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STABLE CAMERA MOTION ESTIMATION USING CONVEX
PROGRAMMING

ONUR ÖZYEŞİL† , AMIT SINGER‡ , AND RONEN BASRI§

Abstract. We study the inverse problem of estimating n locations t1, t2, . . . , tn (up to global
scale, translation and negation) in R

d from noisy measurements of a subset of the (unsigned) pair-

wise lines that connect them, that is, from noisy measurements of ±
ti−tj

‖ti−tj‖2
for some pairs (i, j)

(where the signs are unknown). This problem is at the core of the structure from motion (SfM)
problem in computer vision, where the ti’s represent camera locations in R

3. The noiseless version
of the problem, with exact line measurements, has been considered previously under the general title
of parallel rigidity theory, mainly in order to characterize the conditions for unique realization of
locations. For noisy pairwise line measurements, current methods tend to produce spurious solutions
that are clustered around a few locations. This sensitivity of the location estimates is a well-known
problem in SfM, especially for large, irregular collections of images.

In this paper we introduce a semidefinite programming (SDP) formulation, specially tailored to
overcome the clustering phenomenon. We further identify the implications of parallel rigidity theory
for the location estimation problem to be well-posed, and prove exact (in the noiseless case) and
stable location recovery results. We also formulate an alternating direction method to solve the
resulting semidefinite program, and provide a distributed version of our formulation for large num-
bers of locations. Specifically for the camera location estimation problem, we formulate a pairwise
line estimation method based on robust camera orientation and subspace estimation. Lastly, we
demonstrate the utility of our algorithm through experiments on real images.

Key words. Structure from motion, parallel rigidity, semidefinite programming, convex relax-
ation, alternating direction method of multipliers

AMS subject classifications. 68T45, 52C25, 90C22, 90C25

1. Introduction. Global positioning of n objects from partial information about
their relative locations is prevalent in many applications spanning fields such as sensor
network localization [8, 58, 16, 18], structural biology [31], and computer vision [27, 9].
A well-known instance that attracted much attention from both the theoretical and
algorithmic perspectives is that of estimating the locations t1, t2, . . . , tn ∈ R

d from
their pairwise Euclidean distances ‖ti− tj‖2. In this case, the large body of literature
in rigidity theory (cf. [4, 54]) provides conditions under which the localization is unique
given a set of noiseless distance measurements. Also, much progress has been made
with algorithms that estimate positions from noisy distances, starting with classical
multidimensional scaling [48] to the more recent semidefinite programming (SDP)
approaches (see, e.g., [8, 7]).

Here we consider a different global positioning problem, in which the locations
t1, . . . , tn need to be estimated from a subset of (potentially noisy) measurements of
the pairwise lines that connect them (see Figure 1.1 for a noiseless instance). The line
connecting ti and tj is identified with the rank-1 projection matrix Γij defined by

Γij = (ti − tj)(ti − tj)
T /‖ti − tj‖22 (1.1)

Notice that there is no available information about the Euclidean distances between
the points. The entire information of pairwise lines is represented as a measurement

†Program in Applied and Computational Mathematics (PACM), Princeton University, Princeton,
NJ 08544-1000, USA (oozyesil@math.princeton.edu).

‡Department of Mathematics and PACM, Princeton University, Princeton, NJ 08544-1000, USA
(amits@math.princeton.edu).

§Department of Computer Science and Applied Mathematics, Weizmann Institute of Science,
Rehovot, 76100, ISRAEL (ronen.basri@weizmann.ac.il).

1

http://arxiv.org/abs/1312.5047v3
mailto:oozyesil@math.princeton.edu
mailto:amits@math.princeton.edu
mailto:ronen.basri@weizmann.ac.il
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graph Gt = (Vt, Et), where the i’th node in Vt = {1, 2, . . . , n} corresponds to the
location ti and each edge (i, j) ∈ Et is endowed with the corresponding projection
matrix Γij .
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Fig. 1.1. A (noiseless) instance of the line estimation problem in R
3, with n = 5 locations and

m = 6 pairwise lines.

The noiseless version of this problem (i.e., realization of locations from exact line
measurements (1.1)) was previously studied in several different contexts such as dis-
crete geometry, sensor network localization, and robotics, under various formulations
(see [65, 64, 17, 18, 49]). The concepts and the results for the noiseless case, to which
we refer here as parallel rigidity theory, are aimed at characterizing the conditions
for the existence of a unique realization of the locations ti (of course, up to global
translation, scaling and negation of the locations ti, since the pairwise lines Γij are
invariant under these transformations).

However, location estimation from (potentially) noisy line measurements did not
receive much attention previously. The camera location estimation part of the struc-
ture from motion (SfM) problem in computer vision (see, e.g., [27]), where ti’s repre-
sent the camera locations in R

3, is an important example of the abstract problem with
noisy measurements. To the best of our knowledge, a structured formulation (in terms
of the pairwise lines) of the camera location estimation problem and its relation to
the existing results of parallel rigidity theory (characterizing conditions for well-posed
instances of the problem) were not considered previously. We now give more details
on the camera location estimation problem and the existing techniques for its solution.

Camera Location Estimation in SfM: Structure from motion (SfM) (depicted
in Figure 1.2) is the problem of recovering a 3D structure by estimating the cam-
era motion corresponding to a collection of 2D images (cf. §4 for technical details).
Classically, SfM is solved in three stages: (1) Feature point matching between image
pairs (as in Figure 4.3) and relative pose estimation of camera pairs based on extracted
feature points (2) Estimation of camera motion, i.e. global camera orientations and
locations, from relative poses (3) 3D structure recovery based on estimated camera
motion by reprojection error minimization (e.g. bundle adjustment of [56]). Although
the first and the third stages are relatively well understood and there exist accurate
and efficient algorithms in the literature for these stages, existing methods for cam-
era motion estimation, and specifically for the camera location estimation part, are
sensitive to errors that result from mismatched feature correspondences. Among the
widely used methods are incremental approaches (e.g. [1, 52, 53, 14, 70, 28, 19]), that
integrate images to the estimation process one by one or in small groups. These incre-
mental methods usually result in accumulation of estimation errors at each step and
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Fig. 1.2. The structure from motion (SfM) problem.

also require several applications of bundle adjustment for improved accuracy, hence
leading to computational inefficiency. Alternatively, global estimation of the camera
motion, i.e. solving for all camera orientations and/or locations simultaneously, can
potentially yield a more accurate estimate. A generally adapted procedure to prevent
high computational costs is to estimate the camera motion and the 3D structure sepa-
rately. In principle, considering the large reduction in the number of variables, camera
motion estimation can be performed jointly for all images, followed by 3D structure
recovery using a single instance of reprojection error minimization. Obviously, such a
procedure presumes a stable and efficient motion estimation algorithm. Most of the
existing methods for motion estimation perform orientation and location estimation
separately. Orientation estimation turns out to be a relatively well-posed problem and
there exist several efficient and stable methods, e.g. [42, 3, 26, 24, 57]. On the other
hand, global estimation of camera locations, specifically for large, unordered sets of
images, usually suffers from instability to errors in feature correspondences (resulting
in solutions clustered around a few locations, as for [3, 9, 51]), sensitivity to outliers
in pairwise line measurements (e.g., the ℓ∞ approach of [50, 34]) and susceptibility to
local solutions in non-convex formulations (e.g., [24]). Hence, a well-formulated, ro-
bust, efficient method for global location estimation (scalable to large sets of images)
with provable convergence and stability guarantees is of high value.

Early works of [23, 9] on location estimation reduce the problem to that of solving
a set of linear equations that originate from the pairwise line measurements. Finding
solutions to these linear systems can be done in a computationally efficient manner.
However, these solutions have been empirically observed to be sensitive to errors in
the pairwise line measurements. The sensitivity of such solutions is expressed by the
tendency of the estimated locations to cluster, regardless of the true locations (cf.
Figure 1.3 for such a clustering solution for a real data set, and also the optimization
problem (2.2) and the following discussion). The multistage linear method of [51]
attempts to resolve this issue by first performing pairwise reconstructions, then reg-
istering these in pairs, and finally aligning them by estimating relative scales and
locations. Nonetheless, this approach does not produce satisfactory results in terms
of estimation accuracy. Another interesting and efficient method is the Lie algebraic
averaging approach of [24]. However, this non-convex method is susceptible to con-
vergence to local optima. The spectral formulation of [3], which is based on a novel
decomposition of the essential matrix and is similar to [23, 9] in its formulation of
the problem, yields an efficient linear solution for the locations, though, it also suffers
from spurious clustered solutions. Yet another formulation related to our work is the
quasi-convex formulation of [50], which relies on (iteratively) optimizing a functional
of the ℓ∞ norm and requires the estimation of the signed directions of the pairwise
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lines, i.e. knowledge of
ti−tj

‖ti−tj‖2
. However, ℓ∞ norm is highly susceptible to outliers,

resulting in unsatisfactory solutions for real image sets. Also, the requirement for
estimating signed line directions may introduce additional error to the problem. A
similar idea is employed in [34] to simultaneously estimate the 3D structure, which
exhibits the same difficulties. There are also various works that aim to improve the
high sensitivity and inefficiency of these quasi-convex methods (see, e.g., [42, 45]).
Another method requiring the estimation of the signed directions of the pairwise lines
is studied in [57]. In contrast to the sensitivity of the quasi-convex method of [50]
to outliers, the method in [57] is based on optimizing a functional of the ℓ2 norm,
and hence produces more accurate location estimates. Additionally, [40] introduces a
framework based on classical rigidity theory (involving pairwise distance information),
which aims to identify rigid instances of the joint motion and structure estimation
problem. Also, an SDP approach is introduced in [40] in order to jointly estimate
motion and structure from noisy feature correspondences. We note that our work is
significantly different from [40]: While we use parallel rigidity, [40] employs classical
rigidity, leading to completely different SDP formulations.
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Fig. 1.3. A 2D snapshot of the collapsing solution of the least squares (LS) method [3, 9], for
the Notre-Dame data set from [52]. The solution of [52] is taken as the ground truth.

Main Contributions and Broader Context: In this paper we make the following
principal contributions for the problem of location estimation from pairwise lines:

(i) The main contribution of our work is the introduction of a new semidefinite
relaxation (SDR) formulation for estimating locations from pairwise line measure-
ments. Empirically, we observe that solutions obtained by the SDR do not suffer
from the clustering phenomenon of location estimates that plague many of the exist-
ing algorithms.

(ii) To quantify the performance of our SDR formulation, we prove exact (in
the noiseless case, cf. Proposition 2.2) and stable (in the noisy case, cf. Theorem 2.3
and Corollary 2.4) location recovery results. We also provide a provably convergent
and efficient alternating direction method to solve our SDR.

(iii) We provide a distributed version (scalable to a large number of locations) of
the SDR formulation, based on spectral partitioning and convex programming. Ad-
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ditionally, we prove exact location recovery (in the noiseless case, cf. Proposition 3.1)
for the distributed approach.

(iv) We formulate the camera location estimation problem of SfM in terms of
the pairwise line measurements (between the camera locations in R

3). Moreover, we
show how to improve the stability of our approach to outlier pairwise measurements
by robust preprocessing of the available pairwise camera information and describe a
robust iterative approach for camera orientation estimation.

(v) We also demonstrate the efficiency and the accuracy of our formulations
via synthetic and real data experiments. We note that these experiments show a
specifically important characteristic of the SDR formulation: As long as the level
of noise in the pairwise lines is below some threshold, the SDR always produces
rank-1 solutions, i.e. it actually solves the original non-convex program, i.e. the
relaxation is tight1. Also, for higher noise levels, even when the SDR does not produce
rank-1 solutions, its solution typically has a large spectral gap (i.e., it can be well
approximated by a rank-1 matrix). In other words, we do not observe a sharp phase
transition in the quality of the relaxation.

(vi) Since the existing results of parallel rigidity theory (cf. Appendix A and,
e.g., [65, 64, 17, 18, 49]) have not been previously applied to the camera location
estimation problem, we provide a summary of the main results of parallel rigidity
theory, which completely characterize the conditions for the problem to be well-posed
(in R

d, for arbitrary d). Also, we formulate a randomized algorithm to efficiently
decide in the existence of these conditions.

In the literature, convex programming relaxations (and in particular semidefinite
programs) have previously served as convex surrogates for non-convex (particularly
NP-hard) problems arising in several different areas, such as sensor network local-
ization (from pairwise distances) [54, 8], low-rank matrix completion [12], phase re-
trieval [13], robust principal component analysis (PCA) [11], multiple-input multiple-
output (MIMO) channel detection [43, 66], and many others (also see [21, 38, 61, 71]).
Notably, the SDP formulation for sensor network localization [54, 8] is not guaran-
teed (even in the noiseless case) to provide the unique configuration of a globally rigid
framework (cf. [4], for global rigidity and other fundamental concepts in “classical”
rigidity theory). Only if the framework is “uniquely localizable” [54], then the SDP
is guaranteed to provide the unique solution in the noiseless case. In contrast, our
SDR formulation is guaranteed to provide the unique solution (up to global scale,
translation and negation) for a parallel rigid framework (cf. §2.1). Similar to our
case, the tightness of the relaxation, i.e. obtaining rank-1 solutions from semidefinite
relaxations, is also observed in several different SDR formulations (see, e.g., [15, 5]
and the survey [71]).

Organization of the Paper: In §2 we provide the connection to parallel rigid-
ity theory and introduce the SDR formulation. Also, we prove exact (in the noiseless
case) and stable (in the noisy case) location recovery results, and formulate an alter-
nating direction method for the SDR. In §3 we introduce the distributed approach and
prove its well-posedness. In §4, we formulate the camera location estimation problem
in SfM as a problem of estimating locations from their pairwise line measurements. We
also present the robust camera orientation and pairwise line estimation procedures.
We evaluate the experimental performance of our algorithm in §5, using synthetic and

1This is sometimes referred to as “exact rank recovery”, and is not to be confused with our exact
“location” recovery results for the SDR in the presence of noiseless pairwise lines.
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real data sets. Lastly, §6 is a summary.

Reproducibility: The methods and algorithms presented in this paper are packaged
in a MATLAB toolbox that is freely available for download from the first author’s
webpage at http://www.math.princeton.edu/~oozyesil/.

Notation: We denote vectors in R
d, d ≥ 2, in boldface. Id and Jd are used for

the d× d identity and all-ones matrices, respectively. Sd and SO(d) denote the (Eu-
clidean) sphere in R

d+1 and the special orthogonal group of rotations acting on R
d,

respectively. We use the hat accent, to denote estimates of our variables, as in X̂ is
the estimate of X . We use star to denote solutions of optimization problems, as in
X∗. For an n × n symmetric matrix A, λ1(A) ≤ λ2(A) ≤ . . . ≤ λn(A) denote its
eigenvalues (in ascending order) and A � 0 denotes that A is positive semidefinite
(i.e., λi(A) ≥ 0, for all i = 1, 2, . . . , n). Also, for an n× n matrix X , diag(X) denotes
the vector formed by the diagonal entries of X , and conversely, for x ∈ R

n, Diag(x)
denotes the diagonal matrix formed by the entries of x. Lastly, we use the letters n
and m to denote the number of locations |Vt| and the number of edges |Et| of graphs
Gt = (Vt, Et) that encode the pairwise line information.

2. Location Estimation. Consider a graphGt = (Vt, Et) of pairwise lines, with
each edge (i, j) ∈ Et endowed with a pairwise line Γij corresponding to the locations
{ti}i∈Vt (i.e., satisfying (1.1)). Given this information, we first address the question
of unique realizability of the locations in the next subsection, followed by our SDP
formulation for location estimation (from noisy pairwise lines).

2.1. Parallel Rigidity. The unique realizability of locations (or the solvability
problem) from pairwise line measurements was previously studied, mainly under the
name of parallel rigidity theory (see, e.g., [65, 64, 17, 18, 49]). However, to the best of
our knowledge, the concepts and the results of parallel rigidity theory have not been
related to the well-posedness of the camera location estimation part of SfM, which is
why we study them again here. Note that while camera orientation estimation from
noiseless pairwise ratios (cf. §4) only requires the connectivity of the measurement
graph, connectivity alone is insufficient for camera location estimation (see Figure 2.1
for such an instance). To address this problem, we now briefly discuss the main results
of parallel rigidity theory. For further details on fundamental concepts and results in
parallel rigidity theory, see Appendix A.
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Fig. 2.1. (a) A formation of 5 locations on a connected graph, which is not parallel rigid (in R
2

and R
3). Non-uniqueness is demonstrated by two non-congruent location solutions {t1, t2, t3, t4, t5}

and {t1, t2, t3, t′4, t
′
5}, each of which can be obtained from the other by an independent rescaling

of the solution for one of its maximally parallel rigid components, (b) Maximally parallel rigid
components of the formation in (a), (c) A parallel rigid formation (in R

2 and R
3) obtained from

the formation in (a) by adding the extra edge (1, 4) linking its maximally parallel rigid components,
(d) A formation of 4 locations, which is parallel rigid in R

3, but is not parallel rigid in R
2
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We call the (noiseless) pairwise line information {Γij}(i,j)∈Et
a “formation” and

consider the following fundamental questions: Using this information, can we uniquely
realize the points {ti}i∈Vt , of course, up to a global translation, scale and negation
(i.e. can we realize a set of points congruent to {ti}i∈Vt)? Is unique realizability a
generic property (i.e. is it only a function of the underlying graph, independent of
the particular realization of the points, assuming they are in generic position) and
can it be decided efficiently? If we cannot uniquely realize {ti}i∈Vt , can we efficiently
determine maximal components of Gt that can be uniquely realized? These questions
were previously studied in several different contexts like discrete geometry, bearing
and angle based sensor network localization and robotics, under various formulations
and names (see [65, 64, 17, 18, 49, 35, 36, 37] and references therein).

The identification of parallel rigid formations is addressed in [65, 64, 17, 18] (also
see [35] and the survey [32]), where it is shown that parallel rigidity in R

d (d ≥ 2)
is a generic property of the measurement graph Gt equivalent to unique realizability,
and admits a complete combinatorial characterization (a generalization of Laman’s
condition from classical rigidity to parallel rigidity):

Theorem 2.1. For a graph G = (V,E), let (d− 1)E denote the set consisting of
(d − 1) copies of each edge in E. Then, G is generically parallel rigid in R

d if and
only if there exists a nonempty D ⊆ (d − 1)E, with |D| = d|V | − (d + 1), such that
for all subsets D′ of D, we have

|D′| ≤ d|V (D′)| − (d+ 1) , (2.1)

where V (D′) denotes the vertex set of the edges in D′.
To elucidate the conditions of Theorem 2.1, let us consider the simple exam-

ples provided in Figure 2.1: For R
2, if exists, the certificate set D satisfying the

conditions in Theorem 2.1 is simply a subset of the edge set E. The graphs in
the subfigures (b) and (c) are minimally parallel rigid in R

2, i.e. D = E is the
certificate. On the other hand, the graphs in the subfigures (a) and (d) do not
have sufficiently many edges to be parallel rigid, i.e. even if we consider D to be
the set of all edges E, we get |D| < 2|V | − 3. For R

3, let us first consider the
(triangle) graphs in the subfigure (b): If we set D ⊆ 2E to be the set of two
copies of any of the two edges in E, and a single copy of the remaining edge (e.g.,
D = {(1, 2)1, (1, 2)2, (2, 3)1, (2, 3)2, (1, 3)1}, where (i, j)k denotes the k’th copy of
the edge (i, j) ∈ E), then D is a certificate. For the graph in the subfigure (c),
D = {(1, 2)1, (1, 2)2, (1, 3)1, (1, 3)2, (1, 4)1, (2, 3)1, (3, 4)1, (3, 4)2, (3, 5)1, (4, 5)1, (4, 5)2}
satisfies the conditions of Theorem 2.1. Also, for the graph in the subfigure (d),
D = 2E is the certificate. On the other hand, if we consider the graph in the subfig-
ure (a), D can satisfy the first condition |D| = 11, if and only if D = 2E \ {(i, j)k},
for some i, j ∈ V , k ∈ 1, 2. However, in this case, D has a subset D′ consisting of
two copies of each of the three edges in a triangle graph, which violates the condition
(2.1).

The conditions of Theorem 2.1 can be used to design efficient algorithms (e.g.,
adaptations of the pebble game algorithm [33], with a time complexity of O(n2)) for
testing parallel rigidity. In Appendix A we detail a randomized algorithm (having time
complexity O(m)) for testing parallel rigidity. Moreover, polynomial time algorithms
for finding maximally parallel rigid components of non-parallel rigid formations are
provided in [36, 35].

In the presence of noiseless pairwise line measurements, parallel rigidity (and
hence, unique realizability) is equivalent to error-free location recovery. However,
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for real images, we are provided with noisy measurements. In this case, instead of
uniqueness of the solution of a specific location estimation algorithm, we consider the
following question: Is there enough information for the problem to be well-posed, i.e. if
the noise is small enough, can we estimate the locations stably? For formations which
are not parallel rigid, instability may result from independent scaling and translation
of maximally rigid components. In this sense, we consider problem instances on par-
allel rigid graphs to be well-posed.

Considering the existing results of parallel rigidity theory, we take the follow-
ing approach for location estimation: Given a (noisy) formation {Γij}(i,j)∈Et

on
Gt = (Vt, Et), we first check for parallel rigidity of Gt, if the formation is non-rigid we
extract its maximally rigid components (using the algorithm in [36]) and estimate the
locations for the largest maximally rigid component. The details of our formulation
for (stable) location estimation are provided in the next section.

2.2. Location Estimation by SDR. In this section we introduce and describe
our location estimation algorithm. Suppose that we are given a set of (noisy) pairwise
line measurements {Γij}(i,j)∈Et

on Gt = (Vt, Et). Also, for each (i, j) ∈ Et, let
Qij

..= Id−Γij denote the matrix of projection onto the (d− 1)-dimensional subspace
orthogonal to this line. Firstly, let us consider the least squares approach studied
in [3, 9]2, which is equivalent to solving the following (non-convex) program

minimize
{ti}i∈Vt⊆R

d

∑

(i,j)∈Et

(ti − tj)
T
Qij (ti − tj) (2.2a)

subject to
∑

i

ti = 0 ,
∑

i

‖ti‖22 = 1 (2.2b)

Note that we can rewrite the cost function in (2.2) as
∑

(i,j)∈Et
‖Qij (ti − tj) ‖22 (since

the projection matrices Qij satisfy Qij = QT
ijQij), which is why we call (2.2) the

least squares approach. The constraints in (2.2) are designed to exclude the trivial
case ti = t0, ∀i ∈ Vt, for some t0 ∈ R

d. In fact, (2.2) is an eigenvalue problem
and hence can be efficiently solved. However, for large and noisy data sets, this
formulation turns out to be “ill-conditioned” in the following sense: The solution has
the tendency to “collapse”, i.e. the problem is not sufficiently constrained to prevent
the (less trivial, but still undesired) solutions of the form t̂i ≃ t0, ∀i ∈ Vt \ {i∗}
and t̂i∗ ≃ −

∑

i∈Vt\{i∗} t̂i, where i
∗ has a (relatively) small degree in Gt (for such

collapsing solutions in R
3, see Figure 1.3 for a real data set, and Figure 5.1 for

synthetic data). For large data sets having nodes with significantly varying degrees,
collapsing solutions of (2.2) (sometimes occurring in more than one group of points)
can be observed even for low levels of noise in the Qij ’s. It is worthwhile noting that
the problem of collapsing solutions is not caused by the quadratic nature of the cost
function in (2.2): Formulations of (2.2) using sum of (unsquared) projection errors,
i.e.

∑

(i,j)∈Et
‖Qij (ti − tj) ‖2, as the cost function (which are also significantly harder

to solve) that we studied using (heuristic) iteratively-reweighted least squares solvers
exhibit even worse characteristics in terms of collapsing solutions.

We overcome the collapsing behavior in two steps, first by introducing non-convex

2In [3], the least squares approach is studied specifically for the location estimation problem in R
3

with a slightly different definition for the pairwise measurements Γij ’s (also see §4), whereas in [9],
it is studied in arbitrary dimension using unnormalized Γij ’s (i.e., Γij ’s do not necessarily satisfy
Tr(Γij) = 1).
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“repulsion constraints” in (2.2) and then formulating an SDR version of the resulting
non-convex problem. The non-convex problem is given by

minimize
{ti}i∈Vt⊆R

d

∑

(i,j)∈Et

Tr
(

Qij (ti − tj) (ti − tj)
T
)

(2.3a)

subject to ‖ti − tj‖22 ≥ c, ∀(i, j) ∈ Et , (2.3b)
∑

i

ti = 0 (2.3c)

where c ∈ R
+ is a constant fixing the (undetermined) scale of the solution (wlog we

take c = 1) and the cost function is rewritten in a slightly different way. The repulsion
constraints ‖ti− tj‖22 ≥ 1 are non-convex constraints making the estimation problem
difficult even for small-sizes. We introduce a matrix T of size dn × dn, whose d × d
blocks are given by Tij = tit

T
j . Consequently, T � 0 and rank(T ) = 1. To rewrite the

cost function in (2.3) linearly in terms of T , we define a Laplacian matrix L ∈ R
dn×dn,

whose d× d blocks are given by

Lij =











−Qij for (i, j) ∈ Et
∑

{k:(i,k)∈Et} Qik for i = j

0d else

(2.4)

and which satisfies Tr(LT ) =
∑

(i,j)∈Et
Tr(Qij (ti − tj) (ti − tj)

T ). Note that L is

symmetric, since Qij = QT
ij and Qij = Qji, and also positive semidefinite, since for

t ∈ R
dn, tTLt =

∑

(i,j)∈Et
‖Qij(ti − tj)‖22 ≥ 0. Also, for every edge (i, j) ∈ Et, we

define a matrix Cij ∈ R
dn×dn, whose kl’th d× d block is given by

Cij
kl =











Id for (k, l) = (i, i) or (k, l) = (j, j)

−Id for (k, l) = (i, j) or (k, l) = (j, i)

0d else

(2.5)

and which allows us to rewrite the inequality constraints ‖ti − tj‖22 ≥ 1 in (2.3),
linearly in T as Tr(CijT ) ≥ 1. Moreover, the equality constraint

∑

i ti = 0 can be
rewritten linearly in T as Tr (HT ) = 0, for H = Jn ⊗ Id.

We now relax the only non-convex constraint, that is rank(T ) = 1, to formulate
the following SDR (known as “matrix lifting”):

minimize
T∈R

dn×dn
Tr (LT ) (2.6a)

subject to Tr
(

CijT
)

≥ 1 , ∀(i, j) ∈ Et , (2.6b)

Tr (HT ) = 0 , (2.6c)

T � 0 (2.6d)

After solving for T ∗ in (2.6), we compute the location estimates {t̂i}i∈Vt by a deter-
ministic rounding procedure, i.e. we compute the leading eigenvector t̂ of T ∗ and let
t̂i be given by the i’th d× 1 block of t̂.

2.3. Stability of SDR. In this section we analyze the SDR (2.6) in terms of
exact location recovery in the presence of noiseless pairwise line information and stable
recovery with noisy line information.
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We first introduce some notation to simplify our statements. Consider a set of

locations {t0i }i∈Vt ⊆ R
d in generic position and let γ0ij =

t0i−t0j

‖t0i−t0j‖2
denote the unit

vector from t0j to t0i . Then, the (noiseless) formation corresponding to {t0i }i∈Vt is

given by {Γ0
ij}(i,j)∈Et

, where Γ0
ij = γ0ij(γ

0
ij)

T . We also let Q0
ij denote the projection

matrices onto the (d− 1)-dimensional subspace orthogonal to γ0ij , i.e. Q
0
ij = Id −Γ0

ij ,

L0 denote the Laplacian matrix corresponding to Q0
ij ’s (cf. (2.4)), and T0 ∈ R

dn×dn

denote the matrix of the noiseless locations, i.e. T0 = t0(t0)T where the i’th d × 1
block of t0 is equal to t0i .

We start with the simpler exact recovery result.
Proposition 2.2 (Exact Recovery in the Noiseless Case). Assume that the

(noiseless) formation {Γ0
ij}(i,j)∈Et

is parallel rigid. Then, the SDR (2.6) (with L =

L0), followed by the deterministic rounding procedure, recovers the locations exactly,
in the sense that any rounded solution of the SDR is congruent to {t0i }i∈Vt .

Proof. Wlog, we assume min(i,j)∈Et
‖t0i − t0j‖2 = 1 and

∑

i t
0
i = 0. Then we have

Tr(L0T0) = 0, i.e. T0 is a minimizer of (2.6) (since T0 is also feasible by construction).
The parallel rigidity of the formation implies rank(L0) = dn− (d+1), where the only
eigenvector t0 of T0 with non-zero eigenvalue and the d eigenvectors v1

H ,v
2
H , . . . ,v

d
H

of H (in (2.6)) with nonzero eigenvalues form an orthogonal basis for the nullspace of
L0 (see, Appendix A). Let ui

0, i = d+2, . . . , dn, denote the (normalized) eigenvectors
of L0 corresponding to its positive eigenvalues. Consider an arbitrary minimizer T ∗

of (2.6). Since Tr(L0T ∗) =
∑dn

i=d+2 λi(L
0)(ui

0)
TT ∗ui

0 = 0, where λi(L
0) > 0, T ∗ � 0

satisfies (ui
0)

TT ∗ui
0 = 0 for all i = d+2, . . . , dn. Also, by the feasibility of T ∗, we get

Tr(HT ∗) =
∑d

i=1(v
i
H)TT ∗vi

H = 0, i.e. (vi
H)TT ∗vi

H = 0 for all i = 1, . . . , d. Hence,

{v1
H , . . . ,v

d
H ,u

d+2
0 , . . . ,udn

0 } form an orthogonal basis for the nullspace of T ∗. This
implies rank(T ∗) = 1, where T ∗ is of the form T ∗ = αT0 for some α ≥ 1 (by the
feasibility of T ∗), establishing the uniqueness of the solution up to scale. As a result,
applying the rounding procedure to any solution of (2.6) yields exact recovery of t0i ’s
(of course, up to congruence).

Our next result is the stability of the SDR with noisy pairwise line information.
Noise Model and Error Function: We let each edge (i, j) of the measurement
graph Gt = (Vt, Et) be endowed with a line measurement Γij = γijγ

T
ij , where γij =

γ0ij + ǫij with ‖ǫij‖2 ≤ ǫ and ‖γij‖2 = 1. Also, LG = DG−AG denotes the Laplacian
of the graph Gt, where DG is the (diagonal) degree matrix of Gt (whose i’th diagonal
element is equal to the degree of the i’th node) and AG is the adjacency matrix of Gt.

This time we assume (wlog), Tr(T0) = 1 and Tr(HT0) = 0. For a solution T ∗ of
the SDR (2.6), we consider the following error function as our measure of stability

δ(T ∗, T0) = min
c≥0
‖cT ∗ − T0‖F = ‖Tr(T

∗T0)

‖T ∗‖2F
T ∗ − T0‖F (2.7)

We are now ready to present the main result of this section:
Theorem 2.3 (Stability of SDR Solution). Consider a set of noisy pairwise line

measurements {Γij}(i,j)∈Et
related to the (noiseless) parallel rigid formation {Γ0

ij}(i,j)∈Et

as in the noise model given above, and let T ∗ be a solution of (2.6). Then,

δ(T ∗, T0) ≤ ǫ
[

α1 +
(

α2
1 + 2α2

)
1
2

]

(2.8)

where, the (data dependent) constants α1 and α2 are given by α1 =
√
2m

λd+2(L0) and

α2 = (κ
√
d‖LG‖F

m +1) λn(LG)
λd+2(L0) . Here, the parameter κ is given by κ = (min(i,j)∈Et

‖t0i−
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t0j‖22)−1.
Proof. See Appendix B.
We can obtain the stability of the estimated locations, i.e. the rounded solution

of (2.6), as a corollary of Theorem 2.3:
Corollary 2.4 (Location Stability). Let T ∗ be as in Theorem 2.3 and t̂ denote

its normalized eigenvector corresponding to its largest eigenvalue. Then

min
a∈R

‖at̂− t0‖2 ≤ ǫ
[

πd(n− 1)

2

(

α1 +
(

α2
1 + 2α2

)
1
2

)

]

(2.9)

Proof. We use a particular implication of the Davis-Kahan theorem (see, e.g., Ch.
7 in [6]) in order to relate the recovery error in the rounded solution to the error in
the solution of the SDR. To this end, observe that

min
a∈R

‖at̂− t0‖2 = ‖((t0)T t̂)t̂− t0‖2 = ‖(Idn − t0(t0)T )t̂t̂T ‖F (2.10)

For a given symmetric matrix A and a subset S of the real line, let PA(S) denote
the projection matrix onto the subspace spanned by the eigenvectors of A, whose
eigenvalues are in S. Then Davis-Kahan theorem implies

‖PA(S1)PB(S2)‖F ≤
π

2ρ(S1, S2)
‖A−B‖F (2.11)

where ρ(S1, S2) = min{|x− y| : x ∈ S1, y ∈ S2}. In our case, if we let S0 = {0} for T0
and S∗ = {λdn(c̃T ∗)} for c̃T ∗, where c̃ = (Tr(T ∗))−1, we obtain

‖PT0(S0)Pc̃T∗(S∗)‖F = ‖(Idn − t0(t0)T )t̂t̂T ‖F ≤
πTr(T ∗)

2λdn(T ∗)
‖c̃T ∗ − T0‖F (2.12)

Here, we use the fact Tr(T∗)
λdn(T∗) ≤ rank(T ∗) and the feasibility of T ∗, i.e. that Tr(HT ∗) =

0, to get Tr(T∗)
λdn(T∗) ≤ d(n − 1) (in fact, we can construct a solution T ∗ of the SDR

satisfying the stronger bound rank(T ∗) ≤ (
√

8(m+ 1) + 1−1)/2, see e.g. [47], however
we ignore this slight improvement for simplicity). Also, considering (2.10) and (B.14)
from the proof of Theorem 2.3, we recover the claim of the corollary.

Remark 1. We note that the bounds in Theorem 2.3 and Corollary 2.4 are quite
loose when compared to our experimental observations. Nevertheless, the recovery
error is within a constant factor of the noise level ǫ. Also observe that Proposition 2.2,
i.e. exact recovery in the noiseless case, is implied by Theorem 2.3 when ǫ = 0.

Remark 2. The proximity of the solution T ∗ of (2.6) to the space of positive
semidefinite rank-1 matrices can be considered as a measure of the quality of the
relaxation. In our experiments with real images and simulated data, we make the fol-
lowing observations: As long as the noise level ǫ is below some threshold, we always
get rank(T ∗) = 1, i.e. we can actually solve the non-convex problem efficiently by the
SDR (2.6). For higher levels of noise, T ∗ is no longer a rank-1 matrix, but it typically
has a large spectral gap (λdn(T

∗) − λdn−1(T
∗))/λdn(T ∗). In other words, we do not

observe a sharp phase transition in the quality of the SDR, and the relaxation is stable
under various noise models. Figure 2.2 provides an experimental evaluation in R

3 of
our observations about the stability of relaxation, using synthetic measurements gen-
erated under the noise model (5.1) of §5.1 (and assuming p = 0 in (5.1), i.e. no outlier
measurements, for simplicity) for graphs of n = 50 nodes and various edge density
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θ = 2m
n(n−1) . We observe that even if the location recovery performance (represented

by normalized root mean squared error (NRMSE) defined in (5.2)) degrades as the
noise level increases, the tightness of the relaxation is preserved up to relatively high
noise levels.
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Fig. 2.2. Spectral gap (λ3n(T ∗)−λ3n−1(T ∗))/λ3n(T ∗) of solutions T ∗ of (2.6) and logarithmic
recovery error log10(NRMSE) (see (5.2) for NRMSE) versus noise level log10(σ), for graphs with
n = 50 nodes and various edge density θ (results are averaged over 10 random realizations of noisy
line measurements and locations)

2.4. Alternating Direction Augmented Lagrangian Method. The SDR
(2.6) is solvable in polynomial time by the classical primal-dual interior-point SDP
algorithms (e.g. [59]). However, in case of a dense measurement graph Gt (i.e., as-
suming m = O(n2)), the interior-point methods become impractical for large number
of locations, with a time complexity of O(n6) (and a space complexity of O(n4)) for
each iteration of the algorithm. In practice, the computational bottleneck becomes
an issue for problem sizes of n ≥ 200. In this respect, here we provide the details
of alternating direction augmented Lagrangian method (ADM), which is a first-order
method with superior computational efficiency [63]. ADM is an iterative algorithm
based on minimization of an augmented Lagrangian function of the dual SDP. In
comparison to interior-point methods that aim to satisfy complementary slackness
while maintaining primal-dual feasibility at each iteration, ADM aims to construct a
primal-dual feasible pair while maintaining complementary slackness. At each itera-
tion, ADM minimizes the dual augmented Lagrangian function first with respect to
dual variables, then with respect to dual slack variables and finally updates the primal
variables. In the minimization over each variable, ADM regards the other variables
as fixed.

In order to obtain an ADM framework for the SDP (2.6), we rewrite it in standard
form and procure the ADM framework (involving variables of larger dimensions) for
standard form SDPs developed in [63]. Such an approach yields a (provably) conver-
gent algorithm, however, in general it has a high computational cost (due to the high
dimensionality of the variables associated with the standard form SDP). In our case,
we are able to simplify the ADM framework for the standard form of (2.6) signifi-
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cantly and hence do not artificially increase the computational cost by rewriting (2.6)
in standard form (we also experimentally observed that the “ad-hoc” approach in [63]
developed for SDPs involving inequality constraints, which is at least as costly as our
resulting algorithm, did not produce a convergent algorithm for (2.6)). We provide
the details of rewriting (2.6) in standard form, constructing the ADM framework for
the augmented Lagrangian of its dual and the simplification of the resulting algorithm
in Appendix C. A pseudo-code version of our ADM algorithm is given below (see Ap-
pendix C for the linear operators B̃, B̃∗ and the efficient computation of (B̃B̃∗+I)−1).

We refer the reader to [63] for practical details related to termination rules using

Algorithm 1 Alternating direction augmented Lagrangian method (ADM) for
SDP (2.6)

Initialize: T 0 � 0 s.t. Tr(HT 0) = 0, R0 � 0, ν0 ≥ 0m and η0 ≥ 0m, µ > 0

for k = 0, 1, . . . do

zk+1 ← −
(

B̃B̃∗ + I
)−1 (

1
µ (B̃(T k)− νk − 1m) + B̃(Rk − L)− ηk

)

F k+1 ← L− 1
µT

k − B̃∗(zk+1)










Compute the spectral decomposition of F k+1 :

F k+1 = [ V+ V− ]
[

D+ 0
0 D−

]

[

V T
+

V T
−

]

, where diag(D+) > 0

Rk+1 ← V+D+V
T
+

ηk+1 ← max
{

zk+1 − 1
µν

k,0m

}

T k+1 ← −µV−D−V T
−

νk+1 ← −µmin
{

zk+1 − 1
µν

k,0m

}

end for

measures of infeasibility, stagnation detection, updating the parameter µ for faster
convergence, additional step size parameter used to update the primal variables T k

and νk, and also for convergence analysis of ADM. Considering the convergence rate
analysis of ADM provided in [29], we need O(1/ǫ) iterations in order to achieve an
ǫ accuracy. Note that, at each iteration, the most computationally expensive step
of Algorithm 1 is the spectral decomposition of F k+1. However, since we experi-
mentally observe a stable SDP relaxation resulting in a low-rank primal solution T ∗,
computation of V− and D− can be greatly simplified by computing only a few nega-
tive eigenvalues of F k+1 (e.g., by using Arnoldi iterations [2]). As a result, assuming
O(n3) complexity for spectral decomposition, the time complexity ofO(n3/ǫ) (already
significantly less compared to interior point methods) can be even further reduced.

3. Distributed Approach. The ADM framework introduced in §2.4 provides a
computationally feasible alternative to classical SDP solvers and allows us to solve the
SDR (2.6) beyond n ≃ 200. However, for large sets of images (n ≫ 1000), the need
for a distributed algorithm is apparent. In this section, we provide the details of a
distributed algorithm for translation estimation, based on spectral graph partitioning
and convex programming.

The main structure of our distributed location estimation algorithm is the follow-
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ing: Given a maximum problem size, i.e. an integer Nmax denoting the maximum
number of locations our computational resources can efficiently estimate by (2.6),
we first partition Vt into subsets (that we call “patches”) of sizes at most Nmax (by
maintaining sufficient connectivity in the induced subgraphs and sufficient overlaps
between patches). Then, for each induced subgraph, we extract the maximally par-
allel rigid components. We then find for each rigid component the “local” coordinate
estimates by the SDR (2.6). Finally, we stitch the local estimates into a global solu-
tion by convex programming.

We note that, the main idea of our distributed approach, i.e. division of the
problem into smaller subproblems and then constructing the global solution from the
local solutions, is also adapted for various problems in the literature (see, e.g., [16]).
However, depending on the structure and the challenges of the specific problem stud-
ied, these distributed methods usually have significant differences. For instance, as
compared to [16], while the same algorithm (namely the eigenvector method (EVM)) is
used in our approach to remove the pairwise sign ambiguities between local solutions
(cf. §3.2), the steps involving the graph partitioning and extraction of well-posed lo-
cal problems, computation of local solutions, and estimation of global locations from
(sign corrected) local estimates are significantly different.

3.1. Graph Partitioning. In order to partition Vt into sufficiently overlapping
subsets (for high quality global reconstruction) with sufficiently dense induced graphs
(for high quality local estimation) of sizes bounded by Nmax, we use the following
algorithm, which bears a resemblance with the graph partitioning algorithm of [39].
Starting with G1t = {Gt}, at the k’th iteration partition each graph in Gkt (where, Gkt
denotes the set of graphs to be partitioned) into two subgraphs using the spectral
clustering algorithm of [44]. Then, extend the computed partitions to include the 1-
hop neighborhoods of their vertices in Gt (and, of course, the induced edges). Assign
the (extended) partitions with sizes smaller than Nmax to the set of patches, and
those with sizes larger than Nmax to Gk+1

t . Repeat until there is no subgraph left to
partition, i.e. until the K’th iteration, where GK+1

t = ∅.
After the partitioning step, we extract the maximally parallel rigid components

of each patch as described in §2.1 (after this stage we use the term patch for parallel
rigid patches). We then remove the patches that are subsets of another patch from
the set of patches. We also remove the patches that do not have sufficient overlap
(i.e. overlap size ≥ 2, also see next section) with any other patch (which happens very
rarely and is required since they cannot be used in the global location estimation).
At this stage, we get a patch graph GP = (VP , EP ), where VP denotes the patches
and (i, j) ∈ EP if and only if there is sufficient overlap between the patches Pi and
Pj . Here, if GP is not connected (which was never the case in our experiments), we
can either extract the largest connected component of GP or extend the patches to
include their 1-hop neighborhoods until GP is connected for the next steps of our
algorithm. We then compute the “local” coordinate estimates for these rigid patches
(whose negation signs, scales and translations with respect to the global coordinate
system are undetermined at this stage) by solving the SDR (2.6). The computation of
the local coordinates for each patch can be done in parallel in a multi-core processing
environment, where each processing unit computes the local coordinates of one or
more patches.

3.2. Pairwise Patch Registration. After solving the SDR (2.6) for each patch
Pi, we obtain estimates {t̂ik}k∈Pi of the representations {tik}k∈Pi of the locations in
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the coordinate system of each patch. The representations {tik}k∈Pi satisfy

tk = citik + ti , k ∈ Pi , i ∈ VP (3.1)

where tk denotes the global coordinates of the k’th location, and ci and ti denote
the signed scale and translation of patch Pi, respectively (we use the signed scale,
i.e. ci ∈ R can assume negative values, because of the unknown negation). Given
{t̂ik}k∈Pi , i ∈ VP , our objective is to estimate the locations {tk}k∈⋃

Pi
by formulating

an efficient algorithm, which will be robust to possible outliers in the estimates t̂ik.
In this respect, firstly observe that any algorithm designed to minimize the errors in
the linear equations (3.1) should also exclude trivial solutions of the form ci = 0 and
tk = ti = t (for some t ∈ R

d), for all i and k. However, similar to the location esti-
mation from noisy pairwise lines problem, the existence of this null-space (spanned by
the trivial solutions) results in collapsing solutions for under-constrained optimization
programs. As in the case of the least squares solver for the location estimation prob-
lem, we experimentally observed such collapsing solutions for the spectral method
designed to minimize the sum of squared ℓ2 norms of the errors in equations (3.1) by
excluding the solutions in the null-space.

Collapsing solutions can be avoided simply by requiring |ci|2 ≥ 1, for all i ∈ VP ,
which is a non-convex constraint. Similar to the construction of the SDR (2.6), the
non-convexity (resulting from the unknown patch signs allowing ci to assume negative
values) can be resolved by using matrix lifting. An efficient method in this direction
is the adaptation of the partial matrix lifting (only applied to the variables involved
in non-convex constraints) method of [15] to our problem. In this method, using the
sum of squared ℓ2 norms of the errors in equations (3.1) as the cost function, the
unconstrained variables (tk’s and ti’s) are analytically computed as functions of the
constrained variables (in our case, ci’s) and the resulting quadratic form (in ci’s) is
used to define a matrix lifting relaxation for the constrained variables (see [15] for fur-
ther details). However, this time, instead of using a matrix lifting method, we pursue
a different approach: To overcome the non-convexity in |ci|2 ≥ 1, we first estimate
the unknown sign of each patch Pi and then impose the convex constraints ci ≥ 1
for the sign-corrected patches (i.e. patches with the local estimates t̂ik replaced with
ẑit̂ik, where ẑ

i ∈ {−1,+1} is the estimate of the negation zi = sign(ci) of patch Pi).
Estimation of patch signs from pairwise signs (see (3.2) for pairwise sign estimation)
is performed using the eigenvector method (EVM) (see, e.g., [16]), which is a robust
and efficient spectral algorithm allowing a reliable estimation of patch signs. Using
the estimated signs, we can minimize the sum of unsquared ℓ2 norms in equations (3.1)
(which cannot be used as a convex cost function in the matrix lifting approach), and
hence maintain robustness to outliers in the estimates t̂ik. In our experiments with
simulated data and real images, this two step formulation produced more accurate
location estimates compared to the matrix lifting alternative (with similar running
times, since the partial matrix lifting results in a semidefinite program with a matrix
variable of size |VP | × |VP |), making it our choice for stitching the global solution.
We now provide the details of the sign estimation procedure, whereas the final step
of location estimation from sign-corrected patches is covered in §3.3.

In order to estimate the patch signs {zi}i∈VP , the relative pairwise signs zij =
zizj, (i, j) ∈ EP , are estimated first. This is accomplished by solving the following
least squares problem for each (i, j) ∈ EP

minimize
cij∈R,tij∈R

d

∑

k∈Pi∩Pj

∥

∥

∥
t̂ik −

(

cij t̂jk + tij
)∥

∥

∥

2

2
(3.2)
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where cij , tij denote the relative (signed) scale and translation between Pi and Pj ,
respectively. The relative sign estimate ẑij ∈ {−1,+1} is given by ẑij = sign((cij)∗).

Using the relative sign estimates {ẑij}(i,j)∈EP
, the sign estimates {ẑi}i∈VP are

computed by EVM, which is a spectral method for finding signs with the goal of
satisfying as many equations of the form ẑiẑj = ẑij for (i, j) ∈ EP as possible (see
[16] for the details). Here, we note that, although the sum of squared norms cost
function in (3.2) can be replaced by the sum of (unsquared) norms cost to improve
robustness to outliers in t̂ik’s, we prefer the more efficient least squares version (in fact,
(3.2) has a closed-form solution) since we did not experimentally observe a significant
improvement in the accuracy of signs estimated by EVM.

3.3. Global Stitching of Local Patches. Stitching the local patches into a
globally consistent d-dimensional map comprises the last step of our distributed ap-
proach. As we discussed in §3.2, we aim to efficiently estimate the global locations
tk using the linear equations (3.1), while maintaining robustness to outliers in t̂ik’s
and preventing collapsing solutions. In this respect, using the estimated patch signs
(i.e., estimates of signs of ci) in (3.1), we maintain robustness by minimizing sum of
(unsquared) norms of errors in equations (3.1), while simply constraining ci ≥ 1 to
prevent collapse. Hence, we solve the following convex program (using, e.g. [59]), in
which we jointly estimate the scales {ci}i∈VP and translations {ti}i∈VP of the sign-
corrected patches (i.e., patches with the local estimates t̂ik replaced with ẑit̂ik) and
the global locations {tk}k∈⋃

Pi

minimize
{tk, ci, ti}

∑

i∈VP

∑

k∈Pi

∥

∥tk −
(

ciẑit̂ik + ti
)
∥

∥

2
(3.3a)

subject to ci ≥ 1, ∀i ∈ VP (3.3b)

3.4. Well-posedness of the Distributed Problem. Similar to the well-posedness
of location estimation from pairwise lines, we consider the following question for the
distributed problem: Do the local coordinate estimates {t̂ik}k∈Pi, i∈VP provide enough
information to yield a well-posed instance of the global location estimation problem?
Once again, we consider an instance of the distributed problem to be well-posed if
the global locations can be uniquely (of course, up to congruence) estimated from
the noiseless local coordinates {tik}k∈Pi, i∈VP . We (partially) answer this question
in Proposition 3.1, where it is shown that the local coordinate estimates provided
via the specific construction of the patch graph GP given in §3.1 are sufficient for
well-posedness. This result is established by proving exact recovery of global loca-
tions from noiseless local coordinates using the two step global location construction
algorithm.

Proposition 3.1 (Exact Recovery from Noiseless Local Coordinates). Consider
a graph GP = (VP , EP ) of patches {Pi}i∈VP and a set of (noiseless) local coordinates
{tik}k∈Pi,i∈VP corresponding to the global locations {tk}k∈⋃

Pi
(i.e., tik satisfy (3.1) for

a set of signed scales ci and translations ti of the patches, for all k ∈ Pi and i ∈ VP ).
Then, if GP is connected and satisfies (i, j) ∈ EP if and only if |Pi ∩Pj | ≥ 2, the two
step global location construction algorithm (i.e., estimation of patch signs by (3.2) and
EVM [16] followed by global location estimation by (3.3)) recovers the global locations
exactly when provided with the noiseless local coordinates (i.e., t̂ik = tik for (3.2) and
(3.3)), in the sense that any solution of the algorithm is congruent to {tk}k∈⋃

Pi
.

Proof. See Appendix D.
Remark 3. We note that, in the presence of noiseless pairwise lines {Γij}(i,j)∈Et

(on parallel rigid Gt = (Vt, Et)), and assuming that we can obtain a connected patch
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graph GP from Gt using the graph partitioning procedure of §3.1, Propositions 2.2
and 3.1 imply exact recovery of {tk}k∈⋃

Pi
from the lines {Γij}(i,j)∈Et

.

Remark 4. The conditions imposed on GP in Proposition 3.1 (i.e. connectivity
and that, for all (i, j) ∈ EP , |Pi ∩ Pj | ≥ 2) are usually not difficult to satisfy. Also,
observe that these conditions are independent of the dimension d of the locations
(which is not the case, e.g., for the combinatorial conditions in [69, 22]). However,
it may be possible to assume even weaker conditions on GP to obtain exact recovery
results using, e.g., the (partial) matrix lifting method discussed in §3.2: We conjecture
that if the patches {Pi}i∈VP satisfy a specific 2-lateration3 condition, i.e. if there exists
a reordering of the patch indices such that, for every 2 ≤ i ≤ |VP |, Pi and P1∪. . .∪Pi−1

have at least 2 points in common (which is, obviously, a weaker condition compared
to the conditions in Proposition 3.1), then the matrix lifting method should recover
the locations exactly. On the other hand, since in our two step method, the first step
requires the estimation of pairwise signs (in order to estimate the patch signs), the
condition that |Pi ∩ Pj | ≥ 2, ∀(i, j) ∈ EP , is in fact necessary for exact recovery.

4. Camera Motion Estimation. In this section, we provide the details of the
application of our location estimation algorithm (developed for the general problem
in d dimensions) to the camera location estimation part of the structure from motion
(SfM) problem in computer vision (defined in R

3). In the SfM problem (see Fig-
ure 1.2), camera motion estimation is based on point correspondences between pairs
of images. As a result, misidentification of corresponding points can induce estimation
errors in pairwise line estimates, denoted Γ̂ij ’s, and manifest itself through large errors
in the estimated camera locations. In that respect, our primary goal in this section is
to formulate a robust (to misidentified corresponding points) and efficient procedure
for pairwise line estimation that would then be used as input to our SDR framework
(see Figure 4.1 for a comparison of the accuracy of the line estimates computed using
our robust procedure and a simpler estimator, which is not robust to misidentified
corresponding points). We also devise a robust algorithm for the camera orientation
estimation part, which directly affects the recovery performance of the location esti-
mation part. We start with a brief description of the measurement process.

Let {I1, I2, . . . , In} represent a collection of images of a stationary 3D scene. We
use a pinhole camera model (see Figure 4.2), and denote the orientations, locations
of the focal points, and focal lengths of the n cameras corresponding to these images
by {Ri}ni=1 ⊆ SO(3), {ti}ni=1 ⊆ R

3, and {fi}ni=1 ⊆ R
+, respectively. Consider a scene

point P ∈ R
3 represented in the i’th image plane by pi ∈ R

3 (as in Figure 4.2). To
produce pi, we first represent P in the i’th camera’s coordinate system, that is, we
compute Pi = RT

i (P−ti) = (Px
i ,P

y
i ,P

z
i )

T and then project it to the i’th image plane
by pi = (fi/P

z
i )Pi. Note that, for the image Ii, we in fact observe qi = (px

i ,p
y
i )

T ∈ R
2

(i.e., the coordinates on the image plane) as the measurement corresponding to P.
Following the conventions from the SfM literature, for an image pair Ii and Ij , the

pairwise rotation and translation between the i’th and j’th camera coordinate frames
are denoted by Rij = RT

i Rj and tij = RT
i (tj − ti) (not to be confused with ti − tj

or γij , t
ij used previously), respectively. The essential matrix Eij is then defined by

Eij = [tij ]×Rij , where [tij ]× is the skew-symmetric matrix corresponding to the cross
product with tij . If the projections of a 3D scene point P onto the i’th and the j’th
image planes are denoted by pi ∈ R

3 and pj ∈ R
3, respectively, the essential matrix

3We note that the notion of lateration considered here should not be confused with the classical
laterated graphs, although it resembles the classical concept in some aspects.
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0 π/32 π/16 3π/32 π/8
 

 

Robust Estimates

EVM + PCA

Fig. 4.1. Histogram plots of the errors in line estimates computed by our robust method (cf. §4.1
and §4.2) and a simpler estimator. The simpler estimator uses the eigenvector method (EVM) [3]
for rotation estimation, and PCA for subspace estimation (using the noisy estimates of the 2D
subspace samples νkij in (4.3)). The errors represent the angles between the estimated lines and

the corresponding ground truth lines (computed from the camera location estimates of [52] for the
Notre-Dame dataset, studied in §5.2). The errors take values in [0, π/2], however the histograms are
restricted to [0, π/8] to emphasize the difference of the quality in the estimated lines. We note that,
for the robust method, the percentage of the line estimates having errors larger than π/8 is 3.7%,
whereas, for the simple estimator, it is 11.5%.

tjti

P

pi
pj

Epipoles

Fig. 4.2. 3D projective geometry of the pinhole camera model (using virtual image planes for
mathematical simplicity)

Eij satisfies the “epipolar constraint” given by

pT
i Eijpj = 0 (4.1)

In fact, the epipolar constraint (4.1) is a restatement of the coplanarity of the three
vectors P − ti, P − tj and ti − tj (see Figure 4.2). However, since (4.1) is given in
terms of the measurable variables pi, it is used as an extra constraint (on the special
structure of Eij having 6 degrees of freedom) in the estimation of Eij .

Provided with the image set {Ii}ni=1, to estimate the essential matrices, we first
extract feature points and find pairs of corresponding points between images (see
Figure 4.3 for an image pair with corresponding points) using SIFT [41], and then
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estimate the essential matrices using the eight-point algorithm4 (see, e.g., [27]), while
also employing the RANSAC protocol (to reduce the effect of outliers in point cor-
respondences). For image pairs with sufficiently many inliers, the estimated essential
matrices Êij are then (uniquely) factorized into R̂ij and [t̂ij ]×.

Fig. 4.3. Two images of the Notre-Dame Cathedral set from [52], with corresponding feature
points (extracted using SIFT [41]). The essential matrix Eij can be estimated using the (non-linear)
five-point or the (linear) eight-point algorithms (see, e.g., [27]), that require at least 5 and 8 pairs
of corresponding feature points, respectively.

Classically, the relative rotation and translation estimates, R̂ij and t̂ij , computed

from the decomposition of Êij , are used to estimate the camera locations ti. However,
for large and unordered collections of images, these estimates usually have errors re-
sulting from misidentified and/or small number of corresponding points. Especially,
the erroneous estimates t̂ij result in large errors for the location estimation part. As
a result, instead of using the existing algorithms (e.g., [26, 3, 42]) to find the rotation
estimates R̂i and then computing the pairwise line estimates Γ̂ij = (R̂it̂ij)(R̂it̂ij)

T

(assuming ‖t̂ij‖2 = 1) for the SDR solver (2.6), we follow a different procedure: First,

the rotation estimates R̂i are computed using an iterative, robust algorithm (as de-
tailed in §4.1), and then we go back to the epipolar constraints (4.1) (as explained
below) to estimate the pairwise lines using a robust subspace estimation algorithm
(cf. §4.2).

To clarify the main idea of our robust pairwise line estimation method using the
epipolar constraints, we first emphasize the linearity of (4.1) in the camera locations
ti and tj , by rewriting it as (also see [3])

pT
i Eijpj = pT

i

[

RT
i (tj − ti)

]

×R
T
i Rjpj

= pT
i R

T
i {(tj − ti)×Rjpj}

= (Ripi ×Rjpj)
T
(ti − tj) = 0 (4.2)

As mentioned before, for an image Ii, the measurement corresponding to a 3D point P
is given in terms of the coordinates of the 2D image plane by qi = (px

i ,p
y
i )

T ∈ R
2. For

an image pair Ii and Ij , let {qk
i }

mij

k=1 ⊆ R
2 and {qk

j }
mij

k=1 ⊆ R
2 denotemij corresponding

4We note that, the essential matrix Eij can be estimated using only 5 point correspondences
between the images Ii and Ij (while assuming ‖ti−tj‖2 = 1). In practice, however, we use the eight-
point algorithm, which is an efficient linear method requiring a minimum of 8 point correspondences.
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feature points. Then, using (4.2), we get (in the noiseless case)

(νkij)
T (ti − tj) = 0, k = 1, . . . ,mij , for (4.3a)

νkij
..= Θ

[(

Ri

[

qk
i /fi
1

])

×
(

Rj

[

qk
j /fj
1

])]

(4.3b)

where, νkij ’s are normalized (using the homogeneity of (4.2) and the normalization
function Θ[x] = x/‖x‖2, Θ[0] = 0), and fi and fj denote the focal lengths of the i’th
and j’th cameras, respectively. Hence, in the noiseless case, we make the following
observation: Assuming mij ≥ 2 (and, that we can find at least two νkij ’s not parallel

to each other), {νkij}
mij

k=1 determine a 2D subspace to which ti − tj is orthogonal (and

hence the “line” through ti and tj). This 2D subspace spanned by {νkij}
mij

k=1 can be
obtained by, e.g., principal component analysis (PCA) (i.e., as the subspace spanned
by the two left singular vectors of the matrix [ ν1

ij ... ν
mij
ij ] corresponding to its two

non-zero singular values). However, in the presence of noisy measurements, if we
replace Ri’s, fi’s and qi’s in (4.3) with their estimates, then we essentially obtain
noisy samples ν̂kij ’s from these subspaces (for which, e.g., PCA might not produce

robust estimates in the presence of outliers among ν̂kij ’s). Hence, for pairwise line
estimation, our approach is to reduce the effects of noise by employing robust rotation
and subspace estimation steps, that we discuss next.

4.1. Rotation Estimation. In this section, we provide the details of the rota-
tion estimation step using the pairwise rotation estimates R̂ij ’s, extracted from the

essential matrix estimates Êij ’s. Our main objective here is to reduce the effects of

outliers in R̂ij ’s in the estimation of the rotations Ri, while preserving computational

efficiency. The outliers in R̂ij ’s, which mainly occur due to misidentified and/or small
number of corresponding points used to estimate the essential matrices, can result
in large errors in rotation estimation, which manifests itself as large errors in the
pairwise line estimates through the noisy subspace samples ν̂kij ’s computed via (4.3).
Specifically, for large and sparsely correlated image sets (i.e., image sets, for which we
can obtain the estimates R̂ij for a relative small fraction of all pairs), the proportion

of outliers in R̂ij is typically large enough to degrade the quality of rotation estimates
(e.g., when estimated via a single iteration of the eigenvector method (EVM) used
in [3]). In the literature, there are various algorithms to estimate camera rotations
from the pairwise rotation estimates R̂ij ’s (see, e.g., [62, 26, 3, 42]) with various the-
oretical and experimental robustness properties. Our procedure for estimating the
rotations is iterative, where in each iteration we apply EVM in order to detect the
outliers in R̂ij ’s with respect to the rotation estimates evaluated at that iteration,
and continue to the next iteration by removing the detected outliers. We now provide
the details.

We represent the pairwise rotation estimates R̂ij ’s as the edges of a rotation
measurement graph GR = (VR, ER), where the set of vertices VR represents the cam-
eras. We assume that GR is connected. At the k’th iteration of our procedure, we
are given a set {R̂ij}(i,j)∈Ek

R
of pairwise rotation measurements represented by the

connected rotation measurement graph Gk
R =

(

V k
R , E

k
R

)

. First, we apply EVM to

compute the k’th iteration rotation estimates {R̂i}i∈V k
R
. We then identify the outlier

edges, denoted by (i, j) ∈ Ek
O, for which the consistency errors ‖(R̂k

i )
T R̂k

j − R̂k
ij‖F

are relatively large, i.e. which are “significantly” larger from the mean (one can also
identify the outliers as a fixed portion, say 10%, of the edges with largest consistency
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error, or as the edges with a consistency error above a certain threshold, etc.) At
this stage, we remove the outlier edges from the measurement graph and identify
Gk+1

R as the largest connected component of G′ = (V k
R , E

k
R \ Ek

O). The iterations are
then repeated until a convergent behavior in the consistency errors is observed (one
can also repeat the iterations a fixed number of times, up to an allowed number of
removed points, etc.) We note that since the eigenvector-based method is computa-
tionally very efficient, the extra iterations induce a negligible computational cost for
the whole algorithm, however the change in the estimated rotations can significantly
improve the final estimation of camera locations.

4.2. Subspace Estimation. Let ḠR = (V̄R, ĒR) denote the resulting graph
of the rotation estimation step. For each (i, j) ∈ ĒR, the estimates {ν̂kij}

mij

k=1 are

evaluated using the rotation estimates {R̂i}i∈V̄R
in (4.3). {ν̂kij}

mij

k=1 are noisy samples
of unit vectors in a 2D subspace. As also mentioned previously, we can estimate
this subspace, e.g., by PCA, however PCA is not robust to outliers in the sample
set. There are various algorithms for robust subspace estimation from noisy sample
points (e.g. see [38, 60, 68] and references therein), with different performance and
convergence guarantees, computational efficiency, and numerical stability. We choose
to use the S-REAPER algorithm introduced in [38]. S-REAPER solves the following
convex problem:

minimize
Qij

mij
∑

k=1

‖ν̂kij −Qij ν̂
k
ij‖2 (4.4a)

subject to 0 � Qij � I3, Tr (Qij) = 2 (4.4b)

After finding the solution Q∗
ij of (4.4), the robust subspace Q̂ij is defined to be the sub-

space spanned by the two normalized leading eigenvectors, q∗
1,ij ,q

∗
2,ij , of Q

∗
ij . Hence,

we set Γ̂ij
..= I3 − (q∗

1,ij(q
∗
1,ij)

T + q∗
2,ij(q

∗
2,ij)

T ) as our robust line estimates.

A summary of our algorithm for camera motion estimation is provided in Ta-
ble 4.1.

5. Experiments.

5.1. Synthetic Data Experiments. We first provide experimental evaluation
of the performance of our SDR (2.6) in R

3 with synthetic line data. The experiments
present the SDR performance with respect to the underlying graph (e.g., number of
nodes, number of edges), and noise model and noise level. Also, we provide compar-
isons to the least squares (LS) method of [3, 9] and ℓ∞ method of [50], which also
directly use pairwise line information in location estimation. Moreover, we compare
the performance of our distributed algorithm to that of the SDR applied directly to
the entire graph.

We use a noise model incorporating the effects of small disturbances and outliers.
Given a set of locations {ti}ni=1 and Gt = (Vt, Et), for each (i, j) ∈ Et, we first let

γij =

{

γUij , w.p. p

(ti − tj)/‖ti − tj‖2 + σγGij w.p. 1− p (5.1)

and normalize γij ’s to obtain {γ̃ij = Θ[γij ]}(i,j)∈Et
as our “directed” lines. Here,

{γUij}(i,j)∈Et
and {γGij}(i,j)∈Et

are i.i.d. random variables drawn from uniform dis-

tribution on S2 and standard normal distribution on R
3, respectively. For the SDR
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Table 4.1
Algorithm for camera motion estimation

Input: Images: {Ii}ni=1, Focal lengths: {fi}ni=1

Features Points,
Essential Matrices,
Relative Rotations

1. Find corresponding points between image pairs (using SIFT [41])

2. Compute essential matrices Êij , using RANSAC (for pairs with
sufficiently many correspondences)

3. Factorize Êij to compute {R̂ij}(i,j)∈ER
and GR = (VR, ER)

Rotation
Estimation (§4.1)

4. Starting with G1
R

= GR, at the k’th iteration:

- For Gk
R

= (V k
R
, Ek

R
) and {R̂ij}(i,j)∈Ek

R
, compute {R̂i}i∈V k

R
by EVM [3]

- Detect outlier edges Ek
O

- Set Gk+1
R

to be the largest connected component of G′ = (V k
R , Ek

R \ Ek
O)

5. Repeat until convergence, output {R̂i}i∈V̄R
and ḠR = (V̄R, ĒR)

Pairwise Line
Estimation (§4.2)

6. Compute the 2D subspace samples {ν̂kij}
mij

k=1 for each (i, j) ∈ ĒR (4.3)

7. Estimate the pairwise lines {Γ̂ij}(i,j)∈ĒR
using S-REAPER (4.4)

Location
Estimation (§2)

8. Extract the largest maximally parallel rigid component Gt of ḠR [36]
9. If |Vt| is small enough, estimate {ti}i∈Vt by the SDR (2.6)
9’. If |Vt| is large (w.r.t. the computational resources):
- Partition Gt into parallel rigid patches (§3.1), form the patch graph GP

- Compute camera location estimates for each patch, using the SDR (2.6)
- Compute pairwise patch signs, using (3.2), synchronize patches in Z2 [16]
- Estimate patch scales, translations and locations {t̂i}i∈

⋃
Pk

, by (3.3)

Output: Camera orientations and translations: {R̂i, t̂i}

and the LS solvers, we use the (undirected) lines Γij = γ̃ij(γ̃ij)
T , while the ℓ∞ solver

requires the directed lines γ̃ij .
We evaluate the performance of each method in terms of the “normalized root

mean squared error” (NRMSE) given by

NRMSE({t̂i}) =
√

∑

i ‖t̂i − ti‖22
∑

i ‖ti − tc‖22
(5.2)

where t̂i’s are the location estimates (after removal of the global scale, translation
and negation) and tc is the center of mass of ti’s.

We performed experiments with fixed parallel rigid graphs with n = 100 and
n = 200 nodes having average and minimum degrees of n/4 and 3n/100, respectively.
The original locations ti’s are i.i.d. random variables drawn from standard normal
distribution on R

3. The NRMSE values (averaged over 10 random realizations of
the noise model and the original locations) are summarized in Table 5.1. In order to
observe the performance of the solvers with different noise structures (and since the LS
and ℓ∞ solvers are already very sensitive to outliers), we perform these experiments
with pure small disturbances, i.e. with p = 0 (the first three rows of Table 5.1) and
with pure outliers, i.e. σ = 0 (the last three rows of Table 5.1).

Table 5.1 indicates that the estimator given by our SDR is robust to both types
of noise, and increasing the number of nodes and edge connectivity further improves
its accuracy. However, the LS and the ℓ∞ solvers are sensitive to both kinds of noise.
This is mainly due to the collapse phenomenon for the LS solver, and due to the
structure of the cost function, which is not robust to large errors, for the ℓ∞ solver.
A collapsing solution of the LS solver is compared to the SDR solution in Figure 5.1
(the ℓ∞ solution is not included since it produces a “cloud” of locations unrelated to
the ground truth and degrades the visibility of the figure).
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Table 5.1
NRMSE (5.2) performance of the SDR (2.6) vs. least squares (LS) [3, 9] and ℓ∞ [50] solvers.

Measurements are generated by the noise model (5.1) and NRMSE values are averaged over 10 trials.

n = 100 n = 200
σ SDR LS ℓ∞ SDR LS ℓ∞

0.01 0.0209 0.0417 0.0619 0.0178 0.0525 0.0194
0.05 0.0752 1.1947 0.3742 0.0368 1.0760 0.7448
0.1 0.1936 1.2704 1.0247 0.1453 1.3870 0.8976

p SDR LS ℓ∞ SDR LS ℓ∞
0.01 0.1049 1.1584 1.1350 0.1189 1.1063 0.8326
0.02 0.1481 1.1994 1.0876 0.1333 1.1226 1.0825
0.05 0.2458 1.2248 1.0689 0.2064 1.3848 1.1163
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Fig. 5.1. A sample solution, with n = 100, p = 0, σ = 0.05, demonstrating the collapsing
behavior of the least squares (LS) solution. The line segments represent the error incurred by the
SDR solution compared to the ground truth.

Table 5.2
NRMSE (5.2) results of the SDR solver (2.6) (denoted by ‘Full’) and the distributed SDR solver

(denoted by ‘Dist.’) (see §3 for the distributed SDR).

p = 0.01 p = 0.02 p = 0.05
σ Full Dist. Full Dist. Full Dist.

0.01 0.1089 0.1175 0.1255 0.1342 0.1957 0.1852
0.02 0.1174 0.1207 0.1381 0.1364 0.2064 0.1960
0.05 0.1426 0.1385 0.1490 0.1523 0.2137 0.2058

We also compare the performance of our distributed algorithm to that of the
SDR applied to the whole graph for n = 200. For the distributed algorithm, we fix
a maximum patch size of Nmax = 70 and divide the whole graph into 8 patches.
The NRMSE results, summarized in Table 5.2, demonstrate that the accuracy of the
distributed approach is comparable to that of the non-distributed approach, perhaps
even slightly better for higher levels of noise.

5.2. Real Data Experiments. We tested our location estimation algorithm on
three sets of real images with different sizes. To solve the SDR (2.6), we use the SDPT3
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package from [59] for small data sets (for its super-linear convergence with respect
to the level of accuracy), and for the large data set, we use ADM (Algorithm 1).
To construct a sparse 3D structure in our experiments, we use the parallel bundle
adjustment (PBA) algorithm of [67]. We also use the patch-based multi-view stereo
(PMVS) algorithm of [20] to evaluate a dense 3D reconstruction. We perform our
computations on multiple workstations with Intel(R) Xeon(R) X7542 CPUs, each
with 6 cores, running at 2.67 GHz. In order to directly compare the accuracy of the
location estimation by SDR to that of least squares (LS) [3, 9] and ℓ∞ [50] solvers,
we feed all three solvers with the orientation estimates produced by our iterative
solver (§4.1) and the robust subspace estimates (§4.2), that produced more accurate
estimates for all data sets.

5.3. Small Data Sets. We first provide our results for the small Fountain-P11
and HerzJesu-P25 data sets of [55], which include 11 and 25 images, respectively. For
camera calibration and performance evaluation, we use the focal lengths and ground
truth locations provided with the data. For these small data sets, we do not require
a distributed approach. For both data sets, the SDR (2.6) estimates the camera
locations very accurately in less than a second and the solutions of (2.6) have rank
equal to 1, demonstrating the tightness of our relaxation. We also run the PBA
algorithm, resulting in an average reprojection error of 0.17 pixels for the Fountain-
P11 data and 0.43 pixels for the HerzJesu-P25 data, to construct the 3D structures
given in Figure 5.2. We summarize and compare our end results to previous works5

in Table 5.3.

Table 5.3
Location estimation errors for the Fountain-P11 and the HerzJesu-P25 data sets.

Error (in meters)
Method Fountain-P11 HerzJesu-P25
SDR (2.6) 0.0002 0.0053
LS [3, 9] 0.0048 0.0054
ℓ∞ [50] 0.0064 0.0253
Linear method of [51] 0.1317 0.2538
Bundler [53] 0.0072 0.0308

5.4. Large Data Set. The next set of images is the larger Notre-Dame Cathe-
dral set from [52], composed of 715 images. This is an irregular collection of images
and hence estimating the camera locations for all of these images (or a large subset) is
challenging. Even for orientation estimation on this data set, previous works usually
discard a large subset (see, e.g. [26, 3]). In our experiment, we use the focal lengths
and radial distortion corrections from [52]. We can accurately and efficiently estimate
the camera locations for a subset of size 637. This reduction in size is due to our
rotation estimation step (§4.1) (we can robustly recover rotations for a subset of size
687) and due to the node removals during the distributed algorithm (§3). We par-
tition the whole graph into patches of sizes smaller than 150 (§3.1), getting 20 rigid
patches in less than a minute (where, extraction of parallel rigid components takes a
total of 42 secs). The related SDRs are solved in parallel, in about 21 mins. Finally,
the stitching of the patches (§3.2 and §3.3) takes 57 secs.

We assess the performance of our algorithm in terms of the NRMSE measure (5.2),
using the location estimates of [52] as the ground truth. We first get an NRMSE of

5Results of [51] are cited from [3]
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(a) (b)

(c) (d)

Fig. 5.2. (a) Sparse 3D structure and 11 estimated camera locations (in blue) for the Fountain-
P11 data (b) Sample images and snapshots of the dense 3D reconstruction (c) Sparse 3D structure
and 25 estimated camera locations (in blue) for the HerzJesu-P25 data (d) Sample images and
snapshots of the dense 3D reconstruction

0.104, and then apply PBA once (with an initial 3D structure of about 204K points)
to get an NRMSE of 0.054, and an average reprojection error of 0.43 pixels, in less
than 2 mins. The resulting 3D structure is also provided in Figure 5.3.

We also compare our results to those of the LS and ℓ∞ solvers applied to the
whole graph and in a distributed fashion. In both cases, the LS and ℓ∞ solvers resulted
in very large errors6 (also, because of the very low quality of initial 3D structures for
these solutions, PBA produced no improvements). The NRMSE results are summa-
rized in Table 5.4. Also, a snapshot of the location estimates for our distributed
algorithm and the LS solver, demonstrating the collapsing LS solution, are provided
in Figure 5.4.

6. Conclusion and Future Work. We formulated a semidefinite relaxation for
estimating positions from pairwise line measurements, and applied it to the problem of
camera location estimation in structure from motion. We elucidated the importance
of parallel rigidity in determining uniqueness and well-posedness of the estimation
problem and provided rigorous analysis for stability of our SDR. Also, we introduced
an alternating direction method to solve the SDR and an efficient, distributed version
of our SDR designed to handle very large sets of input images.

6We note that (a slightly modified version of) the least squares solver in [3] achieves reasonable
accuracy for the Notre-Dame data set when a significant number of the images are discarded.
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(a) (b)

Fig. 5.3. (a) Sparse 3D structure of ∼204K points and (some of) 637 estimated camera locations
(in blue) for the Notre-Dame data (b) Sample images and snapshots of the dense 3D reconstruction
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Fig. 5.4. 637 camera locations of the Notre-Dame data set (with 715 images) estimated using
the distributed SDR. The solution of [52] is taken as the ground truth. The collapsing solution of
the least squares (LS) solver of [3, 9] is also provided.

In the context of structure from motion, our algorithm can be used to efficiently
and stably obtain the locations and orientations of the corresponding cameras, i.e. the
camera motion, in order to produce a high-quality initial point for reprojection error
minimization algorithms, as demonstrated by our experiments on real image sets. We
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Table 5.4
Location estimation errors for the Notre-Dame data.

Method NRMSE

Distributed SDR 0.104
Distributed SDR (followed by PBA) 0.054
Distributed LS [3, 9] 1.087
LS [3, 9] 1.392
Distributed ℓ∞ [50] 1.125
ℓ∞ [50] 1.273

also note that, for collections of images taken from an approximately planar surface
(which is usually the case for images of large 3D structures taken by visitors), the
pairwise lines can also be well-approximated to lie within the same plane, and hence
the SDR can take this prior knowledge to allow a more efficient (and perhaps, more
accurate) computation of camera locations rendered by the reduction of the problem
from 3D to 2D. Also in SfM, since the sign information (i.e. the directions) of the
pairwise lines between camera locations can be estimated, an optimization framework
that uses this additional information is a topic for further study (see, e.g., [46, 57]).

As future work, we plan to investigate and explain the tightness of the SDR, i.e.
to characterize the conditions under which it returns a rank-1 matrix as its solution.
Also, we plan to apply the SDR to the problem of sensor network localization with
bearing information.

Appendix A. Parallel Rigidity. In this appendix, we review fundamental
concepts and results in parallel rigidity theory (also see [17, 18, 65, 64] and the ref-
erences therein). We begin with the concept of point formation. A d-dimensional

point formation Fp at p = [ pT
1 pT

2 ... pT
n ]

T
is a set of n points {p1,p2, . . . ,pn} ⊆ R

d

(assumed to be separate, i.e. pi 6= pj), together with a set E of links, satisfying
E ⊆ {(i, j) : i 6= j, i, j ∈ {1, 2, . . . , n}}. For the camera location estimation problem,
we think of the points pi as representing the camera locations and the pairs (i, j) ∈ E
are used to denote the camera pairs, between which there is a pairwise measurement.
Note that each formation Fp uniquely determines a graph GFp

..= (V,E), having the
vertex set V = {1, 2, . . . , n} and the edge set E of Fp, and also a measurement func-
tion ΓFp

, whose value at (i, j) ∈ E is the measured quantity between pi and pj (to
keep the notation simple in §2.1, by abuse of notation, we refer to the set {Γij}(i,j)∈Et

of measurements Γij
..= ΓFp

(i, j), defined on Et of Gt = (Vt, Et), as the formation).
In order to represent the pairwise line measurements, we use a measurement func-
tion given by ΓFp

(i, j) = (pi − pj)(pi − pj)
T /‖pi − pj‖22. In the literature (see,

e.g., [17, 18]), the pairwise measurements are considered only in terms of the direction
constraints they imply. These constraints are used to define parallel point formations
Fq of a formation Fp (explained below), and are homogeneous equations given by

(pi − pj)
T
N1

(qi − qj) = 0, (i, j) ∈ E
...

(pi − pj)
T
Nd−1

(qi − qj) = 0, (i, j) ∈ E

where (pi − pj)Ni , for i = 1, . . . , d − 1, are (linearly independent) vectors that span
the subspace orthogonal to pi − pj, and therefore, uniquely define the line between
pi and pj . We use the measurement function ΓFp

to compactly represent these equa-
tions by (Id − ΓFp

(i, j))(qi − qj) = 0, (i, j) ∈ E. Also, note that, for the camera
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location estimation problem, ΓFp
encapsulates the maximal information we can ex-

tract from the epipolar constraints, e.g., we cannot estimate the signed pairwise lines
(pi − pj)/‖pi − pj‖2 based solely on the epipolar constraints (see §4 for further de-
tails).

Two point sets {p1,p2, . . . ,pn} and {q1,q2, . . . ,qn} in R
d are said to be congru-

ent if there exist x ∈ R
d and c ∈ R, such that cpi + x = qi, for all i ∈ {1, 2, . . . , n},

i.e. congruent point sets can be obtained from one another by translation, scaling or
negation. A point formation Fp that is uniquely determined, up to congruence, by its
graph GFp

and its measurement function ΓFp
is called globally parallel rigid.

For a given formation Fp in R
d, a parallel point formation Fq is a point formation

(with the same graph GFp
= (V,E)) in which pi−pj is parallel to qi−qj , for all (i, j)

in E (i.e., ΓFp
(i, j) = ΓFq

(i, j) on E). It is clear that congruence transformations, i.e.
translations, scalings and negation, produce trivial parallel point formations of the
original point formation, any other parallel formation is termed non-trivial. A point
formation that does not admit any non-trivial parallel point formations is called a
parallel rigid point formation, otherwise it is called flexible (see Figure 2.1 for a sim-
ple example). We note that, in contrast to the case of classical rigidity involving
distance measurements, equivalence of global parallel rigidity and (simple) parallel
rigidity turns out to be a rephrasing of definitions (also see [65, 32, 35, 17]).

The concept of parallel point formations allows us to obtain a linear algebraic
characterization: Given a point formation Fp with the graph GFp

= (V,E), Fq is a
parallel formation if and only if its point set satisfies

(

Id − ΓFp
(i, j)

)

(qi − qj) = 0 , (i, j) ∈ E (A.1)

which can be rewritten in matrix form as

RFp
q = 0 (A.2)

where, RFp
∈ R

d|E|×d|V | is termed the parallel rigidity matrix of the formation Fp

(see, e.g. [17], for a slightly different, but equivalent formulation). Here, point sets
of the trivial parallel formations of Fp span a d+ 1 dimensional subspace of the null
space of RFp

. As a result, Fp is parallel rigid if and only if dim
(

N
(

RFp

))

= d + 1,

i.e. rank
(

RFp

)

= d|V | − (d+1) (note that, RT
Fp
RFp

is the matrix L of the linear cost

function in (2.6) with noiseless measurements).
Now, we consider the generic properties of formations. A point p in R

dn (or
the point set {p1,p2, . . . ,pn} in R

d) is said to be generic if its dn coordinates are
algebraically independent, i.e. there is no non-zero polynomial ψ on R

dn, with integer
coefficients, satisfying ψ(p) = 0 (for a more general definition see [25]). The set of
generic points is an open dense subset of Rdn. A graph G = (V,E) is called generically
parallel rigid (in R

d) if, for a generic point p ∈ R
d|V |, the formation Fp having the

underlying graph G is parallel rigid (in fact, if G of Fp is generically parallel rigid,
then Fp is parallel rigid for all generic p). Also, a formation Fp is called a generically
parallel rigid formation (in R

d) if its underlying graph is generically parallel rigid (in
R

d). Generic parallel rigidity is a combinatorial property of the underlying graph as
characterized by Theorem 2.1 (also see [17, 18, 35, 65, 64, 32]). Combinatorial con-
ditions of Theorem 2.1 also translate to efficient combinatorial algorithms for generic
parallel rigidity testing (see, e.g., [33]).

There is also a linear algebraic characterization of generically parallel rigid for-
mations using the notion of generic rank: The generic rank of the parallel rigidity
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matrix R is given by GenericRank(R) = max{rank(RFp
), p ∈ R

d|V |}, which clearly
depends only on the underlying graph. A formation Fp (and hence its underlying
graph G = (V,E)) is generically parallel rigid in R

d if and only if GenericRank(R) =
d|V |−(d+1). Also, the set of points with maximal rank, i.e. {p ∈ R

d|V | : rank(RFp
) =

GenericRank(R)}, is an open dense subset of Rd|V |. As a result, similar to the random-
ized algorithm of [30] for (classical) generic rigidity testing, we propose the following
randomized test for generic parallel rigidity:

1. Given a formation on the graph G = (V,E), randomly sample p ∈ R
d|V | from

an absolutely continuous (w.r.t. Lebesgue measure) probability measure (e.g., let p be

sampled from i.i.d. Gaussian distribution) and centralize p such that
∑|V |

i=1 pi = 0d.
2. Construct an orthogonal basis for the trivial null-space of RFp

: For ui =
1|V | ⊗ ei (ei denoting the i’th canonical basis vector in R

d), such a basis is given by
{u1,u2, . . . ,ud,p}.

3. To check if rank(RFp
) = d|V |−(d+1) or not, compute the smallest eigenvalue

λ1(WFp
) ofWFp

= RT
Fp
RFp

+UpU
T
p , where Up = [ u1 u2 ... ud p ]. If λ1(WFp

) > ǫ (where

ǫ is a small positive constant set to prevent numerical precision errors), declare G to
be generically parallel rigid, otherwise declare G to be flexible.

This randomized test correctly decides (up to precision errors) in the generic
rigidity of G with probability 1 (i.e., up to precision errors, our procedure can produce
a false negative with probability 0, and does not produce a false positive). Also
note that, λ1(WFp

) = λdn(WFp
) + λ1(WFp

− λdn(WFp
)Idn), and since WFp

is positive
semidefinite, λdn(WFp

) and λ1(WFp
−λdn(WFp

)Idn) are largest magnitude eigenvalues,
which can be computed (e.g., by the power method7) in O(m) time. For fixed d,
this yields a time complexity of O(m) (dominated by the complexity of step 2) for
the randomized test (compare to the time complexity O(n2) of the pebble game
algorithm, which is, however, an integer algorithm, i.e. is free of numerical errors).
Also considering its simplicity, we choose to use this test for testing parallel rigidity.

Appendix B. Proof of Theorem 2.3. Let c̃ denote the suboptimal constant
for (2.7) given by c̃ = (Tr(T ∗))−1. We first consider the decomposition of c̃T ∗ in
terms of the null space S of L0 and its complement S̄, that is we let

c̃T ∗ = X + Y + Z (B.1)

where X ∈ S ⊗S, Y ∈ S̄ ⊗ S̄ and Z ∈ (S̄ ⊗ S)⊕ (S ⊗ S̄) 8. Using this decomposition,
we can bound δ(T ∗, T0) in terms of Tr(Y ):

Lemma B.1.

δ(T ∗, T0) ≤ ‖c̃T ∗ − T0‖F ≤
√

2Tr(Y ) (B.2)

Proof. First we note that the orthogonal decomposition (B.1) and T0 ∈ S ⊗ S
implies

δ2(T ∗, T0) ≤ ‖c̃T ∗ − T0‖2F = ‖X − T0‖2F + ‖Y ‖2F + ‖Z‖2F (B.3)

Here, since the formation is parallel rigid, we get dim(S) = d+1, where S is spanned
by the d eigenvectors of H (corresponding to its only nonzero eigenvalue n) and t0.

7Although every iteration of the power method has time complexity O(m), the number of itera-
tions is greater than O(1) as it depends on the spectral gap of WFp

.
8For two subspaces U and V , the tensor product U ⊗ V denotes the space of matrices spanned

by rank-1 matrices {uvT : u ∈ U , v ∈ V}.
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Since Tr(c̃T ∗H) = 0, we get X = at0(t0)T (with 1 ≥ a = c̃(t0)TT ∗t0 ≥ 0). Also,
since Tr(c̃T ∗) = 1 and Tr(Z) = 0, we get

Tr(Y ) = 1− Tr(X) = 1− a = Tr((1 − a)t0(t0)T ) = Tr(T0 −X) = ‖X − T0‖F (B.4)

We now consider the spectral decomposition of L0 given by L0 = U0Σ0U
T
0 , where U0 =

[ v1 v2 ... vd t0 sd+2 ... sdn ], for vi denoting the d eigenvectors of H and {sd+2, . . . , sdn}
is an arbitrary (orthonormal) basis for S̄. The representations of X,Y, Z in this basis,
given by X̃ = UT

0 XU0, Ỹ = UT
0 Y U0 and Z̃ = UT

0 ZU0, are as follows: X̃ has a single
nonzero entry X̃d+1,d+1 = a, Ỹ is supported on its lower (dn− (d+1))× (dn− (d+1))

block, Z̃ is supported on its (d+ 1)’th row and column except the first d+ 1 entries.
Hence we get

c̃UT
0 T

∗U0 =





0d×d 0d×(dn−d)

a z̃T

0(dn−d)×d z̃ Ỹ



 � 0 (B.5)

where z̃ denotes the nonzero entries of Z̃. By a Schur complement argument, (B.5)
implies

Ỹ − z̃z̃T

1− Tr(Ỹ )
� 0 ⇒ 2Tr(Y )(1 − Tr(Y )) ≥ 2‖z̃‖22 = ‖Z̃‖2F = ‖Z‖2F (B.6)

where we use a = 1−Tr(Y ) and Tr(Ỹ ) = Tr(Y ). Combining (B.3), (B.4), (B.6) with
the simple fact ‖Y ‖F ≤ Tr(Y ), we get the assertion of Lemma B.1.
The next step is to bound Tr(Y ). We provide the result in Lemma B.2, where,
LG denotes the Laplacian of the graph Gt and the parameter κ is given by κ =
(min(i,j)∈Et

‖t0i − t0j‖22)−1.

Lemma B.2.

Tr(Y ) ≤ α1ǫ‖c̃T ∗ − T0‖F + α2ǫ
2, (B.7)

where α1 =
√
2m

λd+2(L0) and α2 = (κ
√
d‖LG‖F

m + 1) λn(LG)
λd+2(L0) .

Proof. We start with a (loose) bound on Tr(Y ), given by

Tr(L0(c̃T ∗)) = Tr(L0Y ) ≥ Tr(λd+2(L
0)Y ) = λd+2(L

0)Tr(Y ) (B.8)

Now, in order to bound Tr(L0(c̃T ∗)), we consider the following partitioning

Tr(L0(c̃T ∗)) = Tr((L0 − L)(c̃T ∗)) + c̃Tr(LT ∗) (B.9a)

= Tr((L0 − L)(c̃T ∗ − T0))− Tr(LT0) + c̃Tr(LT ∗) (B.9b)

≤ Tr((L0 − L)(c̃T ∗ − T0)) + (c̃κ− 1)Tr(LT0) (B.9c)

where L is given by (2.4), and (B.9b) follows from Tr(L0T0) = 0 and (B.9c) holds by
the feasibility of κT0 and the optimality of T ∗ for the SDR. Now, we use the noise
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model to bound the terms in (B.9c). For the first term, we get

Tr((L0 − L)(c̃T ∗ − T0)) ≤ ‖L0 − L‖F‖c̃T ∗ − T0‖F (B.10a)

≤
∑

i∼j

‖(γ0ij + ǫij)(γ
0
ij + ǫij)

T − γ0ij(γ0ij)T ‖F ‖c̃T ∗ − T0‖F (B.10b)

=
∑

i∼j

(

‖ǫij‖42 + 4‖ǫij‖22ǫTijγ0ij + 2(ǫTijγ
0
ij)

2 + 2‖ǫij‖22
)

1
2 ‖c̃T ∗ − T0‖F (B.10c)

=
∑

i∼j

(

2‖ǫij‖22 − ‖ǫij‖42/2
)

1
2 ‖c̃T ∗ − T0‖F (B.10d)

≤ ǫ
√
2m‖c̃T ∗ − T0‖F (B.10e)

where (B.10d) follows from ‖γij‖22 = ‖γ0ij + ǫij‖22 = 1 + 2ǫTijγ
0
ij + ‖ǫij‖22 = 1. For the

second term in (B.9c), we first have

Tr(LT0) = Tr((L − L0)T0) (B.11a)

=
∑

i∼j

Tr((γ0ij(γ
0
ij)

T − γijγTij)γ0ij(γ0ij)T )‖t0i − t0j‖22 (B.11b)

= −
∑

i∼j

((ǫTijγ
0
ij)

2 + 2ǫTijγ
0
ij)‖t0i − t0j‖22 (B.11c)

=
∑

i∼j

(‖ǫij‖22 −
‖ǫij‖42

4
)‖t0i − t0j‖22 (B.11d)

≤ ǫ2λn(LG) (B.11e)

In order to bound the multiplier c̃κ− 1, we use the feasibility of T ∗

m ≤
∑

i∼j

Tr(CijT ∗) = Tr((LG ⊗ Id)T ∗) ≤
√
d‖LG‖F Tr(T ∗) (B.12a)

⇒ c̃κ− 1 ≤ κ

Tr(T ∗)
+ 1 ≤ κ

√
d‖LG‖F
m

+ 1 (B.12b)

Finally, combining (B.8), (B.9c), (B.10e), (B.11e) and (B.12b), we obtain the
claim (B.7) of Lemma B.2.

We now use Lemmas B.1 and B.2 to obtain our SDR Stability result:
Proof. (Proof of Theorem 2.3) The (second) inequality in (B.2) and (B.7) provide

a quadratic inequality for ‖c̃T ∗ − T0‖F , given by

‖c̃T ∗ − T0‖2F − 2ǫα1‖c̃T ∗ − T0‖F − 2ǫ2α2 ≤ 0 (B.13)

Examining the roots of this polynomial immediately yields

δ(T ∗, T0) ≤ ‖c̃T ∗ − T0‖F ≤ ǫ
[

α1 +
(

α2
1 + 2α2

)
1
2

]

(B.14)

which was to be shown.

Appendix C. Construction of ADM Framework. We first introduce some
notation: 1m and 0m denote all-ones and all-zeros vectors of dimension m. Sm×m

denotes the space of m×m symmetric matrices. For X ∈ R
m×m, vec(X) is the vector
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in R
m2

that contains the columns of X , stacked each on top of the next in the order
that they appear in the matrix, and mat(x) is the matrixX such that x = vec(X). We
also use 0 for the all-zeros matrix when its dimensions are obvious from the context.

In order to rewrite the SDR in standard form, consider the matrix variable X
and the (non-negative) slack variable ν ∈ R

m satisfying

X =

[

T 0
0 Diag(ν)

]

, (C.1a)

1 = Tr(CijT )− νij = Tr(A
(1)
ij X) , (i, j) ∈ Et (C.1b)

where A
(1)
ij is the matrix corresponding to the linear functional X → Tr(CijT )− νij .

Let M denote the number of (a priori) zero entries of X , i.e. M = 2dnm+m(m− 1).

We can also replace (C.1a) by a set of linear equalities in X given by Tr(A
(2)
k X) = 0,

for k = 1, . . . ,M/2. Hence, for X = [ T ⋆
⋆ ⋆ ], we get

{

T � 0
Tr(CijT ) ≥ 1, (i, j) ∈ Et

}

⇐⇒











X � 0

Tr(A
(1)
ij X) = 1, (i, j) ∈ Et

Tr(A
(2)
k X) = 0, k = 1, . . . ,M/2











Now, we can rewrite (2.6) in standard form (ignoring the equality constraint Tr(HT ) =
0, for now)

minimize
X

Tr(WX) (C.2a)

subject to A(X) = b (C.2b)

X � 0 (C.2c)

whereW = [ L 0
0 0 ] (for L given by (2.4)), b =

[

1m
0M/2

]

and the linear operatorA satisfies

A(X) =
[

A(1)(X)

A(2)(X)

]

for A(1) and A(2) given by

A(1) : Sdn+m×dn+m → R
m ; A(1)(X) = [Tr(A

(1)
1 X) . . .Tr(A

(1)
m X)]

T (C.3a)

A(2) : Sdn+m×dn+m → R
M/2 ; A(2)(X) = [Tr(A

(2)
1 X) . . .Tr(A

(2)
M/2X)]T (C.3b)

Here, we let A(i) (i = 1, 2) denote the matrices satisfying A(i)(X) = A(i)vec(X) and,
hence, are given by

A(1) ..=
[

vec(A
(1)
1 ) . . . vec(A

(1)
m )

]T

∈ R
m×(dn+m)2 (C.4a)

A(2) ..=
[

vec(A
(2)
1 ) . . . vec(A

(2)
M/2)

]T

∈ R
M/2×(dn+m)2 (C.4b)

We also let A ..=
[

A(1)

A(2)

]

satisfying A(X) = Avec(X). Note that A(1)(A(2))T = 0 and

A(2)(A(2))T = IM/2 (after scaling A
(2)
k ’s). Now, the dual of (C.2) is

minimize
y,S

− bTy (C.5a)

subject to A∗(y) + S =W (C.5b)

S � 0 (C.5c)
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where the operator A∗ : Rm+M/2 → Sdn+m×dn+m is the adjoint of A and is defined
by A∗(y) ..= mat(ATy). Hence, the augmented Lagrangian function for the dual
SDP (C.5) is given by

Lµ(y, S,X) = −bTy +Tr(X(A∗(y) + S −W )) +
µ

2
‖A∗(y) + S −W‖2F (C.6)

where X ∈ Sdn+m×dn+m and µ > 0 is a penalty parameter. Here, we can obtain an al-
ternating direction method (ADM) to minimize Lµ(y, S,X) with respect to y, S,X in
an alternating fashion: Starting from an initial point (y0, S0, X0), ADM sequentially
solves the following problems at each iteration [63]

yk+1 ..= argmin
y

Lµ(y, Sk, Xk) (C.7a)

Sk+1 ..= argmin
S�0

Lµ(yk+1, S,Xk) (C.7b)

and finally updates (the dual Lagrange multiplier) X by

Xk+1 ..= Xk + µ(A∗(yk+1) + Sk+1 −W ) (C.8)

We solve (C.7a) by setting ∇yLµ = 0, and obtain

yk+1 = − (AA∗)−1

(

1

µ

(

A(Xk)− b
)

+A
(

Sk −W
)

)

(C.9)

where the operatorAA∗ satisfiesAA∗(y) =
[

A(1)(A(1))T 0
0 IM/2

]

y. Letting B : Sdn+m×dn+m →
R

m denote the linear operator

B(X) = [Tr(C1T ) . . .Tr(CmT )]T , for X =

[

T ⋆
⋆ ⋆

]

(C.10)

where Ck is the constraint matrix of the k’th edge in Et (given by (2.5)), we get
A(1)(A(1))∗ = BB∗+I (and hence, A(1)(A(1))T = BBT+Im, where B satisfies B(X) =
Bvec(X)), making AA∗ invertible. Also, by rearranging the terms of Lµ(yk+1, S,Xk),
(C.7b) becomes equivalent to

Sk+1 = argmin
S�0

∥

∥S −Θk+1
∥

∥

F
(C.11)

where Θk+1 ..= W −A∗(yk+1)− 1
µX

k. Hence, we get the solution Sk+1 = U+Σ+U
T
+

where

Θk+1 =
[

U+ U−
]

[

Σ+ 0
0 Σ−

] [

UT
+

UT
−

]

(C.12)

is the spectral decomposition of Θk+1, and Σ+ denotes the diagonal matrix of positive
eigenvalues of Θk+1. Lastly, using (C.8), Xk+1 is given by

Xk+1 = −µU−Σ−U
T
− (C.13)

When implemented as is, the y, S and X updates of each iteration of ADM are
extremely costly. This computational cost stems from the increase in the dimensions of
the variables involved (after stating the primal and dual SDPs in standard form), and
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manifests itself via the computation of the inverse of AA∗, the y update (C.9) and the
decomposition (C.12). However, considering the convergence analysis of ADM given
in [63], since A is full-rank and the Slater condition (clearly) holds for the SDP (C.2)
(i.e., there exists X̂ ≻ 0 such that A(X̂) = b), ADM converges to a primal-dual
solution (X∗,y∗, S∗) of (C.2) and (C.5) irrespective of the initial point (X0,y0, S0).
Here, we make the following crucial observation: Starting from X0 and S0 having the
form

X0 =

[

T 0 0
0 Diag(ν0)

]

, S0 =

[

R0 0
0 Diag(η0)

]

(C.14)

i.e., satisfying A(2)(X0) = A(2)(S0) = 0M/2, y
k becomes essentially m dimensional

(i.e., yk
i = 0 for i = m + 1, . . . ,m + M/2) and Xk, Sk preserve their form (i.e.

A(2)(Xk) = A(2)(Sk) = 0M/2), for each k ≥ 1. To see this, consider Xk and Sk

satisfying (C.14) for some T k � 0, νk ≥ 0, and Rk � 0, ηk. Then, by (C.9), we have

yk+1 = −
[

(

A(1)(A(1))T
)−1

0
0 IM/2

](

1

µ

[

A(1)(Xk)− 1m

0M/2

]

+

[

A(1)
(

Sk −W
)

0M/2

])

(C.15a)

= −
[

(

B̃B̃∗ + I
)−1 (

1
µ (B̃(T k)− νk − 1m) + B̃(Rk − L)− ηk

)

0M/2

]

(C.15b)

=

[

zk+1

0M/2

]

(C.15c)

where, B̃ is the (trivial) restriction of B to Sdn×dn, i.e. B̃(T ) = B(X) for X = [ T ⋆
⋆ ⋆ ].

For Θk+1 =W −A∗(yk+1)− 1
µX

k, we obtain

Θk+1 =

[

L 0
0 0

]

−mat
(

(A(1))T zk+1
)

− 1

µ

[

T k 0
0 Diag(νk)

]

(C.16a)

=

[

L− 1
µT

k − B̃∗(zk+1) 0

0 Diag(zk+1 − 1
µν

k)

]

(C.16b)

Here, we let F k+1 = [ V+ V− ]
[

D+ 0
0 D−

]

[

V T
+

V T
−

]

be the spectral decomposition of F k+1 ..=

L− 1
µT

k−B̃∗(zk+1), where D+ denotes the diagonal matrix of positive eigenvalues of

F k+1. Then, using (C.11), (C.12) and (C.13), the Sk+1 and Xk+1 updates are given
by

Sk+1 =

[

V+D+V
T
+ 0

0 Diag
(

max
{

zk+1 − 1
µν

k,0m

})

]

(C.17a)

Xk+1 =

[

−µV−D−V T
− 0

0 −µDiag
(

min
{

zk+1 − 1
µν

k,0m

})

]

(C.17b)

As a result, we can rewrite the updates (C.7a), (C.7b) and (C.8) (or equivalently,
(C.9), (C.11) and (C.13)), in terms of the new variables z, ν, η ∈ R

m and R, T ∈
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R
dn×dn, as

zk+1 ..= −
(

B̃B̃∗ + I
)−1

(

1

µ
(B̃(T k)− νk − 1m) + B̃(Rk − L)− ηk

)

, (C.18a)

Rk+1 ..= V+D+V
T
+ , (C.18b)

ηk+1 ..= max

{

zk+1 − 1

µ
νk,0m

}

, (C.18c)

T k+1 ..= −µV−D−V
T
− , (C.18d)

νk+1 ..= −µmin

{

zk+1 − 1

µ
νk,0m

}

. (C.18e)

Hence, we are able to overcome the excess computational cost induced by rewrit-
ing (2.6) in standard form and maintain convergence. Also, the linear constraint
Tr(HT ) = 0 of (2.6) can be trivially incorporated into the ADM framework in the fol-

lowing way: Let B̃ ∈ R
m×d2n2

denote the matrix corresponding to the linear operator
B̃, i.e. B̃(T ) = B̃vec(T ), and let B̃l denote the l’th row of B̃ given by B̃l = vec(Cl)T ,
for l ∈ Et. Then, since B̃∗(zk+1) = mat(B̃T zk+1) =

∑

l z
k+1
l Cl, we get

Tr(HF k+1) = Tr(HL)− 1

µ
Tr(HT k)−

m
∑

l=1

zk+1
l Tr(HCl) (C.19a)

= − 1

µ
Tr(HT k) (C.19b)

Here, if we have Tr(HT k) = 0, we get Tr(HF k+1) = 0, which, together with T k � 0,
implies that the eigenvectors of H are in the nullspace of F k+1. Hence, we obtain
Tr(HT k+1) = 0. As a result, if we choose T 0 such that Tr(HT 0) = 0, by induction
we get Tr(HT k) = 0, ∀k, hence for the solution T ∗ of ADM (as requested in (2.6)).

Moreover, we now show that the operator B̃B̃∗ has a simple structure allowing
efficient computation of the inverse (B̃B̃∗ + I)−1.

Lemma C.1. Let B̃ ∈ R
m×d2n2

denote the matrix corresponding to the linear
operator B̃, i.e. B̃(T ) = B̃vec(T ). Then the inverse (B̃B̃∗ + I)−1 is given by

(

B̃B̃∗ + I
)−1

(z) =
(

B̃B̃T + Im

)−1

z (C.20a)

=

(

VB̃ (DB̃ + In)
−1
V T
B̃

+
1

2d+ 1

(

Im − VB̃V T
B̃

)

)

z (C.20b)

where VB̃ and DB̃ denote the matrix of eigenvectors and the diagonal matrix of eigen-

values of B̃B̃T , corresponding to its n largest eigenvalues.
Proof. Let k = (ik, jk) denote the k’th edge in Et and B̃k denote the k’th row of

B̃ given by B̃k = vec(Ck)T , where Ck is given by (2.5). Then, the (k, l)’th entry of
B̃B̃T is given by

B̃B̃T
k,l =











0 , {(ik, il), (ik, jl), (jk, il), (jk, jl)} ∩ Et = ∅
d , {(ik, il), (ik, jl), (jk, il), (jk, jl)} ∩ Et 6= ∅ and k 6= l

4d , k = l

(C.21)

i.e., B̃B̃T = dMT
GMG + 2dIm, where MG ∈ R

n×m is the (vertex-edge) incidence
matrix of Gt (see, e.g., [10]). Hence, the spectral decomposition of B̃B̃T is given by

B̃B̃T =
[

VB̃ UB̃

]

[

DB̃ 0
0 2dIm−n

] [

V T
B̃
UT
B̃

]

(C.22)
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which clearly implies the claim of the lemma.
As a result, in order to compute (B̃B̃∗ + I)−1, we need to compute only the n

largest eigenvalues and the corresponding eigenvectors of the sparse matrix B̃B̃T .

Appendix D. Proof of Proposition 3.1. We prove the result in two steps:
First we prove exact recovery of patch signs by (3.2) and EVM, then we prove exact
recovery of global locations by (3.3) (given the noiseless signs).
Consider a pair of patches Pi and Pj , (i, j) ∈ EP . Using (3.1), we obtain (where, we
tamely assume |ci| > 0, ∀i ∈ VP , and tk = tl ⇐⇒ k = l, ∀k, l ∈ ⋃

Pi)

tik =
cj

ci
tjk +

tj − ti

ci
, k ∈ Pi ∩ Pj (D.1)

Observe that, (D.1) implies, cij = cj/ci and tij = (tj − ti)/ci comprise a minimizer
of the pairwise patch registration step (3.2), with a cost equal to 0. Hence, every
minimizer of (3.2) has a cost equal to 0, i.e. is a solution of the linear equations

tik = cijtjk + tij , k ∈ Pi ∩ Pj (D.2)

However, since |Pi ∩ Pj | ≥ 2, cij can be uniquely determined by simply selecting 2
equations from (D.2), subtracting one equation from the other (to eliminate tij) and
solving for cij (note that, since we assume tk 6= tl, for k 6= l, and |ci| > 0, ∀i ∈ VP ,
we get tik 6= til , for k 6= l, which allows us to solve for cij). Also, tij is uniquely
determined by substituting the solution for cij in one of the equations in (D.2). As
a result, cij = cj/ci and tij = (tj − ti)/ci is the unique solution of (3.2), for each
(i, j) ∈ EP , which yields the (unique) pairwise sign solution zij = sign(cj/ci) = zizj

(i.e., (3.2) recovers the pairwise signs exactly for all (i, j) ∈ EP ). Given the noiseless
pairwise signs {zij}(i,j)∈EP

defined on the connected graph GP , EVM [16] recovers
the exact patch signs zi (up to a global sign z), i.e. we obtain ẑi = zzi (for arbitrary
z ∈ {−1,+1}).
Now, we define β ..= (mini |ci|)−1, xk

..= zβtk, s
i ..= β|ci| and ui ..= zβti, for each

i ∈ VP and k ∈ ⋃

Pi. Here, {xk, s
i,ui} satisfy

xk − (siẑitik + ui) = zβ(tk − (citik + ti)) = 0, ∀ k ∈ Pi, i ∈ VP (D.3)

where, the last equality follows from (3.1). We note that (D.3), together with the
feasibility si ≥ 1, implies that {xk, s

i,ui}k∈Pi,i∈VP is a minimizer of (3.3), with a
cost equal to 0. We now show that, for any minimizer {yk, r

i,wi}k∈Pi,i∈VP of (3.3),
{yk}k∈⋃

Pi
is congruent {xk}k∈⋃

Pi
, which is itself congruent to {tk}k∈⋃

Pi
. Since

{yk, r
i,wi}k∈Pi,i∈VP (with ri ≥ 1, ∀i ∈ VP ) must have the cost value 0, for each

i ∈ VP we get

tik =
yk −wi

zziri
=

xk − ui

zzisi
⇒ yk =

ri

si
xk +wi − ri

si
ui, ∀k ∈ Pi (D.4)

Here, for each (i, j) ∈ EP , we can find at least two separate k ∈ Pi ∩ Pj (say, k1 and
k2), for which (D.4) implies

yk1 − yk2 =
ri

si
(xk1 − xk2) =

rj

sj
(xk1 − xk2) (D.5a)

⇒ ri

si
= c , ∀i ∈ VP ⇒ wi − ri

si
ui = t , ∀i ∈ VP (D.5b)
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where, in (D.5b), the first implication follows from ri ≥ 1, xk1 6= xk2 (since xk are
congruent to tk) and the connectivity of GP (i.e., since each pair results in a constant
ratio of scales ri/si, we can propagate this information to all the patches to conclude
that this constant is the same for all patches), and also the second implication follows
from substituting ri/si = c in (D.4) and the connectivity of GP (again, allowing us to
conclude that wi − (ri/si)ui is fixed for all patches). This completes the proof, since
we just showed that, for any minimizer {yk, r

i,wi}k∈Pi,i∈VP of (3.3), we have

yk = z(cβ)tk + t ; z ∈ {−1,+1} , β > 0 , c ≥ 1 , t ∈ R
d (D.6)

i.e., {yk}k∈⋃
Pi

is congruent to {tk}k∈⋃
Pi
.
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