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A FEASIBLE ACTIVE SET METHOD WITH REOPTIMIZATION

FOR CONVEX QUADRATIC MIXED-INTEGER PROGRAMMING∗

CHRISTOPH BUCHHEIM† , MARIANNA DE SANTIS‡ , STEFANO LUCIDI§ ,

FRANCESCO RINALDI¶, AND LONG TRIEU‖

Abstract. We propose a feasible active set method for convex quadratic programming prob-
lems with non-negativity constraints. This method is specifically designed to be embedded into
a branch-and-bound algorithm for convex quadratic mixed integer programming problems. The
branch-and-bound algorithm generalizes the approach for unconstrained convex quadratic integer
programming proposed by Buchheim, Caprara and Lodi [8] to the presence of linear constraints.
The main feature of the latter approach consists in a sophisticated preprocessing phase, leading to
a fast enumeration of the branch-and-bound nodes. Moreover, the feasible active set method takes
advantage of this preprocessing phase and is well suited for reoptimization. Experimental results
for randomly generated instances show that the new approach significantly outperforms the MIQP
solver of CPLEX 12.6 for instances with a small number of constraints.
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1. Introduction. We consider mixed-integer optimization problems with strictly
convex quadratic objective functions and linear constraints:

(MIQP)

min f(x) = x⊤Qx+ c⊤x+ d

s.t. Ax ≤ b

xi ∈ Z, i = 1, . . . , n1

xi ∈ R, i = n1 + 1, . . . , n

where Q ∈ R
n×n is a positive definite matrix, c ∈ R

n, d ∈ R, A ∈ R
m×n, b ∈ R

m,
and n1 ∈ {0, . . . , n} is the number of integer variables. Up to now, all solution
methods for convex mixed integer quadratic programming are based on either cut-
ting planes [2], branch-and-cut [6], Benders decomposition [19, 20] or branch-and-
bound [3, 15, 21]. Numerical experiments by Fletcher and Leyffer [15] showed that
branch-and-bound is the most effective approach out of all the common methods,
since the continuous relaxations are very easy to solve. Standard commercial solvers
that can handle (MIQP) include CPLEX [18], Xpress [14], Gurobi [17] and MOSEK [22],
while Bonmin [7] and SCIP [1] are well-known non-commercial software packages being
capable of solving (MIQP).

Many optimization problems in real world applications can be formulated as con-
vex mixed-integer optimization problems with few linear constraints, e.g., the clas-
sical mean-variance optimization problem (MVO) for the selection of portfolios of
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Via Ariosto, 25, 00185 Roma, Italy stefano.lucidi@dis.uniroma1.it
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assets [10]. Thus, the design of effective algorithms for this class of problems plays an
important role both in theory and in practice.

Our approach is based on a branch-and-bound scheme that enumerates nodes
very quickly. Similar to Buchheim et al. [8], we fix the branching order in advance,
thus losing the flexibility of choosing sophisticated branching strategies but gaining
the advantage of shifting expensive computations into a preprocessing phase. In each
node the dual problem of the continuous relaxation is solved in order to determine a
local lower bound. Since all constraints of the continuous relaxation of (MIQP) are
affine, strong duality holds if the primal problem is feasible. The dual problem of the
continuous relaxation is again a convex Quadratic Programming (QP) problem but
contains only non-negativity constraints, for its solution we devise a specific feasible
active set method. By considering the dual problem, it suffices to find an approximate
solution, as each dual feasible solution yields a valid lower bound. We can thus prune
the branch-and-bound node as soon as the current upper bound is exceeded by the
value of any feasible iterate produced in a solution algorithm for the dual problem.

Another feature of our algorithm is the use of warmstarts: after each branching,
corresponding to the fixing of a variable, we pass the optimal solution from the parent
node as starting point in the children nodes. This leads to a significant reduction in
the average number of iterations needed to solve the dual problem to optimality.

If the primal problem has a small number of constraints, the dual problem has a
small dimension. Using sophisticated incremental computations, the overall running
time per node in our approach is linear in the dimension n if the number of constraints
is fixed and when we assume that the solution of the dual problem, which is of fixed
dimension in this case, can be done in constant time. In this sense, our approach can
be seen as an extension of the algorithm devised in [8].

The paper is organized as follows. In Section 2 we present the active set method
for convex QP problems with non-negativity constraints. The properties of the pro-
posed active set estimation are discussed and the convergence of the algorithm is an-
alyzed. Section 3 presents an outline of the branch-and-bound algorithm: we discuss
the advantages of considering the corresponding dual problem instead of the primal
one. Afterwards, we explain the idea of reoptimization, using warmstarts within the
branch-and-bound scheme. The end of the section deals with some tricks to speed
up the algorithm by using incremental computations and an intelligent preprocessing.
In Section 4 we present computational results and compare the performance of the
proposed algorithm, applied to randomly generated instances, to the MIQP solver of
CPLEX 12.6. Section 5 concludes.

2. A Feasible Active Set Algorithm for Quadratic Programming Prob-

lems with Non-negativity Constraints. The vast majority of solution methods
for (purely continuous) quadratic programs can be categorized into either interior
point methods or active set methods (see [23] and references therein for further de-
tails). In interior point methods, a sequence of parameterized barrier functions is
(approximately) minimized using Newton’s method. The main computational effort
consists in solving the Newton system to get the search direction. In active set meth-
ods, at each iteration, a working set that estimates the set of active constraints at
the solution is iteratively updated. Usually, only a single active constraint is added to
or deleted from the active set at each iteration. However, when dealing with simple
constraints, one can use projected active set methods, which can add to or delete
from the current estimated active set more than one constraint at each iteration, and
eventually find the active set in a finite number of steps if certain conditions hold.
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An advantage of active set methods is that they are well-suited for warmstarts,
where a good estimate of the optimal active set is used to initialize the algorithm.
This is particularly useful in applications where a sequence of QP problems is solved,
e.g., in a sequential quadratic programming method. Since in our branch-and-bound
framework we need to solve a large number of closely related quadratic programs,
using active set strategies seems to be a reasonable choice.

In this section, we thus consider QP problems of the form

(QP)
min q(x) = x⊤Qx+ c⊤x+ d

s.t. x ≥ 0
x ∈ R

m,

where Q ∈ R
m×m is positive semidefinite, c ∈ R

m and d ∈ R. We describe a projected
active set method for the solution of such problems that tries to exploit the informa-
tion calculated in a preprocessing phase at each level of the branch-and-bound tree.
Our method is inspired by the work of Bertsekas [4], where a class of active set pro-
jected Newton methods is proposed for the solution of problems with non-negativity
constraints. The main difference between the two approaches is in the way the ac-
tive variables are defined and updated. On the one side, the method described in [4]
uses a linesearch procedure that both updates active and non-active variables at each
iteration. On the other side, our method, at a given iteration, first sets to zero the
active variables (guaranteeing a sufficient reduction of the objective function), and
then tries to improve the objective function in the space of the non-active variables.
This gives us more freedom in the choice of the stepsize along the search direction,
since the active variables are not considered in the linesearch procedure.

In the following we denote by g(x) ∈ R
m and H(x) ∈ R

m×m the gradient vector
and the Hessian matrix of the objective function q(x) in Problem (QP), respectively.
Explicitly, we have

g(x) = 2Qx+ c, H(x) = 2Q .

Given a matrix M , we further denote by λmax(M) the maximum eigenvalue of M .
Given a vector v ∈ R

m and an index set I ⊆ {1, . . . ,m}, we denote by vI the sub-
vector with components vi with i ∈ I. Analogously, given the matrix H ∈ R

m×m

we denote by HI I the sub-matrix with components hi,j with i, j ∈ I. Given two
vectors v, y ∈ R

m we denote by max{v, y} the vector with components max{vi, yi},
for i ∈ {1, . . . ,m}. The open ball with center x and radius ρ > 0 is denoted by B(x, ρ).
Finally, we denote the projection of a point z ∈ R

m onto R
m
+ by [z]♯ := max{0, z}.

2.1. Active Set Estimate. The idea behind active set methods in constrained
nonlinear programming problems is that of correctly identifying the set of active
constraints at the optimal solution x⋆.

Definition 2.1. Let x⋆ ∈ R
m be an optimal solution for Problem (QP). We

define as active set at x⋆ the following:

Ā(x⋆) =
{
i ∈ {1, . . . ,m} : x⋆

i = 0
}
.

We further define as non-active set at x⋆ the complementary set of Ā(x⋆):

N̄ (x⋆) = {1, . . . ,m} \ Ā(x⋆) =
{
i ∈ {1, . . . ,m} : x⋆

i > 0
}
.
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Our aim is to find a rule that leads us to the identification of the optimal active
set for Problem (QP) as quickly as possible. The rule we propose is based on the use
of multiplier functions and follows the ideas reported in [13].

Definition 2.2. Let x ∈ R
m. We define the following sets as estimates of the

non-active and active sets at x:

N (x) = {i ∈ {1, . . . ,m} : xi > ε gi(x)}

and

A(x) = {1, . . . ,m} \ N (x),

where ε > 0 is a positive scalar.
The following result can be proved [13]:
Theorem 2.3. Let x⋆ ∈ R

m be a solution of Problem (QP). Then, there exists
a neighborhood of x⋆ such that, for each x in this neighborhood, we have

Ā+(x⋆) ⊆ A(x) ⊆ Ā(x⋆),

with Ā+(x⋆) = Ā(x⋆) ∩ {i ∈ {1, . . . ,m} : gi(x
⋆) > 0}.

Furthermore, if strict complementarity holds, we can state the following:
Corollary 2.4. Let x⋆ ∈ R

m be a solution of Problem (QP) where strict com-
plementarity holds. Then, there exists a neighborhood of x⋆ such that, for each x in
this neighborhood, we have

A(x) = Ā(x⋆).

2.2. Outline of the Algorithm. We now give an outline of our Feasible Active
SeT Quadratic Programming Algorithm (FAST-QPA) for solving Problem (QP); see
Algorithm 1.

At each iteration k, the algorithm first determines the two sets N k := N (xk)
and Ak := A(xk) according to Definition 2.2. Then, the variables belonging to Ak

are set to zero, thus obtaining a new point x̃k, and a search direction dk is calculated.
More specifically dkAk , the components of dk related to Ak, are set to zero, while a
gradient related direction dkNk is calculated in N k. Here we define that a direction
dNk is gradient related at x̃k (see e.g. [5]) if there exist σ1, σ2 > 0 such that

d⊤Nkg(x̃
k)Nk ≤ −σ1‖g(x̃

k)Nk‖2,(2.1)

‖dNk‖ ≤ σ2‖g(x̃
k)Nk‖.(2.2)

In order to obtain the direction dkNk , we solve the following unconstrained quadratic
problem in the subspace of non-active variables,

(QPk)
min qk(y) = y⊤Q̃y + c̃⊤y

s.t. y ∈ R
|Nk|,

where Q̃ = QNk Nk and c̃ = g(x̃k)Nk . In particular, we apply a conjugate gradient
type algorithm (see Algorithm 2). Algorithm 2 is basically a modification of the
conjugate gradient method for quadratic problems that embeds a truncated Newton
like test for the calculation of a gradient related direction (Step 3 of Algorithm 2).
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Algorithm 1 Feasible Active SeT Quadratic Programming Algorithm (FAST-QPA)

0 Fix δ ∈ (0, 1), γ ∈ (0, 12 ) and ε satisfying (2.3)
1 Choose x0 ∈ R

n,
2 For k = 0, 1, . . .
3 If xk is optimal then STOP
4 Compute Ak := A(xk) and N k := N (xk)
5 Set x̃k

Ak = 0 and x̃k
Nk = xk

Nk

6 Set dkAk = 0
7 Compute a gradient related direction dkNk in x̃k and the point x̄k

8 If x̄k is optimal then STOP
9 Set αk = δj where j is the first non-negative integer for which

q([x̃k + δjdk]♯) ≤ q(x̃k) + γ δj g(x̃k)⊤dk

10 Set

xk+1 = [x̃k + αkdk]♯

11 End For

We report two theoretical results, proved in [24], that help us to understand the
properties of Algorithm 2:

Proposition 2.5. Let Problem (QPk) admit an optimal solution and matrix Q̃

be positive semidefinite. Then, Algorithm 2 terminates with an optimal solution of
Problem (QPk) in less than |N k| iterations.

Proposition 2.6. Let matrix Q̃ in Problem (QPk) be positive semidefinite.
Then at least one direction pl, 1 ≤ l ≤ |N k| − 1, computed by Algorithm 2 satisfies
the condition

pl
⊤
Q̃pl = 0.

By Propositions 2.5 and 2.6, we are able to prove the following:
Proposition 2.7. Let matrix Q̃ in Problem (QPk) be positive semidefinite.

Algorithm 2 terminates after a finite number of iterations, returning a gradient related
direction dkNk . Furthermore, if Problem (QPk) admits an optimal solution, then yl is
an optimal solution of Problem (QPk).

Proof. By the results reported in [11, 16] we have that direction dkNk satisfies (2.1)
and (2.2) and hence is gradient related at x̃k. Furthermore, by taking into account
Propositions 2.5 and 2.6, the rest of the result follows.

According to Proposition 2.7, when the minimum of Problem (QPk) is finite,
Algorithm 2 produces a gradient related direction dkNk and an optimal solution yl of
Problem (QPk) (in at most |N k|−1 iterations). The point yl is then used for building
up the candidate optimal point x̄k. In case Problem (QPk) is unbounded from below,
the algorithm still stops after a finite number of iterations giving a gradient related
direction dkNk , but the point used for generating x̄k is just a combination of conjugate
gradient directions generated along the iterations of the method. As we will see
in Section 2.3, calculating the point x̄k is needed to guarantee, under some specific
assumptions, finite convergence of Algorithm 1 (see Proposition 2.15).

Note that, even if the matrix Q̃ is ill-conditioned, Algorithm 2 still generates a
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Algorithm 2 Calculation of the direction dkNk and of the point x̄k

1 Set y0 = 0, g̃0 = Q̃ x̃k
Nk + c̃, p0 = −g̃0, η > 0, l = 0 and check = true;

2 While pl
⊤
Q̃pl > 0

3 If pl
⊤
Q̃pl ≤ η‖pl‖2 and check = true then

ŷ =

{
−g̃0, if l = 0
yl, if l > 0

, check = false;

4 End If

5 Compute stepsize along the search direction pl;

αl =
‖g̃l‖

2

pl
⊤
Q̃pl

6 Update point yl+1 = yl + αl pl;
7 Update gradient of the quadratic function g̃l+1 = g̃l + αl Q̃ pl;
8 Compute coefficient

βl+1 =
‖g̃l+1‖2

‖g̃l‖2
;

9 Determine new conjugate direction pl+1 = −g̃l+1 + βl+1pl;
10 Set l = l + 1;
11 End While

12 If check = true then

ŷ =

{
−g̃0, if l = 0
yl, if l > 0

13 End If

14 Return dkNk = ŷ and x̄k, where

x̄k
Ak = 0, x̄k

Nk =

{
−g̃0, if l = 0
yl, if l > 0

.

gradient related direction. In practice, when dealing with ill-conditioned problems,
suitable preconditioning techniques can be applied to speed up Algorithm 2.

Once the direction dk and the point x̄k are computed, Algorithm 1 checks opti-
mality of point x̄k. If x̄k is not optimal, the algorithm generates a new point xk+1 by
means of a projected Armijo linesearch along dk.

We finally notice that at each iteration of Algorithm 1, two different optimality
checks are performed: the first one, at Step 3, to test optimality of the current
iterate xk; the second one, at Step 8, to test optimality of the candidate solution x̄k.

2.3. Convergence Analysis. The convergence analysis of FAST-QPA is based
on two key results, namely Proposition 2.8 and Proposition 2.9 stated below. These
results show that the algorithm obtains a significant reduction of the objective function
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both when fixing to zero the variables in the active set estimate and when we perform
the projected Armijo linesearch.

Proposition 2.8 completes the properties of the active set identification strategy
defined in Section 2.1. More specifically, it shows that, for a suitably chosen value of
the parameter ε appearing in Definition 2.2, a decrease of the objective function is
achieved by simply fixing to zero those variables whose indices belong to the estimated
active set.

Proposition 2.8. Assume that the parameter ε appearing in Definition 2.2
satisfies

(2.3) 0 < ε <
1

2λmax(Q)
.

Given the point z and the sets A(z) and N (z), let y be the point such that

yA(z) = 0, yN (z) = zN (z).

Then,

q(y)− q(z) ≤ −
1

2ε
‖y − z‖2.

Proof. Define A = A(z) and N = N (z). By taking into account the definition of
these two sets and the points y and z, we have

q(y) = q(z) + gA(z)
⊤(y − z)A +

1

2
(y − z)⊤AHAA(y − z)A .

Since H = 2Q, the following inequality holds

q(y) ≤ q(z) + gA(z)
⊤(y − z)A + λmax(Q) ‖(y − z)A‖

2.

Using (2.3) we obtain

q(y) ≤ q(z) + gA(z)
⊤(y − z)A +

1

2ε
‖(y − z)A‖

2

and hence

q(y) ≤ q(z) +

(
gA(z) +

1

ε
(y − z)A

)⊤

(y − z)A −
1

2ε
‖(y − z)A‖

2.

It thus remains to show

(
gA(z) +

1

ε
(y − z)A

)⊤

(y − z)A ≤ 0 ,

which follows from the fact that, for all i ∈ A,
(
gi(z) +

1

ε
(yi − zi)

)
(yi − zi) ≤ 0.

Indeed, for all i ∈ A we have zi ≥ 0 and yi = 0, hence zi − yi = zi ≤ ε gi(z), so that

gi(z) +
1

ε
(yi − zi) ≥ 0 .
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The following result shows that the projected Armijo linesearch performed at
Step 9 of Algorithm 1 terminates in a finite number of steps, and that the new point
obtained guarantees a decrease of the objective function of (QP). Its proof is similar
to the proof of Proposition 2 in [4].

Proposition 2.9. Let γ ∈ (0, 1
2 ). Then, for every x̄ ∈ R

n
+ which is not optimal

for Problem (QP), there exist ρ > 0 and ᾱ > 0 such that

(2.4) q([x̃+ αd]♯)− q(x̃) ≤ γ α d⊤N (x)g(x̃)N (x)

for all x, x̃ ∈ R
n
+ with x, x̃ ∈ B(x̄, ρ) and for all α ∈ (0, ᾱ], where d ∈ R

n is the
direction used at x̃, and such that

(i) dA(x) = 0,
(ii) dN (x) satisfies (2.1) and (2.2).

Using Proposition 2.8 and Proposition 2.9, we can show that the sequence {q(xk)} is
monotonically decreasing.

Proposition 2.10. Let {xk} be the sequence produced by FAST-QPA. Then, the
sequence {q(xk)} is such that

q(xk+1) ≤ q(xk)−
1

2ε
‖x̃k − xk‖2 − σ1‖g(x̃

k)Nk‖2.

Proof. Let x̃k be the point produced at Step 5 of Algorithm 1. By setting y = x̃k

and z = xk in Proposition 2.8, we have

q(x̃k) ≤ q(xk)−
1

2ε
‖x̃k − xk‖2 .

Furthermore, by the fact that we use an Armijo linesearch at Step 9 of Algorithm 1
and by Proposition 2.9, we have that the chosen point xk+1 satisfies inequality (2.4),
that is

q(xk+1)− q(x̃k) ≤ γ αk d⊤Nkg(x̃
k)Nk .

By taking into account (2.1), we thus have

q(xk+1)− q(x̃k) ≤ γ αk d⊤Nkg(x̃
k)Nk ≤ −σ1‖g(x̃

k)Nk‖2 .

In summary, we obtain

q(xk+1) ≤ q(x̃k)− σ1‖g(x̃
k)Nk‖2 ≤

≤ q(xk)−
1

2ε
‖x̃k − xk‖2 − σ1‖g(x̃

k)Nk‖2 .

Proposition 2.10 will allow us to prove two important results: if the minimum
of Problem (QP) is finite, then the stopping condition of Algorithm 1 is met in a
finite number of iterations; see Proposition 2.11. Otherwise, the sequence {q(xk)} is
unbounded from below; see Proposition 2.12.

Proposition 2.11. Let {xk} be the sequence produced by FAST-QPA. If the min-
imum of Problem (QP) is finite, then

lim
k→∞

‖max{0,−g(xk)}‖ = 0.
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Proof. By Proposition 2.10, the sequence {q(xk)} is monotonically decreasing.
Since it is bounded by the minimum of (QP), we have that {q(xk)} converges. In
particular, this implies that both ‖x̃k−xk‖2 and ‖g(x̃k)Nk‖2 go to zero when k → ∞.
By noting that

0 ≤ ‖g(x̃k)− g(xk)‖ = ‖Q(x̃k − xk)‖ ≤ ‖Q‖ · ‖x̃k − xk‖ → 0

we obtain ‖g(xk)Nk‖2 → 0 as well, and thus ‖max{0,−g(xk)}Nk‖2 → 0. On the
other hand, if i ∈ Ak, we have gi(x

k) ≥ 0, so that ‖max{0,−g(xk)}Ak‖2 = 0. This
shows the result.

Proposition 2.12. Let {xk} be the sequence produced by FAST-QPA. If Prob-
lem (QP) is unbounded, then

lim
k→∞

q(xk) = −∞.

Proof. By Proposition 2.10, the sequence {q(xk)} is monotically decreasing. As-
sume by contradiction that it is bounded and hence limk→∞ q(xk) = q̄ for some q̄ ∈ R.
Then, as in the proof of Proposition 2.11, ‖g(xk)Nk‖2 → 0. Since Problem (QP) is
unbounded, there must exist some d ≥ 0 such that Qd = 0 and c⊤d < 0. In particular,
we obtain g(x)⊤d = c⊤d = η < 0 for all x ∈ R

n.

Therefore, since gi(x
k) ≥ 0 for all i ∈ Ak, we have

0 > η = g(xk)⊤d =
∑

i∈Ak

gi(x
k)di +

∑

i∈Nk

gi(x
k)di

≥
∑

i∈Nk

gi(x
k)di = −

∣∣g(xk)⊤NkdNk

∣∣

≥ −‖g(xk)Nk‖ · ‖dNk‖ ≥ −‖g(xk)Nk‖ · ‖d‖ ,

and we get a contradiction since ‖g(xk)Nk‖2 goes to zero.

Finally, we are able to prove the main result concerning the global convergence
of FAST-QPA.

Theorem 2.13. Assume that the minimum of Problem (QP) is finite and that
the parameter ε appearing in Definition 2.2 satisfies (2.3). Let {xk} be the sequence
produced by Algorithm FAST-QPA. Then either an integer k̄ ≥ 0 exists such that xk̄

is an optimal solution for Problem (QP), or the sequence {xk} is infinite and every
limit point x⋆ of the sequence is an optimal point for Problem (QP).

Proof. Let x⋆ be any limit point of the sequence {xk} and let {xk}K be the
subsequence with

lim
k→∞, k∈K

xk = x⋆.

By passing to an appropriate subsequence, we may assume that subsets Ā ⊆ {1, . . . ,m}
and N̄ = {1, . . . ,m} \ Ā exist such that Ak = Ā and N k = N̄ for all k ∈ K, since
the number of possible choices of Ak and N k is finite. In order to prove that x⋆ is
optimal for Problem (QP), it then suffices to show

(i) min {gi(x⋆), x⋆
i } = 0 for all i ∈ Ā, and

(ii) gi(x
⋆) = 0 for all i ∈ N̄ .
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In order to show (i), let ı̂ ∈ Ā and define a function Φı̂ : R
m → R by

Φı̂(x) = min {gı̂(x), xı̂} ,

we thus have to show Φı̂(x
⋆) = 0. For k ∈ K, define ỹk ∈ R

m as follows:

ỹki =

{
0 if i = ı̂

xk
i otherwise.

Recalling that x̃k
Ā
= 0, as set in Step 5 in Algorithm 1, and using ı̂ ∈ Ā, we have

‖ỹk − xk‖2 = (ỹk − xk)2ı̂ = (x̃k − xk)2ı̂ ≤ ‖x̃k − xk‖2 .

From Proposition 2.10 and since the sequence {q(xk)} is bounded by the minimum
of (QP), we have that {q(xk)} converges. In particular, this implies that ‖x̃k − xk‖2

and hence

lim
k→∞, k∈K

ỹk = x⋆ .(2.5)

By Definition 2.2, we have 0 ≤ xk
ı̂ ≤ ε gı̂(x

k) for all k ∈ K. Using Assumption (2.3),
there exists ξ ≥ 0 such that

ε ≤
1

2Qı̂̂ı + ξ
.

As ỹkı̂ = 0, we obtain

xk
ı̂ − ỹkı̂ = xk

ı̂ ≤ ε gı̂(x
k) ≤

1

2Qı̂ı̂ + ξ
gı̂(x

k)

and hence

(2Qı̂ı̂ + ξ)(xk
ı̂ − ỹkı̂ ) ≤ gı̂(x

k),

which can be rewritten as follows

gı̂(x
k) + 2Qı̂ı̂(ỹ

k
ı̂ − xk

ı̂ ) ≥ ξ(xk
ı̂ − ỹkı̂ ) ≥ 0,

yielding gı̂(ỹ
k) ≥ 0. Together with ỹkı̂ = 0, we obtain Φı̂(ỹ

k) = 0. By (2.5) and the
continuity of Φı̂, we derive Φı̂(x

⋆) = 0, which proves (i).
To show (ii), assume on contrary that g(x⋆)N̄ 6= 0. By Proposition 2.9, there

exists ᾱ > 0 such that for k ∈ K sufficiently large

q([x̃k + αdk]♯)− q(x̃k) ≤ γα
∑

i∈N̄

gi(x̃
k)dki

for all α ∈ (0, ᾱ], as x̃k
N̄

converges to x⋆
N̄
. As we use an Armijo type rule in Step 9 of

Algorithm 1, we thus have δj−1 ≥ ᾱ and hence

(2.6) αk = δj ≥ δᾱ .

Again by Step 9, using (2.1) and (2.6), we obtain

q(x̃k)− q([x̃k + αkdk]♯) ≥ −γαk
∑

i∈N̄

gi(x̃
k)dki

≥ γσ1α
k‖g(x̃k)N̄ ‖2

≥ γσ1δᾱ‖g(x̃
k)N̄ ‖2 .
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Since {q(xk)} converges, we have that the left hand side expression converges to zero,
while the right hand side expression converges to

γσ1δᾱ‖g(x
⋆)N̄ ‖2 > 0 ,

and we have the desired contradiction.
Corollary 2.14. If (2.3) holds, then the sequence q(xk) converges to the optimal

value of (QP).
As a final result, we prove that, under a specific assumption, FAST-QPA finds an

optimal solution in a finite number of iterations.
Theorem 2.15. Assume that there exists an accumulation point x⋆ of the se-

quence {xk} generated by FAST-QPA such that

QN̂ N̂ ≻ 0 ,

where N̂ = N̄ (x⋆) ∪ {i ∈ {1, . . . , n} : x⋆
i = 0, gi(x

⋆) = 0}. Then FAST-QPA produces a
minimizer of Problem (QP) in a finite number of steps.

Proof. Let {xk} be the sequence generated by FAST-QPA and let {xk}K be the
subsequence with

lim
k→∞, k∈K

xk = x⋆.

By Theorem 2.13, the limit x⋆ of {xk}K is a minimizer of Problem (QP). The active
set estimation yields Ā+(x⋆) ⊆ Ak ⊆ Ā(x⋆) for sufficiently large k. Consequently

(2.7) N̄ (x⋆) ⊆ N k .

Moreover, taking into account the definition of N̂ , we get N k ⊆ N̂ and thus

(2.8) QNk Nk ≻ 0.

Hence by (2.7), (2.8), and the fact that gi(x
⋆) = 0 for all i ∈ N k we have that

solving (QP) is equivalent to solving the following problem

(2.9)
min x⊤Qx+ c⊤x+ d

s.t. xAk = 0,
x ∈ R

m.

Since x̄k
Nk is the only optimal solution for problem (QPk) and x̄k

Ak = 0, we conclude
that x̄k is the optimal solution of (2.9) and of (QP).

By Theorem 2.15, we just need that the submatrix QN̂ N̂ is positive definite in
order to ensure finite termination of FAST-QPA. This is a weaker assumption than the
positive definiteness of the full matrix Q, which is usually needed to guarantee finite
convergence in an active set framework (see e.g. [4, 23] and references therein).

Furthermore, by taking into account the scheme of our algorithm, and by carefully
analyzing the proof given above, we notice two important facts:

– the algorithm, at iteration k, moves towards the optimal point x⋆ by only
using an approximate solution of the unconstrained problem (QPk), i.e. the
solution needed in the calculation of the gradient related direction;

– once the point xk gets close enough to x⋆, thanks to the properties of our
estimate, we can guarantee that the point x̄k is the optimum of the original
problem (QP).

This explains why, in the algorithmic scheme, we calculate x̄k and just use it in the
optimality check at Step 8.
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3. Embedding FAST-QPA into a Branch-and-Bound Scheme. As shown
in [9], the approach of embedding taylored active set methods into a branch-and-
bound scheme is very promising for solving convex quadratic integer programming
problems of type (MIQP). In this section we shortly summarize the key ingredients of
our branch-and-bound algorithm FAST-QPA-BB that makes use of FAST-QPA, presented
in Section 2, for the computation of lower bounds. The branch-and-bound algorithm
we consider is based on the work in [8], where the unconstrained case is addressed.
As our branch-and-bound scheme aims at a fast enumeration of the nodes, we focus
on bounds that can be computed quickly. A straightforward choice for determining
lower bounds is to solve the continuous relaxation of (MIQP). Instead of considering
the primal formulation of the continuous relaxation of (MIQP), we deal with the dual
one, which again is a convex QP, but with only non-negativity constraints, so that
it can be solved by FAST-QPA. The solution can be used as a lower bound for f over
all feasible integer points and is as strong as the lower bound obtained by solving the
primal problem, since strong duality holds.

Our branching strategy and its advantages are discussed in Section 3.1. In Sec-
tion 3.2, we have a closer look at the relation between the primal and the dual problem,
while in Section 3.3 we shortly discuss the advantage of reoptimization. Using a pre-
determined branching order, some of the expensive calculations can be moved into a
preprocessing phase, as described in Section 3.4.

3.1. Branching. At every node in our branch-and-bound scheme, we branch by
fixing a single primal variable in increasing distance to its value in the solution of the
continuous relaxation x⋆. For example, if the closest integer value to x⋆

i is ⌊x⋆
i ⌋, we

fix xi to integer values ⌊x⋆
i ⌋, ⌈x

⋆
i ⌉, ⌊x

⋆
i ⌋− 1, ⌈x⋆

i ⌉+1, and so on. After each branching
step, the resulting subproblem is a quadratic programming problem of type (MIQP)
again, with a dimension decreased by one. We are not imposing bound constraints
on the integer variables (i.e. xi ≤ ⌊x⋆

i ⌋ and xi ≥ ⌊x⋆
i ⌋) since they are taken into

account as fixings (i.e. xi = ⌊x⋆
i ⌋) in the construction of the reduced subproblem by

adapting properly the matrices Qℓ and Aℓ, the linear term c̄, the constant term d̄

and the right hand side b̄ (see Section 3.4). The branching order of these variables at
every level ℓ is set to x1, . . . , xn−ℓ, assuming that ℓ variables are already fixed. Hence,
at every level we have a predetermined branching order. Let x⋆

i be the value of the
next branching variable in the continuous minimizer. Then, by the strict convexity of
f , all consecutive lower bounds obtained by fixing xi to integer values in increasing
distance to x⋆

i , on each side of x⋆
i , are increasing. Thus, we can cut off the current

node of the tree and all its outer siblings as soon as we fix a variable to some value for
which the resulting lower bound exceeds the current best known upper bound. Since
f is strictly convex we get a finite algorithm even without bounds on the variables.

Once all integer variables have been fixed, we compute the optimal solution of the
QP problem in the reduced continuous subspace. If the computed point is feasible, it
yields a valid upper bound for the original problem. As our enumeration is very fast
and we use a depth-first approach, we do not need any initial feasible point nor do we
apply primal heuristics.

3.2. Dual Approach. In the following, we derive the dual problem of the con-
tinuous relaxation of (MIQP) and point out some advantages when using the dual
approach in the branch-and-bound framework. The dual can be computed by first
forming the Lagrangian of the relaxation

L (x, λ) = x⊤Qx+ c⊤x+ d+ λ⊤(Ax − b)
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and then, for fixed λ, minimizing L with respect to the primal variables x. As Q is
assumed to be positive definite, the unique minimizer can be computed from the first
order optimality condition

∇xL (x, λ) = 2Qx+ c+A⊤λ = 0 ⇐⇒ x = −
1

2
Q−1(c+A⊤λ).(3.1)

Having x as a function of λ, we can insert it into the Lagrangian L yielding the
following dual function

L (λ) = λ⊤
(
−

1

4
AQ−1A⊤

)
λ−

(
b⊤ +

1

2
c⊤Q−1A⊤

)
λ−

1

4
c⊤Q−1c+ d.

Defining Q̃ := 1
4AQ

−1A⊤, c̃ := 1
2AQ

−1c+ b and d̃ := 1
4c

⊤Q−1c− d, we can thus write
the dual of the continuous relaxation of (MIQP) as

−min λ⊤Q̃λ+ c̃⊤λ+ d̃

s.t. λ ≥ 0(3.2)

λ ∈ R
m.

Note that (3.2) is again a convex QP, since Q̃ is positive semidefinite.
The first crucial difference in considering the dual problem is that its dimension

changed from n to m, which is beneficial if m ≪ n. The second one is that λ = 0
is always feasible for (3.2). Finally, note that having the optimal solution λ⋆ ∈ R

m

of (3.2), it is easy to reconstruct the corresponding optimal primal solution x⋆ ∈ R
n

using the first order optimality condition (3.1).
Within a branch-and-bound framework, a special feature of the dual approach is

the early pruning: we can stop the iteration process and prune the node as soon as
the current iterate λk is feasible and its objective function value exceeds the current
upper bound, since each dual feasible solution yields a valid bound. Note however
that, in case we cannot prune, an optimal solution of the dual problem is required,
since it is needed for the computation of the corresponding primal solution x⋆ which
in turn is needed to decide the enumeration order in the branch-and-bound scheme.

During the tree search it may occur that a node relaxation is infeasible due to
the current fixings. In this case infeasibility of the primal problem implies the un-
boundness of the dual problem. Therefore, during the solution process of the dual
problem, an iterate will be reached such that its objective function value exceeds the
current upper bound and the node can be pruned. This is why in our implementation
of FAST-QPA we set the following stopping criterion: the algorithm stops either if the
norm of the projected gradient is less than a given optimality tolerance, or if an iterate
is computed such that its objective function value exceeds the current upper bound.
More precisely, we declare optimality when the point λ ∈ R

m
+ satisfies the following

condition:

‖max {0,−g(λ)} ‖ ≤ 10−5.

By Propositions 2.11 and 2.12, we then have a guarantee that the algorithm stops
after a finite number of iterations.

3.3. Reoptimization. At every node of the branch-and-bound tree, we use our
algorithm FAST-QPA described in Section 2 for solving Problem (3.2). A crucial ad-
vantage of using an active set method is the possibility of working with warmstarts,
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i.e., of passing information on the optimal active set from a parent node to its chil-
dren. In the dual approach the dimension of all subproblems is m, independently of
the depth ℓ in the branch-and-bound tree. When fixing a variable, only the objective
function changes, given by Q̃, c̃ and d̃. So as the starting guess in a child node, we
choose A0 := A(λ⋆), i.e., we use the estimated active set for the optimal solution λ⋆

of the parent node, according to Step 3 of Algorithm 1. We also pass the solution λ⋆

to the child nodes to initialize the variables in the line search procedure in Step 4 of
Algorithm 1, that is we set x̃0

N 0 = λ⋆
N 0 . Our experimental results presented in Sec-

tion 4 show that this warmstarting approach reduces the average number of iterations
of FAST-QPA significantly.

3.4. Incremental Computations and Preprocessing. A remarkable speed-
up can be achieved by exploiting the fact that the subproblems enumerated in the
branch-and-bound tree are closely related to each other. Let ℓ ∈ {0, . . . , n1 − 1} be
the current depth in the branch-and-bound tree and recall that after fixing the first ℓ
variables, the problem reduces to the minimization of

f̄ : Zn1−ℓ × R
n−n1 → R, x 7→ x⊤Qℓx+ c̄⊤x+ d̄

over the feasible region F̄ = {x ∈ Z
n1−ℓ × R

n−n1 | Aℓx ≤ b̄}, where Qℓ ≻ 0 is
obtained by deleting the corresponding ℓ rows and columns of Q and c̄ and d̄ are
adapted properly by

c̄j−ℓ := cj + 2
ℓ∑

i=1

qijri, for j = ℓ+ 1, . . . , n

and

d̄ := d+

ℓ∑

i=1

ciri +

ℓ∑

i=1

ℓ∑

j=1

qijrirj ,

where r = (r1, . . . , rℓ) ∈ Z
ℓ is the current fixing at depth ℓ. Similarly, Aℓ is obtained

by deleting the corresponding ℓ columns of A and the reduced right hand side b̄ is
updated according to the current fixing.

Since we use a predetermined branching order, the reduced matrices Qℓ, Q
−1
ℓ

and Aℓ only depend on the depth ℓ, but not on the specific fixings. Along with
the reduced matrix Qℓ, the quadratic part of the reduced dual objective function
Q̃ℓ can then be computed in the preprocessing phase, because they only depend
on Qℓ and Aℓ. The predetermined branching order also allows the computation of
the maximum eigenvalues λmax(Q̃ℓ) in the preprocessing phase, needed for ensuring
proper convergence of our active set method as described in Section 2; compare (2.3).

Concerning the linear part c̃ and the constant part d̃ of the dual reduced problem,
both can be computed incrementally in linear time per node: let r = (r1, . . . , rℓ) ∈ Z

l

be the current fixing at depth ℓ. By definition of c̃, we have

c̃(r) =
1

2
AℓQ

−1
ℓ c(r) + b(r) ,

where the suffix (r) always denotes the corresponding data after fixing the first ℓ

variables to r.
Theorem 3.1. After a polynomial time preprocessing, the vector c̃(r) can be

constructed incrementally in O(n− ℓ+m) time per node.
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Proof. Defining y(r) := − 1
2Q

−1
ℓ c(r), we have

1

2
AℓQ

−1
ℓ c(r) = −Aℓ · y(r).

Note that y(r) is the unconstrained continuous minimizer of f(r). In [8], it was shown
that y(r) can be computed incrementally by

y(r) := [y(r′) + αzℓ−1]1,...,n−ℓ ∈ R
n−ℓ

for some vector zℓ−1 ∈ R
n−ℓ+1 and α := rℓ − y(r′)ℓ ∈ R, where r′ = (r1, . . . , rℓ−1)

is the fixing at the parent node. This is due to the observation that the continuous
minima according to all possible fixings of the next variable lie on a line, for which zℓ−1

is the direction. It can be proved that the vectors zℓ−1 only depend on the depth ℓ

and can be computed in the preprocessing [8]. Updating y thus takes O(n− ℓ) time.
We now have

c̃(r) = −Aℓ[y(r
′) + αzℓ−1]1,...,n−ℓ + b(r)

= −Aℓ[y(r
′)]1,...,n−ℓ − αAℓ[z

ℓ−1]1,...,n−ℓ + b(r)

= −(Aℓ−1y(r
′)− y(r′)n−ℓ+1 · A·,n−ℓ+1)− αAℓ[z

ℓ−1]1,...,n−ℓ + b(r).

In the last equation, we used the fact that the first part of the computation can be
taken over from the parent node by subtracting column n− ℓ+ 1 of A, scaled by the
last component of y(r′), from Aℓ−1y(r

′), which takes O(m) time. The second part
Aℓ[z

ℓ−1]1,...,n−ℓ can again be computed in the preprocessing. The result then follows
from the fact that also b(r) can easily be computed incrementally from b(r′) in O(m)
time.

Theorem 3.2. After a polynomial time preprocessing, the scalar d̃(r) can be
constructed incrementally in O(n− ℓ) time per node.

Proof. Recalling that

d̃(r) =
1

4
c(r)⊤Q−1

ℓ c(r) − d(r) ,

this follows from the fact that y(r) = − 1
2Q

−1
ℓ c(r) and c(r) can be computed in O(n−ℓ)

time per node [8].
Corollary 3.3. After a polynomial time preprocessing, the dual problem (3.2)

can be constructed in O(n − ℓ+m) time per node.
Besides the effort for solving the QP with the active set method, computing

the optimal solution of the primal problem from the dual solution is the most time
consuming task in each node. The following observation is used to speed up its
computation.

Theorem 3.4. After a polynomial time preprocessing, the optimal primal solu-
tion x⋆(r) can be computed from the optimal dual solution λ⋆(r) in O(m · (n− ℓ)) time
per node.

Proof. From (3.1) we derive

x⋆(r) = −
1

2
Q−1

ℓ

(
m∑

i=1

λ⋆(r)iai + c(r)

)

= y(r) +

m∑

i=1

λ⋆(r)i

(
−
1

2
Q−1

ℓ ai

)
.
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The first part can again be computed incrementally in O(n−ℓ) time per node. For the
second part, we observe that − 1

2Q
−1
ℓ ai can be computed in the preprocessing phase

for all i = 1, . . . ,m.
The above results show that the total running time per node is linear in n − ℓ

when the number m of constraints is considered a constant and when we make the
reasonable assumption that Problem (QP) can be solved in constant time in fixed
dimension.

3.5. Postprocessing. Using FAST-QPA, we can solve the dual problem of the
continuous relaxation in every node of the branch-and-bound tree, in case it admits
a solution, up to high precision. If the dual problem is bounded, strong duality
guarantees the existence of a primal feasible solution. However, in practice, computing
the primal solution by formula (3.1), can affect its feasibility. This numerical problem
is negligible in the pure integer case (where we end up fixing all the variables), while
it becomes crucial in the mixed integer case. Indeed, when dealing with mixed integer
problems, the primal solution of the relaxation in the optimal branch-and-bound node
(i.e. the node that gives the optimal value) is actually used to build up the solution
of the original problem.

Hence, in case a high precision is desired for the primal solution, we propose the
following approach: the branch-and-bound node related to the optimal value gives an
optimal fixing of the integer variables. Therefore, we consider the convex QP that
arises from Problem (MIQP) under these optimal fixings. Then, we call a generic
solver to deal with this QP problem (the values of the primal continuous variables
obtained by formula (3.1) can be used as a starting point). Since the hardness of
Problem (MIQP) is due to the integrality constraints on the variables, the running
time for this postprocessing step is negligible.

In the experiments reported below, we apply this approach using CPLEX 12.6 as
solver for the QP problem (we choose 10−6 as feasibility tolerance). The time required
for the postprocessing step is included in all stated running times. As noticed above,
this postprocessing phase is not needed in the pure integer case.

4. Experimental Results. In order to investigate the potential of our algo-
rithm FAST-QPA-BB, we implemented it in C++/Fortran 90 and compared it to the
MIQP solver of CPLEX 12.6. We also tested the branch-and-bound solver B-BB of
Bonmin 1.74. However, we did not include the running times for the latter into the
tables since its performance was not competitive at all, not even for mixed-integer
instances with a few number of integer variables. All experiments were carried out on
Intel Xeon processors running at 2.60 GHz. We used an absolute optimality tolerance
and a relative feasibility tolerance of 10−6 for all algorithms.

In order to obtain a feasible solution to Problem (MIQP) and thus an initial upper
bound – or to determine infeasibility of (MIQP) – we replace the objective function
in (MIQP) by the zero function and use the CPLEX 12.6 ILP solver. In principle,
the algorithm also works when setting the initial upper bound to a very large value.
Then it is either replaced as soon as a feasible solution is found in some branch-and-
bound node, or it will remain unchanged until the algorithm terminates, in which case
Problem (MIQP) must be infeasible.

Altogether, we randomly generated 1600 different problem instances for (MIQP),
considering percentages of integer variables p := n1

n
∈ {0.25, 0.50, 0.75, 1.0}. For

p = 0.25 (0.5 / 0.75 / 1.0), we chose n ∈ {50, 100, 150, 200, 250} ({50, 75, 100, 125, 150}
/ {50, 60, 70, 80, 90} / {50, 55, 60, 65, 70}), respectively. The number of constraints m
was chosen in {1, 10, 25, 50}. For each combination of p, n and m, we generated 10
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instances. For every group of instances with a given percentage of integer variables p,
the parameter n was chosen up to a number such that at least one of the tested
algorithms was not able to solve all of the 10 instances to optimality for m = 1 within
our time limit of 3 cpu hours.

For generating the positive definite matrix Q, we chose n eigenvalues λi uniformly
at random from [0, 1] and orthonormalized n random vectors vi, each entry of which
was chosen uniformly at random from [−1, 1], then we set Q =

∑n
i=1 λiviv

⊤
i . The

entries of c were chosen uniformly at random from [−1, 1], moreover we set d = 0. For
the entries of A and b, we considered two different choices:

(a) the entries of b and A were chosen uniformly at random from [−1, 1],
(b) the entries of A were chosen uniformly at random from [0, 1] and we set

bi =
1
2

∑n
j=1 aij , i = 1, . . . ,m.

The constraints of type (b) are commonly used to create hard instances for the knap-
sack problem. At www.mathematik.tu-dortmund.de/lsv/instances/MIQP.tar.gz
all instances are publicly available.

The performance of the considered algorithms for instances of type (a) can be
found in Tables 1–4. We do not inlcude the tables for instances of type (b), since
there are no significant differences in the results, except that they are in general
easier to solve for our algorithm as well as for CPLEX. All running times are measured
in cpu seconds. The tables include the following data for the comparison between
FAST-QPA-BB and CPLEX 12.6: numbers of instances solved within the time limit,
average preprocessing time, average running times, average number of branch-and-
bound nodes, average number of iterations of FAST-QPA in the root node and average
number of iterations of FAST-QPA per node in the rest of the enumeration tree. All
averages are taken over the set of instances solved within the time limit.

From our experimental results, we can conclude that when p ∈ {0.25; 0.50}
FAST-QPA-BB clearly outperforms CPLEX 12.6 for m up to 25 and is at least com-
petitive to CPLEX 12.6 if p = 0.75. For the mixed-integer case we can see that the
average running times of FAST-QPA-BB compared to CPLEX 12.6 are the better, the
bigger the percentage of continuous variables is, even with a larger number of con-
straints. For the pure integer case we still outperform CPLEX 12.6 for m up to 10.
For all instances, the preprocessing time is negligible.

This experimental study shows that FAST-QPA-BB is able to solve 644 instances of
type (a) to optimality, while CPLEX 12.6 can only solve 598 instances. Note that the
average number of branch-and-bound nodes in our dual approach is approximately
30 times greater than that needed by CPLEX 12.6. Nevertheless the overall running
times of our approach are much faster for moderate sizes of m, emphasizing both the
quick enumeration process within the branch-and-bound tree and the benefit of using
reoptimization. Note that the performance of our approach highly depends on m. As
the number of constraints grows, the computational effort for both solving the dual
problem and recomputing the primal solution (see Theorem 3.4), is growing as well.

In Table 5 we compare the performance of FAST-QPA-BB with FAST-QPA-BB-NP, a
version in which the early pruning is not implemented (see Section 3.2). We show the
results for the pure integer instances of type (a) with p = 1.0. The benefits from the
early pruning are evident: the average number of iterations of FAST-QPA is decreased
leading to faster running times so that 9 more instances can be solved.

Our experimental results also underline the strong performance of FAST-QPA. The
number of iterations of FAST-QPA needed in the root node of our branch-and-bound
algorithm is very small on average: for m = 50 it is always below 60 and often much

www.mathematik.tu-dortmund.de/lsv/instances/MIQP.tar.gz
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inst FAST-QPA-BB CPLEX 12.6

n m # ptime time nodes it root it # time nodes

50 1 10 0.00 6.83 9.24e+6 1.50 1.16 10 53.50 5.06e+5

50 10 10 0.00 83.15 3.16e+7 3.80 1.54 10 189.50 1.45e+6

50 25 9 0.01 2337.87 1.62e+8 8.56 2.09 10 2413.50 1.25e+7

50 50 0 - - - - - 0 - -

55 1 10 0.00 28.47 3.62e+7 1.60 1.25 10 210.71 1.75e+6

55 10 10 0.00 427.66 1.46e+8 3.40 1.48 10 1154.91 7.53e+6

55 25 4 0.01 3843.30 3.37e+8 7.50 1.86 5 3949.40 1.82e+7

55 50 0 - - - - - 0 - -

60 1 10 0.00 133.32 1.60e+8 1.30 1.11 9 353.89 2.61e+6

60 10 8 0.01 1894.81 6.86e+8 2.62 1.51 7 3477.91 2.04e+7

60 25 2 0.02 8963.19 7.55e+8 5.50 2.00 1 6149.31 2.68e+7

60 50 0 - - - - - 0 - -

65 1 10 0.01 349.11 4.13e+8 1.40 1.15 10 2105.36 1.31e+7

65 10 8 0.01 4010.42 1.50e+9 2.75 1.48 4 5503.84 2.83e+7

65 25 0 - - - - - 0 - -

65 50 0 - - - - - 0 - -

70 1 10 0.01 1113.47 1.30e+9 1.60 1.27 7 5133.59 2.88e+7

70 10 4 0.01 6915.67 2.38e+9 2.50 1.51 0 - -

70 25 0 - - - - - 0 - -

70 50 0 - - - - - 0 - -

Table 1

Results for instances of type (a) with p = 1.0.

inst FAST-QPA-BB CPLEX 12.6

n m # ptime time nodes it root it # time nodes

60 1 10 0.00 1.81 2.01e+6 1.30 1.11 10 12.12 1.12e+5

60 10 10 0.01 5.65 1.82e+6 2.80 1.44 10 17.63 1.34e+5

60 25 10 0.02 32.60 2.36e+6 9.10 1.65 10 26.49 1.51e+5

60 50 10 0.08 641.91 6.64e+6 55.80 2.14 10 129.51 4.80e+5

70 1 10 0.01 12.15 1.30e+7 1.60 1.20 10 84.02 6.67e+5

70 10 10 0.01 27.11 8.19e+6 3.40 1.43 10 77.70 5.07e+5

70 25 10 0.03 159.81 1.23e+7 9.20 1.60 10 183.43 8.85e+5

70 50 10 0.08 2222.15 2.79e+7 18.60 1.96 10 593.70 1.89e+6

80 1 10 0.02 65.98 6.51e+7 1.40 1.12 10 446.60 2.91e+6

80 10 10 0.03 151.77 4.37e+7 3.80 1.42 10 386.33 2.08e+6

80 25 10 0.04 963.38 7.06e+7 10.30 1.60 10 791.62 3.20e+6

80 50 7 0.09 3339.39 5.38e+7 15.29 1.82 9 1903.79 5.27e+6

90 1 10 0.03 417.90 3.79e+8 1.30 1.11 10 2332.52 1.25e+7

90 10 10 0.04 1538.99 4.36e+8 3.00 1.40 10 2745.36 1.26e+7

90 25 10 0.06 4468.73 3.55e+8 5.90 1.55 9 3094.58 1.08e+7

90 50 1 0.09 5361.11 1.02e+8 10.00 1.72 4 5199.56 1.27e+7

100 1 6 0.05 1897.13 1.69e+9 1.33 1.10 5 5918.25 2.61e+7

100 10 6 0.06 5893.96 1.52e+9 4.83 1.39 0 - -

100 25 1 0.06 4897.75 3.95e+8 5.00 1.51 0 - -

100 50 1 0.11 3622.67 8.05e+7 15.00 1.74 1 2664.13 5.47e+6

Table 2

Results for instances of type (a) with p = 0.75.
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inst FAST-QPA-BB CPLEX 12.6

n m # ptime time nodes it root it # time nodes

50 1 10 0.00 0.02 9.83e+3 1.50 1.16 10 0.18 1.26e+3

50 10 10 0.00 0.03 5.46e+3 3.80 1.48 10 0.16 7.47e+2

50 25 10 0.01 0.11 4.68e+3 8.20 1.71 10 0.23 8.70e+2

50 50 10 0.06 1.14 8.30e+3 21.40 2.35 10 0.61 1.63e+3

75 1 10 0.01 0.25 1.76e+5 1.60 1.21 10 2.20 1.30e+4

75 10 10 0.02 0.68 1.65e+5 3.60 1.42 10 2.50 1.17e+4

75 25 10 0.02 2.23 1.68e+5 9.80 1.57 10 3.80 1.47e+4

75 50 10 0.09 12.08 1.70e+5 17.00 1.88 10 6.56 1.74e+4

100 1 10 0.05 13.84 1.08e+7 1.50 1.15 10 76.62 3.20e+5

100 10 10 0.05 14.13 3.46e+6 4.80 1.39 10 63.18 2.35e+5

100 25 10 0.07 56.86 4.35e+6 8.50 1.53 10 87.39 2.55e+5

100 50 10 0.13 322.71 5.39e+6 51.80 1.72 10 216.89 4.38e+5

125 1 10 0.11 193.38 1.33e+8 1.40 1.13 10 2449.15 6.70e+6

125 10 10 0.13 516.50 1.15e+8 3.40 1.37 10 2265.19 5.70e+6

125 25 10 0.14 1342.59 1.03e+8 8.80 1.46 10 2111.49 4.22e+6

125 50 10 0.21 4524.8 9.28e+7 52.60 1.62 10 2843.59 4.22e+6

150 1 9 0.22 4011.63 2.34e+9 1.78 1.25 2 5026.81 9.86e+6

150 10 6 0.24 6857.64 1.29e+9 3.50 1.38 0 - -

150 25 3 0.24 9440.33 6.65e+8 7.33 1.46 0 - -

150 50 0 - - - - - 0 - -

Table 3

Results for instances of type (a) with p = 0.5.

inst FAST-QPA-BB CPLEX 12.6

n m # ptime time nodes it root it # time nodes

50 1 10 0.01 0.01 1.31e+2 1.50 1.18 10 0.01 3.44e+1

50 10 10 0.00 0.01 1.96e+2 3.80 1.53 10 0.02 4.46e+1

50 25 10 0.01 0.03 1.40e+2 8.20 1.98 10 0.03 3.85e+1

50 50 10 0.06 0.10 1.14e+2 21.40 3.85 10 0.07 3.32e+1

100 1 10 0.06 0.09 1.05e+4 1.50 1.16 10 0.50 1.06e+3

100 10 10 0.06 0.11 3.88e+3 4.80 1.40 10 0.45 6.32e+2

100 25 10 0.06 0.18 4.91e+3 8.50 1.56 10 0.55 7.36e+2

100 50 10 0.12 0.75 8.24e+3 51.80 1.80 10 1.30 1.53e+3

150 1 10 0.25 0.62 1.68e+5 1.70 1.23 10 7.49 1.31e+4

150 10 10 0.22 0.97 1.24e+5 3.00 1.39 10 7.37 1.09e+4

150 25 10 0.24 2.85 1.56e+5 6.40 1.46 10 12.81 1.65e+4

150 50 10 0.31 4.74 7.77e+4 11.20 1.60 10 9.50 8.69e+3

200 1 10 0.58 14.79 6.38e+6 1.50 1.16 10 283.67 2.73e+5

200 10 10 0.52 21.32 3.00e+6 3.20 1.37 10 244.09 2.19e+5

200 25 10 0.57 74.93 4.03e+6 5.90 1.44 10 344.88 2.56e+5

200 50 10 0.68 400.99 7.44e+6 40.60 1.54 10 818.13 4.83e+5

250 1 10 1.12 329.54 1.21e+8 1.50 1.15 7 4413.64 2.54e+6

250 10 10 1.10 617.59 7.35e+7 3.80 1.35 9 5291.97 2.67e+6

250 25 10 1.17 2115.57 1.01e+8 6.90 1.41 5 4984.95 2.08e+6

250 50 9 1.28 3709.07 6.27e+7 49.11 1.51 4 5444.02 1.90e+6

Table 4

Results for instances of type (a) with p = 0.25.
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inst FAST-QPA-BB FAST-QPA-BB-NP

n m # time nodes it # time nodes it

50 1 10 6.83 9.24e+6 1.16 10 8.79 9.24e+6 1.48

50 10 10 83.15 3.16e+7 1.54 10 145.95 3.16e+7 2.74

50 25 9 2337.87 1.62e+8 2.09 7 4587.82 1.35e+8 4.25

50 50 0 - - - 0 - -

55 1 10 28.47 3.62e+7 1.25 10 34.86 3.62e+7 1.74

55 10 10 427.66 1.46e+8 1.48 10 743.12 1.46e+8 2.53

55 25 4 3843.30 3.37e+8 1.86 3 4216.79 1.56e+8 3.63

55 50 0 - - - 0 - - -

60 1 10 133.32 1.60e+8 1.11 10 154.74 1.60e+8 1.34

60 10 8 1894.81 6.86e+8 1.51 8 3259.91 6.86e+8 2.62

60 25 2 8963.19 7.55e+8 2.00 0 - -

60 50 0 - - - 0 - - -

65 1 10 349.11 4.13e+8 1.15 10 410.14 4.13e+8 1.47

65 10 8 4010.42 1.50e+9 1.48 7 5238.44 1.23e+9 2.52

65 25 0 - - - 0 - - -

65 50 0 - - - 0 - - -

70 1 10 1113.47 1.30e+9 1.27 10 1318.95 1.30e+9 1.81

70 10 4 6915.67 2.38e+9 1.51 1 8714.63 1.31e+9 2.95

70 25 0 - - - 0 - - -

70 50 0 - - - 0 - - -

Table 5

Results for instances of type (a) with p = 1.0 turning early pruning on/off.
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Fig. 1. Performance profiles for all instances of type (a)

smaller. Using warmstarts, the average number of iterations drops to 1–6.

Besides the tables of average running times, we visualized our results by per-
formance profiles in Figure 1, as proposed in [12]. They confirm the result that
FAST-QPA-BB outperforms CPLEX 12.6 significantly.

5. Conclusions. We presented a new branch-and-bound algorithm for convex
quadratic mixed integer minimization problems based on the use of an active set
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method for computing lower bounds. Using a dual instead of a primal algorithm
considerably improves the running times, as it may allow an early pruning of the node.
Moreover, the dual problem only contains non-negativity constraints, making the
problem accessible to our tailored active set method FAST-QPA. Our sophisticated rule
to estimate the active set leads to a small number of iterations of FAST-QPA in the root
node that however grows as the number of constraints increases. This shows that for
a large number of constraints the QPs addressed by FAST-QPA are nontrivial and their
solution time has a big impact on the total running time, since we enumerate a large
number of nodes in the branch-and-bound tree. Nevertheless, reoptimization helps
to reduce the number of iterations of FAST-QPA per node substantially, leading to an
algorithm that outperforms CPLEX 12.6 on nearly all problem instances considered.
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[10] G. Cornuéjols and R. Tütüncü, Optimization methods in finance, Mathematics, finance,
and risk, Cambridge University Press, Cambridge, U.K., New York, 2006.

[11] R. S. Dembo, S. C. Eisenstat, and T. Steinhaug, Inexact Newton methods, SIAM Journal
on Numerical Analysis, 19 (1982), pp. 400–408.
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