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THE ALGEBRAIC METHOD IN QUADRATURE FOR UNCERTAINTY
QUANTIFICATION

JORDAN KO AND HENRY P WYNN

Abstract. A general method of quadrature for uncertainty quantification (UQ) is introduced

based on the algebraic method in experimental design. This is a method based on the theory
of zero dimensional algebraic varieties. It allows quadrature of polynomials or polynomial ap-

proximands for quite general sets of quadrature points, here called ‘designs’. The method goes

some way to explaining when quadrature weights are non-negative and gives exact quadrature
for monomials in the quotient ring defined by the algebraic method. The relationship to the

classical methods based on zeros of orthogonal polynomials is discussed and numerical compar-

isons made with methods such as Gaussian quadrature and Smolyak grids. Application to UQ
is examined in the context of polynomial chaos expansion and probabilistic collocation method

where solution statistics are estimated.

Nomenclature

α Multi–indices denoting the nominal polynomial orders of φα(x)
f̂(x) Metamodel or surrogate model of f(x)
D Input design
Ω Support of the measures of random input X
φα(x) Multivariate orthonormal polynomials
≺ Monomial ordering
ρ(x) Measures of random input X
A Design matrix A = {xα} with α ∈ L and x ∈ D
aα PCE coefficient for the polynomial with multi–indice α
d Number of random dimensions
f(x) Deterministic function with a n–tuple random input vector
gi(x) Gröbner basis
Hα(x) Hermite polynomials.
I Monomial ideal
L Set of exponents of the quotient basis.
Lα(x) Legendre polynomials.
LT (I) The leading term ideal of the monomial ideal
n Size of input design D
p Polynomial order
P

(a,b)
α (x) Jacobi polynomials.
Q(x) A polynomial function
r(x) Remainder form of f(x), identical to NF
u n–tuple deterministic input vector
wi Quadrature weights
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x n–tuple random input vector
Y Random outputs of the function f(X)
zi Quadrature points
AQ Algebraic quadrature
GQ Gauss quadrature
LHS Latin hypercube sampling
MC Monte Carlo
NF Normal form of f(x) with respect to I and ≺, identical to r(x)
PCE Polynomial chaos expansion
PCM probabilistic collocation method
SQ Sparse quadrature
SS Sobol Sequence
SSS Scrambled Sobol Sequence
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1. Introduction

Uncertainty Quantification (UQ), as defined particularly in an engineering context, is a method
in which input uncertainties are first identified and the uncertainties in the outputs are determined
by the propagation of the uncertainty measure from input to output. This is also a framework for
classical sensitivity analysis. Input uncertainty may arise from aleatoric environmental variables,
when the boundary conditions or the model parameters are subject to variation or fluctuation in the
physical conditions or as part of a subjective uncertainty analysis. Alternatively, the uncertainty
may arise from the lack of knowledge on the system, a source that is also known as the epistemic
uncertainty. Here we are interested in estimating output statistics with probabilistic collocation
model (PCM) and polynomial chaos expansions (PCE).

PCE is a polynomial expansion of the output response as a function of random inputs. There
are two main methodologies in solving for the PCE, that is to say in estimating the values of
the coefficients. In the first approach, the input design is based on Gauss or sparse quadrature,
appropriate for lower and higher input dimensionality, respectively [17]. The PCE coefficients are
solved by numerically integrating the solution response and the orthogonal polynomial over the
input measure. The main advantage of this method is that its polynomial exactness is known.
However, the quadrature input design increases in a pre-determined manner and is not embedded
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in the case of the Gauss quadrature. In the second approach, the input design is a randomly
generated set of points and the PCE coefficients are determined by minimizing the error between
the value of the PCE and the model solutions at the input design points with a least–square
method [7, 26]. While this method allows one to use an input design that is embedded, in the
sense that the previous samples can be used in successive iterations, the accuracy of the method
is not known in general. The accuracy of the PCE metamodel is then typically verified via cross–
validation techniques. A similar quadrature based method is the PCM. As the statistical moments
such as mean and variance are integral measures over the support of the random inputs, they can
be approximated with PCM to improve the accuracy of estimators when only a few samples are
available [28].

We first summarize briefly the main ideas of quadrature in the context of PCE and PCM.
The main purpose of the paper is to introduce a new theory of quadrature based on the so-
called algebraic method in experimental design. This method was introduced originally to study
interpolation and aliasing in factorial design [6], but has the advantage of delivering a possible
interpolator for any data over any experimental design with an a priori determination of the
design’s polynomial exactness. We refer to a set of quadrature points as a design to maintain
the connection. The quotient-plus-remainder operation inherent in the algebraic method provides
a suitable platform for the generalization of univariate quadrature based on arbitrary designs
(quadrature points) over arbitrary multivariate regions.

2. Uncertainty quantification

We consider a system with multivariate inputs u and a single univariate output y = f(u).
Typically f(.) may represent a solver for a system of differential equations. In the deterministic
case a given set of deterministic input values {ui} will lead to a corresponding set of output values
yi = f(ui). However in a wide variety of cases we may consider that uncertainty or variability
may lead to uncertainty in y. The simplest way to handle this is to capture the variability in
distributional form, at each deterministic ui. Review’s suggestion: We model the variability by
describing the system with a stochastic variable x rather than the deterministic input u. Our
suggestion from first revision: For fixed input u, we model the variability with a stochastic variable
x. This may represent uncertainty in u or may arise from noise parameters. We suppress u in what
follows.

In the PCE method we model the output y as a function of x by a series whose coefficients, aα,
are deterministic but whose stochastic terms are functions of x:

f̂(x) =
∑
α∈Nd

aαφα(x),

where f̂(x) denotes a metamodel or a surrogate of f(x) and the φα(x) are multivariate orthonormal
polynomials with respect to the measure ρ describing the random input x:

Eρ(φα(x)φβ(x)) = δα,β .

The multi–index α is an index for the polynomials in the expansion. The original Wiener poly-
nomial chaos used the Hermite polynomials as the expansion basis for Gaussian random variables
[29]. Such expansion form a complete basis in Hilbert space determined by their corresponding
support and converges to any L2 function in the L2 sense when the number of terms approaches
infinity according to the Cameron–Martin theorem [8]. The expansion was generalized by [31] to
represent non–Gaussian random fields by the use of polynomials from the Wiener–Askey scheme
[2]. For example, the Legendre and Laguerre polynomials’ weighting functions reflect the pdf of
the uniform and gamma distributions, respectively. Note, that, because we will be considering
the multivariate case the α and β are a non-negative integer vector and we shall associate one or-
thonormal polynomial with every such vector. This notation will prove important in the algebraic
development. Readers are referred to [30] for the application of spectral methods in uncertainty
quantification, especially polynomial chaos expansion.

2.1. Output statistics. This paper is concerned primarily with quadrature, that is, numerical in-
tegration or equivalently taking expectations with respect to the measure ρ. There is one immediate
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reason for this, namely that integration is required to capture the PCE coefficients:

(1) aα = Eρ [f(x)φα(x)] =
∫

Ω

f(x)φα(x)ρ(dx),

where Ω is the support of ρ. We approximate (1) by choosing a set of quadrature points, here
called a design, D = {z1, . . . , zn} ⊂ Ω. We favour the word ‘design,’ rather than abscissae or other
terms, to aid conceptual links to the design of experiments. The quadrature formula is written as∫

Ω

f(x)φα(x)ρ(dx) ≈
∑
z∈D

f(z)φα(z)wz

with suitable weights {wz}. The quadrature approximation may be exact for polynomial integrands
and converges very fast with increasing levels of quadrature for non–polynomial integrands. The
convergence depends on the selection of the design as well as the generation of the corresponding
weights which are the subject of this paper.

The accuracy of PCE could be established by cross validation methods such as leave-one-out or
k-fold. However such validation requires one to divide D into a training set for the construction of
PCE and a validation set for comparison against the metamodel. For numerical quadrature, the
entire design D is needed in calculating the quadrature approximation and such cross validation is
not feasible. The algebraic quadrature proposed can flexibly choose the training set and the appli-
cation of leave–one–out cross validation in the context of algebraic quadrature will be investigated
in Section 3.5.

From equation 1, PCE estimators of mean and variance are

E[f(X)] = a0,(2)

Var[f(X)] =
∑
α≥0

a2
α.(3)

Means, variances, higher moments, sensitivity indices etc. can be approximated with PCM [28]
using quadrature. For example, mean and variance are

E[f(X)] ≈
∑
z∈D

f(z)wz,

Var[f(X)] ≈
∑
z∈D

(f(z)− E[Y ])2
wz.(4)

Since φ0(x) = 1 in equation 1 for all orthogonal polynomials, the PCM mean estimator is identical
to the PCE estimator. Therefore, the main difference between the two methods is that the PCM
variance relies only on the quadrature approximation and is not affected by the truncation error
in PCE.

A sensitivity analysis of the system can also be carried out to identify which random dimen-
sions dominate the solution. This is achieved by calculating the partial variances from the Sobol’
sensitivity indices associated with each random variable Xn as follows [25]

Sn = Var [E {fr(X)|Xn]} /Var[f(X)].

In the context of the gPC expansion, they can be computed as

(5) Sn =
∑
a∈In

a2
mE[φ2

m(X)]/Var[f(X)] =
∑
m∈In

a2
m/Var[f(X)],

where In is the set of indices to the polynomials containing only xn and Var[f(X)] is estimated in
equation 3. In practice, those indices are numerically very easy to compute due to the hierarchical
nature of the orthogonal polynomial basis and its tensor–like form. Note that the Sobol’ indices
can also be calculated directly from collocation methods [27].

The response surfaces of f(x) can be easily constructed from equation (1) which allows one to
predict the system solution at arbitrary points in the support. We can also compute an empirical
estimator of the cdf of f(x) from

F̂ (y) =
1

nMC

nMC∑
k=1

1(−∞,y](Yk),
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where Yk = f(ζk) and nMC is the number of independent random samples ζk generated according
to the pdf ρ(x). The α–quantile yα of f(X) can be approximated from the ordered set Y(1) ≤
Y(2) ≤ · · · ≤ Y(k)

(6) Ŷα = Y(dαZe),

where a large number of MC samples can be used. A multi–element refinement method for high
values of α is described in [18].

2.2. Product form methods and alternatives. We suppose that the support of the measure
ρ(x) is Rd or a hypercube such as [−1, 1]d (after centring and scaling). If φα1(x1), φα2(x1) . . . is a
sequence of orthogonal polynomial with respect a single variable xi with ρ(xi) on R and Di is a
design (set of quadrature points) on R then for all integer multi-indices α = (α1, . . . , αd) ≥ 0, the
products

φα(x) =
d∏
i=1

φαi
(xi)

are multivariate orthogonal polynomials with respect to the product measure ρ =
∏d
i=1 ρ(xi).

Moreover the product design D = ⊗nDi is a natural design in Rd. We define the degree corre-
sponding to α as |α| = α1 + · · ·+ αd.

In classical univariate Gauss quadrature (GQ), the n–point univariate design are the zeros of
the orthogonal polynomial of degree p = n with respect to ρ each having appropriate weights {wi}
and we have exact quadrature: ∫

Ω

xmρ(dx) =
∑
z

wzx
m
z ,

for 0 ≤ m ≤ 2n− 1. For the d-dimensional quadrature there is exact quadrature for any monomial
xα = xα1

1 · · ·x
αd
1 ; 0 ≤ αi ≤ 2ni− 1; i = 1, . . . , d where ni is the number of quadrature point in each

nominal direction.
Figure 1 illustrates the accuracy from different quadrature schemes. This representation of quad-

rature accuracy was first proposed in [17] where each axis represents φα(x) in its canonical order
which is an one–to–one mapping of a sequence of polynomials φi(x) to φα(x). For example, the
first five canonical terms in d = 3 are φ0(x) = φ(0,0,0)(x), φ1(x) = φ(1,0,0)(x), φ2(x) = φ(0,1,0)(x),
φ3(x) = φ(0,0,1)(x) and φ4(x) = φ(2,0,0)(x). The intersection of the column i and row j represents
the inner product 〈φi(x), φj(x)〉 and a dot at (i, j) denotes that the quadrature approximates of
〈φi(x), φj(x)〉 is exact. The thick line shown encloses all the terms satisfying |α| ≤ 3. This rep-
resentation is a generalization of the corner cut diagram in algebraic methods proposed in [21] by
compressing a d–dimensional representation onto two dimensions. A (d − 1) dimensional corner
cut hyperplane separating the multi–indices with |α| ≤ 3 is now represented in two dimensions by
the thick line.

For a three–dimensional full–tensor quadrature with ni = 2, all the terms satisfying the full
quadrature conditions, i.e. αi ≤ 2ni − 1, are shown in Figure 1(a). In response surface methods,
the expansion is traditionally truncated at |α| = p even when higher order terms could be exactly
approximated by the quadrature; we shall use the letter p for this case throughout the paper and
sometimes use the term “polynomial exactness p”.

A key problem in quadrature is to obtain good, and if possible exact, quadrature for monomials
xα up to a certain degree |α|, without the expense of a full product design. A variety of quadrature
grids have been suggested, such as Smolyak grids. The generic term sparse grids is often used
and the zeros of orthogonal polynomials of different orders are useful building blocks. Thus,
Smolyak sparse grids with polynomial exactness p approximate exactly terms whose α satisfies
{φα : |α| ≤ p}. Figure 1 (b) shows the terms satisfying |α| ≤ 3. Using corner–cut staircase
introduced by [21], these terms can also be represented as a hypertetrahedron satisfying |α| ≤ p in
α ∈ Nd. Indeed, Figure 1 (b) illustrate in two–dimensions the concept of a generic set which will
be discussed in the following section.
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Figure 1. Each axis represents the canonical order of the orthonormal polyno-
mials φi(x) & φj(x) and each element in the matrix represents 〈φi(x), φj(x)〉. The
thin lines demarcate the increment of canonical increment in ‖p‖ and the thick
lines the canonical quadrature accuracy of |p| = 3. (a) the full quadrature ap-
proximation satisfying {α : αi ≤ 3} and (b) the sparse quadrature approximation
satisfying {α : |α| ≤ 3}.

3. Algebraic method

Following [19, 23, 24] the algebraic method in experimental design allows the construction of
exact polynomial interpolators for data over an arbitrary design D in Rd. We give a brief introduc-
tion with the main steps. For background in basic algebraic geometry see [10]. The recent work in
[11] employs also the algebraic quadrature method and concentrates particularly on the Hermite
polynomial case where special formulae apply.

Elementary powers of a single variable have a natural ordering 1 ≺ x ≺ x2 ≺ x3 ≺ . . . This is
generalised to a special total ordering on monomials in n variables: {xα} = xα1

1 · · ·xαn
n .

Definition 3.1. A monomial term ordering, ≺, is a total ordering of monomials such that 1 ≺ xα
for all α ≥ 0 and, for all γ ≥ 0, xα ≺ xβ implies xα+γ ≺ xβ+γ

We shall use the term monomial ordering for short and there are a number of standard monomial
orderings. Given an monomial ordering any polynomial Q has a unique leading term and we write,
suppressing ≺, LT (Q).

Definition 3.2. A monomial ideal I is an ideal for which there is a collection of monomials
p1, . . . , pm such that any g ∈ I can be expressed as a sum

g =
m∑
i=1

gi(x)pi(x).

We can appeal to the representation of a monomial xα by its exponent α. If β ≥ 0 is another
exponent then

xαxβ = xα+β ,

and α+ β is in the positive (shorthand for non-negative) “orthant” with “corner” at α. The set of
all monomials in a monomial ideal is the union of all positive orthants whose corners are given by
the exponent vectors of the generating monomial p1, . . . , pm.

There are, in general, many ways to express a given ideal I as being generated from a basis
I = 〈p1, . . . , pm〉. That is to say, there are many choices of basis.

Definition 3.3. Given an ideal I, a set {g1, . . . gm} is called a Gröbner basis (G-basis) if:

〈LT (g1), . . . , LT (gm)〉 = 〈LT (I)〉,
where 〈LT (I)〉 is the ideal generated by all the monomials in I.

We sometimes refer to 〈LT (I)〉 as the leading term ideal.
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Lemma 3.4. Any ideal I has a Gröbner basis and any Gröbner basis in the ideal is a basis of the
ideal.

For any given monomial ordering, ≺, any ideal I has a unique “reduced” associated Gröbner
basis (G-basis). The idea is that given a monomial ordering and an ideal expressed in terms of the
G-basis, I = 〈g1, . . . , gm〉, any polynomial Q has a unique remainder with respect the quotient
operation K[x1, . . . , xk]/I. That is

Q(x) =
m∑
i=1

si(x)gi(x) + r(x).

We call the remainder r(x) the normal form of Q with respect to I and write NF (Q). Or, to stress
the fact that it may depend on ≺, we write NF (Q,≺). Here are some formal definitions.

Definition 3.5. Given a monomial ordering ≺, a polynomial Q =
∑
α∈L θαx

α, for a list L, is a
normal form with respect to ≺ if xα /∈ 〈LT (f)〉 for all α ∈ L.

The choice of monomial ordering is important but note that if a graded (total degree) ordering
is used then all terms of a given degree appear in the ordering ”first” before any terms of a given
degree. The total number of terms of a given degree m is

(
d+d
m

)
. If the sample size is not enough to

exactly fill up to degree m then the terms will depend on the initial order and will favour variable
higher up the order. We find, in this case, that varying the initial order affects the weights, but
not substantially. See [19] for more discussion of this issue and some examples will be given in
Section 4.4.1.

A design is considered to be zero–dimensional variety, that is the solution of a set of algebraic
equations. Thus the points (±1,±1) are the solutions of {x2

1 = 1, x2
2 = 1}. There is a corresponding

ideal, I(D) which we call the design ideal. In this case, the set of monomial α ∈ L form a basis
for the quotient ring and will drive whole construction, once the design D and monomial order ≺
have been selected. Note that L and D have the same |L| = |D| = n and L has natural order ideal,
or hierarchical, property α ∈ L ⇒ β ∈ L for any β ≤ α (componentwise). We can also define the
n× n design matrix:

A = {xα}x∈D,α∈L.
(Note that in the algebraic statistics literature AT is often used.)

Lemma 3.6. Given an ideal I and a monomial ordering ≺, for every f ∈ K[x1, . . . , xk] there is a
unique normal form NF (f) such that f −NF (f) ∈ I.

We now summarize the main steps which provided the background for the algebraic quadrature
of this paper:

(1) Choose a design D and a measure, ρ.
(2) Select a monomial term ordering, ≺.
(3) Compute Gröbner basis for I(D) for given monomial ordering, ≺. By default, the graded

lexicographical order should be used.
(4) The quotient ring K[x1, . . . , xk]/I(D) of the ring of polynomials K[x1, . . . , xk] in x1, . . . , xk

forms is a vector space spanned by a special set of monomials: xα, α ∈ L. These are all
the monomials not divisible by the leading terms of the G-basis G = {gi(x), i = 1, . . . ,m}
and |L| = |D|. We shall refer to this as the quotient basis or model basis.

(5) The quotient operation implies that any polynomial f(x) has a decomposition

f(x) =
m∑
i=1

si(x)gi(x) + r(x),

where the remainder r(x) =
∑
α∈L cαx

α is a member of the quotient ring, which we call
the Normal Form of r(x): NF (r(x)).

(6) The set of multi-indices L has the “order ideal”, sometimes called “staircase” property:
α ∈ L implies β ∈ L for any 0 ≤ β ≤ α. For example, if x2

1x2 in the model so is
1, x1, x2, x1x2.

(7) Any function f(x) on D has a unique polynomial interpolator given by the list L:

p(x) =
∑
α∈L

θαx
α,
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such that f(x) = p(x), x ∈ D.
(8) The cardinality of the design and the quotient basis is the same: |L| = |D|.
(9) The design matrix

A = {xα}x∈D,α∈L,
is n × n, has full rank n and has rows indexed by the design points and columns indexed
by the quotient basis.

3.1. Multivariate quadrature using the algebraic approach. Let ρ be a probability measure
on Rd with finite moments:

∫
Rd x

p ρ(dx) < +∞ for all p ∈ Zd≥0. Also, let D = {z1, . . . , zn} be a
finite set of distinct points in Rd, G = {g1, . . . , gm} be a Gröbner basis of I(D) with respect to
the chosen monomial ordering and L the corresponding set of exponents for a basis of the quotient
space. Following the algebraic theory, any polynomial p can be decomposed as

(7) f(x) =
m∑
i=1

si(x)gi(x) + r(x),

where r(x) is a member of the quotient ring with basis elements xα, α ∈ L, and recall that |L| = |D|.
The remainder r(x) can be written as

(8) r(x) =
∑
z∈D

p(z)lz(x),

where the lz(x) are the polynomial indicator functions, in the model basis, for the design points:

lz(x) = δx,z =
{

1, if x = z,
0, otherwise.

Write r(x) = NF (f(x)), the Normal Form, so that

f(x)− r(x) =
m∑
i=1

si(x)gi(x).

The condition for exact quadrature is, then,

(9) Eρ {f(X)− r(X)} = Eρ

{
m∑
i=1

si(X)gi(X)

}
= 0.

Equivalently, (f(x)− r(x)) ⊥ρ 1, where we use the scalar product: 〈f, g〉 =
∫
Rd f(x)g(x) ρ(dx). If

(9) holds we obtain the quadrature formula:

Eρ {f(X)} = Eρ {r(X)} ,
=

∑
z∈D w(z)f(z).

where

(10) w(z) = Eρ {lz(X)} , z ∈ D.

We can say that exact quadrature for the algebraic method is a special property of the 4-tuple
{f(x),D,≺, ρ(x)}.

3.2. Using orthogonal polynomials. Let 〈f, g〉 be the induced scalar product and let {1, hα, . . .}
be the corresponding orthonormal polynomials with respect to ρ. A key point of the paper is
that we recommend constructing the orthonormal polynomials φα according to a total monomial
ordering ≺ in d-dimension, which is the same monomial order used in the algebraic theory. Using
Gram-Schmidt or Cholesky facturization and proceeding in the ≺ order we can always generate
orthonormal polynomials in this way. This idea of taking orthogonal polynomials in the same order
as the monomial order appears in [22] where it was used for statistical analysis.

The art of quadrature is to choose the design in such a way that (9) holds, for selected polyno-
mials, such as raw monomials. It can help to combine the algebraic method with the orthogonal
expansion in the hi(x). Expand each of the gi(x) and si(x) in (7):

gi(x) =
∑
α≥0

ai,αφα(x),
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si(x) =
∑
β≥0

bi,βφβ(x).

Then, integrating, using the orthogonality and collecting terms, we have the following.

Lemma 3.7. Given the expansion f(x) =
∑m
i=1 si(x)gi(x) + r(x), the necessary and sufficient

conditions for exact quadrature for p(x) is
m∑
i=1

∑
α≥0

ai,αbi,α = 0.

As an example consider d = 2 and (X1, X2) to be iid N(0,1). Then we have the product Hermite
polynomial (we ignore normalisation):

H(α1,α2) = Hα1(x1)Hα2(x2),

where the Hi(x) are
1, x, x2 − 2, x3 − 3x, . . . .

Take D to be the solution of {x1(x2
2 − 3) = 0, (x2

1 − 3)x2 = 0} giving

D =
{(
± 1√

3
,± 1√

3

)}⋃
{(0, 0)}.

With respect to the monomial ordering degree reverse lexicographic ordering a G-basis for D is
{x1x

2
2 − 3x1x

2
2 − x2

2, x
3
2 − 3x2}. We can express these in terms of the Hα(x) and write out, in

shorthand, for any polynomial f(x1, x2) ∈ R[x1, x2]

f(x1, x2) = s1(H11 − 2H10) + s2(H20 −H02) + s3H03.

The condition for exact quadrature is

a1,11 − 2a1,10 + a2,20 − a2,02 + a3,03 = 0.

The algebraic quadrature in the context of Hermite polynomial has recently been examined in
[11] where a two–equation formula was proposed to generate the quadrature weights and points.
While Hermite polynomial with a Gaussian ρ(x) are used in the above example, the method
proposed in this paper is general with respect to ρ(x) and their corresponding supports as well as
orthonormal polynomials. This interplay between the theory of orthogonal polynomials for general
measures, exposed by Lemma 3.7 and the algebraic theory of discrete designs (ideals of points)
requires considerably more research.

3.3. Moments. In most work on quadrature there is interest in determining how many, or indeed
which, moments can be evaluated directly. For a given probability measure ρ and multi-index
β = (β1, . . . , βd), the β-moment is

µβ = E(Xβ).
Then, for a given monomial ordering, the exact quadrature condition (9) is

µβ = E
{
r(Xβ)

}
,

where r(x) = NF (xβ). This gives a linear relationship between the µβ and the moments µα, for
α ∈ L. We now give a matrix expression which will need the design matrix, A, for the algebraic
method. Let [xβ ] is the vector of values of xβ , over the design, let [xα] be the basis vector with
entries {xα, α ∈ L} and µ the corresponding vector of moments. Then interpolate xβ over the
design D [xβ ] = Aθ, where A is the design matrix. Then

xβ = [xα]T θ = [xα]TA−1[xβ ],

where [xβ ] is the vector of values of xβ , over the design and [xα] is the basis vector with entries
{xα, α ∈ L} where µ is the vector of moments corresponding to α ∈ L. Replacing x by random
X, according to ρ, and taking expectations, we have a matrix version of the exact the quadrature
condition 9:

µβ = [µα]A−1[xβ ].
The following result is almost immediate.

Lemma 3.8. Given a design D, monomial order ≺ and corresponding list L, a moment µα for
any α ∈ L has exact quadrature for any measure ρ.
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Proof. This follows since
∑m
i=1 si(x)gi(x) is identically zero for any polynomial in the quotient

ring.
Thus, a quadrature formula with n distinct quadrature points that gives exact quadrature with

n moments for any measure (for which the moments exist) always exists. In fact we can go a little
further. Given any set of n moments whose index set has the order ideal staircase property we can
construct a design with n points for which those moments have exact quadrature. We do this by
taking a design having the same staircase pattern as L (we omit the proof). It is for µβ , for β /∈ L,
that the relationship between β, D, ≺, and ρ, for exact quadrature, becomes more complex.

The conditions for exact quadrature for a polynomial defined via a set of of monomials xα, α ∈
M :

f(x) =
∑
α∈M

cαx
α,

is, as we have seen, always a single linear restriction on the cα, α ∈M . The condition becomes∑
α∈M

cαµα −
∑
z∈D

wz
∑
α∈M

cαz
α = 0.

We write this as ∑
α∈M

kαcα = 0,

where

kα = µα −
∑
z∈D

wzz
α, α ≥ 0.

Thus we have kα = 0 wherever we have exact interpolation for a monomial xα. We note, also, that
we can bound the error:

|Eρp(X)−
∑
z∈D

wzp(z)| = |
∑
α≥0

kαcα| ≤ ‖k‖‖c‖,

where ‖k‖ =
√∑

α k
2
α, ‖c‖ =

√∑
α c

2
α.

3.4. Non-negative weights. The difficult problem of when the weights in quadrature are non-
negative is resolved in the algebraic method, discussed here. We have seen that given a design, D,
and monomial term order, ≺ we obtain a basis xα, α ∈ L. Let ρ be a measure and let w be the
vector of weights in our quadrature and let µ be the vector of moments corresponding to the model
basis: {µα, α ∈ L}. Let A be the design matrix. The weights in our quadrature are given by

(11) w = AT
−1
µ.

Thus the weights are non-negative if and only if

(12) µ = ATw,

with w ≥ 0. In the algebraic approach the constant term is always in the model basis so that the
first column of A is a vector on ones and

∑
wj = 1 always holds. We can summarize:

Lemma 3.9. The weights in the algebraic version of quadrature based on a design D, a monomial
order ≺ and a measure ρ are non-negative if and only if the moment vector µ lies in the convex
hull of rows of the design matrix A (transposed).

It should be emphasized that the moment space of A is independent of the measure ρ. The link
is that both µ and the columns of A are predicated on the model basis {xα, α ∈ L}.

As a simple example consider three quadrature points D = {−1, 0, 1} on one dimension and let ρ
be a N(µ1, σ

2), normal distribution. The basis is {1, x, x2} and µ = (1, µ1, µ2), where µ2 = µ2
1 +σ2

and

A =

 1 −1 1
1 0 0
1 1 1

 .
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From (11) condition of w ≥ 0 become

−µ1 + µ2 ≥ 0,
1− µ2 ≥ 0,
µ1 + µ2 ≥ 0.

This is equivalent to (µ1, µ2) lying in the triangle with corners {(0, 0), (−1, 1), (1, 1)}.
The following provides a quick test for non-negativity of the weights.

Lemma 3.10. The weights {wz, z ∈ D} in quadrature for the algebraic method are non-negative
if and only if

∑
z∈D |wz| − 1 = 0

Proof. If wz ≥ 0 for all z ∈ D then
∑
z∈D |wz| − 1 =

∑
z∈D wz − 1 = 0. On the other hand if

some wz < 0 then
∑
z∈D |wz| − 1 >

∑
z∈D wz − 1 = 0.

As it is desirable to have quadrature weights that are positive with small dispersion for reason
of integration stability, we introduce the following measures to quantify these two effects:

φ1 =

(∑
z∈D
|wz| − 1

)
/n,(13)

φ2 =

(∑
z∈D

(wz − w̄)2
/(n− 1)

)1/2

.(14)

Where w̄ = 1
n

∑
z∈D wz. Thus, φ1 is small if most of the weights are positive and φ2 is our measure

of weight variance.

3.5. Leave–one–out cross validation. In order to estimate the accuracy of the metamodel, the
leave–one–out cross validation is used. In this validation, the input design D is divided into a
training set for the construction of the metamodel D \ xj and the validation set which consists of
one single point xj . The accuracy of the metamodel f̂D\xj

(x) is then estimated at the validation
point xj with εj = f̂D\xj

(xj) − f(xj). The leave–one–out (LOO) error is defined as the sum of
the squares of errors ELOO =

∑n
j=1 ε

2
j/n and a coefficient of determination can be estimated with

R2 = ELOO/Var[f(X)].
As the algebraic quadrature rule can be constructed from any arbitrary input design, such

cross–validation could be performed even on a Gauss–quadrature input design and can be used to
estimate the accuracy of the metamodels constructed with algebraic quadrature.

4. Examples

Using the methodology outlined in Section 3, the algebraic quadrature (AQ) is examined for
univariate and multivariate cases in the following Section. The key steps in generating the algebraic
quadrature points and weights are as follow:

(1) Choose a measure ρ and a design D consisting of points Z1, Z2, ..., Zn,
(2) Select a monomial term ordering, ≺, and initial order if d > 1,
(3) Compute Gröbner basis G = {gi(x), i = 1, . . . ,m} for the ideal of D, I(D), and its quotient

ring or quotient basis, xα, α ∈ L,
(4) Define for each point, Z, in D, the indicator function over the quotient basis such that

lz(x) =
∑
α∈L

CZ,αx
α = δx,Z , for all x ∈ D,

(5) For the indicator function of each design point lZ(X), find CZ,α and compute the quadra-
ture weights from wz = Eρ{lz(x)}, x ∈ D,

(6) Or the weights can be determined by the design matrix with rows indexed by the design
points and columns indexed by the quotient basis, where

A = {xα}x∈D,α∈L

is n×n and has full rank n. The quadrature weights w(z) for z ∈ D is w = AT
−1
µ, where

µ are the vector of moments corresponding to the model basis: {µα, α ∈ L}. Note also
that A can also be found by a rank–checking procedure: enter columns in the ≺ order
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skipping any column which leaves the current matrix non-full rank. This method is based
on matroid theory and is described in [3, 19].

The software packages used in the current study are CoCoA 4.7 for algebraic quadrature [1, 9],
Maxima 12.04.0 for the symbolic quadrature [20] DiceDesign for design discrepancy and coverage
calculations [12] and Matlab R2008b with statistics toolbox. We invite readers to contact us to
obtain the algebraic quadrature software package to help us test and improve the methodologies
developed. From this package, the readers can examine the set-up of an algebraic quadrature from
a general example and compute the algebraic quadrature of their own design.

4.1. Univariate quadrature rules. In this section, univariate algebraic quadrature (AQ) rules
will be examined with some test functions.

4.1.1. Classical quadrature designs. The following classical rules are tested:
(1) Gauss–Hermite (normal measure) [13],
(2) Gauss–Laguerre (semi-infinite gamma measure),
(3) Gauss–Legendre (uniform measure),
(4) Gauss–Chebyshev (uniform measure),
(5) Clenshaw-Curtis-Chebyshev (uniform measure & nested),
(6) Fejer (uniform measure & nested),
(7) Gauss–Legendre Lobatto (uniform measure),
(8) Gauss–Legendre Radau (uniform measure),
(9) Kronrod–Patterson (normal measure & nested) [14].

The algebraic quadrature method reproduced the known weights for all of the above classical rules.
Since the method proposed is similar to the derivation of the quadrature weights with Lagrange
interpolating polynomial, it is expected that the quadrature weights are exactly reproduced for all
univariate designs.

In the Gauss–Legendre quadrature cases, n– and n+ 1–point designs, denoted as Dn and Dn+1,
are two unique sets. The algebraic quadrature weights of the union Dn∪(n+1) = Dn ∪ Dn+1 are
computed for the same ρ. Compared to the Gauss quadrature accuracies of Dn and Dn+1, which
are p = 2n−1 and 2n+1 respectively, Dn∪(n+1) has a theoretical algebraic quadrature accuracy of
p = 2n which is lower than that of Dn+1. However, the AQ weights computed for Dn+(n+1) are 0 for
points from Dn and the remaining weights are identical to the original Gauss–Legendre quadrature
weights for points from Dn+1, giving a quadrature accuracy of 2n+1. In addition to being a general
rule of quadrature weight generation, the AQ method also maximizes the polynomial exactness of
the set of quadrature weights generated.

4.1.2. Random input designs. Univariate bounded and unbounded random design are tested. For
the unbounded case, a Monte Carlo design from a normal distribution is tested. For the bounded
case, Monte Carlo (MC), Latin hypercube sampling (LHS), Sobol sequence (SS) and scrambled
Sobol sequence (SSS) input designs are tested. Given the same D and ≺, the weights can be
determined for different measures ρ. Figure 2 shows the quadrature weights for two different input
designs determined from three different measures on the same support. Uniform and beta are
two well known measures with corresponding Gauss-quadrature rules. In contrast, the triangle
measure is defined by a peak value at c with linear functions of ρ(x) in [0, c] and [c, 1]. There is no
known classical quadrature rule for such measure. While there are are negative weights for all ρ(x)
examined, the sum of the weights are always 1 in all the measures tested, as required in Section
3.4.

Univariate input design with n points give a quotient basis that includes {α : α = 0, 1, · · ·n− 1}
so that a n–point design will approximate exactly a polynomial function up to degree p = n − 1.
In the context of PCE numerical integration, the integrand is a product of f(x) and φα(x) in
equation 1 and the expansion order that can be exactly estimated is limited up to p∗ = bn−1

2 c.
The qualities of the weights are checked with measures φ1 and φ2. As mentioned, it is desirable

to have quadrature weights that are positive and with small dispersion for reason of integration
stability. We show the evolution of φ1 and φ2 for different designs with increasing n in Figure 3. For
the random designs, sample averages from 100 realizations of the input designs are used. Negative
weights, as measured by φ1, exist in all random designs tested but there are no negative weights for
Gauss–Legendre and Gauss–Chebyshev designs. The absence of negative weights means that the
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Figure 2. Algebraic quadrature weights at shown at the quadrature points for a
10–point (c) MC and (d) Sobol sequence with different ρ(x).

weight variance, φ2, decreases with increasing design size, cf. Figure 3.b. For other random input
designs, MC inputs give AQ weights that are more negative with larger variance. In contrast, the
values of φ1 and φ2 for LHS, SS and SSS input designs are comparable. The accuracy of the AQ
rules will be discussed in Section 4.2.

We note that successive LHS samples are generated incrementally. When a n–point input design
is to be enriched by an additional point, the support is divided into (n+1) equally probable intervals
and a point is randomly assigned in the interval missing a point. It may occur that more than one
interval is missing a point and in this case sufficiently many points are added to ensure that all
intervals are populated. Such irregular increment is more frequent for higher d and n.
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Figure 3. (a) φ1 and (b) φ2 for MC, LHS, SS, SSS, Chebyshev and Legendre
with increasing n.

4.2. Univariate integration. The polynomial accuracy of the n–point AQ at p = n−1 is verified
with the following moments of uniform distribution, which have the exact solutions

(15)
∫ 1

−1

xk

2
dx =

{
1
k+1 , if k even,
0, if k is odd.

The moments are first computed using classical n-point Gauss–Legendre and Gauss–Chebyshev
rules, which have theoretical accuracies of p = 2n − 1 and p = n, respectively. The error in the
numerical quadrature is shown with increasing n in Figure 4 and it demonstrates that when 5-point
quadrature rules are used, accuracies up to p = 9 and p = 5 were indeed obtained for these two
quadratures. Using the AQ method, the quadrature weights for 5–point MC, LHS, SS and SSS
designs are derived. Their approximations of the moments were accurate up to p = 4 and this
confirms the theoretical AQ polynomial accuracy. In contrast, the Monte Carlo approximation
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with equally weighted input points is only able to approximate the constant term since the weights
sum up to unity.

The effect of the non–linearity in the integrand is examined here by comparing the AQ with
Gauss-Legendre quadrature for f(x) = cos(x) with increasing size of input design, cf. Figure 4(b).
The numerical quadrature approximates an integral over [−1, 1] with a uniform support. As ex-
pected, the Gauss–Legendre quadrature is more accurate than results from random input desings
with the same n. When the results from the random input designs are compared, their AQ esti-
mators converge towards the true integral faster than the unbiased MC sum. When compared to
the coefficients of Taylor expansion of the function shown for increasing n in Figure 4(b), the AQ
results have the same rate of convergence with increasing n.
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Figure 4. (a) The logarithmic values of absolute errors of different quadrature ap-
proximation of uniform distribution moments with different 5–point input designs.
(b) Comparison of the errors with Monte Carlo (triangles), algebraic quadrature
(circles) and Gauss Legendre quadrature (squares) for two different functions.

100 independent realizations of 10–point MC and LHS input designs are generated and the
relationship the measures φ1 and φ2 and the quadrature accuracies of each design is examined.
The goal is to predict the quadrature accuracy by judgment of the quality measures of the design.
In addition to the φ1 and φ2 measures proposed in Section 3.4, the L2-discrepancy, the centered L2-
discrepancy and the coverage measures from [12] are also computed for each realization of the input
design. All the measures are compared against the AQ accuracy in integrating fcos(x) = cos

(
x+ 1

2

)
over the uniform support. The results are sorted according to the magnitude of φ1 and are shown
in Figure 5 for MC and LHS input designs. For the design discrepancy and coverage measures,
no correlation is observed with the quadrature errors for either MC or LHS. In contrast, a clear
correlation is observed between the magnitudes of the φ1 and φ2 of a design and its quadrature
approximation accuracy. For the MC design, large variations exist in the values of φ1 and φ2

amongst the 100 realizations of D and these D with small values of φ1 and φ2 provide quadrature
approximation with small error. In comparison, the LHS D have smaller and more uniform φ1 and
φ2 measures and the variations in the quadrature errors are smaller. It can be concluded that the
measures φ1 and φ2 are more accurate in predicting the quadrature approximation accuracy than
conventional design discrepancy and coverage measures.

4.3. Univariate uncertainty quantification.

4.3.1. Quadrature design. In this section, one–dimensional Gauss quadratures are used as the input
design for the algebraic quadrature method. Gauss quadrature construction of a PCE metamodel
rely on the entire set of n quadrature inputs. Alternatively, AQ PCE metamodels can be con-
structed on n {D \xi} training sets with which LOO cross–validation can be perform at each point
xi.

The function f(x) = exp(−(x−µx

σx
)2) over the bounded uniform support is used as a test function.

In the first test case, µx = 1/4 and σx = 1/2 are used and its exact response is shown in Figure 6(a).
A 10-point Gauss quadrature design, shown in circles, is used to construct the GQ PCE metamodel
with p = 9, shown in blue. In addition, 10 AQ PCE metamodels are constructed from a training
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Figure 5. Comparison of the quality measures of 100 realizations of 10–point (a)
MC and (b) LHS input designs and their respective algebraic quadrature approx-
imation error magnitudes. The results are ordered in increasing magnitudes of
φ1.

set D \ xi and the 10 AQ PCE metamodel with p = 4 are traced with the red-lines. While the
theoretical limit of the AQ PCE is p = 4, a range of polynomial orders is tested.

The LOO AQ PCE coefficients are determined by taking the average of all 10 AQ results and
they were identical to the GQ PCE values at all p tested. Consequently, errors of the GQ PCE and
LOO AQ PCE variance estimators with respect to the exact value are identical, cf. Figure 6(b).
As the order of expansion exceeds the theoretical AQ order of p = 4, the metamodels become
increasingly oscillatory. While the mean of all metamodels approaches the exact function response
due to the symmetry in the quadrature points and in the LOO AG PCE metamodels, the LOO
error grows when p exceeds the AQ theoretical exactness due to the increasingly oscillatory response
in the PCE metamodels. If the LOO error is estimated from the absolute value of the arithmetic
mean instead of the sum of squares, a continuous decrease in LOO error is observed up to p = 4 but
increase after this point. The convergence of the errors are shown in dashed lines in Figure 6.(b)
and similar error convergence with increasing p is observed. LOO error is thus a very conservative
estimate of the AQ metamodel accuracy.
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Figure 6. (a) The exact function response is approximated by the p = 9 GQ
PCE metamodel in blue and the p = 4 LOO AQ PCE metamodels in red. The 10
Gauss–quadrature points used to construct the metamodels are shown in circles.
(b) The errors in the GQ and LOO AQ PCE variance estimators with respect to
the exact value for σx = 1/2 (in solid lines) and σx = 1/4 (in dashed lines).

4.3.2. Random design. The LOO cross validation is repeated in this section with one–dimensional
random designs. In the first example, a 10–point LHS was used to construct a PCE metamodel
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of the test function f(x) = exp(−(x−µx

σx
)2) with µx = 1/4 and σx = 1/2. The PCE estimators of

mean and variance were compared to the exact values at different orders of PCE expansion p. In
addition, an integral error of the PCE metamodel is defined as

εint =
∫

Ω

(f̂D(x)− f(x))2ρ(x)dx,

whose value is approximated using 1 × 104 MC samples on f(x). Since the metamodel accuracy
depends on the input design, the sampling statistics of the LOO error, the integral error and the
variance estimator error were estimated from 1000 realizations of 10–point LHS input design. In
Figure 7.(a), the convergences of the mean of the sampling error means as well as the respective
upper one standard–deviation envelopes are shown.

As repeated previously, the theoretical accuracy of a LOO AG PCE metamodel with a 10–
point LHS input design is p = 4. From the errors in Figure 7(a), the variance estimator is the
most accurate at p = 4 and the LOO error increase before the theoretical AQ accuracy level
is reached, which is caused by the increasing oscillatory metamodel at higher p and the sum of
square definition of the LOO error. Similarly, the integral error has similar convergence to the
variance suggesting that the variance error is representative of the global metamodel accuracy in
this example. In contrast to the variance estimator, the value of the mean estimator is independent
of the expansion order and has a normalized error of of 0.59%±1.91%. The analysis is repeated for
a 20–point LHS input design in Figure 7(b) and the errors are slightly worse than the theoretical
estimates as error increases are observed already at p = 7. If 20–point MC input designs are used,
the means of the sampling errors become much larger, as shown in Figure 7(b).

(a) (b)

Figure 7. The sampling mean and one standard deviation envelope of LOO,
integral and variance estimator errors estimated from (a) 10– and (b) 20–point
LHS random input designs for increasing order of PCE expansion p. The same
sampling statistics from 20–point MC random input designs are shown with ‘+’
in (b).

Similar to results from previous sections, the weight quality measures of the LHS input designs as
well as its quadrature approximation accuracies are better than these of the MC input designs. The
global integral and the variance errors are consistent and give the same estimate of the maximum
p allowed. In contrast, the LOO errors give a more conservative estimation of maximum p allowed.

4.4. Multivariate quadrature rules. Application of the algebraic quadrature rules for multi-
variate cases are discussed in the following sections.

4.4.1. Monomial and initial ordering. The AQ accuracy can be estimated from the quotient basis,
which is dependent on the monomial ordering chosen in determining the Gröbner basis. While
the monomial order does not have any effect in the univariate case (the G-basis is ‘universal’ or
‘generic’), its definition plays an important role in the multivariate case. For example, a 7–point
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three–dimensional input design (MC, LHS or Sobol) yields the following quotient basis for different
lexicographical orders implemented in CoCoA for the initial order {x1 ≺ x2 ≺ x3}:

{1, x3, x
2
3, x

3
3, x

4
3, x

5
3, x

6
3} : degree lexicographical order,

{1, x3, x
2
3, x2, x2x3, x

2
2, x1} : graded lexicographical order,

{1, x3, x
2
3, x2, x2x3, x1, x1x3} : graded reverse lexicographical order.

The degree lexicographical order fills only terms of the highest initial order. In contrast, graded
reverse lexicographical order fills the interaction terms while the graded lexicographical order fills
the higher terms before the interaction terms are considered [19]. The graded lexicographical
monomial ordering will be used in the subsequent analyses to prioritize higher order terms.

The initial order is the sequence by which the input variables are ordered in the computation of
the Gröbner basis. For example, a 7–point input design with graded lexicographical ordering gives
the following quotient bases for the different initial orders:

{1, x1, x2, x3, x
2
2, x2x3, x

2
3} : for initial orders {x1 ≺ x2 ≺ x3} & {x1 ≺ x3 ≺ x2},

{1, x1, x2, x3, x
2
1, x1x3, x

2
3} : for initial orders {x2 ≺ x1 ≺ x3} & {x2 ≺ x3 ≺ x1},

{1, x1, x2, x3, x
2
1, x2x1, x

2
2} : for initial orders {x3 ≺ x2 ≺ x1} & {x3 ≺ x1 ≺ x2}.

As there is no a priori preference for the initial order, algebraic quadrature weights can be generated
based on the Gröbner basis calculated using the d! permutations of the initial orders. In the above
example, a 7–point design gives three distinct sets of quadrature weights from each set of quotient
bases. The union of these three sets of quotient bases gives all 10 terms in a polynomial expansion∑
aαφα(x) up to |α| = 2. When a set of algebraic weights is used to estimate aα, the coefficient

corresponding to each term in the quotient basis is exact if the expansion does not exceed |α| = 2.
If this condition is not satisfied, the quadrature accuracy will be affected aberration.

For a given initial order, the quotient basis incrementally adds sequentially higher terms in the
canonical multivariate basis as n increases. For a complete set of quotient basis with polynomial
order no greater than p, eg. {xα = xα1

1 · · ·x
αd
1 : |α| ≤ p}, its cardinality is n =

(
d+p
p

)
for all positive

p ∈ Z. When n is
(
d+p
p

)
, all initial orders will give the same quotient basis and thus the identical

AQ weights. We denote this generic size as n∗ and the quotient basis is said to be generic. Indeed,
it was previously observed that a generic set of quotient basis exists at certain increments of n
where the least aberration is observed [6]. If n is not generic, the quotient basis can be used to
identify the polynomial accuracy of the algebraic quadrature but the confounding or aberration
effects may have stronger influence on the accuracy of the algebraic quadrature.

The term “aberration” has been used in classical factorial design to evaluate the complexity of
terms in a basis (factorial model) [16]. This complexity is close to looking at the maximum total
degree of terms in the terms in the basis. In [5] [6], the authors study a type of aberration which
looks at the profile of the upper boundary of the terms in the model, a kind of Nyquist sampling
theory for polynomials. A particular type of design (i.e. generic) allows, in a well-defined sense, the
maximum number of identifiable models. The accuracy of the AQ approximation will be discussed
in the following Sections.

4.4.2. Gauss quadrature. To recall, an n–point univariate GQ rule approximates exactly a poly-
nomial of degree up to p = 2n − 1 and these n points are the roots of the n–th order orthogonal
polynomial. The corresponding multi–variate GQ’s are constructed from full–tensor products of
univariate GQ rules and the quadrature weights are products of the corresponding univariate
weights. The AQ method is used to evaluate the weights of several multivariate GQ design, includ-
ing Gauss–Hermite, Gauss–Legendre and Gauss–Laguerre quadratures. In all the cases tested, the
corresponding GQ weights were recovered exactly. The initial order also did not have any effect
on the Gauss quadrature weights. The GQ design is thus generic with respect to different initial
orders even if n is not generic.

4.4.3. Smolyak quadrature. To alleviate the exponential increase in the number of quadrature
points in the full–tensor GQ approach, the Smolyak sparse quadrature can be used. The Smolyak
grids are the union of the tensor products of the difference sets between incremental univariate
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quadrature rules. Several sparse quadrature based on the Smolyak design was tested. The univari-
ate quadrature rules used include Clenshaw–Curtis Chebyshev, Hermite Kronrod–Patterson [14]
and Gauss–Legendre. In all cases, the algebraic method recovers the corresponding sparse quad-
rature weights. While all full–tensor quadrature weights are positive, Smolyak sparse quadrature
may contains negative weights and the AQ method is able to correctly reproduce all positive and
negative weights. The current method should also be able to reproduce the weights of quadratures
with an anisotropic structure, c.f. [15]. As in the case of Gauss quadrature, the initial order has
no effect on the quadrature weights.

4.4.4. Random and deterministic input designs. The qualities of the AQ weights of different input
designs including MC, LHS and SS are examined at d = 3 on the [−1,+1] support for a uniform
measure for generic design sizes. For MC and LHS, a new input design is generated at each n tested
while SS designs are generated by complementing existing designs. The means of the measures
(13) and (14) are estimated from 100 realizations of the design and shown with solid lines in
Figure 8. In addition, the minimum values of the measures found are shown with dashed lines. As
the SS design is not random, only the deterministic measures is shown. In comparison to univariate
cases in Figure 3, the measures increase more slowly with n for the multivariate case due to the
slower increase in the nonlinearity of the quotient basis for the multivariate case. Both measures
show that the Sobol’ sequence does not always optimal with respect to measures (13) and (14),
especially for high n, while LHS design is slightly better than MC on average. In addition, the
measures for Smolyak sparse quadrature are also shown and they are perhaps the lower bound
of measures for non–full tensor product designs. The accuracy of the multivariate AQ rules for
different designs will be discussed in Section 4.5.
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Figure 8. φ1 and φ2 for MC, LHS and SS with increasing values of generic n. The
values for Smolyak sparse quadrature with Chebyshev Clenshaw–Curtis weights
at some n are also plotted for comparison.

4.5. Multivariate integration. The AQ accuracy is estimated for several multivariate designs.
It is first examined by comparing the moments of orthogonal polynomials against their exact values.
Validation with the orthogonal conditions of the classical polynomial is useful because PCE relies
on families of orthogonal polynomials. Given a quadrature rule of a certain dimension d and a
desired PCE polynomial exactness p, it is important to know the size of input design, n, needed to
exactly approximate the PCE. The AQ accuracy is then examined with respect to non–polynomial
functions.

4.5.1. Polynomial exactness. The accuracy of multivariate AQ is established by checking its ap-
proximation of the orthogonal conditions of classical polynomials. The Legendre polynomial inner–
product over the uniform support can be expressed analytically as

〈Li(x), Lj(x)〉 =
∫ +1

−1

Li(x)Lj(x)ρ(x)dx =
2

2i+ 1
δij .



ALGEBRAIC QUADRATURE 19

A 7–point MC design and the corresponding AQ weights for different initial orders gives different
accuracy in estimating the inner–product with symmetric integrands as predicted by the quotient
basis as shown in Figure 9. However, the inner product approximation is exact for symmetric
designs and the following Jacobi polynomial inner products with asymmetric shape parameters are
tested in addition:

〈P (a,b)
i (x), P (a,b)

j (x)〉 =
2a+b+1

2i+ a+ b+ 1
Γ(i+ a+ 1)Γ(i+ b+ 1)

Γ(i+ a+ b+ 1)i!
δij .

The same 7–point MC input design is used to generate the AQ weights over the same support but
with ρ(x, a, b) = (1− x)a(1 + x)b where a = 2 and b = 1. The resulting AQ approximation of the
Jacobi polynomial inner products have an accuracy identical to those in Figure 9. The results of
all permutations can be used to estimate all the terms satisfying |p| ≤ 2. By changing ρ(x) in the
computation of the AQ weights in equation 10, the same input design could be used for quadrature
approximate with a different weight on the same support. This gives the flexibility of altering the
input measures without regenerating the input design and the corresponding outputs, as described
in Section 4.1.2.
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Figure 9. AQ polynomial accuracy of a 7–point Monte Carlo design in approx-
imating the orthogonality condition of Legendre and Jacobi (a = 2 & b = 1)
polynomials with initial orders (a) {x1 ≺ x2 ≺ x3} & {x1 ≺ x3 ≺ x2}, (b)
{x2 ≺ x1 ≺ x3} & {x2 ≺ x3 ≺ x1} and (c) {x3 ≺ x1 ≺ x2} & {x3 ≺ x2 ≺ x1}.

For a given multivariate polynomial, it was found that a total of n =
(
d+2p

2p

)
design points are

needed to approximate a function of order |α| ≤ p exactly. At these n values, the quotient bases
are generic and the design has the least aberration [6].

4.5.2. Non–polynomial functions. The quadrature approximation of the following simple multivari-
ate cosine function is examined where a parameter λ controls the nonlinearity of the integrand over
a uniform support:

f(x) =
d∏
i=1

cos
(xi
λ

)
.

The effect of design quality measures on the accuracy of quadrature approximation is first exam-
ined. 100 independent realizations of generic MC and LHS input designs are generated and their
quadrature approximation of the above function is compared against their design quality measures.
Similar to the one–dimensional results in Section 4.2, design discrepancies and coverage, as well as
φ1 and φ2 are computed for each realization D. The results shown in Figure 10 are ordered in the
increasing values of φ1. In contrast to the one–dimensional results, the difference in the measures
for the MC and the LHS designs are much smaller. However, a strong correlation between φ1

and φ2 and the quadrature error can still be observed; in contrast, the design discrepancies and
coverage cannot predict the quadrature errors at all. The results from the test case d = 3 and
λ = 0.5 in Figure 10 clearly underline the importance to use an input design with the smallest φ1

and φ2 values in order to reduce quadrature error.
The accuracies of GQ, SQ and AQ are compared below for increasing n and the input design

tested for AQ include MC, LHS, SS and SSS for d = 3. The sizes of the algebraic design n are
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Figure 10. Comparison of the quality measures of 100 realizations of 84–point
(a) MC and (b) LHS input designs and their respective algebraic quadrature ap-
proximation error magnitudes for d = 3 and λ = 0.5. The results are ordered in
increasing magnitudes of φ1.

generic such that n∗ =
(
d+2p

2p

)
for p = 1 to p = 7, with corresponding n = 10 to n = 680. AQ

results with MC, LHS and SSS are not deterministic and only one realization of the input designs
is tested. The LHS designs are generated independently of previous designs and not incrementally.
GQ and SQ with increasing quadrature levels are used and equally–weighted MC results are shown
for comparison.

As the quadrature approximation depends strongly on the non–linearity of the function, results
from λ = 1 and λ = 2 are shown in Figure 11. In all cases tested, the GQ approximations of the
integrals are more accurate than AQ or MC at all n. The accuracies are comparable for the different
AQ designs tested but the Sobol’ sequence based designs have slightly lower error magnitudes in
comparison. Initially at high λ, AQ is more accurate than the MC. As λ approaches π (a complete
period in Ω ∈ [−1, 1]), the AQ approximation becomes poorer than MC. Due to the presence
of negative weights in both AQ and SQ, the convergence of the integral approximation and the
accuracy of the quadrature with increasing n are strongly influence by the function response with
in the input support.
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Figure 11. Change in the absolute error of a three–dimensional numerical inte-
gral with increasing n for the equation (4.6) with (a) λ = 1 (b) λ = 2.

4.6. Multivariate uncertainty quantification. The LOO cross–validation is used to provide
a metamodel error estimate and the LOO errors found are consistent with the theoretical AQ
accurate estimate in the univariate cases investigated. In order for the training sets of the LOO
AQ PCE metamodel to be generic, the design for LOO AQ PCE needs to have a size n = n∗ + 1.
While one can optimize a design of size n∗ + 1 for φ1 and φ2, the optimality is not necessarily
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preserved for the training set when one single design point is removed for LOO cross validation.
Indeed, large values of φ1 and φ2 may be observed amongst the n∗+1 training sets. Therefore, the
accuracies of the LOO AQ PCE metamodel based on an optimal design of size n∗ + 1 and the AQ
PCE metamodel based on a least–aberration and optimal design of size n∗ need to be compared.

The LOO AQ and AQ methods are used to construct PCE metamdel for a Gaussian function
with the following form

f(x) =
d∏
i=1

exp
(
−(xi − µi)2

σi

)
,

where xi are iid uniform random variables. The degree of non–linearity is controlled by σi. Generic
input design size n∗ is determined for different p and the errors of the PCE mean and variance
estimators are compared against the analytical values. Values of σ = 3 and µ = 0.25 are used in
the current analysis.

At each n∗, 100 realizations of LHS input designs are generated and the design with the smallest
weight measure φ1 is retained. Dn∗ is used to construct AQ PCE and Dn∗+1 is used to construct
AQ LOO PCE. For the variance estimator, the PCM approximation is also used and the mean from
n∗ + 1 PCM variances are used as the final result. The error in the mean and variance estimators
from the different methods are shown in Figure 12. In addition, the mean and the variance are also
estimated from the unbiased sum of LHS samples. For comparison, the GQ mean and variance
estimators are shown for reference.
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Figure 12. (a) Mean and (b) variance estimated from different quadrature meth-
ods for a d = 3 Gaussian test function with σ = 3 and µ = 0.25.

For the solution mean, little difference is observed between the Dn∗ PCE and the Dn∗+1 LOO
PCE. In contrast, the AQ results are more accurate than the unweighted LHS estimators when the
same LHS designs are used. For the solution variance, little difference is observed between neither
the Dn∗ PCE and the Dn∗+1 LOO PCE estimators nor the PCE and PCM estimators. While
the LHS variances are comparable to the AQ values at small n, the AQ results are more accurate
than LHS for higher n. As observed in the univariate case, the Gauss quadrature results are more
accurate than the AQ or the LHS results. While n∗–point designs have smaller abberation, (n∗+1)–
point design give an average of many solutions which improves the accuracy of the estimators.

One issue is how the quality of the interpolation, of the type covered here, affects the quality
of the quadrature. Recent work [4] extends the polynomial basis beyond n = |D| and uses the
extra degrees of freedom to maximise the smoothness, counteracting the Runge phenomenon. This
typically leads to improved integrated mean squared error. It would be interesting to extend the
ideas to improve quadrature.

5. Conclusion

An alternative quadrature solution to polynomial chaos expansion (PCE) is explored where the
algebraic method in experimental design is used to estimate the polynomial expansion accuracy of
a random input design. This method is based on the theory of zero dimensional algebraic varieties
and allows quadrature for quite general sets of input designs. Algebraic method in quadrature is
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used to generate the quadrature weights for an arbitrary input design D on a support Ω to create a
numerical quadrature with a known polynomial order of accuracy. The definition of a measure ρ(x)
and monomial ordering ≺ completes the definition of the algebraic quadrature method. Indeed, the
algebraic quadrature is a general method to determine the appropriate quadrature weights and it
reproduces the quadrature weights for all classical univariate and multivariate Gauss and Smolyak
sparse quadrature schemes. While the quadrature corresponding to random input designs such as
Monte Carlo, Latin hypercube sampling or low–discrepancy sequences can be derived, their qualities
in terms of non–negativity and variance in the quadrature weights demonstrate the difference in
the quadrature solution. The algebraic quadrature results are not deterministic when design are
not based on tensor products of polynomial roots. For different realizations of random input
samples, the maximum quadrature accuracy is bounded by the quadrature’s theoretical polynomial
exactness given by the quotient ring defined by the algebraic method. Before its application to
PCE, the algebraic method in quadrature is first validated against analytical solutions of univariate
and multivariate integrals. For integrals of polynomial test functions, the algebraic quadrature
polynomial exactness agrees with its theoretical estimate. In the multivariate case, testing all
permutations of the initial orders in the algebraic quadrature generation of the quotient basis can
be used to maximize the number of terms that one input design can accurately approximate. To
minimize the aberration in the design, the generic size of the input design can be used and the
weight quality measures are also used to select the random input design. For an integration test
at d = 3, algebraic quadrature is observed to be comparable with the results of sparse quadrature.
The PCE mean and variance estimators approach the analytical values much faster for increasingly
linear functions; refinement methods to improve the method’s accuracy should be examined. It is
in this context that the algebraic method in quadrature allows different deterministic and random
input designs to be compared and such comparison can be extended in the future to the least–
square solution of PCE. More experience is needed in the implementation and application of AQ
to UQ problems and we invite readers to contact us to obtain the AQ software tools to examine
the methodologies developed.
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