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Nonparametric Uncertainty Quantification for Stochastic Gradient Flows§

Tyrus Berry† and John Harlim† ‡ ¶

Abstract. This paper presents a nonparametric statistical modeling method for quantifying uncertainty in
stochastic gradient systems with isotropic diffusion. The central idea is to apply the diffusion maps
algorithm to a training data set to produce a stochastic matrix whose generator is a discrete approx-
imation to the backward Kolmogorov operator of the underlying dynamics. The eigenvectors of this
stochastic matrix, which we will refer to as the diffusion coordinates, are discrete approximations to
the eigenfunctions of the Kolmogorov operator and form an orthonormal basis for functions defined
on the data set. Using this basis, we consider the projection of three uncertainty quantification (UQ)
problems (prediction, filtering, and response) into the diffusion coordinates. In these coordinates,
the nonlinear prediction and response problems reduce to solving systems of infinite-dimensional
linear ordinary differential equations. Similarly, the continuous-time nonlinear filtering problem re-
duces to solving a system of infinite-dimensional linear stochastic differential equations. Solving the
UQ problems then reduces to solving the corresponding truncated linear systems in finitely many
diffusion coordinates. By solving these systems we give a model-free algorithm for UQ on gradient
flow systems with isotropic diffusion. We numerically verify these algorithms on a 1-dimensional
linear gradient flow system where the analytic solutions of the UQ problems are known. We also
apply the algorithm to a chaotically forced nonlinear gradient flow system which is known to be well
approximated as a stochastically forced gradient flow.

Key words. nonparametric UQ, nonlinear filtering, nonlinear response, diffusion maps, statistical prediction,
gradient flows

AMS subject classifications. 58J65, 82C31, 93E11, 60G25

1. Introduction. An important emerging scientific discipline is to quantify the evolution
of low-order statistics of dynamical systems in the presence of uncertainties due to errors in
modeling, numerical approximations, parameters, and initial and boundary conditions [30].
While many uncertainty quantification (UQ) methods have been proposed, they rely on some
knowledge about the underlying dynamics, at least at the coarse grained levels. One class of
popular UQ methods is low-order truncation modeling based on projection of the dynamics
onto some basis [30, 17], such as the principal component analysis [14, 16], the truncated
polynomial chaos basis [23, 17], the dynamically orthogonal basis [28], the Nonlinear Laplacian
Spectral Analysis (NLSA) basis [12], and recently, the “ROMQG” which stands for Reduced
Order Modified Quasilinear Gaussian” method [29] which was carefully designed for predicting
statistics of turbulent systems.

This paper considers UQ problems in which one has no explicit parametric form for the
underlying dynamics. Given only a time series of the underlying dynamics, our goal is to
devise UQ methods based on nonparametric modeling, applying ideas from diffusion maps
[3, 9, 6]. While the classical Cauchy problem for solving the backward Kolmogorov equation
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is to find the semigroup solutions of this PDE, the diffusion maps technique can be interpreted
as the inverse of this Cauchy problem. Namely, given a realization of the associated stochastic
process, we construct a stochastic matrix (also known as Markov matrix), whose generator is
a discrete approximation to the backward Kolmogorov operator. Numerically, the stochastic
matrix is constructed by evaluating an appropriate kernel function on all pairs of data points
and carefully re-normalizing the resulting matrix to account for sampling bias in the data set
and to insure the Markov property. In this paper, we apply the recently developed variable
bandwidth diffusion kernel [6], which generalizes the original result of diffusion maps intro-
duced in [9] to non-compact manifolds. Our choice is motivated by the fact that this variable
bandwidth kernel is more robust and it significantly improves the operator estimation in areas
of sparse sampling, e.g. on the tail of a distribution [6]. The UQ methods discussed in this
paper are only applicable for a class of nonlinear dynamical systems which can be described
by stochastically forced gradient flows, since this is the class of problems for which one can
learn the (backward) Kolmogorov operator from the diffusion maps algorithm [9, 6]. In the
conclusion we discuss the possibility of applying the UQ framework developed here to more
general systems.

The representation of the probabilistic forecasting problem in diffusion coordinates was
first noted in [22, 8], however this forecasting approach was never demonstrated. In fact, such
forecasting would have been difficult for the non-compact examples which we will consider,
because they used fixed bandwidth kernels in [22, 8] which would not recover the true Kol-
mogorov operator, as shown in [6]. In fact, the goal of [22, 8] was not to solve the forecasting
problem, but instead to a low-dimensional representations of complex dynamical systems. We
should note that a ‘locally-scaled’ version of the approach in [22, 8] was taken in [25], which
used an ad-hoc variable bandwidth function. While the ad-hoc bandwidth of [25] is valid for
finding low-dimensional coordinates, it would not be useful for the forecasting problem since,
as shown in [6], the bandwidth function would affect the estimated operator. The previous
work in [22, 8, 25] all focused on using diffusion coordinates as a nonlinear map to obtain
a low-dimensional representation of the observed dynamics. In this paper we take a signifi-
cantly different perspective, namely, we treat the diffusion coordinates as a basis for smooth
functions and we represent probability densities in this basis for the purposes of UQ.

We will consider three UQ problems, namely the problems of forecasting, filtering [20], and
response [18]. While most stochastic projection methods chose the projection basis coordinate
[30, 17] depending on the nature of the problems (such as the geometry of the state space
or the distribution of the parameters), here we consider solving these UQ problems in the
diffusion coordinates. For diffusion processes on nonlinear manifolds, this data-driven basis
is the most natural choice since these eigenfunctions implicitly describe both the dynamics
and geometry of the underlying dynamical system. For example, in this coordinate basis, the
forecasting problem reduces to solving a diagonal infinite-dimensional systems of linear ODEs,
as originally noted in [22]. For continuous-time nonlinear filtering problems, the solutions are
characterized by the unnormalized conditional distribution which solves the Zakai equation [2].
In diffusion coordinates, we shall see that this nonlinear filtering problem reduces to solving a
system of infinite-dimensional multiplicatively forced linear stochastic differential equations.
Finally, we consider the response problem studied in [18], which applied the fluctuation-
dissipation theorem to estimate the statistical linear response of perturbed systems given the
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data set of the unperturbed system and the functional form of the external perturbation.
Finding the response in our framework requires the diffusion coordinates of the perturbed
system. By assuming the perturbation is given by a known change in the potential function,
we show that this perturbed basis can be constructed using an appropriate kernel, evaluated
on unperturbed data. In this basis, the corresponding nonlinear response problem reduces
to solving an infinite dimensional linear system of ODEs. In each case described above, the
nonparametric UQ algorithms consist of solving truncated systems of ODEs and SDEs with
finitely many diffusion coordinates.

This paper will be organized as follows: In Section 2, we briefly review the diffusion maps
and several computational manipulations for obtaining the appropriate nonparametric prob-
abilistic models by projecting the operators to a basis of the data set itself. In Section 3,
we formulate two UQ problems (prediction and filtering) in the diffusion coordinates. In
Section 4, we will formulate the third UQ problem (nonlinear response) in the diffusion coor-
dinates. In Section 5, we verify our numerical methods on linear and nonlinear examples. We
conclude the paper with a short summary and discussion in Section 6. We accompany this
paper with several movies in the electronic supplementary materials, depicting the evolution
of the estimated time-dependent distributions.

2. Diffusion Kernels as Nonparametric Models. Consider a state variable x ∈M evolv-
ing on a d-dimensional manifold M⊂ Rn according to the stochastic gradient flow,

dx = −∇U(x)dt+
√

2DdWt,(2.1)

where U(x) denotes the potential of the vector field at x ∈M and D is a positive scalar that
characterizes the amplitude of a d−dimensional white noise dWt on the manifold M. Given
data {xi}Ni=1 sampled independently from the invariant measure of (2.1), peq(x) ∝ exp(−U/D),
our goal is to approximate the generator,

L = D∆−∇U · ∇,(2.2)

with a stochastic matrix constructed from the data set. In order to estimate peq from the data
set, we will assume that (2.1) is ergodic, and for estimating the coefficient D we will require
the system to be wide-sense stationary as well. The Markov matrix that we will construct is
a nonparametric model in the sense that the structure of the manifoldM and the form of the
potential function are not assumed to be known. In (2.2), ∆ is the Laplacian (with negative
eigenvalues), and ∇ is the gradient operator on M with respect to the Riemannian metric
inherited from the ambient space Rn.

The diffusion maps algorithm [9] generates a stochastic matrix by evaluating a fixed band-
width isotropic kernel function on all pairs of data points and then renormalizing the matrix
and extracting the generator. When the data set lies on a compact manifoldM, the resulting
matrix converges to D−1L in the limit of large data for any smooth potential U . Recently, this
result was extended by both authors to non-compact manifolds by using a variable bandwidth
kernel [6]. They showed that the variable bandwidth kernels produce significantly improved
estimation in areas of sparse sampling (e.g. such as rare events which occur on the tail of
a distribution) and are less dependent on the choice of bandwidth. As mentioned in the
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introduction, we will consider the variable bandwidth kernels [6] as the key ingredient in
constructing the nonparametric models in this paper.

In Section 2.1 below, we briefly review the methodology in [6] for approximating the
generator D−1L. Since our goal is to approximate L, then we need to determine D from the
data. In Section 2.2 will provide one method to determine D using the correlation time of the
data and we also mention several other methods to determine D.

2.1. Approximating the Generator of Stochastic Gradient Flows. The key to our ap-
proach is the intuition that continuous notions such as functions and operators have discrete
representation in the basis of the data set itself. Given a data set {xi}Ni=1 ⊂M ⊂ Rn, sampled

independently from the invariant measure peq(x), a function f is represented by a vector ~f =
(f(x1), f(x2), ..., f(xN ))>. Similarly, an integral operatorGεf(x) ≡

∫
MK(x, y)f(y)peq(y)dV (y),

where dV (y) denotes the volume form onM, is represented by a matrix-vector multiplication
between the N × N matrix, Kij = K(xi, xj) and the N -dimensional vector, ~f . With these

definitions, the matrix product K ~f yields a vector of length N with i-th component,

1

N

(
K ~f
)
i

=
1

N

N∑
j=1

Kij
~fj =

1

N

N∑
j=1

K(xi, xj)f(xj)
N→∞−→ Gεf(xi),

where the limit follows from interpreting the summation as a Monte-Carlo integral. Thus,
the matrix K takes functions defined on {xi} to functions defined on {xi}, so in this sense we
think of K as an operator written in the basis of delta functions {δxi} on the data set. Notice
the crucial fact that the data is not uniformly distributed onM, so the operator is biased by
the sampling measure peq(y). This same bias applies to inner products, if f, g are functions

on M and ~f,~g are their representations as vectors evaluated at {xi}, then the dot product
has the following interpretation,

1

N
~f · ~g =

1

N

N∑
i=1

f(xi)g(xi)
N→∞−→

∫
M
f(y)g(y)peq(y)dV (y) ≡ 〈f, g〉L2(M,peq).

The previous formula shows that inner products weighted by the sampling measure peq will
be easy to compute in this framework.

With the above intuition in mind, we construct a matrix Lε that will converge to the
generator D−1L, where L is defined in (2.2), in the limit as N →∞ in the sense that,

lim
N→∞

N∑
j=1

(Lε)ij ~fj = D−1Lf(xi) +O(ε).

The theory developed in [6] shows that such an Lε can be constructed with a variable band-
width kernel,

Kε(x, y) = exp

{
−‖x− y‖2

4ερ(x)ρ(y)

}
,(2.3)

where the bandwidth function, ρ, is chosen to be inversely proportional to the sampling density,

ρ ≈ p
−1/2
eq . This choice enables us to control the error bounds in the area of sparse sample
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(see [6] for the detailed error estimates). Using this kernel requires us to first estimate the
sampling density peq in order to define the bandwidth function ρ. There are many methods of
estimating peq, such as kernel density estimation methods [26, 24, 31, 27]. In this paper, we
estimate peq using a variable bandwidth kernel method based on the distance to the nearest
neighbors (see Section 4 of [6] for details).

Given the kernel in (2.3), we apply the following normalization (first introduced in [9]) to
remove the sampling bias,

Kε,α(xi, xj) =
Kε(xi, xj)

qε(xi)αqε(xj)α
, where qε(xi) =

N∑
j=1

Kε(xi, xj)

ρ(xi)d
.

Note that qε is a kernel density estimate of the sampling distribution peq based on the kernel Kε

and this is the estimate which will be used in all our numerical examples below. Throughout
this paper we will use the normalization with α = −d/4 as suggested by the theory of [6],
where d is the intrinsic dimension of the manifoldM. We note that d and ε can be estimated
from data using the method described in [6, 4]. The next step is to construct a Markov matrix
from Kε,α by defining,

K̂ε,α(xi, xj) =
Kε,α(xi, xj)

qε,α(xi)
, where qε,α(xi) =

N∑
j=1

Kε,α(xi, xj).

Finally, the discrete approximation to the continuous generator D−1L is given by,

Lε(xi, xj) =
K̂ε,α(xi, xj)− δij

ερ(xi)2
.(2.4)

By computing the eigenvectors ~ϕi and eigenvalues λi of Lε, for i = 0, 1, . . ., we are ap-
proximating the eigenfunctions and eigenvalues of D−1L, respectively. Since D is a scalar
constant, obviously, the eigenvectors ~ϕi and eigenvalues Dλi are discrete approximations of
the eigenfunctions and eigenvalues of the continuous generator L, respectively. We should note
that this trivial argument does not hold when D is a general non-diagonal matrix describing
anisotropic diffusion onM with respect to the Riemannian metric inherited from the ambient
space Rn. In that case, we suspect that one must use a different kernel function, such as the
Local Kernels defined in [7] which we discuss in the conclusion.

In addition to the generator L, we can also approximate the solution semi-group eεL by
the matrix,

Fε ≡ IN×N + εDLε,

where Fε has the same eigenvectors as Lε but with eigenvalues ξi = 1 + εDλi where λi are
the eigenvalues of Lε. For arbitrary t we can approximate the eigenvalues of the solution

semi-group etL by ξ
t/ε
i which converges to eDλit as ε→ 0.

In order to insure that the eigenvectors ~ϕi (which approximate the eigenfunctions ϕi) form
an orthonormal basis with respect to the inner product 〈·, ·〉L2(M,peq), we note that,

δij = 〈ϕi, ϕj〉L2(M,peq) =

∫
M
ϕi(x)ϕj(x)peq(x)dV (x) = lim

N→∞

1

N

N∑
l=1

(~ϕi)l(~ϕj)l = lim
N→∞

~ϕ>i ~ϕj
N

.
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Since {~ϕi}∞i=0 are eigenvectors, they are already orthogonal, thus we only need to renomalize

~ϕi so that ~ϕ>i ~ϕi = N . To do this we simply replace ~ϕi with
√
N

||~ϕi|| ~ϕi. To simplify the notation

below, we define 〈·, ·〉peq ≡ 〈·, ·〉L2(M,peq).

2.2. Determining the Diffusion Coefficient. The algorithm described in Section 2.1 ap-
proximates the generator D−1L, where L is defined in (2.2). Since our aim is to obtain
the generator L, then we must approximate the scalar diffusion coefficient D. Several non-
parametric methods for estimating D have been proposed. For example, [10] considered an
optimization problem based on a variational formulation which matches information from the
discrete approximation of a conditional Markov chain to the generators of the forward and
backward Kolmogorov operators. Another method employed in [21] used the one-lag correla-
tions to approximate the diffusion coefficient. The problem with this estimate is that when
the true dynamics are not described by a gradient flow, we would like to use a gradient flow to
approximate the dynamics on long time scales (see Section 5.2 for an example). If we estimate
D using the one-lag correlation as in [21], we will only match the short-time correlation of the
dynamics, but we are interested in the long-time correlation which is better captured by the
correlation time.

In this section, we introduce a method to determine D using the correlation time of
a one-dimensional observable S(x(t)), which results from applying the observation function
S : M→ R to the multidimensional time series, x(t). By computing the correlation time of
this observable for the estimated dynamical system, D−1L, and comparing to the empirical
correlation time estimated from the training data set, we will be able to extract the intrinsic
parameter D. This approach generalizes the Mean Stochastic Model (MSM) of [19, 20].
Intuitively, in the previous section we used the invariant measure to implicitly determine
the potential function (through the kernel based generator), and in this section we use the
correlation time to fit the stochastic forcing constant D. The correlation time is defined by,

Tc =

∫ ∞
0

C(τ)C(0)−1dτ,

where C(τ) ≡ 〈S(x(t + τ))S(x(t))〉 is the correlation function of the one-dimensional time
series, S(x(t)). The correlation function can be determined from the data by averaging over
t, or by the inverse Fourier transform of the power spectrum, which follows from the Wiener-
Khinchin formula, C(τ) = F−1

(
‖F(S(x(t)))‖2

)
. For small data sets we found the Wiener-

Khinchin approach to be more robust and this is the approach used in the examples in Section
5. We note that the observation function S can be any centered functional on the data set
as long as the observed process is stationary and is not identically zero (which guarantees
that the correlation time is well defined). Note that in the case of anisotropic diffusion, one
would need to compute the entire correlation matrix E[x(t− τ)x(t)>] as a function of τ . Since
we assume the diffusion is isotropic, we will only need a single correlation statistic, and the
correlation time of the time series S(x(t)) will be sufficient.

Once Tc is estimated from the data, we need to find the value of D which makes (2.1)
have correlation time Tc. In order to do this, we will show that Tc can be estimated from the
eigenvalues and eigenfunctions of D−1L. Let eτL be the semigroup solution for the backward
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equation. Following [18] we have,

C(τ) = 〈S(x(t+ τ))S(x(t))〉 =

∫
M

(
eτL(S)(x)

)
S(x)peq(x)dV (x).

Writing S =
∑

i〈S, ϕi〉peqϕi in the eigenbasis of L, we have,

C(τ) =

∫
M

∑
i

eDλiτ 〈S, ϕi〉>peqϕi(x)S(x)peq(x)dV (x) =
∑
i

eDλiτ 〈S, ϕi〉2peq .(2.5)

Note that since λ0 = 0 and ϕ0 = 1, 〈S, ϕ0〉peq =
∫
M S(x)peq(x)dV (x) = Epeq [S(x)] so we

require S(x) to be centered (otherwise the integral of the first term diverges). Noting that
λi < 0 for i > 0, we can compute the correlation time analytically as,

Tc =

∫ ∞
0

C(τ)C(0)−1dτ = −
∑

i≥1(Dλi)
−1〈S, ϕi〉2peq∑

j≥1〈S, ϕj〉2peq
,

and therefore,

D = − 1

Tc

∑
i≥1 λ

−1
i 〈S, ϕi〉2peq∑

j≥1〈S, ϕj〉2peq
.(2.6)

This gives us an equation for the diffusion coefficient D which matches any given correlation
time Tc. Using the empirical correlation time allows us to find the diffusion coefficient of the
system defined by the data. We should note that the correlation function, C(τ), and hence
the correlation time Tc, are not intrinsic to the manifold M due to the dependence on the
observation function, S. However, the intrinsic diffusion constant D can be recovered from
the ratio (2.6) since both formulas for Tc are based the same function S.

For one-dimensional linear problems, such as the Ornstein-Uhlenbeck process, (2.6) re-
duces to the mean stochastic model (MSM) introduced in [19, 20]. To see this, let the potential
function be U(x) = −αx2/2 ∈ R, so that the gradient flow system in (2.1) is a one-dimensional
Ornstein-Uhlenbeck (OU) process and the eigenfunctions of L are the Hermite polynomials
ϕi(x) = Hi(x). All the inner products 〈S, ϕi〉peq = 〈x,Hi(x)〉peq = 〈H1(x), Hi(x)〉peq are zero
except for i = 1, in which case the inner product is 1 and the associated eigenvalue is λ1 = α/D
so that (2.6) becomes α = −1/Tc which is the MSM formula. For nonlinear problems, the
correlation function (2.5) for the gradient flow system is more accurate than that of the MSM
fit as we will show in Section 5.

To numerically estimate (2.6), we first approximate,

〈S, ϕi〉peq ≈
1

N

N∑
l=1

S(xl)ϕi(xl) =
1

N
S(x)>~ϕi,

where S(x) is an N × 1 matrix with l−th row given by, S(xl). We then approximate the
diffusion coefficient as,

D ≈ − 1

Tc

∑M
i=1 λ

−1
i (S(x)>~ϕi)

2∑M
i=1(S(x)>~ϕi)2

,
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which estimates (2.6) with summations over M modes. We obtained the best empirical results
with the observation function S(x(t)) ≡

∑n
j=1(x(t))j−E[(x(t))j ], which results from summing

the (centered) coordinates of the data point x(t). Of course, this observable is vulnerable to
certain pathological examples, such as a two dimensional time series with x2 = −x1. A more
robust choice for S would be the norm of the multi-dimensional time series x(t), however we
found better results with the summation.

To verify the formula for estimating D, we simulate the Ornstein-Uhlenbeck process with
true D = 1 to produce a time series {xi}Ti=1 with T = 1000000 and discrete time step

∆t = 0.01. We estimate the correlation function as a simple average of 1
T−j

∑T−j
i=1 S(xi+j)S(xi)

for lags j starting at j = 1 and increasing until the first value of j for which the average was
negative. Using the trapezoid rule to estimate the integral over all the values of the shift, j,
we estimate the correlation time to be Tc ≈ 1.0238. We then subsample every 50-th data point
to produce a time series of length 20000, the samples of which are approximately independent
samples of the invariant measure. We apply the diffusion maps algorithm with the variable
bandwidth kernel to the subsampled data to estimate the operator D−1L as well as the first
M = 500 eigenvalues and eigenfunctions. Approximating the formula (2.6) as described above,
we found D ≈ 1.0073. In order to verify that this result for D depends only on the intrinsic
geometry, we then map the time series {xi} into R3 with the isometric embedding,

xi 7→ F(xi) = (sin(2x), cos(2x), x)>/
√

5.

One can easily check that F is an isometry since DxF>DxF ≡ 1. We then repeat the above
procedure for the time series S ◦ F(xi) and found Tc ≈ 0.7571 and D ≈ 1.0186. Notice that
the estimates for D are very similar, whereas the estimates for Tc are different. The isometric
change in the geometry, F , has decreased the correlation time for the observable S◦F , however
the intrinsic variable D is not effected. This is because D is approximated in (2.6) as a ratio
between two different methods of estimating the correlation time, and the isometry has the
same effect on both estimates of the correlation time.

3. Forecasting and Filtering in Diffusion Coordinates. In this section we formulate two
UQ problems, namely forecasting and filtering, in diffusion coordinates. These two problems
involve pushing a probability measure forward in time, and therefore they involve the Fokker-
Planck operator L∗. By projecting these infinite dimensional systems onto the eigenfunctions
of the Fokker-Planck operator, we find infinite dimensional linear systems which govern the
evolution on the projected coordinates. We can then approximate the solution by truncating
the linear system to describe finitely many coordinates.

For gradient flows, it is easy to determine the eigenvalues and eigenfunctions of the Fokker-
Planck operator, L∗, from the eigenvalues and eigenfunctions of the generator L. To see this,
note that peq ∝ e−U/D, and,

1

peq
L∗(fpeq) =

1

p
div (D∇(fpeq) + fpeq∇U) =

1

peq
div (Dpeq∇f +Df∇peq + fpeq∇U)

=
1

peq
div(Dpeq∇f) = D∆f +D∇f · ∇peq

peq
= D∆f −∇f · ∇U = Lf,(3.1)
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since D∇peq = −peq∇U . Also, it follows from (3.1) that L∗f = peqL(f/peq). The two
operators have the same eigenvalues and it is easy to show that the semi-group solutions
are related by etL

∗
f = peqe

tL(f/peq) and the eigenfunctions ψi of L∗ and etL
∗

are given by
ψi = peqϕi where ϕi are the eigenfunctions of L and etL. From the orthonormality of ϕi, it is
easy to deduce that,

〈ψi, ψj〉1/peq = 〈ψi, ϕj〉 = 〈ϕi, ϕj〉peq = δij .(3.2)

Of course, since these eigenfunctions are all represented by N -dimensional eigenvectors (which
represent evaluation on the data set {xj}Nj=1) the actual computation of any inner product
will always be realized by rewriting it with respect to peq, following the rule in (3.2).

3.1. Nonlinear forecasting. The forecasting problem is, given an arbitrary initial distri-
bution p0(x) for a state variable x, find the density p(x, t) at any future time t. This will
be the most straightforward problem to solve in diffusion coordinates since p(x, t) solves the
Fokker-Planck equation,

∂p

∂t
= L∗p, p(x, 0) = p0(x).(3.3)

Let ψi be the eigenfunctions of L∗ with eigenvalues Dλi, and write p in this basis as, p(x, t) =∑
i ci(t)ψi(x) where ci = 〈p, ψi〉1/peq . We define the vector ~c = ~c(t) of eigencoordinates and

the diagonal matrix Λii = λi, and writing (3.3) in these coordinates we have,

d~c

dt
= DΛ~c, ~c(0) = 〈p0, ψi〉1/peq .(3.4)

In order to solve the linear system in (3.4), we first need to find the initial conditions ci(0) by
projecting the initial density p(x, 0) = p0(x) onto ψi. Since densities p0(x) and peq(x) are given
on the training data set xi, we define the discrete densities (~p0)l = p0(xl) and (~peq)l = peq(xl).
Following the inner product rule in (3.2), we write the projection of the initial condition as,

ci(0) = 〈p0, ψi〉1/peq = 〈p0/peq, ϕi〉peq ≈
1

N

N∑
j=1

p0(xj)

peq(xj)
ϕi(xj),(3.5)

since this converges to the true value as N →∞. With this initial condition, each component
in (3.4) can be solved analytically as ci(t) = etDλici(0). Numerically, we will approximate the
solutions with finitely many modes, i = 0, 1, . . . ,M . In Section 3.3 we show how to use these
solutions to reconstruct the density p(x, t) or to estimate a quantity of interest at any time t.

3.2. Nonlinear filtering. The filtering problem is, given a time series of noisy observations
z of the state variable x, find the posterior density P (x, t|z(s), s ≤ t) given all the observations
z(s) up to time t. For an observation function h : M → Rm, we consider continuous-time
observations of the form,

dz = h(x) dt+
√
RdWt,(3.6)

9



SIAM/ASA J. UNCERTAINTY QUANTIFICATION c© xxxx Society for Industrial and Applied Mathematics
Vol. xx, pp. x x–x

where dWt are i.i.d Gaussian noise in Rm. With these observations, the evolution of the
unnormalized posterior density, p(x, t), defined as follows,

P (x, t|z(s), s ≤ t) =
p(x, t)∫

M p(x, t)dV (x)
,

is given by the Zakai equation [2],

dp = L∗pdt+ ph>R−1dz.(3.7)

Writing p(x, t) =
∑

i ci(t)ψi(x) the evolution becomes,∑
i

dciψi =
∑
i

Dλiciψidt+
∑
i

ciψih
>R−1dz,

and projecting both sides of this equation onto ψj we find,

dcj = Dλjcjdt+
∑
i

ci〈ψih>, ψj〉1/peqR
−1dz,(3.8)

which is an infinite-dimensional system of stochastic differential equations with multiplicative
stochastic forcing.

To numerically estimate the solution of (3.8), we truncate this infinite-dimensional system
of SDEs by solving only a system of (M + 1)−dimensional SDEs for ~c = (c0, c1, . . . , cM )>.
This strategy is simply a Galerkin approximation for the Zakai equation for which we choose
the diffusion coordinates as a basis rather than the Gaussian series as proposed in [1] or the
Hermite polynomial basis as proposed in [11]. We should note that for scalar OU processes,
the diffusion coordinates are exactly the Hermite polynomials since these polynomials are the
eigenfunctions of the backward Kolmogorov operator for the OU process.

Defining Hji =
〈
ψih
>, ϕj

〉
as a 1 ×m dimensional vector for each pair (i, j); where the

k-th component is given by Hk
ji = 〈ψihk, ϕj〉, we can write the truncated (M+1)−dimensional

system of SDEs in compact form as follows,

d~c = DΛ~cdt+ (H~c)R−1dz.(3.9)

To solve this system of SDEs, we first project the initial condition p0(x) to obtain ci(0) as in
(3.5) for i = 0, 1, . . . ,M . We then numerically solve the system of SDEs in (3.9) using the
splitting-up method (see for example [11]). Explicitly, given ~c(ti−1) we compute ~c(ti) by first
using the solution to the deterministic part,

~c0(ti) = exp (DΛ∆t)~c(ti−1),

and then the solution to the stochastic part,

~c(ti) = exp

(
HR−1dz(ti)−

1

2
H2R−1~1∆t

)
~c0(ti).

Here, the exponent term consists of an M ×M matrix given by

HR−1dz(ti)−
1

2
H2R−1~1∆t =

∑
k

Hk(R−1dz(ti))k −
1

2
(Hk)2(R−1~1)k∆t.

Notice that unlike the forecasting problem which had an analytic solution for any time t, this
procedure must be iterated for each observation dz(ti).

10
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3.3. Quantity of Interest. In the uncertainty quantification problems described above,
we reduce the PDE and SPDE problems which describe the evolution of density p(x, t) into
systems of ODEs in (3.4) and SDEs in (3.9), respectively, for the coefficients ci(t). Using the
coefficients ci(t) we can approximate the density function as follows,

p(x, t) ≈ pM (x, t) =
M∑
i=0

ci(t)ψi(x) =
M∑
i=0

ci(t)ϕi(x)peq(x),(3.10)

where the coefficients {ci(t)}Mi=0 are from the solution of the (M + 1)−dimensional systems of
ODEs or SDEs.

One complication in some of the algorithms above is that the evolution of the coefficients
may not preserve the normalization of the corresponding density. In fact, for the nonlinear
filtering problems in (3.7), the solutions are unnormalized densities. Fortunately we can use
the eigenfunctions ϕi to estimate the normalization factor of an unnormalized density from
its diffusion coordinates. Assume that pM in (3.10) is an unnormalized density with diffusion
coordinates ci obtained from the solution of the (M + 1)−dimensional systems of ODEs or
SDEs. We can then estimate the normalization constant as,

Z =

∫
M
pM (x, t)dV (x) =

M∑
i=0

ci

∫
M
ϕi(x)peq(x)dV (x) =

M∑
i=0

ci〈1, ϕi〉peq .

where we estimate inner product, 〈1, ϕi〉peq ≈ 1
N

∑N
j=1 ϕi(xj). Subsequently, we normalize our

density by replacing pM with pM/Z. In the remainder of this paper, we will refer to pM as
the normalized density without ambiguity. We also note that by reconstructing the density
from the coefficients we are implicitly projecting the density into the subspace of Hilbert space
spanned by the first M + 1 eigenfunctions. This has a smoothing effect which improves the
clarity of figures and we always show reconstructed densities in the figures and videos.

In many cases, we are not interested in the entire density p; instead we are often interested
in the expectation of an observable A : M → R with respect to p, namely Ep(x,t)[A(x)]. A
common example of functionals of interest are the moments A(x) = xm for m ∈ N. Although
A is a functional on M, A can be given as a functional on the ambient space Rn because we
only evaluate A on the data set, which lies on the manifold M. Using the formula (3.10) for
the density estimate at time t, we can approximate the expectation of the functional A at
time t as,

Ep(x,t)[A(x)] ≈ 〈A, pM 〉 =
M∑
i=0

ci(t)〈A,ϕi〉peq =
M∑
i=0

ci(t)ai = ~c(t)>~a.(3.11)

The formula (3.11) shows that we can find the expectation of a functional A by writing A in
diffusion coordinates as ai = 〈A,ϕi〉peq . In these coordinates, the expectation of A is simply
the inner product of the diffusion coefficients of A and p(x, t). Finally, if the quantity of
interest is given by a functional A evaluated on the training data set as ( ~A)l = A(xl), we
approximate the inner product ai = 〈A,ϕi〉peq ≈

1
N
~A>~ϕi.
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4. Nonlinear Response in Diffusion Coordinates. The response problem considered in
[18] is to determine the change in the expectation of a functional A(x) as function of time,
after perturbing the dynamics of a system at equilibrium. Letting pδ(x, t) be the density
evolved according to the perturbed system, we define the response of a functional A as the
expected difference,

δE[A(x)](t) = Epδ [A(x)](t)− Epeq [A(x)], t ≥ 0,(4.1)

We assume the unperturbed system has the form,

dx = F (x) dt+
√

2DdW.(4.2)

with equilibrium density peq and Fokker-Planck operator L∗, so that L∗peq = 0. We assume
the perturbed system has the form,

dx = (F (x) + δF (x, t)) dt+
√

2DdW,(4.3)

with associated Fokker-Planck operator L̃∗ so that pδ solves the Fokker-Planck equation,

∂pδ

∂t
= L̃∗pδ = L∗pδ + δL∗pδ,(4.4)

where δL∗p = −div(δFp) denotes the Liouville operator corresponding to the external forcing
with functional form δF .

This reveals that the response problem is closely related to the forecasting problem. Given
the Fokker-Planck operator L̃∗ for the perturbed system, one must solve (4.4) with initial
condition chosen to be the equilibrium distribution of the unperturbed system, pδ(x, 0) =
peq(x). Since computational cost becomes an issue, especially for higher dimensional problems,
one typically approximates pδ by solving ensemble solutions of (4.3) with initial ensemble
sampled from peq, and in fact we will use this approach as a benchmark in Section 5.2.3.
However, as in [18], we are interested in cases where the Fokker-Planck operators L∗ and L̃∗
and also the functional form of F are all unknown. We will assume that we only have access
to data from the unperturbed system and the functional form of the external perturbation
δF . Of course, since the techniques of Section 2 are restricted to gradient flow systems,
we will assume that both the unperturbed and perturbed systems are well approximated by
stochastically forced gradient flows.

For gradient flow systems, we have F (x) = −∇U(x) and δF (x) = −∇δU(x), where the
perturbation is a time-independent potential. Given a data set from {xi}Ni=1 sampled from
peq and the functional form of δU , it is tempting to proceed as in Section 3 by writing
pδ(x, t) =

∑
i ci(t)ψi(x) and projecting (4.4) to eigenfunctions of L∗. The main issue with this

projection is that it is difficult to computationally attain the external perturbed forcing term,

〈δL∗ψi, ψj〉1/peq = −〈div(δFψi), ψj〉1/peq = 〈δF, ψi∇ϕj)〉 = 〈δU,div(ϕi∇ϕj)〉peq .

Even if δF or δU are known, we have no provably convergent technique to compute the
gradient or divergence operators on the unknown Riemannian manifold. In fact, the technique
discussed in Section 2 does not provide a framework to represent vector fields on manifolds.
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As a remedy, we propose to project (4.4) onto the eigenfunctions of L̃∗ which can be
accessed from the functional form of δU and the data set {xi}. This is an application of a
result in [6], which showed that one can approximate the generator of any gradient flow system
with a (partially) known potential even if the data is sampled from a different gradient flow
system. In particular, it was shown (see eq.(17) in [6]) that for general choice of bandwidth
function ρ in (2.3) and any f ∈ L2(M, peq) ∩ C3(M), the matrix Lε constructed in (2.4)
converges to a weighted Laplacian in the following sense,

Lεf = ∆f + 2

(
1 +

d

4

)
∇f · ∇peq

peq
+ (d+ 2)∇f · ∇ρ

ρ
+O(ε).(4.5)

If we choose the following bandwidth function,

ρ = p−1/2eq e
− δU
D(d+2) ,(4.6)

where peq is estimated from the data set as before, substituting this into (4.5), we obtain,

Lεf = ∆f +

(
2 +

d

2

)
∇f · ∇peq

peq
−∇f · ∇δU

D
−
(
d

2
+ 1

)
∇f · ∇peq

peq
+O(ε)

= ∆f +∇f · ∇peq
peq

−∇f · ∇δU
D

+O(ε)

= ∆f −∇f · (∇U +∇δU)

D
+O(ε)

= D−1L̃f +O(ε).(4.7)

With this result, we construct a stochastic matrix Lε following exactly the procedure described
in Section 2.1, except with the bandwidth function in (4.6).

Let λ̃i and ϕ̃i be the eigenvalues and eigenfunctions of Lε, which is a discrete approxi-
mation to the continuous operator D−1L̃ as shown in (4.7). Following the same argument as
in Section 3, the corresponding Fokker-Planck operator, L̃∗, has eigenvalues Dλ̃i with eigen-
functions, ψ̃i = ϕ̃ip̃eq, where p̃eq ∝ peqe

−δU/D is the equilibrium measure of the perturbed
system. Now letting pδ(x, t) =

∑
i c̃i(t)ψ̃i(x) and projecting (4.4) with initial condition,

pδ(x, 0) = peq(x), on the perturbed coordinate basis, the evolution of the perturbed density
becomes a linear forecasting problem,

dc̃i
dt

= Dλ̃ic̃i, c̃i(0) = 〈peq, ψ̃i〉1/p̃eq .(4.8)

Therefore, the response in (4.1) formula can be approximated by,

δE[A](t) ≈
M∑
i=1

(c̃i(t)− c̃i(0))〈A, ϕ̃i〉p̃eq , t ≥ 0(4.9)

utilizing (3.11) on the perturbed diffusion coordinates. Notice that the zeroth mode is excluded
in the summation in (4.9) since λ̃0 = 0 and therefore, c̃0(t) = c̃0(0), for any t.
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A complication in numerically implementing the above technique is that the eigenfunctions
ϕ̃i are orthonormal with respect to the inner product 〈·, ·〉p̃eq weighted by the perturbed
equilibrium density, p̃eq, but we can only estimate inner products weighted with respect to
the unperturbed equilibrium density, peq. This requires us to rewrite all of the inner products
with respect to peq. In particular, we can rewrite the initial coefficients in (4.8) as,

c̃i(0) = 〈peq, ψ̃i〉1/p̃eq = 〈peq, ϕ̃i〉 = 〈1, ϕ̃i〉peq ≈
1

N

N∑
j=1

ϕ̃i(xj).

With these initial conditions, we have explicit solutions for the linear problem in (4.8) given

by c̃i(t) = eDλ̃itc̃i(0). To compute the response formula in (4.9), we evaluate the inner product
terms in (4.9) as follows,

〈A, ϕ̃i〉p̃eq = 〈A, p̃eq
peq

ϕ̃i〉peq ≈
1

N

N∑
j=1

A(xj)
p̃eq(xj)

peq(xj)
ϕ̃i(xj) =

1

NZ

N∑
j=1

A(xj)e
−δU(xj)/Dϕ̃i(xj),

using the fact that the equilibrium density of the perturbed system is given by, p̃eq =
1
Z peqe

−δU/D, where Z is the normalization factor for the density p̃eq obtained as discussed
in Section 3.3.

5. Numerical Results. For a state variable x evolving according to (2.1), we have shown
how to estimate the density function p(x, t), which solves either the forecasting, filtering,
or response problem. We have also shown how to find the expectation of any quantity of
interest, A(x), with respect to this measure. In this section, we first validate the numerical
algorithms developed in Sections 3 and 4 on a simple linear gradient flow system. We then
test our algorithms on a chaotically forced gradient flow system which is known to be well
approximated as a stochastically forced gradient flow. In each example we will use only
M = 50 eigenvectors in the non-parametric model.

5.1. Linear Example: Ornstein-Uhlenbeck processes. We first validate our algorithms
on the Ornstein-Uhlenbeck processes on M = R, given by,

dx = −x dt+
√

2 dWt,(5.1)

where dWt denotes standard Gaussian white noise. Our technique assumes that we do not
know the model in (5.1), but instead we are only given sample solutions of (5.1) as a training
data set. In our numerical experiment, we generate a training data set consisting of N = 10000
data points xl = x(l∆t) by numerically integrating (5.1) with the Euler-Maruyama method
and sub-sample at every ∆t = 0.2 time units. We intentionally sub-sample with a large ∆t
so that the data set is approximately independently sampled from the invariant measure. We
numerically validate our methods on this simple system (5.1) since it is possible to find an
analytic expression for the evolution of the moments (see Appendix A) for the forecasting and
response problems. For the filtering problem, we compare the results to the Kalman-Bucy
solutions which are optimal in a least square sense [15].
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Figure 1. Forecasting the evolution of a Gamma distributed initial condition in the Ornstein-Uhlenbeck
system. Left: Evolution of the density. Right: Evolution of the moments.

5.1.1. Forecasting. To validate our forecasting algorithm, we take the initial condition
to be a Gamma distribution with density p0(x) = 4(x+ 1/2)e−2(x+1/2) on [−1/2,∞). For this
distribution the first four moments are, x̄ = Ep0 [x] = 1/2, Ep0 [(x− x̄)2] = 1/2, Ep0 [(x− x̄)3] =
1/2, and Ep0 [(x− x̄)4] = 3/2. We assume that the initial distribution is known, and we simply
evaluate p0 on the training data set to find (~p0)l = p0(xl). The results of the forecasting
algorithm are shown in Figure 1 where we reconstruct the forecast density at various times
as it approaches the invariant measure. Notice the oscillation in the reconstructed p0 near
the non-smooth part is a Gibbs phenomenon-like behavior. We also show the evolution of
the first four centered moments which are evaluated as linear combinations of the uncentered
moments A(x) = xr, r = 1, . . . , 4. Notice that the initial kurtosis of the Gamma distribution
is difficult to estimate since the data on the tail is very sparse (there are only 3 sample points
for x > 3 in the training data set). The Monte-Carlo integral converges slowly since the
Gamma distribution decays slower than the Gaussian distribution.

5.1.2. Filtering. To verify our filtering algorithm, we consider the observation (3.6) with
h(x) = x so that,

dz = x dt+
√
RdWt.

The filtering problem for (5.1) with this observation has optimal solutions given by the
Kalman-Bucy equations [15], which we approximate for a finite observation time step ∆t
by the discrete time Kalman filter. Since discrete time observations are typically given in the
form,

Z(ti) = x(ti) +
√
Ro ω(ti)

where ω(ti) are independent random samples from N (0, 1), we will approximate dz for a finite
time step ∆t = 0.01 as,

dz(ti) ≈ x(ti)∆t+
√

∆tRo dWti = Z(ti)∆t.

So in the numerical algorithm of Section 3.2 we use dz(ti) = Z(ti)∆t and we set R = ∆tRo.
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Figure 2. Nonlinear filter mean estimates as functions of time, compared to the truth, Kalman filter solu-
tions, and observations (left). The posterior covariance estimates as functions of time (right). The nonlinear
filter recovers the Kalman filter solutions in this linear example. The posterior evolution is shown in fig2.mov.

In our numerical simulation, we take Ro = 1 and assume an initial distribution p0(x) =
peq(x), which is the Gaussian invariant measure of (5.1). The results are shown in Figure 2,
where we show that we recover the same statistical solutions (mean and covariance) as the
discrete Kalman filter. We also include a video, fig2.mov, comparing the evolution of the
reconstructed posterior density with the Kalman filter posterior.

5.1.3. Response. To validate the response algorithm of Section 4, we perturb the Ornstein-
Uhlenbeck system in (5.1), which has potential U(x) = x2/2, with a potential δU(x) =
a
2 (x− b/a)2. The vector field for the potential U + δU becomes −∇(U + δU) = −x− ax+ b
so that the perturbed system is again an Ornstein-Uhlenbeck system with different mean and
damping parameters. This fact allows us to easily compute the analytic response (see Ap-
pendix A) which we compare to the numerical estimate using the above algorithm in Figure
3. In this example we choose a = −0.1 and b = 0.03, since the damping is decreased by this
perturbation the variance increases in response while the effect of b is a shift in the mean.
Notice the accuracy of the response estimates for the mean and variance at all times.

5.2. Nonlinear Example: Chaotically driven double well potential. In this section we
test our nonparametric UQ methods on the following nonlinear system,

ẋ = x− x3 +
γ

ε
y2,

ẏ1 =
10

ε2
(y2 − y1),

ẏ2 =
1

ε2
(28y1 − y2 − y1y3),

ẏ3 =
1

ε2
(y1y2 −

8

3
y3).

(5.2)

which was discussed in [13] as an example of a stochastic homogenization problem and used
in [21] as a test model for a reduced filtering problem. The fast variables (y1, y2, y3) solve
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Figure 3. Nonlinear response of the first two moments of the Ornstein-Uhlenbeck system to a pertur-
bation of the potential function. The analytic response is derived in Appendix A and the DM response is our
nonparametric estimate.

a chaotic Lorenz-63 system, and x is a scalar ODE driven by this chaotic oscillator with
characteristic time ε2. In [13, 21] it was shown that for γ, ε sufficiently small the dynamics of
the variable x are well approximated by the reduced stochastic model.

dX = X(1−X2) dt+ σ dWt,(5.3)

where σ is a diffusion constant that can be numerically estimated by a linear regression based
algorithm or by matching the correlation time of γy2. This reduced model is a stochastically
forced gradient flow system, where the potential function U(X) = X2/2−X4/4 is a standard
double well potential. While this suggests that our technique should be successful, we em-
phasize that our method makes no use of either (5.2) or (5.3), instead it relies on a training
data set to represent the reduced model for the variable x, with no assumed parametric form.
Following [21], we set γ = 4/90 and ε =

√
0.1. We note that [21] suggested σ2 = 0.113 for the

homogenization and σ2 = 0.126 for the filtering problem.

In order to apply our method to this problem, we generated a training data set containing
200000 data points {xj = x(tj)} with time spacing ∆t = tj+1 − tj = .1 by solving (5.2) using
a fourth order Runge-Kutta scheme with integration time step δt = 0.002. We applied the
variable bandwidth diffusion kernel as described in Section 2.1 to the data set {x10j}20000j=1 . We

then estimate the diffusion constant D = σ2/2 ≈ 0.0535 as in Section 2.2, using the entire
data set {xj} to find the correlation time and the empirical correlation function. In Figure
4 we compare the invariant measure and correlation function of the nonparametric diffusion
model to the empirical estimates of these statistics taken from training data set. We also
show the statistics of the mean stochastic model (MSM) of [19, 20], which is a linear (and
Gaussian) model constructed by matching the correlation time and the equilibrium density
variance. From Figure 4, one can see that the density and the autocorrelation function from
the diffusion map fitting are very accurate.
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Figure 4. Left: Invariant measure estimated by the kernel. Right: Tuning the stochastic forcing using the
correlation time.

5.2.1. Forecasting. We first test our forecasting algorithm for an initial condition given
by a normal distribution centered at 0.5 with variance 0.01. Unlike the Ornstein-Uhlenbeck
system in Section 5.1, we do not have an analytical expressions for the evolution the moments.
For diagnostic purposes, we will compare our forecast to a Monte-Carlo simulation. We
initialize an ensemble of 100000 points (x, y1, y2, y3)

> ∈ R4 with x chosen randomly according
to the initial density and triples (y1, y2, y3)

> randomly selected from the training data set (so
that they lie on the attractor of the chaotic system). This ensemble is then evolved according
to the system (5.2) with the same Runge-Kutta integrator used to generate the training data.
For any time t we generate the Monte-Carlo density using a histogram of the ensemble at time
t, and we call the moments of the ensemble the Monte-Carlo moments. These Monte-Carlo
estimates make use of the full true model and are computationally more intensive than our
model free method, and we will consider them the ‘truth’ for the purposes of comparison.

Next, we estimate the evolution of the density and the first four centered moments using
the technique of Section 3. For this initial condition, the density moves to the right and
centers on the right well of the potential on the first 10 model time units. Over the next
1000 model time units, small amounts of density slowly migrate across the barrier between
the two potential wells until the system is at equilibrium. In Figure 5 we compare the mo-
ment estimates of the nonparametric method to the Monte-Carlo moments. We also show
snapshots of the evolution of the density as reconstructed from the diffusion coordinates at
times t = 0, 10,∞. The evolution of the reconstructed density is compared to the Monte-Carlo
simulation in fig5a.mov up to time t = 10 and fig5b.mov up to time t = 2000.

5.2.2. Filtering. We now test our nonlinear filtering algorithm on the chaotically driven
double well potential using the observation (3.6) with h(x) = x for several values of observation
noise variance, R, ranging from 10−3 to 1. We choose a time discretization with ∆t =
1 between observations, which is relatively long compared to ∆t = 0.1 considered in [21].
For each noise level R, we generate 10000 discrete observations using the full system (5.2),
integrated as in Section 5.2.1 and observed with the discretization of (3.6). We then apply
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Figure 5. Left: Evolution of the density is summarized in snapshots for t = 0, 10,∞ and the potential
function is shown. Right: Non-parametric estimates for the evolution of the moments is compared to the
Monte-Carlo simulation. The reconstructed density evolution is shown in fig5a.mov and fig5b.mov.

the filtering algorithm from Section 3.2, which we refer to as the nonlinear filter in Figure 6
where we show the mean estimate as the quantity of interest. For comparison we also use
the standard ensemble Kalman filter (EnKF) for the reduced model (5.3) using σ2 = .126 as
suggested in [21, 13] with ensemble size 50 without additional variance inflation.

In Figure 6 we see that the nonlinear filter tracks the transition between the potential wells
more accurately compared to EnKF for large observation noise, R = 0.5 (see left panel). In the
large noise regime, the posterior estimate is very far from Gaussian. Conversely, for very small
observation noise and also for very short discretization time, the performance of nonlinear
filter and the EnKF are similar, their mean-squared errors are close to the observation noise
variance (see the right panel of Figure 6). In the small noise regime, the posterior density
is close to Gaussian since it is very close to the observation likelihood. The evolution of the
reconstructed non-Gaussian posterior density is compared to the Gaussian posterior density
of the EnKF in fig6.mov.

Next, we consider a nonlinear observation with h(x) = |x|, which is a pathological ob-
servation since it is impossible to determine from this observation which potential well the
truth lies in. As shown in Figure 7, the nonlinear filter respects this symmetry with the
posterior mean always very close to zero. In contrast, the EnKF outperforms the nonlinear
filter when it happens to be on the right side of the well, however it frequently does not track
the transitions leading to a higher overall mean squared error. The evolution of the posterior
densities are shown in fig7a.mov which shows the posterior density of the nonlinear filter to
be a symmetric bi-modal distribution. We also consider another nonlinear observation with
h(x) = (x− 0.05)2, which is nearly pathological, however, since the symmetry is not perfect,
repeated observations allow the filter to determine which well the true state is in. As shown in
Figure 7 and in fig7b.mov, the posterior of the nonlinear filter becomes increasingly bi-modal
when observations occur near 0.05. However, with repeated observations which are far from
0.05 the posterior density accumulates information on the true location and the incorrect
mode is progressively damped away.
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Figure 6. Left: Evolution of the posterior mean during a transition from the left potential well to the
right potential well. Right: Mean squared error between filter estimates and the true state as a function of the
observation noise covariance. The evolution of the posterior densities is shown in fig6.mov.
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Figure 7. Left: Evolution of the posterior mean for h(x) = |x|. Right: Evolution of the posterior mean
for h(x) = (x − 0.05)2. Both filtering experiments assimilate observations at every ∆t = 1 model time unit
and noise variance R = 0.05. The evolution of the posterior densities are shown in fig7a.mov and fig7b.mov

respectively.

5.2.3. Response. In this section we apply the method of Section 4 to quantify the response
of the system (5.2) to perturbing the potential U(x) = x2/2− x4/4 with

δU(x) = − exp(−100(x− 0.5)2)/10.

This introduces a third potential well centered at x = 0.5 as shown in Figure 8 and changes
the vector field for the variable x in (5.2) which becomes,

ẋ = x− x3 − 20(x− 0.5) exp(−100(x− 0.5)2) + (γ/ε)y2.(5.4)

We first create a benchmark for comparison by estimating the response through a Monte-Carlo
simulation. Since the system is assumed to be initially at equilibrium for the unperturbed
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system (5.2), we initialize an ensemble of 100000 members by simply taking the final ensemble
from the long simulation in Section 5.2.1. We first use a stochastic Monte-Carlo simulation
by replacing (γ/ε)y2 in (5.4) with the stochastic term σdWt with σ2 = 0.113 as suggest in
[21]. This yields a reduced model as suggested in [21],

dx =
(
x− x3 − 20(x− 0.5) exp(−100(x− 0.5)2)

)
dt+ σ dWt(5.5)

We apply the Euler-Maruyama scheme with integration time step δt = 0.002 to evolve this
ensemble using (5.5). At any fixed time t we can then use the centered moments of the
ensemble to produce a Monte-Carlo estimate of the response. We also tested the reduced
model using our estimate of D to define σ2 = 2D = 0.107 and the results were similar the
those shown below.
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Figure 8. Left: Evolution of the density and the perturbed potential function. Right: Evolution of the
moments compared to those of the stochastic Monte-Carlo simulation of the reduced model with σ2 = 0.113.

We then apply the algorithm in Section 4 to estimate the response. This technique uses the
same training data as Section 5.2.1 along with the perturbation δU given above to estimate the
response without any parametric model. In the first 10 time units, density migrates quickly
from the potential well centered at x = 1 into the new potential well centered at x = 0.5.
Over the next 1000 time units, density migrates from the potential well centered at x = −1
into the wells at x = 0.5 and x = 1, which are now more stable due to the perturbation. In
Figure 8 we summarize the evolution of the density and compare the response estimates of
the nonparametric technique to the Monte-Carlo estimates of (5.5).

Finally, we compare the non-parametric response estimate to a Monte-Carlo simulation
of the full model (5.2) with perturbation (5.4). We initialize an ensemble of 100000 members
as in the stochastic simulation, and then integrate the perturbed system using a fourth order
Runge-Kutta scheme with δt = 0.002. As shown in Figure 9, for ε =

√
0.1 this procedure only

matches the evolution of the stochastically forced gradient flow for a short time. The evolution
of the densities up to time t = 10 is shown for ε =

√
0.1 in fig9.mov. By repeating the Monte-

Carlo simulation with ε =
√

0.005 and decreasing the integration time step to δt = 0.0005 we
find better agreement for longer time, however the system still does not behave as a gradient
flow for very long times as shown in Figure 9.
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Figure 9. Left: Evolution of the moments compared to the full model with ε =
√

0.1. Right: Evolution of
the moments compared to the full model with ε =

√
0.005. The evolution of the densities is shown in fig9.mov

for ε =
√

0.1.

6. Summary and Discussion. The techniques developed in this paper solve uncertainty
quantification problems using only a training data set without any parametric model. The key
tool is the diffusion maps algorithm developed in [9, 6], which uses the training data to build
a non-parametric model for any gradient flow system with isotropic homogeneous stochastic
forcing. The model is represented implicitly through a kernel matrix and which converges
to the generator of the dynamical system in the limit of large data [6]. Using properties
of gradient flow systems, we can use the eigenvectors of this kernel matrix to approximate
the eigenfunctions of the corresponding Fokker-Planck operator. Subsequently, we solved
three uncertainty quantification problems, forecasting, filtering, and response estimation, by
projecting the associated PDE or SPDE onto this basis of eigenfunctions. In this basis the
system becomes a linear ODE or SDE which we can then truncate onto a finite number of
modes and solve analytically or approximate numerically.

A key advantage of this technique is that all the densities and eigenfunctions are repre-
sented by their values on the training data set, which alleviates the need for a grid. This is
important because it is difficult to define a grid on an unknown manifoldM⊂ Rn. While our
numerical examples focused on one-dimensional systems onM = R, the theory of [9, 6] allows
the gradient flow system to evolve on any d-dimensional manifold of M ⊂ Rn. It is impor-
tant to note that these techniques provably solve the full nonlinear uncertainty quantification
problem, but only in the limit of infinite training data and an infinite number of eigenvectors.
In practice, the amount of data and number of eigenvectors required will depend strongly
on the intrinsic dimensionality of the underlying manifold. For high-dimensional systems the
amount of data required will quickly make these techniques computationally infeasible even
if such large data sets are available.

The techniques are also limited by the assumption of a gradient flow system with stochastic
forcing which is isotropic and constant over the entire state space. Concurrent research in [7]
suggests that it may be possible to overcome these limitations using different kernels based
on non-Euclidean norms which vary over the state space. Overcoming the restriction to
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gradient flow systems may also be possible using kernels which are not centered as shown in
[7]. However, one limitation of the results of [7] is the need to estimate the drift and diffusion
coefficients that are used to define the appropriate un-centered kernel. Finding provably
convergent algorithms for estimating these coefficients can be difficult, particularly on non-
compact domains as shown in [6]. Instead of explicitly estimating the drift and diffusion
coefficients, an alternative approach has been introduced in [4] which implicitly recovers these
coefficients. The method of [4] was applied to the problem of forecasting turbulent Fourier
modes in [5] with small noisy training data sets, whereas here we considered large data sets to
verify our approach in the limit of large data. Crucially, the approach of [4] is still based on
representing an initial density in the diffusion coordinates used here, and we believe that the
UQ methods developed here can be extended to the more general context of [4, 5]. Regardless
of these developments, the fundamental limitation for nonparametric modeling will likely
remain the requirement that the manifold be low-dimensional.
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Appendix. Moments and Nonlinear Response of the Ornstein-Uhlenbeck Process.

Consider the following linear SDE,

dx = ((α+ a)x+ b)dt+
√

2DdWt,(A.1)

with solutions given by Ornstein-Uhlenbeck processes centered at x̄∞ ≡ −b/(α + a). The
Fokker-Plank equation for (A.1) is given by,

∂

∂t
pδ = L∗pδ = − ∂

∂x
(((α+ a)x+ b)pδ) +D

∂2

∂x2
pδ,(A.2)

and we can use this equation to find the evolution of the moments. First, the mean x̄(t) =∫
xpδ(x, t)dt evolves according to,

˙̄x =

∫
xpδtdx =

∫
x

(
− ∂

∂x
(((α+ a)x+ b)pδ) +D

∂2

∂x2
pδ
)
dx = (α+ a)x̄+ b.

Using the evolution of the mean, we can then find the evolution of the centered moments

24



SIAM/ASA J. UNCERTAINTY QUANTIFICATION c© xxxx Society for Industrial and Applied Mathematics
Vol. xx, pp. x x–x

Mn(t) =
∫

(x− x̄)npδ(x, t)dx using the same strategy,

Ṁn =

∫
(x− x̄)npδt − n ˙̄x(x− x̄)n−1pδ

=

∫
n(x− x̄)n−1((α+ a)x+ b)pδ − n(x− x̄)n−1((α+ a)x̄+ b)pδ + n(n− 1)D(x− x̄)n−2pδ

= n(α+ a)Mn + n(n− 1)DMn−2.

Noting that M0 = 1 and M1 = 0, we have the following solutions for the first four moments,

x̄(t) = (x̄(0)− x̄∞)e(α+a)t + x̄∞

M2(t) =

(
M2(0) +

D

α+ a

)
e2(α+a)t − D

α+ a

M3(t) = M3(0)e3(α+a)t

M4(t) =

(
M4(0) +

6D

α+ a

(
M2(0) +

D

α+ a

)
− 3D2

(α+ a)2

)
e4(α+a)t

− 6D

α+ a

(
M2(0) +

D

α+ a

)
e2(α+a)t +

3D2

(α+ a)2
.

To find the analytic solutions for the response, δE[A(x)], we take the initial moments from
the invariant distribution peq of the unperturbed system. Thus, x̄(0) = 0, M2(0) = −D/α,
M3(0) = 0, and M4(0) = 3D2/α2 so plugging in these values and then subtracting them from
the moments we have,

δE[x] = x̄∞

(
1− e(α+a)t

)
=
−b
α+ a

(1− e(α+a)t)

δE[(x− x̄)2] =
aD

α(α+ a)

(
1− e2(α+a)t

)
δE[(x− x̄)3] = 0

δE[(x− x̄)4] =
6aD2

α(α+ a)2

(
e2(α+a)t − e4(α+a)t

)
+

(
3D2

α2
− 3D2

(α+ a)2

)(
e4(α+a)t − 1

)
.
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