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Abstract

A proof of the optimality of the eigenfunctions of the Laplace-
Beltrami operator (LBO) in representing smooth functions on surfaces
is provided and adapted to the field of applied shape and data analy-
sis. It is based on the Courant-Fischer min-max principle adapted to
our case. The theorem we present supports the new trend in geometry
processing of treating geometric structures by using their projection
onto the leading eigenfunctions of the decomposition of the LBO. Uti-
lization of this result can be used for constructing numerically efficient
algorithms to process shapes in their spectrum. We review a couple
of applications as possible practical usage cases of the proposed op-
timality criteria. We refer to a scale invariant metric, which is also
invariant to bending of the manifold. This novel pseudo-metric allows
constructing an LBO by which a scale invariant eigenspace on the
surface is defined. We demonstrate the efficiency of an intermediate
metric, defined as an interpolation between the scale invariant and
the regular one, in representing geometric structures while capturing
both coarse and fine details. Next, we review a numerical accelera-
tion technique for classical scaling, a member of a family of flattening
methods known as multidimensional scaling (MDS). There, the op-
timality is exploited to efficiently approximate all geodesic distances
between pairs of points on a given surface, and thereby match and
compare between almost isometric surfaces. Finally, we revisit the
classical principal component analysis (PCA) definition by coupling
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its variational form with a Dirichlet energy on the data manifold. By
pairing the PCA with the LBO we can handle cases that go beyond
the scope defined by the observation set that is handled by regular
PCA.

1 Introduction

The field of shape analysis has been evolving rapidly during the last
decades. The constant increase in computing power allowed image and
shape understanding algorithms to efficiently handle difficult problems
that could not have been practically addressed in the past. A large
set of theoretical tools from metric geometry, differential geometry,
and spectral analysis has been imported and translated into action
within the shape and image understanding arena. Among the myriad
of operators recently explored, the Laplace-Beltrami operator (LBO)
is ubiquitous. The LBO is an extension of the Laplacian to non-flat
multi-dimensional manifolds. Its properties have been well studied in
differential geometry and it was used extensively in computer graph-
ics. It is used to define the heat equation, that models the conduction
of heat in solids, and is fundamental in describing basic physical phe-
nomena. In its more general setting, the Laplace-Beltrami operator
admits an eigen-decomposition that yields a spectral domain that can
be viewed as a generalization of the Fourier analysis to any Rieman-
nian manifold. The LBO invariance to isometric transformations al-
lowed the theories developed by physicists and mathematician to be
useful for modern shape analysis. Here, we justify the selection of
the leading eigenfunctions in the spectral domain as an optimal sub-
space for representing smooth functions on a given manifold. It is
used for solving and accelerating existing solvers of various problems
in data representation, information processing, and shape analysis.
As one example, in Section 4 we pose the dilemma of metric selection
for shape representation while interpolating between a scale invariant
metric and the regular one. Next, in Section 5 it is shown how the
recently introduced spectral classical scaling can benefit from the ef-
ficacy property of the suggested subspace. Finally, in Section 6 we
revisit the definition of the celebrated principal component analysis
(PCA) by regularizing its variational form with an additional Dirich-
let energy. The idea is to balance between two optimal sub-spaces, one
for the data points themselves - captured by the PCA, and one opti-
mally encapsulating the relation between the data points as defined
by decomposition of the LBO.
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2 Notations and motivation

Consider a parametrized surface S : Ω ⊂ R2 → R3 (with or without
boundary) and a metric (gij) that defines the affine differential relation
of navigating with coordinates {σ1, σ2} in Ω to a distance measured
on S. That is, an arc length on S expressed by σ1 and σ2 would read
ds2 = g11dσ

2
1 + 2g12dσ1dσ2 + g22dσ

2
2. The Laplace-Beltrami operator

acting on the scalar function f : S → R is defined as

−∆gf =
1
√
g

∑
ij

∂i
(√
ggij∂jf

)
,

where g is the determinant of the metric matrix, and (gij) = (gi,j)
−1

is the inverse metric, while ∂i is a derivative with respect to the ith

coordinate σi. The LBO operator is symmetric and admits a spectral
decomposition (λi, φi), with λ1 ≤ λ2 ≤ ..., such that

∆gφi = λiφi
〈φi, φj〉 = δij ,

where 〈u, v〉 =

∫
S
uv
√
gdx, and ‖u‖22 =

∫
S
|u|2√gdx. In case S has a

boundary, we add Neumann boundary condition

∂φi
∂ν

= 0, on ∂S.

Defined by the metric rather than the explicit embedding, makes the
LBO and its spectral decomposition invariant to isometries and thus, a
popular operator for shapes processing and analysis. For example, the
eigenfunctions and eigenvalues can be used to efficiently approximate
diffusion distances and commute time distances [26, 6, 12, 13, 11],
that were defined as computational alternatives to geodesic distances,
and were shown to be robust to topology changes and global scale
transformations. At another end, Lévy [21] proposed to manipulate
the geometry of shapes by operating in their spectral domain, while
Gotsman and Karni [18] chose the eigenfunctions as a natural basis
for approximating the coordinates of a given shape. Feature point
detectors and descriptors of surfaces were also extracted from the same
spectral domain. Such measures include the heat kernel signature
(HKS) [29, 15], the global point signature (GPS) [27], the wave kernel
signature (WKS) [5], and the scale-space representation [33].

Given two surfaces S and Q, and a bijective mapping between
them, ρ : S → Q, Ovsjanikov et al. [24] emphasized the fact that
the relation between the spectral decomposition of a scalar function
f : S → R and and its representative on Q, that is f ◦ ρ−1 : Q→ R, is

3



linear. In other words, the geometry of the mapping is captured by ρ,
allowing the coefficients of the decompositions to be related in a simple
linear manner. The basis extracted from the LBO was chosen in this
context because of its intuitive efficiency in representing functions on
manifolds, thus far justified heuristically. The linear relation between
the spectral decomposition coefficients of the same function on two
surfaces, when the mapping between manifolds is provided, was ex-
ploited by Pokrass et al. [25] to find the correspondence between two
almost isometric shapes. They assumed that the matrix that links be-
tween the LBO eigenfunctions of two almost isometric shapes should
have dominant coefficients along its diagonal, a property that was first
exploited in [20].

One could use the relation between the eigen-structures of two
surfaces to approximate non-scalar and non-local structures on the
manifolds [1]. Examples for such functions are geodesic distances
[19, 31, 28, 23, 30], that serve as an input for the Multi-Dimensional
Scaling [7], the Generalized Multi-Dimensional Scaling [10], and the
Gromov-Hausdorff distance [22, 9]. Using the optimality of represent-
ing surfaces and functions on surfaces with truncated basis, geodesic
distances can now be efficiently computed and matched in the spectral
domain.

Among the myriads reasons that motivate the choice of the spectral
domain for shape analysis, we emphasize the following,

• The spectral domain is isometric invariant.

• Countless signal processing tools that exploit the Fourier basis
are available. Some of these tools can be generalized to shapes
for processing, analysis, and synthesis.

• Most interesting functions defined on surfaces are smooth and
can thus be approximated by their projection onto a small num-
ber of eigenfunctions.

• For two given perfectly isometric shapes, the problem of finding
correspondences between the shapes appears to have a simple
formulation in the spectral domain.

Still, a rigorous justification for the selection of the basis defined by
the LBO was missing in the shape analysis arena. Along the same
line, combing the eigenstructure of the LBO with classical data repre-
sentation and analysis procedures that operate in other domains like
the PCA [17], MDS [7], and GMDS [10] was yet to come. Here, we
review recent improvements of existing tools that make use of the de-
composition of Laplace-Beltrami operator. We provide a theoretical
justification for using the LBO eigen-decomposition in many shape
analysis methods. With this property in mind, we demonstrate that
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it is possible to migrate algorithms to the spectral domain while es-
tablishing a substantial reduction in complexity.

3 Optimality of the LBO eigenspace

In this section we provide a theoretical justification to the choice of
the LBO eigenfunctions, by proving that the resulting spectral de-
composition is optimal in approximating functions with L2 bounded
gradient magnitudes. Let S be a given Riemannian manifold with
a metric (gij), an induced LBO, ∆g, with associated spectral basis
φi, where ∆gφi = λiφi. It is shown, for example in [3], that for any
f : S → R, the representation error

‖rn‖22 ≡

∥∥∥∥∥f −
n∑
i=1

〈f, φi〉φi

∥∥∥∥∥
2

2

≤ ‖∇gf‖
2
s

λn+1
. (1)

Our next result asserts that the eigenfunctions of the LBO are optimal
with respect to estimate error (1).

Theorem 3.1. Let 0 ≤ α < 1. There is no integer n and no sequence
{ψi}ni=1 of linearly independent functions in L2 such that∥∥∥∥∥f −

n∑
i=1

〈f, ψi〉ψi

∥∥∥∥∥
2

2

≤ α‖∇gf‖22
λn+1

, ∀f. (2)

Proof. Recall the Courant-Fischer min-max principle, see [8] Problems
37 and 49, and [32]. We have for every n ≥ 0,

λn+1 = max
Λ

codim Λ=n

min
f∈Λ
f 6=0

{
‖∇gf‖22
‖f‖22

}
. (3)

That is, the min is taken over a linear subspace Λ ⊂ H1(S) (where
H1(S) is the Sobolev space {f ∈ L2, ∇gf ∈ L2}) of co-dimension n
and the max is taken over all such subspaces.

Set Λ0 = {f ∈ H1(S); 〈f, ψi〉 = 0, i = 1, 2, ..., n}, so that Λ0 is a
subspace of codimension n. By (2) we have ∀f 6= 0, f ∈ Λ0,

‖∇gf‖22
‖f‖22

≥ λn+1

α
,

and thus

X0 = min
f∈Λ0
f 6=0

{
‖∇gf‖22
‖f‖22

}
≥ λn+1

α
. (4)
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On the other hand, by (3)

λn+1 ≥ X0. (5)

Combining (4) and (5) yields α ≥ 1.

For the convenience of the reader we present in the appendix a
direct proof of a special case of the above result which does not make
use of the Courant-Fischer min-max principle. The above theorem
proves the optimality of the eigenfunctions of the LBO in representing
H1 functions on manifolds. In the following sections we apply the
optimality property for solving various shape analysis problems.

4 Scale invariant geometry

Almost isometric transformation are probably the most common ones
for surfaces and volumes in nature. Still, in some scenarios, rela-
tions between surfaces should be described by slightly more involved
deformation-models. Though a small child and an adult are obviously
not isometric, and the same goes for a whale and a dolphin, the main
characteristics are morphometrically similar for mammals in large. In
order to extend the scope of matching and comparing shapes, a semi-
local scale invariant geometry was introduced in [4]. There, it was used
to define a new LBO by which one can construct an eigenspace which
is invariant to semi-local and obviously global scale transformations.

Let (gij), be the regular metric defined on the manifold. In [4] the
scale invariant pseudometric (g̃ij) is defined as

g̃ij = |K|gij ,

where K is the Gaussian curvature at each point on the manifold. One
could show that this metric is scale invariant and the same goes for

the LBO that it induces, namely ∆g̃f = − 1√
g̃

∑
ij

∂i

(√
g̃g̃ij∂jf

)
. A

discretization of this operator and experimental results that outper-
formed state of the art algorithms for shape matching, when scaling
is involved, were presented in [4] . Specifically, the scale invariant ge-
ometry allows to find correspondence between two shape related by
semi-local scale transformation.

Next, one could think of searching for an optimal representation
space for shapes by interpolating between the scale-invariant metric
and the regular one. We define the interpolated pseudometric to be

ĝij = |K|αgij ,
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where (ĝij) represents the new pseudometric, K is the Gaussian cur-
vature, and α ∈ [0, 1] is the metric interpolation scalar that we use to
control the representation error. In our setting, ĝ depends on α and
represents the regular metric when α = 0, or the scale invariant one
for α = 1.

Figure 1 depicts the effect of representing a shape’s coordinates
projected to the first 300 eigenfunction of the LBO with a regular
metric (left), the scale invariant one (right), and the interpolated pseu-
dometric with α = 0.4 (middle). The idea is to use only part of eigen-
functions to approximate smooth functions on the manifold, treating
the coordinates as such. While the regular natural basis captures the
global structure of the surface, as expected, the scale invariant one
concentrates on the fine features with effective curvature. The inter-
polated one is a good compromise between the global structure and
the fine details.

Figure 1: Top: A given horse model. Bottom: The horse coordinates
projected to the first 300 LBO eigenfunctions using a regular metric (left),
an intermediate metric (middle), and a scale invariant one (right).

We proved that once a proper metric is defined, the Laplace-
Beltrami eigenspace is the best possible space for functional approxi-
mation of smooth functions. Next, we exploit this property to refor-
mulate classical shape analysis algorithms such as MDS in the spectral
domain.

5 Spectral classical scaling

Multidimensional Scaling [7] is a family of data analysis methods that
is widely used in machine learning and shape analysis. Given an n×n
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pairwise distances matrix D, the MDS method finds an embedding of
points of Rm, given by an n × m matrix X, such that the pairwise
euclidean distances between every two points, each defined by a row
of X, is as close as possible to their corresponding input pair given
by the right entry in D. The classical MDS algorithm minimizes the
following functional

X = argmin
X∈Rn×m

∥∥∥∥XXT +
1

2
JD2J

∥∥∥∥
F

where D2 is a matrix such that (D2)ij = D2
ij , J is a centering matrix

defined by J = I− 1

n
11T , where I is the identity matrix, 1 is a vector

of ones, and ‖·‖F is the Frobenius norm. The solution can be obtained
by a singular value decomposition of the matrix JD2J. This method
was found to be useful when comparing between isometric shapes using
their inter-geodesic distances [14, 9], and texture mapping in computer
graphics [34]. The computation of geodesic distances as well as the
SVD of an n × n matrix can be expensive in terms of memory and
computational time. High resolution shapes with more than 10000
vertices are difficult do handle with this method.

In order to reduce the complexity of the problem, it was proposed
in [3] to compute geodesic distances between a small set of sample
points, and then, interpolate the rest of the distances by minimizing a
bi-harmonic energy in the spectral domain. We find a spectral repre-
sentation of the matrix D2 = ΦαΦT , where Φ represents the matrix
that discretizes the spectral domain. We then embed our problem into
the eigenspace of the LBO, defining X = Φβ, where β is an m × k
matrix, and k � n in order to reduce the overall complexity. X is
obtained by minimizing

min
β

∥∥∥∥ΦββTΦT +
1

2
JΦαΦTJ

∥∥∥∥
F

.

Experimental results of shape canonization comparing shapes flat-
tened with spectral classical scaling to regular classical scaling results
were presented in [3]. The spectral approach outperformed the classi-
cal scaling in terms of time and space complexities, that lead to overall
better accuracy for the spectral version, see Figure 2. In the next sec-
tion we introduce a novel design of functional spaces that benefit from
both the Laplace-Beltrami operator and classical principal component
analysis, while extending the scope of each of these measures.

8



Figure 2: MDS flat embedding: Result of regular MDS (middle) and the
spectral MDS (right) of the given horse surface (left).

6 Regularized PCA

The spectral domain provided by the decomposition of the LBO is effi-
cient in representing smooth functions on the manifold. Still, in some
scenarios, functions on manifolds could contain discontinuities that do
not align with our model assumption. Alternatively, some functions
could be explicitly provided as known points on the data manifold,
in which case, the question of what should be the best representation
obtains a new flavor. The principal component analysis [17] concept
allows to extract a low rank orthonormal approximate representation
from a set of such data points xi. Given a set of k vectors xi ∈ Rn,
the PCA algorithm finds an orthonormal basis of m ≤ k, defined by
its vectors Pj , by minimizing

min
P

k∑
i=1

‖PPTxi − xi‖22

s.t.

PTP = Im.

It can be shown that this problem can be written as

max
P

trace(PPTXXT )

s.t.

PTP = Im,

where X is a matrix whose ith column is the data point xi. At the other
end, given a manifold S, the spectral basis minimizes the Dirichlet
energy of any orthonormal basis defined on S, where,

Φ = argmin
{ψi}ni=1

n∑
i=1

‖∇gψi‖2g

s.t.
〈ψi, ψj〉g = δij ∀(i, j),

(6)
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where δij is the Kronecker delta symbol, and n is the number of desired
basis functions. Using a discretization of the Laplace-Belrami opera-
tor, it can be shown that the PCA and the computation of a spectral
basis could be married. We can combine both energies, namely, the
energy defined by the data projection error and the Dirichlet energy
of the representation space. The result reads,

min
P

m∑
i=1

‖PPTAxi − xi‖2g︸ ︷︷ ︸
PCA

+µ

m∑
j=1

‖∇gPj‖2g︸ ︷︷ ︸
LBO-eigenspace

s.t.

PTAP = Im.

(7)

Where A represents the local area normalization factor. This prob-
lem is equivalent to finding a basis that is both smooth and whose
projection error on the set of given vectors (data points) is minimal,
as shown in [2] and [16]. When µ in the above model is set to zero, we
have the PCA as a solution. At the other end, as µ goes to infinity,
we get back our LBO eigenbasis domain. The parameter µ controls
the smoothness of the desired basis. The benefits of this hybrid model
in representing out of sample information are demonstrated in [2], as
can be seen in Figure 3.

This model allows us to design an alternative basis which is related
to the spectral domain but whose properties can be tuned to fit specific
information about the data.

7 Conclusion

A theoretical support for the selection of the leading eigenfunctions of
the Laplace-Beltrami operator of a given shape as a natural domain
for morphometric study of surfaces was provided. The optimality
result motivates the design of efficient shape matching and analysis
algorithms. It enabled us to find the most efficient representations of
smooth functions on surfaces in terms of both accuracy and complexity
when projected onto the first eigenfunctions of the Laplace-Beltrami
operator. Our optimality criterion is obviously defined with respect to
a given metric. In shape representation, the choice of an appropriate
metric is probably as important as the selection of the most efficient
sub-space. This was demonstrated in approximating the fine details
and the general structure of a shape of a horse in Section 4 using a reg-
ular metric, a scale invariant one, and a metric interpolating between
the two. Spectral classical scaling and its generalized version, benefit

10



Figure 3: Reconstruction the dog shapes in the second row, by project-
ing their coordinates to the first 100 eigenfunctions of the Laplace-Beltrami
(third row), to the PCA basis trained with the two shapes from the first
row (forth row), and to the 100 basis functions of the regularized-PCA basis
trained with the two dogs from the first row (bottom/fifth row).
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from the presented optimality result, so as the regularization of clas-
sical PCA. In both cases it was demonstrated that the decomposition
of the LBO provides a natural sub-space to operate in.

The provably optimal representation space allows to construct ef-
ficient tools for computational morphometry - the numerical study of
shapes. Revisiting the optimality criteria obviously lead to alternative
domains and hopefully better analysis tools that we plan to explore
in the future.
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Appendix

Theorem .1. Given a Riemannian manifold S with a metric (gij),
the induced LBO, ∆g, and its spectral basis φi, where ∆gφi = λiφi,
and a real scalar value 0 ≤ α < 1, there is no orthonormal basis of
functions {ψi}∞i=1, and an integer n such that∥∥∥∥∥f −

n∑
i=1

〈f, ψi〉ψi

∥∥∥∥∥
2

2

≤ α‖∇gf‖
2
2

λn+1
, ∀f.

To prove the optimality of the LBO eigenbasis, let us first prove
the following lemma.

Lemma .1. Given an orthonormal basis B = {b1, b2, . . .}, of a Hilbert
space V, an orthogonal projection operator P of V, such that

‖Pv‖ ≤ k‖v‖, ∀v ∈ span {bi, 1 ≤ i ≤ n}

where 0 < k < 1, then

dim(ker(P )) ≥ n.

Proof. Let us denote

B1 = {bi, ‖Pbi‖ < 1}
B2 = {bi, ‖Pbi‖ = 1}
P1 = ker(P )
P2 = im(P ).
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Because the operator P is orthogonal and the basis B is orthonormal,
we have

V = B1

⊕
B2 = P1

⊕
P2,

and
B⊥1 = B2

P⊥1 = P2.

By definition, we have that

B2 ⊂ P2.

Then,
B⊥2 ⊃ P⊥2 ,

and since B⊥2 = B1 and P⊥2 = P1, we have

P1 ⊂ B1.

Now, assume that

dim(P1) = dim(ker(P )) < n ≤ dimB1

Then, P1 6= B1, and we can find a vector u ∈ P⊥1 such that ‖u‖ = 1
and u ∈ B1. Since P⊥1 = ker(P )⊥ = P2, it follows that

‖Pu‖ = 1.

But, this contradicts the fact that u ∈ B1, because u ∈ B1 implies

‖Pu‖ < 1.

Then,
dim(ker(P )) ≥ n.

Equipped with this result we are now ready to prove Theorem A.1

Proof. Assume that there exists such a basis, {ψi}. Then, the repre-
sentation of a function f in the eigenbasis of the LBO can be written
as

f =
∞∑
i=1

〈f, φi〉φi =
∞∑
i=1

βiφi.

We straightforwardly have

‖∇gf‖22 =
∞∑
i=1

λiβ
2
i ,
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and it follows that

α
‖∇gf‖22
λn+1

=

∞∑
i=1

αλi
λn+1︸ ︷︷ ︸
λ̃i

β2
i =

∞∑
i=1

λ̃iβ
2
i .

Moreover, ∥∥∥∥∥f −
n∑
i=1

〈f, ψi〉ψi

∥∥∥∥∥
2

2

≤ α‖∇gf‖
2
2

λn+1
≤
∞∑
i=1

λ̃iβ
2
i .

Then, replacing f with

n+1∑
j=1

βjφj , we have

∥∥∥∥∥∥
n+1∑
j=1

βjφj −
n∑
i=1

〈
n+1∑
j=1

βjφj , ψi

〉
ψi

∥∥∥∥∥∥
2

2

≤
n+1∑
j=1

β2
j λ̃j ≤

(
n+1
max
j=1

λ̃j

)n+1∑
j=1

β2
j

 ,

and since λ̃i < 1, ∀i, 1 ≤ i ≤ n+1, we can state that there is a set of
n+1 orthonormal vectors φi belonging to an orthonormal basis whose
projection error (over the space spanned by ψi) is smaller than one.
According to the previous lemma, the original assumption leads to a
contradiction because the dimension of the kernel of the projection on
the space spanned by ψi, 1 ≤ i ≤ n, is n.
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