
A DEIM Induced CUR Factorization ∗

D. C. SORENSEN† AND M. EMBREE‡

e-mail: sorensen@rice.edu, embree@vt.edu

June 21, 2018

Abstract

We derive a CUR approximate matrix factorization based on the Discrete Empirical Interpolation Method
(DEIM). For a given matrix A, such a factorization provides a low rank approximate decomposition of the form
A ≈ CUR, where C and R are subsets of the columns and rows of A, and U is constructed to make CUR a
good approximation. Given a low-rank singular value decomposition A ≈ VSWT , the DEIM procedure uses
V and W to select the columns and rows of A that form C and R. Through an error analysis applicable to a
general class of CUR factorizations, we show that the accuracy tracks the optimal approximation error within
a factor that depends on the conditioning of submatrices of V and W. For very large problems, V and W
can be approximated well using an incremental QR algorithm that makes only one pass through A. Numerical
examples illustrate the favorable performance of the DEIM-CUR method compared to CUR approximations
based on leverage scores.

1 Introduction

This work presents a new CUR matrix factorization based upon the Discrete Empirical Interpolation Method
(DEIM). A CUR factorization is a low rank approximation of a matrix A ∈ Rm×n of the form A ≈ CUR, where
C = A(:,q) ∈ Rm×k is a subset of the columns of A and R = A(p, :) ∈ Rk×n is a subset of the rows of A.
(We generally assume m ≥ n throughout.) The k × k matrix U is constructed to assure that CUR is a good
approximation to A. Assuming the best rank-k singular value decomposition (SVD) A ≈ VSWT is available,
the algorithm uses the DEIM index selection procedure, q = DEIM(V) and p = DEIM(W), to determine C
and R. The resulting approximate factorization is nearly as accurate as the best rank-k SVD, with

‖A−CUR‖ ≤ (ηp + ηq)σk+1,

where σk+1 is the first neglected singular value of A, ηp ≡ ‖V(p, :)−1‖, and ηq ≡ ‖W(q, :)−1‖.
Here and throughout, ‖·‖ denotes the vector 2-norm and the matrix norm it induces, and ‖·‖F is the Frobenius

norm. We use MATLAB notation to index vectors and matrices, so that, e.g., A(p, :) denotes the k rows of A

∗This work was supported in part by AFOSR grant FA9550-12-1-0155 and by NSF grant CCF-1320866.
†Department of Computational and Applied Mathematics, MS 134, Rice University, Houston, Texas 77005-1892.
‡Department of Mathematics, 225 Stanger Street 0123, Virginia Tech, Blacksburg, Virginia 24061

1

ar
X

iv
:1

40
7.

55
16

v2
 [

m
at

h.
N

A
]

 1
8

Se
p

20
15

whose indices are specified by the entries of the vector p ∈ Nk, while A(:,q) denotes the k columns of A indexed
by q ∈ Nk.

The CUR factorization is an important tool for handling large-scale data sets, offering two advantages over the
SVD: when A is sparse, so too are C and R, unlike the matrices V and W of singular vectors; and the columns
and rows that comprise C and R are representative of the data (e.g., sparse, nonnegative, integer valued, etc.).
The following simple example, adapted from Mahoney and Drineas [22, Fig. 1b], illustrates the latter advantage.
Construct A ∈ R2×n so that its first n/2 columns have the form[

x1
x2

]
and the remaining n/2 columns have the form

√
2

2

[
−1 1
1 1

] [
x1
x2

]
,

where in both cases x1 ∼ N(0, 1) and x2 ∼ N(0, 42) are independent samples of normal random variables, i.e.,
the columns of A are drawn from two different multivariate normal distributions. Figure 1 shows that the two left
singular vectors, though orthogonal by construction, fail to represent the true nature of the data; in contrast, the
first two columns selected by the DEIM-CUR procedure give a much better overall representation. While trivial
in this two-dimensional case, one can imagine the utility of such approximations for high-dimensional data. We
shall illustrate the advantages of CUR approximations with further computational examples in Section 6.

CUR-type factorizations originated with “pseudoskeleton” approximations [14] and pivoted, truncated QR
decompositions [23]; in recent years many new algorithms have been proposed in the numerical linear algebra and
theoretical computer science literatures. Some approaches seek to maximize the volume of the decomposition [14,

Figure 1: Comparison of singular vectors (left, scaled, in red) and DEIM-CUR columns (right, in blue) for a data
set drawn from two multivariate normal distributions having different principal axes.

2

25]. Numerous other algorithms instead use leverage scores [5, 10, 22, 28]. These methods typically first compute
a singular value decomposition1 A = VSWT (or an approximation to it), with V ∈ Rm×n, W ∈ Rn×n.
The leverage score for the jth row (kth column) of A is the squared two-norm of the jth row of V (kth row
of W). When scaled by the number of singular vectors, these leverage scores give probability distributions for
randomly sampling the columns and rows to form C and R. This approach leads to probabilistic bounds on
‖A − CUR‖F [10, 22]. In cases where A has small singular values (precisely the case where one would seek
a low-rank factorization), the singular vectors can be sensitive to perturbations to A, making the leverages scores
unstable [18]. Thus leverage scores are often computed using only the leading few singular vectors, but the choice
of how many vectors to keep can be somewhat ad hoc.

The algorithm described in Sections 2 and 3 is entirely deterministic and involves few (if any) parameters. The
method is supported by an error analysis in Section 4 that also applies to a broad class of CUR factorizations. This
section includes an improved bound on the error constants ηp and ηq for DEIM row and column selection, which
also applies to the analysis of DEIM-based model order reduction [6]. In Section 5 we propose a novel incre-
mental QR algorithm for approximating the SVD (and potentially also approximating leverage scores). Section 6
illustrates the performance of this new CUR factorization on several examples.

In many applications one cares primarily about key columns or rows of A, rather than an explicit A = CUR
factorization. The DEIM technique, which identifies rows and columns of A independently, can easily be used
to select only columns or rows, leading to an “interpolatory decomposition” of the form A = CÛ or A = ÛR;
such factorizations have the advantage that Û can be much better conditioned than the U matrix in the CUR
factorization. For further details about general interpolatory decompositions, see [7, §1].

2 CUR Factorization

We are concerned with large matrices A ∈ Rm×n that represent nearly low-rank data, which can therefore be
expressed as

A = CUR + F, (2.1)

with ‖F‖ small relative to ‖A‖. The matrix C ∈ Rm×k is formed by extracting k columns from A, and R ∈ Rk×n

from k rows of A. The selected row and column indices are stored in the vectors p,q ∈ Nk, so that C = A(:,q)
and R = A(p, :). Our choice for p and q is guided by knowledge of the rank-k SVD (or an approximation to it).
Before detailing the method for selecting these indices, we discuss how, given p and q, one should construct U so
that CUR satisfies desirable approximation properties.

As motivation, suppose for the moment that A has exact rank k, and C and R are full-rank subsets of the
columns and rows of A. Now let Y ∈ Rm×k and Z ∈ Rn×k be any matrices that satisfy YTC = RZ = I ∈ Rk×k.
Then CYT is a projector onto Ran(C) = Ran(A) and (ZR)T is a projector onto Ran(RT) = Ran(AT),
where Ran(·) denotes the range (column space). It follows that CYTA = A and (ZR)TAT = AT . Putting
U ≡ YTAZ gives

CUR = CYTAZR = AZR = A.

Thus, any choice of Y and Z that satisfies YTC = RZ = I gives a U such that CUR exactly recovers A. In
general different choices for Y and Z give different U = YTAZ.

1We use the nonstandard notation VSWT for the SVD to avoid conflicts with U in the standard CUR notation.

3

Now consider the general case (2.1). Once p, q, Y, and Z have been specified, then

U = YTAZ and F ≡ A−CUR.

One might design Y and Z so that CUR matches the selected columns C = A(:,q) and rows R = A(p, :) of
A exactly. This can be accomplished with interpolatory projectors, which we discuss in detail in the next section.
For now, let P = I(:,p) ∈ Rm×k and Q = I(:,q) ∈ Rn×k be submatrices of the identity, so that PTa = a(p)
and bTQ = b(q)T for arbitrary vectors a and b of appropriate dimensions. Now define YT = (PTC)−1PT and
Z = Q(RQ)−1 (presuming PTC and RQ are invertible). Then since C = A(:,q) and R = A(p, :),

PTC = C(p, :) = A(p,q) and RQ = R(:,q) = A(p,q),

so
U = YTAZ = (PTC)−1PTAQ(RQ)−1 = A(p,q)−1A(p,q)A(p,q)−1 = A(p,q)−1.

This CUR approximation matches the q columns and p rows of A,

A(:,q) = CUR(:,q) and A(p, :) = C(p, :)UR,

and, in our experiments, usually delivers a very good approximation. However, a CUR factorization with better
theoretical approximation properties results from orthogonal projection, as originally suggested by Stewart [23,
p. 320]; see also, e.g., Mahoney and Drineas [22]. Given a selection of indices p and q, again put

C = A(:,q) and R = A(p, :).

Assume that C and R both have full rank k, and now let YT = CI ≡ (CTC)−1CT and Z = RI ≡ RT (RRT)−1

denote left and right inverses of C and R. These choices also satisfy YTC = I and RZ = I, but now CYT =
CCI and ZR = RIR are orthogonal projectors. We compute

U = YTAZ = CIARI ,

yielding a CUR factorization that can be viewed as a two step process: first the columns of A are projected onto
Ran(C), then the result is projected onto the row space of R:

1) M = CCIA, 2) CUR = MRIR.

Both steps are optimal with respect to the 2-norm error, which is the primary source of the excellent approximation
properties of this approach.

Several strategies for selecting p and q have been proposed.2 The approach presented in the next section is
simple to implement and has complexity mk and nk to select the indices p and q, provided the leading k right
and left singular vectors of A are available. Thus the overall complexity is dominated by the construction of the
rank-k SVD A ≈ VSWT , where VTV = WTW = I ∈ Rk×k and S = diag(σ1, σ2, . . . , σk) is the k×k matrix
of dominant singular values σ1 ≥ σ2 ≥ · · · ≥ σk.

2In the theoretical computer science literature, one often takes C and/or R to have rank larger than k, but then builds U with rank k.
By selecting these extra columns and/or rows, one seeks to get within some factor 1 + ε of the optimal approximation; see, e.g., [5].

4

3 DEIM

The DEIM point selection algorithm was first presented in [6] in the context of model order reduction for nonlinear
dynamical systems, and is a discrete variant of the Empirical Interpolation Method originally proposed in [4]. The
DEIM procedure operates on the singular vector matrices V and W independently to select the row indices p and
column indices q. We explain the process for selecting p; applying the same steps to W yields q. To derive the
method, we elaborate upon the interpolatory projectors introduced in the last section.

Definition 3.1 Given a full rank matrix V ∈ Rm×k and a set of distinct indices p ∈ Nk, the interpolatory projector
for p onto Ran(V) is

P ≡ V(PTV)−1PT , (3.1)

where P = I(:,p) ∈ Rm×k, provided PTV is invertible.

In general P is an oblique projector, and it has an important property not generally enjoyed by orthogonal
projectors: for any x ∈ Rm,

(Px)(p) = PTPx = PTV(PTV)−1PTx = PTx = x(p),

so the projected vector Px matches x in the p entries, justifying the name “interpolatory projector.”
The DEIM algorithm processes the columns of

V =
[

v1 v2 · · · vk

]
one at a time, starting from the leading singular vector v1. Each step processes the next singular vector to produce
the next index. The first index p1 corresponds to the largest magnitude entry in v1:

|v1(p1)| = ‖v1‖∞.

Now define p1 ≡ [p1], and let
P1 ≡ v1(P

T
1 v1)

−1PT
1

denote the interpolatory projector for p1 onto Ran(v1). The second index p2 corresponds to the largest entry in
v2, after the interpolatory projection in the v1 direction has been removed:

r2 ≡ v2 − P1v2

|r2(p2)| = ‖r2‖∞.

Notice that r2(p1) = 0, since P1v2 matches v2 in the p1 position, a consequence of interpolatory projection. This
property ensures the process will never produce duplicate indices.

Now suppose we have j − 1 indices, with

pj−1 ≡

 p1
...

pj−1

 , Pj−1 ≡ I(:,pj−1), Vj−1 ≡ [v1 · · · vj−1], Pj−1 ≡ Vj−1(P
T
j−1Vj−1)

−1PT
j−1.

5

Input: V, an m× k matrix (m ≥ k)

Output: p, an integer vector with k distinct entries in {1, . . . ,m}

v = V(:, 1)
[∼, p1] = max(|v|)
p = [p1]
for j = 2, 3, . . . , k

v = V(:, j)
c = V(p, 1 : j − 1)−1v(p)
r = v −V(:, 1 : j − 1)c
[∼, pj] = max(|r|)
p = [p; pj]

end

Algorithm 1: DEIM point selection algorithm.

To select pj , remove from vj its interpolatory projection onto indices pj−1 and take the largest remaining entry:

rj ≡ vj − Pj−1vj

|rj(pj)| = ‖rj‖∞.

Implementations should not explicitly construct these projectors; see the pseudocode in Algorithm 1 for details.
Those familiar with partially pivoted LU decomposition will notice, on a moment’s reflection, that this index

selection scheme is exactly equivalent to the index selection of partial pivoting. This arrangement is equivalent to
the “left looking” variant of LU factorization [9, sect. 5.4], but with two important differences. First, there are no
explicit row interchanges in DEIM, as there are in LU factorization. Second, the original basis vectors (columns
of V) are not replaced with the residual vectors, as happens in traditional LU decomposition. (In the context of
model reduction, it is preferable to keep the nice orthogonal basis intact for use as a reduced basis.) We will exploit
this connection with partially pivoted LU factorization to analyze the approximation properties of DEIM.

Since the DEIM algorithm processes the singular vectors sequentially, from most to least significant, it intro-
duces new singular vector information in a coherent manner as it successively selects the k indices. Contrast this
to index selection strategies based on leverage scores, where all singular vectors are incorporated at once via row
norms of V and W; to account for the fact that higher singular vectors are less significant, such approaches often
instead compute leverage scores using only a few of the leading singular vectors.3

For the interpolatory projector Pj to exist at the jth step, PT
j−1Vj−1 must be nonsingular. The linear indepen-

dence of the columns of V assures this. In the following, ej denotes the jth column of the identity matrix.

3A potential limitation of the DEIM approach is that rj could have multiple entries that have nearly the same magnitude, but only one
index is selected at the jth step; if the other large-magnitude entries in rj are not significant in subsequent r` vectors, the corresponding
indices will not be selected. One can imagine modifications of the selection algorithm to account for such situations, e.g., by processing
multiple singular vectors at a time.

6

Lemma 3.1 Let Pj = [ep1 , ep2 , . . . , epj] and let Vj = [v1,v2, . . . ,vj] for 1 ≤ j ≤ k. If rank (V) = k, then
PT

j Vj is nonsingular for 1 ≤ j ≤ k.

Proof: Suppose PT
j−1Vj−1 is nonsingular and let rj = vj −Vj−1(P

T
j−1Vj−1)

−1PT
j−1vj . Then ‖rj‖∞ > 0, for

otherwise 0 = vj −Vj−1cj−1, in violation of the assumption that rank (V) = k. Thus

0 < |eTpjrj | = |e
T
pjvj − eTpjVj−1(P

T
j−1Vj−1)

−1PT
j−1vj |, (3.2)

where pj is the jth DEIM interpolation point. Now factor

PT
j Vj =

[
PT

j−1Vj−1 PT
j−1vj

eTpjVj−1 eTpjvj

]
=

[
Ij−1 0

eTpjVj−1(P
T
j−1Vj−1)

−1 1

] [
PT

j−1Vj−1 PT
j−1vj

0 νj

]
, (3.3)

where
νj = eTpjvj − eTpjVj−1(P

T
j−1Vj−1)

−1PT
j−1vj .

The inequality (3.2) implies νj 6= 0 and hence equation (3.3) implies PT
j Vj is nonsingular. Since eTp1v1 6= 0, this

argument provides an inductive proof that PT
j Vj is nonsingular for 1 ≤ j ≤ k.

4 CUR Approximation Properties

While the theory presented in this section was designed to bound ‖A −CUR‖ for the DEIM-CUR method, the
analysis applies to any CUR factorization with full rank C ∈ Rm×k and R ∈ Rk×n, and U = CIARI , regardless
of the procedure used for selecting the columns and rows.4

Consider a CUR factorization that uses row indices p ∈ Nk and column indices q ∈ Nk, and set

P = I(: ,p) = [ep1 , . . . , epk] ∈ Rm×k, Q = I(: ,q) = [eq1 , . . . , eqk] ∈ Rn×k.

The first step in this analysis bounds the mismatch between A and its interpolatory projection PA.

Lemma 4.1 Assume PTV is invertible and let P = V(PTV)−1PT be the interpolatory projector (3.1). If
VTV = I, then any A ∈ Rm×n satisfies

‖A− PA‖ ≤ ‖(PTV)−1‖‖(I−VVT)A‖.

Additionally, if V consists of the leading k left singular vectors of A, then

‖A− PA‖ = ‖(I− P)A‖ ≤ ‖(PTV)−1‖σk+1.

4We are grateful to Ilse Ipsen for noting the applicability of this analysis to all such CUR factorizations, and for also pointing out that,
given knowledge of all the singular values and vectors of A, our Lemma 4.2 can be sharpened via application of [16, Thm. 9.1]. Indeed,
Ipsen observes that the interpolatory projector proof of Lemma 4.2 can be adapted to simplify the multipage proof of [16, Thm. 9.1].

7

Proof: First note that PV = V(PTV)−1PTV = V, so that (I− P)V = 0. Therefore

‖A− PA‖ = ‖(I− P)A‖ = ‖(I− P)(I−VVT)A‖ ≤ ‖(I− P)‖‖(I−VVT)A‖.

It is well known that
‖I− P‖ = ‖P‖ = ‖(PTV)−1‖

so long as P 6= 0 or I; see, e.g., [24]. This establishes the first result. The second follows from the fact that

‖(I−VVT)A‖ = ‖A−VSWT ‖ = σk+1

when V consists of the leading k left singular vectors of A.

Now let VSWT ≈ A be a rank-k SVD of A. (The singular vectors play a crucial role in this analysis, even if
p and q were selected using some scheme that did not reference them.) In addition to the interpolatory projector
P = V(PTV)−1PT that operates on the left of A, we shall also use Q = Q(WTQ)−1WT , which operates on
the right of A. Assuming that PTV and WTQ are invertible, define the error constants

ηp ≡ ‖(PTV)−1‖, ηq ≡ ‖(WTQ)−1‖.

Lemma 4.1 implies
‖A(I−Q)‖ ≤ ηq σk+1 and ‖(I− P)A‖ ≤ ηpσk+1. (4.1)

The next lemma shows that these bounds on the error of the interpolatory projection of A onto the select columns
and rows also apply to the orthogonal projections of A onto the same column and row spaces.

Lemma 4.2 Suppose the row and column indices p and q give full rank matrices C = A(: ,q) = AQ ∈ Rm×k

and R = A(p, :) = PA ∈ Rk×n, with finite error constants ηp and ηq, and suppose that k < min{m,n}. Then

‖(I−CCI)A‖ ≤ ηq σk+1 and ‖A(I−RIR)‖ ≤ ηpσk+1.

Proof: Using the formula C = AQ, we have CI = (CTC)−1CT = (QTATAQ)−1(AQ)T , so the orthogonal
projection of A onto Ran(C) is

CCIA = (AQ(QTATAQ)−1QTAT)A = A(Q(QTATAQ)−1QTATA).

Hence the error in the orthogonal projection of A is

(I−CCI)A = A(I−Φ), where Φ = Q(QTATAQ)−1QTATA. (4.2)

Note that Φ is an oblique projector onto Ran(Q), so ΦQ = Q. Therefore, ΦQ = Q, since

ΦQ = ΦQ(WTQ)−1WT = Q(WTQ)−1WT = Q.

This implies that
A(I−Φ) = A(I−Φ)(I−Q) = (I−CCI)A(I−Q),

8

and so from (4.2) we have

‖(I−CCI)A‖ = ‖A(I−Φ)‖
= ‖(I−CCI)A(I−Q)‖
≤ ‖I−CCI‖‖A(I−Q)‖
≤ ηq σk+1.

The last line follows from the bound (4.1) and the fact that ‖I−CCI‖ = 1, since CCI is an orthogonal projector
and k < min{m,n}.

A similar argument shows that
A(I−RIR) = (I−Ψ)A

where Ψ = AATP(PTAATP)−1PT , and also that

(I−Ψ)A = (I− P)(I−Ψ)A = (I− P)A(I−RIR),

from which follows the error bound

‖A(I−RIR)‖ ≤ ‖(I− P)A‖‖I−RIR‖ ≤ ηpσk+1.

The main result on approximation of A by CUR readily follows from combining this last lemma with a basic
CUR analysis technique used by Mahoney and Drineas [22, eq. (6)].

Theorem 4.1 Given A ∈ Rm×n and 1 ≤ k < min{m,n}, let C = A(: ,q) ∈ Rm×k and R = A(p, :) ∈ Rk×n

with finite error constants ηp and ηq, and set U = CIARI . Then

‖A−CUR‖ ≤ (ηp + ηq)σk+1.

Proof: From the definitions,

A−CUR = A−CCIARIR = (I−CCI)A + CCIA(I−RIR).

Applying Lemma 4.2,

‖A−CUR‖ ≤ ‖(I−CCI)A‖+ ‖CCI‖‖A(I−RIR)‖
≤ ηq σk+1 + ηpσk+1

= (ηp + ηq)σk+1,

since ‖CCI‖ = 1.

Theorem 4.1 shows that CUR is within a factor of ηp + ηq of the optimal rank-k approximation, hence
these error constants suggest a way to assess a wide variety of column/row selection schemes. The quality of the
approximation is controlled by the conditioning of the selected k rows of the dominant k (exact) singular vectors.
If those singular vectors are available as part of the column/row selection process, then Theorem 4.1 provides an

9

a posteriori bound requiring only the fast (O(k3)) computation of ηp and ηq, and thus could suggest methods for
adjusting either k or the point selection process to reduce the error constants. In this context, notice that if VSWT

is only an approximation to the optimal rank-k SVD with V and W having orthonormal columns (as computed,
for example, using the incremental QR algorithm described in the next section), the preceding analysis gives

‖A−CUR‖ ≤ ‖(I−CCI)A‖+ ‖A(I−RIR)‖
= ‖A(I−Q)‖+ ‖(I− P)A‖
≤ ‖(WTQ)−1‖‖A(I−WWT)‖+ ‖(PTV)−1‖‖(I−VVT)A‖, (4.3)

showing how σk+1 in Theorem 4.1 is replaced by the error in the approximate SVD through ‖A(I−WWT)‖ and
‖(I−VVT)A‖. In this case ‖(WTQ)−1‖ and ‖(PTV)−1‖ are computed using the approximate singular vectors
in V and W, rather than the exact singular vectors in the theorem. Alternatively, if one has probabilistic bounds
for ηp and ηq, then Theorem 4.1 immediately gives a probabilistic bound for ‖A−CUR‖.

Numerical examples in Section 6 compare how the error constants evolve as k increases for the DEIM-CUR
factorization and several other factorizations based on leverage scores.

4.1 Interpretation of the bound for DEIM-CUR

For DEIM-CUR, we can ensure the hypotheses of Theorem 4.1 are satisfied and bound the error constants. Suppose
the DEIM points are selected using the exact rank-k SVD A ≈ VSWT . Lemma 3.1 ensures that the matrices
PTV and WTQ are invertible, so ηp and ηq are finite. The DEIM strategy also gives full rank C and R matrices,
presuming k ≤ rank(A). To see this, note that for any unit vector y ∈ Rk,

Cy = AQy = VSWTQy + EQy,

where E = A−VSWT . Since VTE = 0,

‖Cy‖2 = ‖AQy‖2 = ‖VSWTQy‖2 + ‖EQy‖2.

Since ‖WTQy‖ ≥ ‖y‖/‖(WTQ)−1‖ = 1/ηq,

‖Cy‖ ≥ ‖VSWTQy‖ ≥ σk/ηq > 0.

Thus C must be full rank. A similar argument shows R to be full rank as well.

The examples in Section 6 illustrate that ηp and ηq are often quite modest for the DEIM-CUR approach, e.g.,
O(100). However, worst-case bounds permit significant growth in k that is generally not observed in practice. We
begin by stating a bound on this growth developed by Chaturantabut and Sorensen [6, Lemma 3.2].

Lemma 4.3 For the DEIM selection scheme derived above,

ηp ≤
(1 +

√
2m)k−1

‖v1‖∞
, ηq ≤

(1 +
√
2n)k−1

‖w1‖∞
,

where v1 and w1 denote the first columns of V and W.

10

Motivated by recent work by Drmač and Gugercin [11] on a modified DEIM-like algorithm for model reduc-
tion, we can improve this bound considerably.

Lemma 4.4 For the DEIM selection scheme derived above,

ηp <

√
mk

3
2k, ηq <

√
nk

3
2k.

Proof: We shall prove the result for ηp; the result for ηq follows similarly. As usual, let V ∈ Rm×k have or-
thonormal columns, and let p = DEIM(V) denote the row index vector derived from the DEIM selection scheme
described above. Let P = I(: ,p) so that PTV = V(p, :).

Without loss of generality, assume the DEIM index selection gives p = [1, 2, . . . , k]T . (Otherwise, introduce a
permutation matrix to the argument that follows.) As described in section 3, the DEIM index selection is precisely
the index selection of LU decomposition with partial pivoting, so one can write

V = LT,

where the nonsingular matrix T ∈ Rk×k is upper triangular and L ∈ Rm×k is unit lower triangular with |L(i, j)| ≤
1, L(j, j) = 1, 1 ≤ j ≤ k and L(i, j) = 0, j > i.

Let L1 ≡ L(1 : k, 1 : k). Then V(p, :) = L1T and thus

ηp ≡ ‖(PTV)−1‖ = ‖(L1T)−1‖ ≤ ‖T−1‖‖L−11 ‖.

(The linear independence of the columns of V ensure that L1 and T are invertible.) Upper bounds for ‖T−1‖ and
‖L−11 ‖ will give an upper bound for ηp.

To bound ‖T−1‖, let y ∈ Rk be a unit vector such that ‖T−1y‖ = ‖T−1‖. Then

‖T−1‖ = ‖T−1y‖ = ‖VT−1y‖ = ‖Ly‖.

Now
‖Ly‖ ≤

√
m ‖Ly‖∞ =

√
m |eTj Ly|,

for some index j ∈ {1, . . . ,m}. By the Cauchy–Schwarz inequality and the bound |L(i, j)| ≤ 1,

|eTj Ly| ≤ ‖LTej‖‖y‖ ≤
√
k · 1,

and so it follows that ‖T−1‖ ≤
√
mk.

The inverse of L1 can be bounded using forward substitution. Let L1z = y, where ‖y‖ = 1 and ‖z‖ = ‖L−11 ‖.
Forward substitution provides

ζ1 = γ1

ζi = γi −
i−1∑
j=1

λijζj , i = 2, . . . , k,

11

where ζi = z(i), γi = y(i) and λij = L(i, j). We now use induction to prove

|ζi| ≤ 2i−1, 1 ≤ i ≤ k.

First note that ζ1 = γ1, so |ζ1| ≤ |γ1| ≤ 1 = 20 to establish the base case. Assume for some i ≥ 1 that

|ζj | ≤ 2j−1, 1 ≤ j ≤ i.

Then

|ζi+1| =
∣∣∣∣γi+1 −

i∑
j=1

λijζj

∣∣∣∣ ≤ |γi+1|+
i∑

j=1

|λij ||ζj |

≤ 1 +
i∑

j=1

1 · 2j−1 = 1 +
i−1∑
j=0

2j = 1 + (2i − 1) = 2i

to complete the induction. Now since ‖z‖ = ‖L−11 ‖,

‖L−11 ‖
2 = zT z =

k∑
i=1

|ζi|2 ≤
k−1∑
i=0

4i = (4k − 1)/3.

Thus ‖L−11 ‖ < 2k/
√
3, which, together with the bound on the inverse of T, provides the final result for m > k:

ηp ≡ ‖(PTV)−1‖ <
√
mk

3
2k.

If m = k, then ηp = 1, and the result holds trivially.

Note that this proof only relies on the orthonormality of the columns of V and W, and hence it applies when
the DEIM selection scheme is applied to approximate singular vectors, as in CUR error bound in (4.3).

Lemma 4.4 was inspired by the proof technique developed by Drmač and Gugercin [11] to bound ‖(PTV)−1‖,
when P is selected by applying a pivoted rank-revealing QR factorization scheme to V. Note that this new bound
is on the same order of magnitude as the Drmač–Gugercin scheme. In practice, their scheme seems to give slightly
smaller growth that is more consistent over a wide range of examples. Neither scheme experienced exponential
growth over very extensive testing. For the DEIM approach, this absence of exponential growth is closely related
to decades of experience with Gaussian elimination with partial pivoting. Element growth in T is bounded by a
factor of 2k−1 (for a k× k matrix), and there is an example that achieves this growth. Nevertheless, this algorithm
is almost exclusively used to solve linear systems because such growth is never experienced.5 Indeed, a similar
near worst case example can be constructed for DEIM, although this growth has not been observed in practice.

5See, for example, the extensive numerical tests involving random matrices described in [26, lecture 22] and [27]. Interestingly, in the
experiments of Trefethen and Schreiber [27], random matrices with orthonormal columns tend to have slightly larger growth factors than
Gaussian matrices, though both cases are very far indeed from the exponential upper bound.

12

A Growth Example: We now construct an orthonormal matrix V with the property

1√
8
2k < ηp ≡ ‖(PTV)−1‖ <

√
mk

3
2k (4.4)

where PTV = V(p, :) with p = DEIM(V). To construct V, begin by defining

L :=

1
−1 1

...
.

−1 · · · −1 1
−1 · · · −1 −1

...
...

−1 · · · −1 −1

∈ Rm×k.

Now construct VT1 ≡ L as an economy-sized QR factorization of L (with no column pivoting). Since the columns
of L are linearly independent by construction, T1 ∈ Rk×k is invertible; define T ≡ T−11 , so that V = LT. (Note
that T plays the same role it does in the proof of Lemma 4.4.) If the DEIM procedure is applied to V, then by
construction p = [1, 2, . . . , k] (in exact arithmetic): during the DEIM procedure, the relations

`j τjj = vj −Vj−1(P
T
j−1Vj−1)

−1PT
j−1vj , j > 1

hold, with `j = L(: , j), τjj = T(j, j), vj = V(: , j) , Pj−1 = I(: , 1 : j− 1) and Vj−1 = V(: , 1 : j− 1). Thus
p(j) = j, j > 1 and it is easily seen that p(1) = 1.

Note that VT−1 = L implies T−TT−1 = LTL hence ‖T‖ = 1/σk, where σk is the smallest singular value
of L. Let y be the corresponding right singular vector, so that

σ2k = yTLTLy.

We claim that σk ≥
√
2. To see this, write L in the form

L =

[
Ik
0

]
−
[

L0

E

]
,

where

Ik =

1

1
. . .

1

 , L0 =

0

1
. . .

...
.

1 · · · 1 0

 , E =

1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

 = f eT ,

for f = [1, . . . , 1]T ∈ Rm−k.

LTL = Ik − L0 − LT
0 + LT

0 L0 + ETE

= Ik − (eeT − Ik) + LT
0 L0 + (m− k)eeT

= 2Ik + LT
0 L0 + (m− k − 1)eeT

= 2Ik + M,

13

where M := LT
0 L0 + (m− k − 1)eeT is symmetric and positive semidefinite whenever m > k. Thus

σ2k = yTLTLy = yT (2Ik + M)y ≥ 2

and hence it follows that
‖T‖ ≤ 1/

√
2.

This implies

‖(PTV)−1‖ = ‖T−1L−11 ‖ ≥
‖L−11 ‖
‖T‖

≥
√
2 ‖L−11 ‖.

To complete the lower bound, we must analyze ‖L−11 ‖. Forward substitution gives L−11 e1 = [1, 1, 2, 4, . . . , 2k−2]T

and thus
‖L−11 ‖ > ‖L

−1
1 e1‖ =

√
1 + (4k−1 − 1)/3 > 2k−2.

We arrive at the lower bound

ηp ≡ ‖(PTV)−1‖ ≥
√
2 ‖L−11 ‖ >

√
2 · 2k−2,

and thus for this choice of V, the DEIM error constant satisfies

1√
8
2k < ηp <

√
mk

3
2k.

This example is interesting because it relies on the behavior of the classic example for growth in LU decom-
position [26, lecture 22]. However, in this case the pathological growth is caused by L and not by T.

5 Incremental QR Factorization

The DEIM point selection process presumes access to the first k left and right singular vectors of A ∈ Rm×n.
If either m or n is of modest size (say ≤ 1000) and A can be stored as a dense matrix, library software for
computing the “economy sized” SVD, e.g., [V,S,W] = svd(A,’econ’) in MATLAB, usually performs
very well. For larger scale problems, the leading k singular vectors can be computed using iterative methods, such
as the Krylov subspace-based ARPACK software [21] (used by MATLAB’s svds command), PROPACK [20],
IRLBA [1], or the Jacobi–Davidson algorithm [17]. Randomized SVD algorithms provide an appealing alternative
with probabilistic error bounds [16]. Here we describe another approach that satisfies a deterministic error bound
(Lemma 5.1) and only requires one pass through the matrix A, a key property for massive data sets that cannot
easily be stored in memory.

This approach is based on an incremental low rank A ≈ QR approximation, where Q ∈ Rn×k has orthonor-
mal columns and R ∈ Rk×m is upper triangular. (In this section only, Q and R denote different quantities from
elsewhere in the paper.) Take the dense (economy sized) SVD R = V̂SWT , and put V = QV̂ to get

A ≈ QR = VSWT . (5.1)

14

Input: A, an m× n matrix
tol, a positive scalar controlling the accuracy of the factorization

Output: Q, an m× k matrix with orthonormal columns
R, a k × n rectangular matrix

with A ≈ QR

Choose k � min(m,n)
Compute the QR factorization A(:, 1 : k) = QR, with Q ∈ Rn×k and R ∈ Rk×m

rownorms(i) = ‖R(i, :)‖2 for i = 1, . . . , k
j = k + 1
while j ≤ n

a = A(:, j); r = QTa; f = a−Qr; ρ = ‖f‖; q = f/ρ

Q = [Q, q]; R =

[
R r
0 ρ

]
rownorms(i) = rownorms(i) + r(i)2 for i = 1, . . . , k
rownorms(k + 1) = ρ2;
FnormR = sum(rownorms);
[σ, imin] = min(rownorms(1 : k + 1));

if σ > (tol2) ∗ (FnormR− rownorms(imin)
% no deflation
k = k + 1;

else % deflation required
if imin < k + 1

R(imin, :) = R(k + 1, :); Q(:, imin) = Q(:, k + 1)
rownorms(imin) = rownorms(k + 1)

end
% delete the minimum norm row of R
Q = Q(:, 1 : k);R = R(1 : k, :)

end
j = j + 1

end

Algorithm 2: Incremental QR low rank approximate factorization

Incremental algorithms for building the QR factorization and SVD have been proposed by Stewart [23], Baker,
Gallivan, and Van Dooren [2] and many others, as surveyed in [3]; these ideas are also closely related to rank-
revealing QR factorizations [15]. Algorithm 2 differs from those of Stewart in its use of internal pivoting and
threshold truncation in place of Stewart’s column pivoting. This distinction enables a one-pass algorithm that is
closely related to [2, Algorithm 1].

15

The proposed method is presented in Algorithm 2, which proceeds at each step by orthogonalizing a column
of A against the previously orthogonalized columns. The rank of the resulting factors is controlled through an
update-and-delete procedure that is illustrated in Figure 2. After orthogonalizing a column of A, the algorithm
checks if any row of R has small relative norm; if such a row exists, the corresponding column of Q makes little
contribution to the factorization, so that column of Q and row of R can be deleted at only a small loss of accuracy
in the factorization. (Future columns of A will not be orthogonalized against the vector deleted from Q, so this
direction can re-emerge if a later column in A warrants it.)

Robust implementations of Algorithm 2 should replace the classical Gram–Schmidt operations

r = QTa, f = a−Qr

with a re-orthogonalization step, as suggested by Daniel, Gragg, Kaufman, and Stewart [8]:

r = QTa

f = a−Qr

c = QT f (5.2)

f = f −Qc (5.3)

r = r + c (5.4)

ρ = ‖f‖
q = f/ρ.

The extra steps (5.2)–(5.4) generally provide a Q that is numerically orthogonal to working precision. Pathological
cases are easily overcome with some additional slight modifications; see [13] for a complete analysis. Because
this algorithm uses the classical Gram–Schmidt method, one can easily block it for parallel efficiency.

5.1 Incremental QR Error Bounds

At step j the truncation criterion in Algorithm 2 will delete row rTi = eTi Rj if

‖ri‖ ≤ tol ‖R̂j‖F ,

where rTi is the row of minimum norm and R̂j denotes Rj with the ith row deleted. This strategy has a straight-
forward error analysis, which, in light of the approximation (5.1), also implies an error bound on the resulting
SVD.

Lemma 5.1 Let Rj be the triangular factor at step j of Algorithm 2, and Qj the corresponding orthonormal
columns in the approximate QR factorization Aj ≈ QjRj , where Aj consists of the first j columns of A. Then

‖Aj −QjRj‖F ≤ tol · dj · ‖Rj‖F ,

where dj is the number of coloumn/row deletions that have been made up to and including step j. (Note that
Qj ∈ Rm×(j−dj), R ∈ R(j−dj)×j , and dn = min{m,n} − k, where k = rank (QnRn).)

16

A(:, 1 : j) =

Partial QR factorization

A(:, 1:j+1) =

Extend with Gram–Schmidt

Find qi with
‖R(i, :)‖2 < tol2 (‖R‖2F − ‖R(i, :)‖2)

Replace qi, R(i, :) Truncate last column
of Q and row of R

Figure 2: Diagram illustrating the QR update procedure.

Before proving this lemma, we note that it gives a bound on the error in the resulting approximate SVD of
A. Suppose dn deletions are made when this algorithm computes the approximate factorization A ≈ QR with
tolerance tol. Given the SVD R = V̂SW∗, set V ≡ QV̂. Then

‖A−VSW∗‖F ≤ tol · dn · ‖R‖F .

Proof of Lemma 5.1: The proof shall be by induction. Let Ej = Aj −QjRj and assume

‖Ej‖F ≤ tol · dj · ‖Rj‖F . (5.5)

Orthogonalize column j + 1 of A using Gram–Schmidt to obtain

Aj+1 = Qj+1Rj+1 + [Ej ,0].

If no deflation occurs at this step, the bound holds trivially since

‖Ej+1‖F = ‖[Ej ,0]‖F ≤ tol · dj · ‖Rj‖F ≤ tol · dj+1 · ‖Rj+1‖F ,

because dj+1 = dj and ‖Rj‖F ≤ ‖Rj+1‖F .

17

Suppose Rj has dimension k × j (i.e., k = j − dj). Let i be the index of the row of minimum norm and let
R̂j+1 be obtained by deleting the ith row of Rj+1. If rTi = eTi Rj+1 satisfies ‖rTi ‖ ≤ tol · ‖R̂j+1‖F then deflation
occurs. Deleting column i of Qj+1 and row i of Rj+1 replaces Qj+1 and Rj+1 with Q̂j+1 and R̂j+1. Then

Q̂j+1R̂j+1 = Qj+1(Rj+1 − eir
T
i),

and
Aj+1 = Qj+1(Rj+1 − eir

T
i) + [Ej ,0] + Qj+1eir

T
i .

Hence the deletion gives the overall error

Ej+1 = Aj+1 − Q̂j+1R̂j+1 = [Ej ,0] + Qj+1eir
T
i .

Therefore, when i < k + 1, the inductive assumption (5.5) implies

‖Ej+1‖F ≤ ‖Ej‖F + ‖rTi ‖ ≤ tol · (dj · ‖Rj‖F + ‖R̂j+1‖F) ≤ tol · (dj + 1) · ‖R̂j+1‖F ,

since R̂j+1 contains row k + 1 of Rj+1, which must have a norm larger than the row marked for deletion. Since
row k + 1 of R̂j+1 consists of just one nonzero element,

‖R̂j+1‖2F ≥ ‖R̂j‖2F + ρ2k+1,j+1 ≥ ‖Rj‖2F ,

where ρk+1,j+1 is the element Rj+1(k+1, j+1) and R̂j is the matrix Rj with ith row deleted. If i = k+1, then
the last row of Rj+1 is deleted and the desired inequality must hold, since Rj is a submatrix of R̂j+1. At the end
of this process, replace Rj+1 and Qj+1 with R̂j+1 and Q̂j+1 to obtain the approximation

‖Aj+1‖ ≤ tol · dj+1 · ‖Rj+1‖F ,

since dj+1 = dj + 1.
The error bound for the base case j = 1 clearly holds, completing the induction.

The approximate QR factorization that results from this algorithm could be used directly for the approximation
of leverage scores. The perturbation theory of Ipsen and Wentworth [18] describes how the tolerance in our
algorithm will affect the accuracy of the resulting leverage scores. We also note that for extra expediency this one-
pass QR algorithm could be stopped when ‖R̂j‖F ≈ ‖A‖F (at the cost of an extra pass through A to compute
‖A‖F), or applied to only a random sampling of k columns of A. (Drmač and Gugercin propose a different
random approach to DEIM index selection, based on sampling rows of V to compute DEIM indices [11].)

6 Computational Examples

This section presents some computational evidence illustrating the excellent approximation properties of the
DEIM-CUR factorization, consistent with the error analysis in Section 4. For each of our three examples, we
compare the accuracy of the DEIM-CUR factorization with several schemes based on leverage scores. To remove
random variations from our experiments, in most cases we select columns and rows having the highest leverage
scores; for the first example, we include results for random leverage score sampling. For Example 1 we also study
the effect of inaccurate singular vectors on the DEIM selection, and compare the accuracy of DEIM-CUR to CUR
approximations based on the column-pivoted QR algorithm.

18

Example 1. Low-rank approximation of a sparse, nonnegative matrix

The first example builds a matrix A ∈ R300,000×300 of the form

A =

10∑
j=1

2

j
xjy

T
j +

300∑
j=11

1

j
xjy

T
j , (6.1)

where xj ∈ R300,000 and yj ∈ R300 are sparse vectors with random nonnegative entries (in MATLAB, xj =
sprand(300000, 1, 0.025) and yj = sprand(300, 1, 0.025)). In this instantiation, A has 15,971,584 nonzeros,
i.e., about 18% of all entries are nonzero. The form (6.1) is not a singular value decomposition, since {xj} and
{yj} are not orthonormal sets; however, this decomposition suggests the structure of the SVD: the singular values
decay like 1/j, and with the first ten singular values weighted more heavily to give a notable drop between σ10
and σ11. We begin these experiments by computing V and W using MATLAB’s economy-sized SVD routine
([V,S,W] = svd(A,’0’)).

Figure 3 compares the error ‖A − CUR‖ for DEIM-CUR and methods that take C and R as the columns
and rows of A with the highest leverage scores. These scores are computed using either all right and left singular
vectors (300 of each), or using only the leading ten right and left singular vectors. Both approaches perform rather
worse than DEIM-CUR, which closely tracks the optimal value σk+1.

To gain insight into these results, we examine the interpolation constants ηp and ηq for all three approaches.
Figure 4 shows that these constants are largest for leverage scores based on all the singular vectors; using only
ten singular vectors improves both the interpolation constants and the accuracy of the approximation (as seen in
Figure 3). The DEIM-CUR method gives better interpolation constants and more accurate approximations.

k
0 5 10 15 20 25 30

kA
!

C
k
U

k
R

k
k

10-1

100

101

102

LS (all) LS (10) DEIM DEIM(bV; cW) <k+1

Figure 3: Accuracy of CUR approximations for the sparse, nonnegative matrix (6.1) using k columns and rows,
constructed by DEIM-CUR and two leverage score strategies: “LS (all)” selects rows and columns with highest
leverage scores computed using all 300 singular vectors; “LS (10)” only uses the leading ten singular vectors. The
“DEIM(V̂,Ŵ)” curve (nearly atop the “DEIM” curve) uses approximate singular vectors, described later.

19

Figure 4: Error constants ηp = ‖(PT
k Vk)

−1‖ and ηq = ‖(WT
k Q)−1‖ for rows and columns selected using two

leverage score strategies (left plot) and the DEIM algorithm (right plot), for the matrix (6.1).

Figure 5: Accuracy of CUR approximations for (6.1) generated by randomly sampling rows and columns with
probability weighted by leverage scores computed from the leading ten singular vectors. All ten trials (gray lines)
perform similarly to the deterministic “LS (10)” approach, and worse than the DEIM-CUR approximation.

A CUR factorization can also be obtained by randomly sampling columns and rows of A, with the probability
of selection weighted by leverage scores [22]. We apply this approach on the current example, selecting k = 30
rows and columns of A with a probability given by the leverage scores computed from the leading ten singular
vectors (normalized to give a probability distribution). Figure 5 gives the results of ten independent experiments,
showing that while sampling can sometimes yield better results than the deterministic leverage score approach,
overall the approximations are still inferior to those from DEIM-CUR.

How robust is the DEIM-CUR approximation to errors in the singular vectors? To investigate, we compute

20

k
0 5 10 15 20 25 30

an
g
le
,
ra

d
ia

n
s

10-10

10-8

10-6

10-4

10-2

100

6 (Vk; bVk) 6 (Wk; cWk)

k
0 5 10 15 20 25 30

an
g
le
,
ra

d
ia

n
s

10-10

10-8

10-6

10-4

10-2

100

6 (Vk; bVk) 6 (Wk; cWk)

SVD via Incremental QR, tol = 10−4

one application of A and AT

two applica
tions of A

and A
T

Randomized SVD

Figure 6: The angle between the leading k-dimensional exact singular subspaces Ran(Vk) and Ran(Wk) (gen-
erated by MATLAB’s svd command) and approximate singular subspaces Ran(V̂k) and Ran(Ŵk) for the ma-
trix (6.1). On the left, V̂k and Ŵk are generated using the Incremental QR algorithm described in Section 5, with
tol = 10−4; on the right, V̂k and Ŵk are generated using randomized SVD algorithm [16] using one and two
applications of A and AT .

V̂ ≈ V and Ŵ ≈ W using the Incremental QR algorithm detailed in Section 5 (with tol = 10−4) and the
Randomized SVD algorithm described by Halko, Martinsson, and Tropp [16, p. 227]. To give extreme examples
of the latter, we compute V̂ and Ŵ through only one or two applications each of A and AT .6 As Figure 6
illustrates, in both cases the angle between the exact and approximate leading singular subspaces is significant,
particularly as k grows. This drift in the subspaces has little effect on the accuracy of the DEIM approximations.

• The DEIM approximation using the Incremental QR algorithm is quite robust, choosing at most 3 different
row indices and 2 different column indices for k = 1, . . . , 30, with a relative discrepancy in ‖A−CkUkRk‖
of at most 9.27% (and this realized only at step k = 30).

• When A and AT are applied once in the Randomized SVD algorithm, the DEIM indices differ considerably
from those drawn from exact singular vectors (e.g., for k = 30, 20 of 30 row indices and 3 of 30 column
indices differ), yet the quality of the approximation ‖A − CkUkRk‖ remains almost the same (relative
difference of at most 10.45%); see the dashed line in Figure 3.

• When A and AT are applied twice, the DEIM indices are nearly identical (e.g., for k = 30, 0 of 30 row
indices and 2 of 30 column indices differ). On the scale of the plot in Figure 3, ‖A−CkUkRk‖ could not be
distinguished from the DEIM-CUR errors using exact singular vectors; the maximum relative discrepancy
is 2.21%.

6 This corresponds to q = 0 and q = 1 in the notation of [16, p. 227]. Let the columns of Q ∈ Rm×2kmax form an orthonormal
basis for (AAT)qAΩ, where Ω ∈ Rn×2kmax is a random matrix with i.i.d. Gaussian entries and we take kmax = 30. Then the leading
kmax columns of V and W are approximated by taking the SVD of Q∗A ∈ R2kmax×n.

21

Thus far we have only compared the DEIM-CUR approximations to CUR factorizations obtained from leverage
scores, which also use singular vector information, thus illustrating how DEIM can use the same raw materials to
better effect. Next we compare DEIM-CUR to approximations computed using a different approach based on
QR factorization of A; see, e.g., [7, 23]. Begin by computing a column-pivoted QR factorization of A; the
first k selected columns give the indices q, from which we extract Ck = A(: ,q). Next, a column-pivoted QR

1.81.410.60.2

1

50

100

ratio (DEIM-CUR error)/(QR-CUR error)

DEIM-CUR better QR-CUR better

ra
nk

,k

543210

1

50

100

543210

1

50

100

log10(ηp) for DEIM-CUR log10(ηp) for QR-CUR

ra
nk

,k

ra
nk

,k

Figure 7: Comparison of DEIM-CUR and QR-CUR performance for 100 sparse random 300, 000× 300 matrices
of the form (6.1). The top plot shows a histogram of the ratio of ‖A−CkUkRk‖ for DEIM-CUR and QR-CUR.
The bottom plots compare the error constant ηp = ‖(PT

k Vk)
−1‖ for DEIM-CUR (left) and QR-CUR (right); note

the logarithmic scale of the horizontal axes in the lower plots.

22

factorization of CT
k is performed; the first k selected columns of CT

k give the indices p, from which we build
Rk = A(p, :). We refer to this technique as “QR-CUR.”

Figure 7 compares the results for 100 trials involving sparse random matrices of dimension 300, 000 × 300
having the form of our first experiment (6.1). DEIM-CUR and QR-CUR produce factorizations with similar
accuracy, which we illustrate with a histogram of the ratio of ‖A −CkUkRk‖ for DEIM-CUR to QR-CUR, for
k = 1, . . . , 100. (DEIM-CUR produces a smaller error when the ratio is less than one.) While these errors are
similar, the error constants ηp and ηq for the two methods are quite different. The bottom plots in Figure 7 compare
histograms of log10 ηp. For DEIM-CUR, the ηp values are quite consistent across the 100 random A, while for
QR-CUR the ηp values are both larger and rather less consistent. (The figures for ηq are qualitatively identical, but
about an order of magnitude smaller for both methods.)

The advantage of DEIM-CUR over approximations based on leverage scores remains when the singular values
decrease more sharply. Modify (6.1) to give a more significant drop between σ10 and σ11:

A =
10∑
j=1

1000

j
xjy

T
j +

300∑
j=11

1

j
xjy

T
j . (6.2)

As seen in Figures 8 and 9, the DEIM-CUR approach again delivers excellent approximations, while selecting the
rows and columns with highest leverage scores does not perform nearly as well. (In Figure 9, note the significant
jump in the “LS (10)” error constant ηq corresponding to those k values where ‖A−CkUkRk‖/σk+1 is large.)

Figure 8: Accuracy of CUR approximations using k rows and columns, for DEIM-CUR and two leverage score
strategies for the sparse, nonnegative matrix (6.2). “LS (all)” selects rows and columns having the highest leverage
scores computed using all 300 singular vectors; “LS (10)” uses the leading 10 singular vectors.

23

Figure 9: Error constants ηp = ‖(PT
k Vk)

−1‖ and ηq = ‖(WT
k Qk)

−1‖ for rows and columns selected using two
leverage score strategies (left plot) and the DEIM algorithm (right plot), for the sparse matrix A given in (6.2).

Example 2. TechTC term document data

The second example, adapted from Mahoney and Drineas [22], computes the CUR factorization of a term docu-
ment matrix with data drawn from the Technion Repository of Text Categorization Datasets (TechTC) [12]. The
rows of the data matrix correspond to websites (consolidated from multiple webpages), while the columns corre-
spond to “features” (words from the text of the webpages). The (j, k) entry of A reflects the importance of the
feature text on the given website; most entries are zero. For this experiment we use TechTC-100 test set 26, which
concatenates a data set relating to Evansville, Indiana (id 10567) with another for Miami, Florida (id 11346).
Following Mahoney and Drineas [22], we omit all features with four or fewer characters from the data set, leav-
ing a matrix with 139 rows and 15,170 columns. Each row of A is then scaled to have unit 2-norm. Ideally a
CUR factorization not only gives an accurate low-rank approximation to A, but also selects rows corresponding to
representative webpages from each geographic area, and columns corresponding to meaningful features.

Figure 10 compares DEIM-CUR approximations to row and column selection based on highest leverage scores
(from all singular vectors, or the two leading singular vectors). The DEIM-CUR approximations are typically
more accurate than those based on leverage scores, but all approaches give errors roughly two times larger than the
slowly-decaying optimal value of σk+1. How do the DEIM columns (features) compare to those with the highest
leverage scores? Figure 11 shows the leverage scores associated with each column of A (based on the two leading
singular vectors), along with the first 30 columns selected by DEIM. While the columns with highest leverage
scores were found by DEIM, there are DEIM columns with marginal leverage scores, and vice versa. This data
is more easily parsed in Table 1, which lists the features corresponding to the first 20 DEIM columns. (To ease
comparison, we normalize leverage scores so that the maximum value is one.) The leading features identified by
DEIM, including “evansville” (first DEIM point), “florida” (second), “miami” (sixth), and “indiana” (nineteenth),
indeed reveal key geographic terms. These terms scored at least as high when ranked by leverage scores based on
two leading singular vectors; when all singular vectors are used, the scores of these terms generally drop, relative
to other features. Overall, one notes that DEIM selects a significantly different set of indices than those valued by
leverage scores, and, as seen in Figure 10, tends to provide a somewhat better low-rank approximation.

24

Figure 10: Accuracy of CUR factorizations for the TechTC example, selecting rows and columns using top
leverage scores for all singular vectors and the leading two singular vectors, and DEIM.

Figure 11: The columns selected by DEIM for the TechTC example, compared to leverage scores from the leading
two singular vectors.

Example 3. Tumor detection in genetics data

Our final example uses the GSE10072 cancer genetics data set from the National Institutes of Health, previously
investigated by Kundu, Nambirijan, and Drineas [19]. The matrix A ∈ R22,283×107 contains data for 22,283 probes
applied to 107 patients. The (j, k) entry of A reflects how strongly patient k responded to probe j. This experiment
seeks probes that segment the population into two clusters: the 58 patients with tumors, and the 49 without.7 To

7The data is available from http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10072.

25

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10072

Table 1: The features selected by DEIM-CUR for the TechTC data set, compared to the (scaled) leverage scores
using the leading two singular vectors, and all singular vectors.

DEIM index LS (2) LS (all)
rank qj rank score rank score feature

1 10973 1 1.000 4 0.875 evansville
2 1 2 0.741 8 0.726 florida
3 1547 13 0.031 2 0.948 spacer
4 109 8 0.055 66 0.347 contact
5 209 12 0.040 32 0.458 service
6 50 4 0.116 6 0.739 miami
7 824 46 0.007 5 0.809 chapter
8 1841 33 0.010 20 0.537 health
9 171 5 0.113 13 0.617 information

10 234 16 0.026 37 0.436 events
11 595 84 0.004 15 0.576 church
12 60 15 0.026 67 0.347 email
13 945 10 0.047 30 0.474 services
14 1670 129 0.002 1 1.000 bullet
15 216 35 0.009 38 0.430 music
16 78 3 0.246 24 0.492 south
17 213 19 0.018 110 0.259 their
18 138 14 0.030 43 0.408 please
19 6110 7 0.060 95 0.280 indiana
20 1152 70 0.005 152 0.221 member

center the data, we subtract the mean of each row from all entries in that row. As shown in [19], the leading two
principal vectors of this matrix segment the population very well.

Like the TechTC data, the singular values of A decay slowly, as seen in Figure 12. Once again the DEIM-CUR
procedure produces a more accurate low-rank approximation than obtained by selecting the rows and columns with
highest leverage scores, whether those are computed using all the singular vectors, or just the leading two or ten.

Table 2 reports the first 15 rows selected by the DEIM-CUR process, along with the corresponding leverage
scores based on two, ten, and all singular vectors. Do the probes selected by DEIM discriminate the patients with
tumors (“sick”) from those without (“well”)? To investigate, for each selected probe we count the number of large
positive entries corresponding to sick and well patients.8 Some but not all of the DEIM-CUR probes effectively
select only sick or well patients. Contrast these results with Table 3, which shows the probes with highest leverage
scores (drawn from the leading two singular vectors). Only four of these probes were also selected by the DEIM
procedure (even if we continue the DEIM procedure to select the maximum number, n = 107, of indices). This
discrepancy is quite different from the good agreement between DEIM and leverage score indices for the TechTC
data in Table 1, despite the similar dimensions and the comparably slow decay of the singular values.

While the rows selected from leverage scores did not produce as accurate an approximation, ‖A−CkUkRk‖,
8In particular, we call an entry of the mean-centered matrix A large if its value exceeds one. Of the 22,283 probes, for only 23 probes

do at least 30 of the 58 sick patients have such large entries; for only 95 probes do at least 30 of the 49 well patients have large entries.
There is no overlap between the probes that are strongly expressed by the sick and well patients.

26

Figure 12: Accuracy of CUR factorizations for a genetics data set. DEIM-CUR consistently outperforms factor-
izations derived by taking the rows and columns with largest leverage scores, regardless of whether these scores
are drawn from all singular vectors, the leading ten singular vectors, or the leading two singular vectors.

Table 2: Genetics example: the probes selected by DEIM-CUR, compared to the (scaled) leverage scores using
the leading two singular vectors, ten singular vectors, and all singular vectors.

DEIM index probe gene number number LS (2) LS (10) LS (all)
rank qj set name sick well rank score rank score rank score

1 9565 210081 at AGER 2 45 1 1.000 45 0.504 386 0.123
2 14270 214895 s at ADAM10 8 3 211 0.173 1171 0.108 3344 0.036
3 8650 209156 s at COL6A2 5 6 15156 0.005 252 0.245 708 0.091
4 11057 211653 x at AKR1C2 18 1 6440 0.017 11 0.656 146 0.185
5 14153 214777 at IGKV4-1 27 3 281 0.148 19 0.607 106 0.209
6 18976 219612 s at FGG 17 17 2591 0.039 2 0.956 4 0.825
7 3831 204304 s at PROM1 16 4 992 0.073 70 0.417 32 0.345
8 3351 203824 at TSPAN8 17 4 9687 0.011 21 0.582 31 0.355
9 4275 204748 at PTGS2 18 14 424 0.118 13 0.624 42 0.313
10 1437 201909 at RPS4Y1 21 34 8232 0.013 3 0.913 5 0.736
11 14150 214774 x at TOX3 34 0 95 0.262 49 0.492 102 0.210
12 10518 211074 at FOLR1 7 4 9482 0.011 926 0.124 213 0.159
13 9580 210096 at CYP4B1 6 44 8 0.797 65 0.431 54 0.284
14 4002 204475 at MMP1 27 0 34 0.406 24 0.564 21 0.465
15 13990 214612 x at MAGEA 16 0 489 0.110 134 0.323 35 0.339

as DEIM, these probes do a much more effective job of discriminating patients with tumors from those without.
Indeed, for 14 of the top 15 probes, the tumor-free patients express strongly, while the patients with tumors do not;
in the remaining case, the opposite occurs.

27

Table 3: Genetics example: the probes with top (scaled) leverage scores, derived from the first two singular
vectors.

LS (2) index LS (2) probe gene number number DEIM
rank qj score set name sick well rank

1 9565 1.000 210081 at AGER 2 45 1
2 13766 0.922 214387 x at SFTPC 6 48 —
3 11135 0.907 211735 x at SFTPC 5 48 73
4 9361 0.899 209875 s at SPP1 50 2 —
5 5509 0.896 205982 x at SFTPC 5 48 —
6 9103 0.835 209613 s at ADH1B 2 47 —
7 14827 0.834 215454 x at SFTPC 0 46 —
8 9580 0.797 210096 at CYP4B1 6 44 13
9 4239 0.754 204712 at WIF1 5 43 70
10 3507 0.724 203980 at FABP4 2 44 —
11 18594 0.717 219230 at TMEM100 2 38 —
12 9102 0.684 209612 s at ADH1B 2 46 —
13 13514 0.626 214135 at CLDN18 3 47 —
14 5393 0.626 205866 at FCN3 0 39 —
15 4727 0.614 205200 at CLEC3B 0 39 —

7 Conclusions
The Discrete Empirical Interpolation Method (DEIM) is an index selection procedure that gives simple, deter-
ministic CUR factorizations of the matrix A. Since DEIM utilizes (approximate) singular vectors, we propose
an effective one-pass incremental approximate QR factorization that can efficiently compute dominant singular
vectors for data sets with rapidly decaying singular values; this method could prove useful in a variety of other
settings. The accuracy of the resulting rank-k CUR factorization can be bounded in terms of σk+1, the error in the
best rank-k approximation to A. Our analysis of the 2-norm error ‖A −CUR‖ applies to all CUR approxima-
tions that use the optimal central factor U = CIARI , and hence can give insight into the performance of other
index selection algorithms, such as leverage scores, uniform random sampling, or column-pivoted QR factoriza-
tion. Numerical examples illustrate that the DEIM-CUR approach can deliver very good low rank approximations,
compared to row selection based on dominant leverage scores.

Acknowledgements
We thank Inderjit Dhillon, Petros Drineas, Ilse Ipsen, Michael Mahoney, and Nick Trefethen for a number of
helpful discussions. We are also grateful to Gunnar Martinsson for recommending experiments with the column-
pivoted QR selection algorithm, and to an anonymous referee for encouraging us to seek the improved analysis
and growth example for the DEIM error constants at the end of Section 4.

28

References

[1] James Baglama and Lothar Reichel. An implicitly restarted block Lanczos bidiagonalization method using
Leja shifts. BIT, 53:285–310, 2013.

[2] C. G. Baker, K. A. Gallivan, and P. Van Dooren. Low-rank incremental methods for computing dominant
singular subspaces. Linear Algebra Appl., 436:2866–2888, 2012.

[3] Christopher G. Baker. A block incremental algorithm for computing dominant singular subspaces. Master’s
thesis, Florida State University, 2004.

[4] Maxime Barrault, Yvon Maday, Ngoc Cuong Nguyen, and Anthony T. Patera. An ‘empirical interpolation’
method: application to efficient reduced-basis discretization of partial differential equations. Comptes Rendus
Acad. Sci. Paris, Ser. I, 339:667–672, 2004.

[5] Christos Boutsidis and David P. Woodruff. Optimal CUR matrix decompositions. arXiv:1405.7910 [cs.DS],
2014.

[6] Saifon Chaturantabut and Danny C. Sorensen. Nonlinear model reduction via discrete empirical interpolation.
SIAM J. Sci. Comput., 32:2737–2764, 2010.

[7] H. Cheng, Z. Gimbutas, P. G. Martinsson, and V. Rokhlin. On the compression of low rank matrices. SIAM
J. Sci. Comput., 26:1389–1404, 2005.

[8] J. W. Daniel, W. B. Gragg, L. Kaufman, and G. W. Stewart. Reorthogonalization and stable algorithms for
updating the Gram–Schmidt QR factorization. Math. Comp., 30:772–795, 1976.

[9] Jack J. Dongarra, Iain S. Duff, Danny C. Sorensen, and Henk A. van der Vorst. Numerical Linear Algebra
for High-Performance Computers. SIAM, Philadelphia, 1998.

[10] Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan. Relative-error CUR matrix decompositions.
SIAM J. Matrix Anal. Appl., pages 844–881, 2008.

[11] Zlatko Drmač and Serkan Gugercin. A new selection operator for the discrete empirical interpolation method
— improved a priori error bound and extensions. arXiv:1505.0037 [cs.NA], 2015.

[12] Evgeniy Gabrilovich and Shaul Markovitch. Text categorization with many redundant features: Using ag-
gressive feature selection to make SVMs competitive with C4.5. In The 21st International Conference on
Machine Learning (ICML), pages 321–328, 2004.

[13] Luc Giraud, Julien Langou, Miroslav Rozložnı́k, and Jasper van den Eshof. Rounding error analysis of the
classical Gram–Schmidt orthogonalization process. Numer. Math., 101:87–100, 2005.

[14] S. A. Goreinov, E. E. Tyrtyshnikov, and N. L. Zamarashkin. A theory of pseudoskeleton approximations.
Linear Algebra Appl., 261:1–21, 1997.

29

[15] Ming Gu and Stanley C. Eisenstat. Efficient algorithms for computing a strong rank-revealing QR factoriza-
tion. SIAM J. Sci. Comput., 17:848–869, 1996.

[16] N. Halko, P. G. Matinsson, and J. A. Tropp. Finding structure with randomness: probabilistic algorithms for
constructing approximate matrix decompositions. SIAM Review, 53:217–288, 2011.

[17] Michiel E. Hochstenbach. A Jacobi–Davidson type SVD method. SIAM J. Sci. Comput., 23:606–628, 2001.

[18] Ilse C. F. Ipsen and Thomas Wentworth. Sensitivity of leverage scores. arXiv:1402.0957 [math.NA], 2014.

[19] Abhisek Kundu, Srinivas Nambirajan, and Petros Drineas. Identifying influential entries in a matrix.
arXiv:1310.3556 [cs.nA], 2013.

[20] Rasmus Munk Larsen. PROPACK: Software for large and sparse SVD calculations. http://sun.
stanford.edu/˜rmunk/PROPACK/, 2005. Version 2.1.

[21] R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue
Problems with Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia, 1998.

[22] Michael W. Mahoney and Petros Drineas. CUR matrix decompositions for improved data analysis. Proc.
Nat. Acad. Sci., 106:697–702, 2009.

[23] G. W. Stewart. Four algorithms for the efficient computation of truncated QR approximations to a sparse
matrix. Numer. Math., 83:313–323, 1999.

[24] Daniel B. Szyld. The many proofs of an identity on the norm of oblique projections. Numer. Alg., 42:309–323,
2006.

[25] Christian Thurau, Kristian Kersting, and Christian Bauckhage. Deterministic CUR for improved large-scale
data analysis: an empirical study. In Proceedings of the 2012 SIAM International Conference on Data
Mining, pages 684–695, 2012.

[26] Lloyd N. Trefethen and David Bau, III. Numerical Linear Algebra. SIAM, Philadelphia, 1997.

[27] Lloyd N. Trefethen and Robert S. Schreiber. Average-case stability of Gaussian elimination. SIAM J. Matrix
Anal. Appl., 11:335–360, 1990.

[28] Shusen Wang and Zhihua Zhang. Improving CUR matrix decomposition and the Nyström approximation via
adaptive sampling. J. Machine Learning Res., 14:2729–2769, 2013.

30

http://sun.stanford.edu/~rmunk/PROPACK/
http://sun.stanford.edu/~rmunk/PROPACK/

	1 Introduction
	2 CUR Factorization
	3 DEIM
	4 CUR Approximation Properties
	4.1 Interpretation of the bound for DEIM-CUR

	5 Incremental QR Factorization
	5.1 Incremental QR Error Bounds

	6 Computational Examples
	7 Conclusions

