposition 3. Assume that the numerical solver is such that the global error
truncation can be written as

Eh(t, θ) = Xh
θ (t)−Xθ(t) = O(hp),

where h is the stepsize of the method. In addition, assume that the observation
function f is differentiable on {Xθ(t), θ ∈ Θ, t ∈ [0, T ]}. Then, there exists a
constant B(y) ∈ R (which does not depend on h) such that

PY(y)

PhY(y)
' 1 +B(y)hp.

Proof. Using the asymptotic behavior of the global error truncation and assum-
ing that f is differentiable, we can write

Dh(t, θ) = f(Xh
θ (t))− f(Xθ(t)) = ∇f (Xθ(t)) (Xh

θ (t)−Xθ(t)) +O(hp) (14)

This approximation allows us to obtain a development of the marginal likelihood.

Let Rh(φ) =
Ph

Y|Φ(y|θ,σ)

PY|Φ(y|θ,σ) , then

PhY(y) =

∫
PhY|Φ(y|φ)PΦ(φ)dφ =

∫
PY|Φ(y|φ)Rh(φ)PΦ(φ)dφ

= PY(y) +

∫
PY|Φ(y|φ)(Rh(φ)− 1)PΦ(φ)dφ.

We see that

Rh(φ)− 1 = exp

{
− 1

2σ2

n∑
i=1

[
f(Xh

θ (ti))− f(Xθ(ti))
]2

+

2 [yi − f(Xθ(ti))]
[
f(Xθ(ti))− f(Xh

θ (ti))
]}
− 1

= − 1

2σ2

n∑
i=1

Dh(ti, θ)
2 + 2(yi − f(Xθ(ti)))Dh(ti, θ)

+O(Dh(ti, θ)
2), (15)
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since ex − 1 = x + O(x2) for x small enough. Using the expression in (14) for
Dh and the solver global error control assumption in (9) we must have that
Rh(φ)− 1 = O(hp). From this we get

PhY(y) = PY(y) +O(hp)

implying that for h small enough,

PY(y)

PhY(y)
' 1 +B(y)hp.

Corollary 1. If ĝ =
∫
g(φ)PΦ|Y(φ|y)dφ and ĝh =

∫
g(φ)PhΦ|Y(φ|y)dφ exists,

then |ĝh − ĝ| = PY(y)

Ph
Y(y)

Bg(y)hp = O(hp).

Proof. Note that |ĝh − ĝ| =
∣∣∣∫ g(φ)Rh(φ)PY(y)

Ph
Y(y)

PΦ|Y(φ|y)dφ− ĝ
∣∣∣ and therefore

|ĝh − ĝ| = PY(y)

Ph
Y(y)

∣∣∣∫ g(φ)(Rh(φ)− 1)PΦ|Y(φ|y)dφ−
(
Ph

Y(y)
PY(y) − 1

)
ĝ
∣∣∣. Combining

(15) and the above theorem one reaches the result.

Regarding the above result, we make the following comments and remarks.

• From (15), we note that the error in the regression term Dh(t, θ) is not
important per se but with respect to the observation noise standard error σ. This
obvious remark has consequences. It means that, when working on a statistical
model involving the numerical approximation of a differential system, there is
no need in choosing a step size the smaller as possible but adapting it such that
the global error is small with respect to σ. This can allow computational time
savings as illustrated on the following numerical examples.

• Note that B(y) only depends on the numerical method and on the data,
but not on the step size h.

• The constant B(y) can be estimated. Indeed, an obvious method is to
compute Phk

Y (y) for various values of step size {hk, k = 1 . . .K}. A simple

linear regression of Phk

Y (y) against hpk gives an estimation of B(y). This means

that using a multi-resolution computation of the Phk

Y (y) on various approximate
models, we are able to estimate the marginal likelihood of the true model.

• This last point is of major importance. Assume that, two modelsM1 and
M2 have to be compared, one or both of them being defined by a differential
system without explicit solution. These two models can be compared per se.
Indeed, whereas one could have thought that only the approximate modelsMh

1

and Mh
2 where comparable, we establish that the both true or exact models

M1 and M2 may be directly compared.

In the next section, we develop two examples where we estimate the Bayes
factor of the theoretically exact model with approximate models. As a conse-
quence the step size may be coarsened, obtaining basically the same posterior
distributions, but at far lower CPU costs.
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Figure 1: Synthetic data for the Logistic growth with λ = 1, K = 1000 and
σ = 1 (left) or σ = 30 (right).

5 Numerical examples

5.1 Logistic Growth Models

We base our first numerical study on the logistic growth model which is a
common model of population growth in ecology. Recently it has also been used
to model tumors growth in medicine, among many other applications. Let X(t)
be the size of the tumor to time t. The dynamics are governed by the following
differential equation

dX

dt
= λX(t)(K −X(t)), X(0) = X0 (16)

with r = λK being the growth rate andK the carrying capacity e.g. limt→∞X(t) =
K. Equation (16) has an explicit solution equal to

X(t) =
KX0e

λKt

K +X0(eλKt − 1)
.

We simulate two synthetic data sets with the error model yi = X(ti) + εi,
where εi ∼ N (0, σ2), and the following parameters X(0) = 100, λ = 1, K =
1000, σ = 1 or 30. The datasets are plotted on Figure 1 for the two chosen
values of σ. We consider 26 observations at times ti regularly spaced between 0
and 10.

For this first toy example, K is taken as known and inference is concentrated
on the single parameter λ; we consider a Gamma distribution for the prior on
λ.

To highlight our result presented in Section 3, we consider the following strat-
egy. For σ = 1, we first compute what we call the “true” marginal likelihood
PY(y) (red line in Figure 2), using the explicit solution of (16) and numerical
integration. In a second step, we approximate the solution of (16) by the Eu-
ler scheme (equivalent to the Runge-Kutta solver of order 1), for various step
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sizes hk. The marginal likelihood P
hk(1)
Y (y) is computed using both numerical

integration and the Monte Carlo strategy presented in Section 4.1. These re-
sults are plotted in black in Figure 2, with solid thin lines for the numerical
integration and triangles for the Monte Carlo computation. In a third step, the
same strategy is applied but using a Runge-Kutta solver of order 2 (in green in
Figure 2). Finally, we use a classical Runge-Kutta solver of order 4 (in green in

Figure 2). In the end, for each order p, the estimated values P̂
hk(p)
Y (y) are used

to compute the regression functions P̂
hk(p)
Y (y) = a + bhp (thick lines in black,

green and blue on Figure 2). These results are presented in Figures 2 and 3.

The same is done for σ = 30 but only the RK solver of order 4 is considered.
The equivalent results are presented in Figure 4. The samples from the posterior
distributions are obtained using a t-walk MCMC algorithm (Christen and Fox,
2010). Next we discuss some aspects of this numerical experiment.

• We would like to highlight that the thick lines and the triangles are quite
similar, meaning that the Monte Carlo strategy (derived as a by-product of
the MCMC implementation) is an efficient solution to estimating the marginal
likelihood in this context. This approximation has the great advantage of not
to involving any new ODE solver runs and thus has a minimal computational
cost.

• As predicted, the Euler scheme has a linear approximation regime to the
correct marginal. To have any substantial save in CPU without compromising
posterior inference precision we would need to have a very small step size, i.e.
there is no ‘flat part’ in order to take considerable larger step sizes. On the
contrary, the Runge-Kutta solvers of order 2 and specially the classical RK of
order 4, they indeed have a clear flat section where a nearly perfect estimation
has been reached. This allows for choosing a much larger step size, meaning a
far coarser ODE numerical solver which still has basically no difference in the
resulting inference and may be seen in the resulting posterior distributions in
Figures 3(b) and 4(c).

• For the RK or order 4, we perform a linear regression using the estimated
P̂hk

Y (y) with hk = 0.2, 0.1, 0.05, 0.025 for σ = 1 and hk = 0.8, 0.6, 0.4, 0.2,
0.1, 0.05 for σ = 30. Using the formula given in Proposition 1, we deduce
an estimation (projection) of the exact marginal likelihood P̂Y(y), which has
to be compared to the true value PY(y) (obtained using the exact solution of
the ODE and a numerical integration). The results are given in the following
Table 1.
• We believe that the most important message is that, for the RK of order

4, as soon as h is lower than some threshold (we took 0.05 for σ = 1 and 0.1 for

σ = 30), the Bayes factor ratio P
hk(2)
Y (y)/PY(y) is greater than 0.99, making the

models indistinguishable on the Jeffrey’s Bayesian scale and leading to nearly
identical posterior distributions (see Figures 3(b) and 4(c)) for λ. However, the
computational time required to estimate the parameters using the smallest h
explodes (see Figures 3(a) and 4(b)) from 2 min for h = 0.05 to 17 min for
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Figure 2: Study on synthetic data for the Logistic growth with σ = 1. Marginal
PhY(y) for various step sizes, computed by numerical integration (solid thin
lines) or estimated using the MCMC sample (triangles). In black, Runge-Kutta
solver (RK) of order 1 (Euler), in green RK of order p = 2, in blue RK of order
p = 4. Red line: true marginal PY(y) calculated using numerical integration on
the analytic solution. Thick lines indicate the regression for estimated values
for P̂hY(y) = a+ bhp for the orders p = 1, 2, 4.

σ PY(y) P̂Y(y)
1 1.854 10−18 1.862 10−18

30 1.638 10−60 1.699 10−60

Table 1: Comparison of exact an estimated marginals for the Ringue-Kutta
method of order 4.
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(a) (b)

Figure 3: (a) CPU time for various step values hk and p = 1, 2, 4, relative to
10,000 iterations of the MCMC. (b) Posterior distribution of λ the for RK4
solver, p = 4, for step sizes h = 0.01 and h = 0.06 (histograms) and exact
posterior (black density). 10,000 iterations of the MCMC took 17 min for h =
0.01 and 2 min for h = 0.05; a 90% reduction in CPU time with no noticeable
difference in the resulting posterior distribution.

h = 0.01, for σ = 1, and from 2.5 min for h = 0.1 to 36 min for h = 0.000625,
for σ = 30.

• Note that the ranges of considered values for hk are different for σ = 1
and σ = 30. This has to be linked to the remark we have made above: the error
induced by the numerical integration of the ODE can not be considered per-se
but with respect to the observation noise. When σ = 30, the step size h∗ such
that for any h ≤ h∗ all the models Mh are equivalent on the Jeffrey’s scale is
much more higher involving even larger computational time savings.

5.2 A Diabetes minimal model

We know illustrate our results on a real dataset and a more complex model for
an Oral Oral Glucose Tolerance Test (OGTT). After having briefly described
the experiment and the model, we present our results.

An Oral Glucose Tolerance Test (OGTT) is performed for diagnosis of dia-
betes, methabolic syndrome and other conditions. After a night sleep, fasting
patients are measured for blood glucose and asked to drink a sugar concen-
trate. Blood glucose is then measured at the hour, two hours and sometime
at three hours, depending on local practices. We are developing a minimal
model for blood glucose-insulin interaction base on a two compartment model.
One simple transfer compartment of glucose in the digestive system and one
more complex compartment for blood glucose and interactions with Insulin and
other glucose substitution mechanisms. Here we present this model to show
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(a)

(b) (c)

Figure 4: Study on synthetic data for the Logistic growth with σ = 30. (a)
Marginal PhY(y) for various step sizes, both exact (solid thin lines, using numer-
ical integration) and estimated using the MCMC sample (triangles). We use
a Rungue-Kutta solver of order 4 (classical RK4, blue), only. Red line: true
marginal PY(y) calculated using numerical integration on the analytic solution.
Thick lines indicate the regression for estimated values for P̂hY(y) = a+ bhp for
the order p = 4. (b) Corresponding CPU time, relative to 10,000 iterations of
the MCMC. (c) Posterior distribution of λ the for RK4 solver, p = 4, for step
sizes h = 0.00625 and h = 0.1 (histograms; and exact posterior, black density).
The former takes 36 min and the latter 2.5 min.
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our methodology estimating one parameter only (namely, the insulin sensitiv-
ity). Although there is no analytical solution we are able to find the marginal
PhY(Y) by numerical integration (since there is only one parameter involved)
for comparison purposes.

Let G(t) be blood glucose level at time t, in mg/dL. Let I(t) be blood insulin
level at time t and L(t) “glucagon” levels, to promote liver Glycogen glucose
production, in arbitrary units. Let D(t) be the digestive system ‘glucose level’;
we take it as a compartment in which glucose is first stored (eg. stomach and
digestive tract) and in turn delivered into the blood stream (we state D(t) in
the same units as for G(t) and therefore the mean life parameter θ2 in (20) is the
same as the one used in (17) below). Let also Gb be the glucose base line, (=80
mg/dL, fixed). Our model is described by the following system of differential
equations

dG

dt
= (L− I)G+

D

θ2
, (17)

dI

dt
= θ0

(
G

Gb
− 1

)+

− I

a
, (18)

dL

dt
= θ1

(
1− G

Gb

)+

− L

b
, (19)

dD

dt
= −D

θ2
. (20)

A brief explanation of the model goes as follows. When glucose goes above
the normal threshold Gb, Insulin is produced, ie. its derivative increases, see
(18). This, in turn, acts on blood glucose to decrease its concentration; a
mass-action type term is introduced in (17) to decrease the derivative of G.
L is an abstract term related to the glucose recovery system. When Glucose
G(t) goes below the normal threshold (Gb) L increases, see (19), to increase the
derivative ofG(t) (thus eventually increasing the glucose), see (17). Finally, D(t)
represents the glucose in the digestive compartment that will be transferred to
the blood stream, see (20) and (17). We analyze data from an OGTT conducted
in an obese male adult patient with a suspected methabolic syndrome condition;
the corresponding data are plotted on Figure 5. All parameters are positive and
will be set to θ1 = 26.6, θ2 = 0.2, a = 1, b = 2, while θ0 is taken as unknown and
will be estimated from data. This is an unusual experimental data set in which
Glucose was measured every 30 min up to 2 hr.

Our Bayesian inference is performed as follows. We have observations d1, d2, . . . , dn
for Glucose, thus we let

di = G(ti) + ei where ei ∼ N(0, σ),

and G(0) = d0 the initial condition; we fix the measurement error to σ = 5
(the observation functional is therefore f(X) = X1). From this a likelihood is
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Figure 5: OGTT test performed in an obese male adult, with glucose mea-
surents taken every 30 min up to 2 hr. Note the oscilating nature of the data,
typically of a not well control Insulin-Glucose system. Both θ0 and θ1 have
large values in comparison to normal subjects. The MAP model is shown in
red, along with draws from the posterior predictive distribution shown in the
shaded areas.
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constructed. A Gamma prior distribution is assumed for parameter θ0, with
shape parameter = 5 and rate = 2/5, thus with mean = 2, apparently a value
for a normal person. Using an order 4 Rugue-Kutta solver with varying step
size we perform a MCMC for these parameters using the t-walk (Christen and
Fox, 2010).

To make the solver evaluation time steps (in hr) include the observation
times we take a rough time step of 15min (=0.25hr) and divide it into finer time
steps defined as h(k) = 0.25·2−k. Our experiments included k = 0, . . . , 7, as seen
in in Figure 6(a). We only use an order 4 Runge-Kutta solver, resulting in the
4th grade polynomial regression and a flat section already at h(3) = 0.25 ·2−3 =
1.875min. If compared with our minimum time step of h(7) = 0.25 · 2−7 = 7sec,
the resulting CPU time of the MCMC is more than 90% larger. However, the
resulting posterior distributions for h(3) and h(7) are basically identical (see

Figure 6(c)). The estimated marginal is Ph
(3)

Y (y) ≈ 3 · 10−14, calculated using

the MCMC samples and (13), while Ph
(7)

Y (y) ≈ 3.2 · 10−14 calculated using
numerical integration (red line in Figure 6(a)).

6 Discussion

We advance on some theoretical aspects of the Bayesian analysis of ODE sys-
tems. As opposed to more standard (Bayesian) statistical analyses, Inverse
Problems present the added difficulty that the regressor function is not analyt-
ically tractable and numerical approximations need to be used. In general, the
replacement of the theoretical (non-available) solution of the differential sys-
tem by a numerical approximation is ignored and the solver being used as a
black box. However, recently, research has been directed at trying to quantify
the consequences of such an approximation, commonly by comparing expected
values of the resulting posterior distributions, like the exact vs the numerical
Posterior means.

In this paper we adopt a different approach, basing our comparison on the use
of Bayes Factors, which is the natural tool to comparing models in a Bayesian
context. There are still some particular issues to be solve when applying our
results to more realistic inverse problems like estimating the marginals in a
multidimensional parameter problem and analyzing stiff problems were a mul-
tistep method would need to be used. However, we may highlight the following
remarks.

First, we contribute to the intuitive idea that the ODE solver approximation
error should be put in the perspective of the observational error. Bayes Factors,
and the Bayesian model comparison machinery, can be used as an appropriate
measure of the solver accuracy, precisely in the perspective of the observational
error considered in the model. Result 1 establishes a consistency in order ac-
curacy for the solver and for the posterior distribution, considering BF’s. As a
consequence, numerical solver precision may be viewed in this perspective and
not solely as a black box regressor. As far as the main aim is to make infer-
ence on parameters, there is no need to use to highest precision if the data are
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(a)

(b) (c)

Figure 6: Bayes Factors study for the Diabetes minimal model. An order 4
Runge-Kutta solver was used to produce marginal values PhY(Y) for step sizes
as show in (a) and their corresponding CPU times are depicted in (b). The red
line in (a) is the numerical integration approximation of PhY(Y) using step size
0.25 ·2−7 (smallest step size used) while the triangles are Monte Carlo estimates
performed as in (13); these seem to slightly underestimate the former. The
solid blue line is a regression model a + bh4 estimate using step sizes marginal
estimates from 0.25 · 2−1 to 0.25 · 2−4 only. In (c) we compare the resulting
posterior with step size 0.25 · 2−3 and 0.25 · 2−7 showing basically no difference
and resulting in a near 90% reduction in CPU evaluation time.
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contaminated by a non-neglectable quantity of noise. In a domain where the
computational time is important, we have proved that considerable time savings
can be done, only by using a reasonable step size in the solver.

Secondly, we show how the BF may be approximated even in this scenario
where the exact model is not available. This result is of particular interest,
since it allows to compare the accuaracy of our approximate posterior with-
out being able to work on the theoretical model directly. The computation of
marginal likelihoods is an important topic in the Bayesian literature. In this
paper, we propose the use of the Gelfand and Dey’s estimator, which has the
great advantage of not requiring any additional numerical evaluation of the dif-
ferential system, after the MCMC was performed. However, we are aware that
the Gelfand and Dey’s estimator may be highly unstable when the dimension
of the parameters increases. The use of a Kernel Density Estimate weighting
function in (13) can help to stabilize the estimate but is not a universal solu-
tion. If the dimension of the parameters increases, other strategies should be
considered, still keeping in mind that any additional numerical evaluation of the
ODE system may have a considerable computational cost. Our results would
also need to be stated for multiple dimension observation functions f ; we leave
these considerations for future research.
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