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DYNAMIC PROGRAMMING FOR GENERAL LINEAR
QUADRATIC OPTIMAL STOCHASTIC CONTROL WITH RANDOM

COEFFICIENTS ∗

SHANJIAN TANG†

Abstract. We are concerned with the linear-quadratic optimal stochastic control problem where
all the coefficients of the control system and the running weighting matrices in the cost functional
are allowed to be predictable (but essentially bounded) processes and the terminal state-weighting
matrix in the cost functional is allowed to be random. Under suitable conditions, we prove that
the value field V (t, x, ω), (t, x, ω) ∈ [0, T ] × Rn × Ω, is quadratic in x, and has the following form:
V (t, x) = 〈Ktx, x〉 where K is an essentially bounded nonnegative symmetric matrix-valued adapted
processes. Using the dynamic programming principle (DPP), we prove that K is a continuous semi-
martingale of the form

Kt = K0 +

∫ t

0

dks +
d

∑

i=1

∫ t

0

Li
s dW

i
s , t ∈ [0, T ]

with k being a continuous process of bounded variation and

E

[(∫ T

0

|Ls|
2 ds

)p]

< ∞, ∀p ≥ 2;

and that (K,L) with L := (L1, · · · , Ld) is a solution to the associated backward stochastic Ric-
cati equation (BSRE), whose generator is highly nonlinear in the unknown pair of processes. The
uniqueness is also proved via a localized completion of squares in a self-contained manner for a general
BSRE. The existence and uniqueness of adapted solution to a general BSRE was initially proposed
by the French mathematician J. M. Bismut [in SIAM J. Control & Optim., 14(1976), pp. 419–444,
and in Séminaire de Probabilités XII, Lecture Notes in Math. 649, C. Dellacherie, P. A. Meyer,
and M. Weil, eds., Springer-Verlag, Berlin, 1978, pp. 180–264], and subsequently listed by Peng [in
Control of Distributed Parameter and Stochastic Systems (Hangzhou, 1998), S. Chen, et al., eds.,
Kluwer Academic Publishers, Boston, 1999, pp. 265–273] as the first open problem for backward
stochastic differential equations. It had remained to be open until a general solution by the author
[in SIAM J. Control & Optim., 42(2003), pp. 53–75] via the stochastic maximum principle with a
viewpoint of stochastic flow for the associated stochastic Hamiltonian system. The present paper is
its companion, and gives the second but more comprehensive (seemingly much simpler, but appeal-
ing to the advanced tool of Doob-Meyer decomposition theorem, in addition to the DDP) adapted
solution to a general BSRE via the DDP. Further extensions to the jump-diffusion control system
and to the general nonlinear control system are possible.

Key words. linear quadratic optimal stochastic control, random coefficients, Riccati equation,
backward stochastic differential equations, dynamic programming, semi-martingale

AMS subject classifications. 93E20, 49K45, 49N10, 60H10

1. Formulation of the problem and basic assumptions. Consider the fol-
lowing linear quadratic optimal stochastic control (SLQ in short form) problem: min-
imize over u ∈ L 2

F
(0, T ;Rm) the following quadratic cost functional:

J(u; 0, x) := E0,x;u

[
〈MXT , XT 〉+

∫ T

0

(〈QsXs, Xs〉+ 〈Nsus, us〉) ds

]
,(1.1)
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where X is the solution of the following linear stochastic control system:






dXt = (AtXt +Btut) dt+

d∑

i=1

(Ci
tXt +Di

tut) dW
i
t ,

X0 = x ∈ R
n.

(1.2)

Here, {Wt := (W 1
t , . . . ,W

d
t )

′, 0 ≤ t ≤ T } is a d-dimensional standard Brownian
motion defined on some probability space (Ω,F , P ). Denote by {Ft, 0 ≤ t ≤ T }
the augmented natural filtration of the standard Brownian motion W . The control
u belongs to the Banach space L 2

F
(0, T ;Rm), which consists of all Rm-valued square

integrable {Ft, 0 ≤ t ≤ T }-adapted processes. Denote by Sn the totality of n × n

symmetric matrices, and by S
n
+ the totality of n× n nonnegative matrices.

Throughout this paper, we make the following two assumptions on the coefficients
of the above problem.

(A1) Assume that the matrix processes A : [0, T ]× Ω → Rn×n, B : [0, T ]× Ω →
Rn×m; Ci : [0, T ]×Ω → Rn×n, Di : [0, T ]×Ω → Rn×m, i = 1, . . . , d; Q : [0, T ]×Ω →
Sn+, N : [0, T ]×Ω → Sm+ and the random matrix M : Ω → Sn+ are uniformly bounded
and {Ft, 0 ≤ t ≤ T }-adapted or FT -measurable.

(A2) Assume that the control weighting matrix process N is uniformly positive.

Define for (t,K, L) ∈ [0, T ]× Sn × (Sn)d,

Nt(K) :=Nt +

d∑

i=1

(Di
t)

′KDi
t,

Mt(K,L) :=KBt +
d∑

i=1

(Ci
t)

′KDi
t +

d∑

i=1

LiDi
t.

(1.3)

For (t,K) ∈ [0, T ]× Sn+ and L = (L1, . . . , Ld) ∈ (Sn)d, define

G(t,K, L) := A′
tK +KAt +Qt +

d∑

i=1

(Ci
t)

′KCi
t +

d∑

i=1

[(Ci
t)

′Li + LiCi
t ]

− Mt(K,L)N −1
t (K)M ′

t (K,L).

(1.4)

Here, we use the prime to denote the transpose of a vector or a matrix. Associated to
the above SLQ problem is the following backward stochastic Riccati equation (BSRE):





dKt = −G(t,Kt, Lt) dt+

d∑

i=1

Li
t dW

i
t , t ∈ [0, T );

KT = M, Lt := (L1
t , . . . , L

d
t ).

(1.5)

The generator is highly nonlinear in the unknown pair of variables (K,L).
Definition 1.1. A solution of BSRDE (1.5) is defined as a pair (K,L) of matrix-

valued adapted processes such that

(i)
∫ T

0
|Lt|2 dt+

∫ T

0
|G(t,Kt, Lt)| dt < ∞, a.s.;

(ii) The m×m matrix-valued process {Nt(Kt), t ∈ [0, T ]} is a.s.a.e. positive; and

(iii) Kt = M +
∫ T

t
G(s,Ks, Ls) ds−

∫ T

t

∑d
i=1 L

i
s dW

i
s a.s. for all t ∈ [0, T ].
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The adapted solution to a general BSRE (1.5) was initially proposed by the French
mathematician J. M. Bismut [1, 2], and subsequently listed by Peng [17] as the first
open problem for backward stochastic differential equations. It had remained to be
open until a general solution by the author [20] via the stochastic maximum principle
and using a viewpoint of stochastic flow for the associated stochastic Hamiltonian
system. For more details on the historical studies on BSRE (1.5) and the progress,
see the author’s previous paper [20, Section 4, pages 60–61] and the plenary lecture
by Peng [18] at the International Congress of Mathematicians in 2010. In the paper,
we shall give a novel proof to the existence for BSRE (1.5) via dynamic programming
principle. A crucial point is that we can show the value field is a semi-martingale of
both “sufficiently good” parts of bounded variation and martingale.

The rest of our paper is organized as follows. Section 2 gives preliminaries. In
Section 3, we prove that the value field V (t, x, ω) is quadratic in x. In Section 4, we
prove that the value field is a semi-martingale and that BSRE (1.5) has an adapted
solution. Section 5 is concerned with a verification theorem for the SLQ problem,
and the uniqueness of solution to BSRE (1.5). Finally, in Section 6, we give some
comments and possible extensions.

2. Preliminaries. For each u ∈ L 2
F
(0, T ;Rm), the following linear stochastic

differential equation




dXt =(AtXt +Btut) dt+

d∑

i=1

(Ci
tXt +Di

tut) dW
i
t , τ ≤ t ≤ T,

Xs =x ∈ R
n,

(2.1)

has a unique strong solution (see Bismut [2]), denoted by Xs,x;u with the superscripts
indicating the dependence on the initial data (s, x) and the control action. We have
the following well-known quantitative dependence of the solution Xs,x;u on the initial
data (s, x) and the control action u.

Lemma 2.1. Let assumption (A1) be satisfied. For any p ≥ 1, there is a positive
constant Cp such that for any initial state ξ ∈ Lp(Ω,Fs, P ;Rn) and predictable control
u with

E



(∫ T

s

|ur|
2 dr

)p/2

 < ∞,

we have

E

[
max
t∈[s,T ]

|Xs,ξ;u|p
∣∣∣∣ Fs

]
≤ Cp


|ξ|p + E



(∫ T

s

|ur|
2 dr

)p/2 ∣∣∣∣ Fs




 .(2.2)

Consider the initial-data-parameterized SLQ problem: minimize over u ∈ L 2
F
(0, T ;Rm)

the quadratic cost functional

J(u; s, x) := Es,x;u

[
〈MXT , XT 〉+

∫ T

s

(〈QrXr, Xr〉+ 〈Nrur, ur〉) dr

∣∣∣∣ Fs

]
.(2.3)

Define the value field

V (s, x) := ess.inf
u∈L 2

Ft
(s,T ;Rm)

J(u; s, x), (s, x) ∈ [0, T ]× R
n.(2.4)
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Assumptions (A1) and (A2) imply that the above SLQ problem has a unique
optimal control for any ξ ∈ L2(Ω,Fs, P ;Rn), that is, there is unique u ∈ Us such
that

V (s, ξ) = J(u; s, ξ).

See Bismut [2] for the proof of such a result. A further step is to characterize the
optimal control.

We easily prove the following
Lemma 2.2. Let Assumptions (A1) and (A2) be satisfied. There is a positive

constant λ such that

0 ≤ V (s, ξ) ≤ J(0; s, ξ) ≤ λ|ξ|2, ∀(s, ξ) ∈ [0, T ]× L2(Ω,Fs, P ;Rn).

Proof. In view of assumption (A1) and the definition of the value field V , it is
sufficient to show J(0; s, ξ) ≤ λ|ξ|2, which is an immediate consequence of Lemma 2.2
and the following estimate:

J(0; s, ξ) ≤ λE

[
|X0,ξ;0

T |2 +

∫ T

0

|X0,ξ;0
t |2 dt

∣∣∣∣ Fs

]

≤ λ(1 + T )E

[
max
t∈[0,T ]

|X0,ξ;0
t |2

∣∣∣∣ Fs

]
.

3. The value field V is quadratic in the space variable. This section is an
adaptation of Faurre [4] to our SLQ problem with random coefficients.

We have
Theorem 3.1. Let Assumptions (A1) and (A2) be satisfied. The value field

V (s, x) is quadratic in x. Moreover, there is an essentially bounded continuous non-
negative matrix-valued process K such that

V (s, x) = 〈Ksx, x〉, ∀(s, x) ∈ [0, T ]× R
n.(3.1)

The state-quadratic property follows from the following lemma.
Lemma 3.2. Let Assumptions (A1) and (A2) be satisfied. The value field has the

following two laws in the state variable x of (i) square homogeneity

V (s, ξx) = ξ2V (s, x), ∀(s, x, ξ) ∈ [0, T ]× R
n × L∞(Ω,Fs, P )

and (ii) parallelogram

V (s, x+ y) + V (s, x− y) = 2V (s, x) + 2V (s, y), ∀(s, x, y) ∈ [0, T ]× R
n × R

n.

Proof. It is easy to derive from the linearity of the control system and the
quadratic structure of the cost functional the following two identities for any u ∈ Us,

ξXs,x;u = Xs,ξx;ξu, ξ2J(u; s, x) = J(ξu; s, ξx).
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Therefore, we have

ξ2V (s, x) = ξ2 ess.inf
u∈Us

J(u; s, x) = ess.inf
u∈Us

ξ2J(u; s, x) = ess.inf
u∈Us

J(ξu; s, ξx),

which is equal to V (s, ξx) by definition, immediately giving assertion (i).
Let us show assertion (ii). It is easy to see (see Bismut [2]) that there are α, β ∈ Us

such that

V (s, x+ y) = J(α; s, x+ y), V (s, x− y) = J(β; s, x− y).

Then, we easily see that

V (s, (x+ y)± (x− y)) ≤ J(α± β; s, (x+ y)± (x− y))

and therefore,

V (s, 2x) + V (s, 2y) ≤ J(α+ β; s, 2x) + J(α− β; s, 2y).

Since J(u; s, x) is quadratic in the pair (u, x) and satisfies the parallelogram

2J(α+ β; s, 2x) + 2J(α− β; s, 2y) = J(2α; s, 2(x+ y)) + J(2β; s, 2(x− y)),

we have

V (s, 2x) + V (s, 2y) ≤
1

2
[J(2α; s, 2(x+ y)) + J(2β; s, 2(x− y))],

and therefore by the square homogeneity of J(u; s, x) in the pair (u, x)

V (s, x+ y) + V (s, x− y) ≤ 2J(α; s, x+ y) + 2J(β; s, x− y) = 2V (s, x) + 2V (s, y).

By symmetry, it holds for x′ := x+ y and y′ := x− y:

V (s, (x+ y) + (x− y)) + V (s, (x+ y)− (x − y)) ≤ 2V (s, x+ y) + 2V (s, x− y)

which leads by assertion (i) to the following desired reverse inequality

4V (s, x) + 4V (s, y) = V (s, 2x) + V (s, 2y) ≤ 2V (s, x+ y) + 2V (s, x− y).

The proof is then complete.
The nonnegativity and the essential bound of the process K are immediate con-

sequences of Lemma 2.2.

4. Dynamic programming principle and the semi-martingale property
of the value field. For simplicity, define the function

l(t, x, u) := 〈Qtx, x〉+ 〈Ntu, u〉, (t, x, u) ∈ [0, T ]× R
n × R

m(4.1)

and the set

Us := L
2
F (s, T ;Rm).(4.2)

We denote by V(t, ·) the restriction of V (t, ·) to Rn. By definition, we have almost
surely

V (t, x) = V(t, x), ∀ x ∈ R
n.
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For any ξ ∈ L2(Ω,Ft, P ;Rn), in an analogous way to the proof of Peng [16, Lemma
6.5, page 122], we also have almost surely

V (t, ξ) = V(t, ξ).

We have
Theorem 4.1. (Bellman’s Principle). Let Assumptions (A1) and (A2) be satis-

fied. We have
(i) For s ≤ t ≤ T and ξ ∈ L2(Ω,Fs, P ;Rn),

V(s, ξ) = ess. inf
u∈Us

Es,ξ;u

{∫ t

s

l(r,Xr, ur) dr + V(t,Xt)

∣∣∣∣ Fs

}
.

For the optimal control u ∈ Us, we have

V(s, ξ) = Es,ξ;u

{∫ t

s

l(r,Xr, ur) dr + V(t,Xt)

∣∣∣∣ Fs

}
.

(ii) For (s, x, u) ∈ [0, T ]× Rn × Us, the process

κ
s,x;u
t := V(t,Xs,x;u

t ) +

∫ t

s

l(r,Xs,x;u
r , ur) dr

defined for t ∈ [s, T ], is a submartingale w.r.t. {Ft}; and for the optimal control

u ∈ Us, the process κ
s,x;u
t , t ∈ [s, T ], is a martingale w.r.t. {Ft}.

Proof. It is easy to check that Assertion (ii) is an immediate consequence of
Assertion (i). Assertion (i) is more or less standard, and the proof is similar to that
of Krylov [12, Theorem 6, Section 3, Chapter 3, page 150] or Peng [16, Theorem 6.6,
page 123].

From assertion (i), we have
Corollary 4.2. We have the following time continuity of V and K: for any

(s, x) ∈ [0, T ]× R
n,

lim
t→s

E[V(t, x) − V(s, x) |Fs] = 0, lim
t→s

E[Kt −Ks |Fs] = 0, a.s..

Proof. In view of Theorem 3.1, the second limit easily follows from the first one.
It remains to prove the first limit.

Assume without loss of generality that s ≤ t. We have

V(s, x) = Es,x;u

{∫ t

s

l(r,Xr, ur) dr + V(t,Xt)

∣∣∣∣ Fs

}

where u ∈ Us is the optimal control. Therefore,

|E[V(t, x)− V(s, x) |Fs]| ≤ Es,x;u

{∫ t

s

l(r,Xr, ur) dr + |V(t,Xt)− V(t, x)|

∣∣∣∣ Fs

}
.

Since

|V(t,Xs,x;u
t )− V(t, x)| ≤ λ(|x|+ |Xs,x;u

t |)|Xs,x;u
t − x|,
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using estimate (2.2), we have

|E[V(t, x)− V(s, x) |Fs]| ≤ λEs,x;u

{∫ t

s

(|Xr|
2 + |ur|

2) dr

∣∣∣∣ Fs

}

+ λ

{
|x|+ Es,x;u

[(∫ t

s

|ur|
2 dr

)1/2 ∣∣∣∣ Fs

]}
Es,x;u

[(∫ t

s

|ur|
2 dr

)1/2 ∣∣∣∣ Fs

]
,

which implies the desired limit.
Using Theorems 3.1 and 4.1 , we can prove the following
Theorem 4.3. The value field V is a semi-martingale of the following represen-

tation:

V(t, x) = 〈Ktx, x〉(4.3)

where K is an essentially bounded nonnegative symmetric matrix-valued continuous
semi-martingale of the form

Kt = K0 −

∫ t

0

dks +

d∑

i=1

∫ t

0

Li
s dW

i
s , t ∈ [0, T ]; KT = M(4.4)

with k being an n× n atrix-valued continuous process of bounded variation such that

dks = G(s,Ks, Ls) ds, almost everywhere (s, ω) ∈ [0, T ]× Ω.(4.5)

and

E

[(∫ T

0

|Ls|
2 ds

)p]
< ∞, ∀p ≥ 2.(4.6)

Proof. Theorem 3.1 states that there is an essentially bounded nonnegative sym-
metric matrix-valued process K such that (4.3) holds true. The rest of the proof is
divided into the following three steps.

Step 1. K is a semi-martingale of form (4.4) in the Doob-Meyer de-
composition. Let ei be the unit column vector of Rn whose i-th component is the
number 1 for i = 1, . . . , n. In view of Assertion (ii) of Theorem 4.1, we see that for
x = ei, ei + ej , ei − ej, i, j = 1, . . . , n, {κ0,x;0

t , t ∈ [0, T ]} is a sub-martingale, and since

|κ0,x;0
t | ≤ λ|X0,x;0

t |2 +

∫ t

0

|X0,x;0
s |2 ds ≤ λ max

t∈[0,T ]
|X0,x;0

t |2 ∈ L1(Ω,FT , P ),

it is of class D. Since V (t, x) is continuous in the sense of conditional mean in t (see
corollary 4.2), {κ0,x;0

t , t ∈ [0, T ]} is continuous in the sense of conditional mean in
s. In view of Doob-Meyer decomposition (see Protter [19, Theorem 11, page 112]),
its bounded variational process is continuous and increasing in time, and {κ0,x;0

t , t ∈
[0, T ]} is sample continuous. Define the n× n symmetric matrix-valued process

Γt := (κt(i, j))1≤i,j≤n(4.7)

where

κt(i, i) := κ
0,ei;0
t , κt(i, j) :=

1

4
[κ

0,ei+ej ;0
t − κ

0,ei−ej ;0
t ], 1 ≤ i 6= j ≤ n.(4.8)
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It is a n × n matrix-valued semi-martingale and the bounded variational process in
the Doob-Meyer decomposition is continuous in time. Define

Φt := (X0,e1;0
t , · · · , X0,en;0

t ), t ∈ [0, T ].

Then, we have

Γt = Φ′
tKtΦt +

∫ t

0

Φ′
rQrΦr dr, t ∈ [0, T ];(4.9)

and Φ satisfies the following matrix-valued stochastic differential equation (SDE):

dΦt = AtΦt dt+ Ci
tΦt dW

i
t , t ∈ (0, T ]; Φ0 = In.(4.10)

It is well-known that Φt has an inverse Ψt := Φ−1
t , satisfying the following SDE:

dΨt = Ψt(−At + Ci
tC

i
t) dt−ΨtC

i
t dW

i
t , t ∈ (0, T ]; Ψ0 = In.(4.11)

Therefore, we have

Kt = Ψ′
t

(
Γt −

∫ t

0

Φ′
rQrΦr dr

)
Ψt, t ∈ [0, T ].(4.12)

Since Γ is a semi-martingale, using Itô-Wentzell formula, we see that K is a semi-
martingale of form (4.4) from the Doob-Meyer decomposition, with the bounded vari-
ational process k being continuous in time. It remains to derive the formula (4.5) for
k and the estimate (4.6) for L.

Step 2. Formula for the bounded variational process k. Define the
function:

F (t, x, v;K,L) =2〈Kx,Atx+Btv〉+ 2〈Lix,Ci
tx+Di

tv〉

+ 〈Li(Ci
tx+Di

tv), C
i
tx+Di

tv〉,
(4.13)

for (t, x, v,K, L) ∈ [0, T ] × Rn × Rm × Sn × (Sn)m. Using Itô-Wentzell formula, we
have






dV (t,X0,x;v
t ) =

[
−〈dktX

0,x;v
t , X

0,x;v
t 〉+ F (t,X0,x;v

t , v;Kt, Lt) dt

]

+

[
〈Kt(C

i
tX

0,x;v
t +Di

tv), X
0,x;v
t 〉

+ 〈KtX
0,x;v
t , (Ci

tX
0,x;v
t +Di

tv)〉

+ 〈Li
tX

0,x;v
t , X

0,x;v
t 〉

]
dW i

t , t ∈ [0, T );

V (T,X0,x;v
T ) =〈MX

0,x;v
T , X

0,x;v
T 〉.

(4.14)

and

κ
0,x;v
t =〈K0x, x〉+

∫ t

0

[
−〈dksX

0,x;v
s , X0,x;v

s 〉+ F (s,X0,x;v
s , v;Ks, Ls) ds

+ l(s,X0,x;v
s , v) ds

]
+

∫ t

0

[
〈Ks(C

i
sX

0,x;v
s +Di

sv), X
0,x;v
s 〉

+ 〈KsX
0,x;v
s , (Ci

sX
0,x;v
s +Di

sv)〉+ 〈Li
sX

0,x;v
s , X0,x;v

s 〉

]
dW i

s , t ∈ [0, T ].

(4.15)
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Assertion (ii) of Theorem 4.1 states that {κ0,x;v
t , t ∈ [0, T ]} is a sub-martingale for

any (v, x) ∈ Rm × Rn, yielding the following fact: for any (x, v) ∈ Rn × Rm, we

have E
∫ T

0 η(s, x)γ(ds, x; v) ≤ 0 for any essentially bounded nonnegative predictable
process η on [0, T ]× Ω, where

γ(ds, x; v) :=− 〈dksX
0,x;v
s , X0,x;v

s 〉+ F (s,X0,x;v
s , v;Ks, Ls) ds

+ l(s,X0,x;v
s , v) ds;

(4.16)

and for the optimal control u ∈ U0, the process κ
s,x;u
t , t ∈ [s, T ], is a martingale w.r.t.

{Ft}, yielding the following fact: for any x ∈ Rn, we have E
∫ T

0 η(s, x)γ(ds, x;u) = 0
for any essentially bounded nonnegative predictable process η on [0, T ]× Ω, where

γ(ds, x;u) :=− 〈dksX
0,x;u
s , X0,x;u

s 〉+ F (s,X0,x;u
s , us;Ks, Ls) ds

+ l(s,X0,x;u
s , us) ds.

(4.17)

It is well-known that the stochastic flow X0,x;v
s , x ∈ R

n has an inverse Y 0,x;v
s , x ∈

Rn. Since (see Yong and Zhou [21, Theorem 6.14, page 47])

X0,x;v
s = Φtx+Φt

∫ t

0

Ψs(Bsv − Ci
sD

i
sv) ds+Φt

∫ t

0

ΨsD
i
sv dW

i
s(4.18)

for t ∈ [0, T ], we have

Y 0,x;v
s = Ψtx−

∫ t

0

Ψs(Bsv − Ci
sD

i
sv) ds−

∫ t

0

ΨsD
i
sv dW

i
s , t ∈ [0, T ].(4.19)

More generally, we define for any u ∈ U0 and t ∈ [0, T ],

Y 0,x;u
s = Ψtx−

∫ t

0

Ψs(Bsus − Ci
sD

i
sus) ds−

∫ t

0

ΨsD
i
sus dW

i
s .(4.20)

We have

X0,y;u
s

∣∣∣∣
y=Y 0,x;u

s

= x, ∀x ∈ R
n.(4.21)

Incorporating the composition of γ(s, ·; v) with the inverse flow Y 0,x;v
s , x ∈ R

n,
we have

0 ≤ γ(ds, Y 0,x;v
s ; v)

=− 〈dksx, x〉+ [F (s, x, v;Ks, Ls) + l(s, x, v)] ds
(4.22)

and in a similar way, we have for almost everywhere (s, ω) ∈ [0, T ]× Ω,

0 = γ(ds, Y 0,x;u
s ;u)

=− 〈dksx, x〉+ [F (s, x, us;Ks, Ls) + l(s, x, us)] ds.
(4.23)

Therefore, we have

〈dksx, x〉 = min
v∈Rm

[F (s, x, v;Ks, Ls) + l(s, x, v)] ds, ∀x ∈ R
n,(4.24)

which implies formula (4.5).
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Step 3. Estimate for L.
From the theory of BSDEs, we have from BSDE (4.14)

∫ T

0

∣∣∣〈KtX
0,x;v
t , (Ci

tX
0,x;v
t +Di

tv)〉 + 〈Li
tX

0,x;v
t , X

0,x;v
t 〉

∣∣∣
2

dt

= |〈MX
0,x;v
T , X

0,x;v
T 〉|2 − |V (t,X0,x;v

t )|2

+ 2

∫ T

0

V (t,X0,x;v
t )

[
〈ktX

0,x;v
t , X

0,x;v
t 〉 − F (t,X0,x;v

t , v;Kt, Lt)

]
dt

−

∫ T

0

V (t,X0,x;v
t )

[
2〈Kt(C

i
tX

0,x;v
t +Di

tv), X
0,x;v
t 〉 − 〈Li

tX
0,x;v
t , X

0,x;v
t 〉

]
dW i

t .

(4.25)

Since V (t,X0,x;v
t ) ≥ 0, taking v = 0 and using the inequality (4.16), we have

∫ T

0

∣∣∣〈KtX
0,x;0
t , Ci

tX
0,x;0
t 〉+ 〈Li

tX
0,x;0
t , X

0,x;0
t 〉

∣∣∣
2

dt

≤ |M ||X0,x;0
T |4 + 2

∫ T

0

V (t,X0,x;0
t )l(t,X0,x;0

t , 0) dt

−

∫ T

0

V (t,X0,x;0
t )

[
2〈KtC

i
tX

0,x;0
t , X

0,x;0
t 〉 − 〈Li

tX
0,x;0
t , X

0,x;0
t 〉

]
dW i

t .

(4.26)

Since V (t,X0,x;0
t ) = 〈KtX

0,x;0
t , X

0,x;0
t 〉 andK is uniformly bounded, there is a positive

constant λ such that

∫ T

0

∣∣∣〈Li
tX

0,x;0
t , X

0,x;0
t 〉

∣∣∣
2

dt

≤ 2

∫ T

0

∣∣∣〈KtX
0,x;0
t , Ci

tX
0,x;0
t 〉

∣∣∣
2

dt+ 2|M ||X0,x;0
T |4

+ 4

∫ T

0

V (t,X0,x;0
t )l(t,X0,x;0

t , 0) dt

− 2

∫ T

0

V (t,X0,x;0
t )

[
2〈KtC

i
tX

0,x;0
t , X

0,x;0
t 〉 − 〈Li

tX
0,x;0
t , X

0,x;0
t 〉

]
dW i

t

≤ λ max
t∈[0,T ]

|X0,x;0
t |4 − 4

∫ T

0

V (t,X0,x;0
t )〈KtC

i
tX

0,x;0
t , X

0,x;0
t 〉 dW i

t

+ 2

∫ T

0

V (t,X0,x;0
t )〈Li

tX
0,x;0
t , X

0,x;0
t 〉 dW i

t .

(4.27)
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Therefore, for p ≥ 1, we have

E

(∫ T

0

∣∣∣〈Li
tX

0,x;0
t , X

0,x;0
t 〉

∣∣∣
2

dt

)p

≤ λpE

[
max
t∈[0,T ]

|X0,x;0
t |4p

]

+ λpE

∣∣∣∣∣

∫ T

0

V (t,X0,x;0
t )〈KtC

i
tX

0,x;0
t , X

0,x;0
t 〉 dW i

t

∣∣∣∣∣

p

+ λpE

∣∣∣∣∣

∫ T

0

V (t,X0,x;0
t )〈Li

tX
0,x;0
t , X

0,x;0
t 〉 dW i

t

∣∣∣∣∣

p

≤ λpE

[
max
t∈[0,T ]

|X0,x;0
t |4p

]

+ λpE

[∫ T

0

∣∣∣V (t,X0,x;0
t )〈KtC

i
tX

0,x;0
t , X

0,x;0
t 〉

∣∣∣
2

dt

]p/2

+ λpE

[∫ T

0

∣∣∣V (t,X0,x;0
t )〈Li

tX
0,x;0
t , X

0,x;0
t 〉

∣∣∣
2

dt

]p/2

≤ λpE

[
max
t∈[0,T ]

|X0,x;0
t |4p

]
+ λpE

[∫ T

0

|〈Li
tX

0,x;0
t , X

0,x;0
t 〉|2|X0,x;0

t |4 dt

]p/2

≤ λpE

[
max
t∈[0,T ]

|X0,x;0
t |4p

]

+ λpE




(∫ T

0

|〈Li
tX

0,x;0
t , X

0,x;0
t 〉|2 dt

)p/2

max
t∈[0,T ]

|X0,x;0
t |2p





≤ λpE

[
max
t∈[0,T ]

|X0,x;0
t |4p

]
+

1

2
E

[(∫ T

0

|〈Li
tX

0,x;0
t , X

0,x;0
t 〉|2 dt

)p]
.

(4.28)

Consequently, we have for any x ∈ Rn,

E

(∫ T

0

∣∣∣〈Li
tX

0,x;0
t , X

0,x;0
t 〉

∣∣∣
2

dt

)p

≤ 2λpE

[
max
t∈[0,T ]

|X0,x;0
t |4p

]
≤ λ′

p|x|
4p,(4.29)

which implies the following inequality

E

(∫ T

0

∣∣Φ′
tL

i
tΦt

∣∣2 dt

)p

≤ λp.(4.30)
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Hence,

E

(∫ T

0

∣∣Li
t

∣∣2 dt

)p

≤ E

(∫ T

0

∣∣Ψ′
tΦ

′
tL

i
tΦtΨt

∣∣2 dt

)p

≤ E

(∫ T

0

|Ψ′
t|
2|Ψt|

2
∣∣Φ′

tL
i
tΦt

∣∣2 dt

)p

≤ E

[(∫ T

0

∣∣Φ′
tL

i
tΦt

∣∣2 dt

)p

max
t∈[0,T ]

|Ψt|
4p

]

≤




E



(∫ T

0

∣∣Φ′
tL

i
tΦt

∣∣2 dt

)2p

E

[
max
t∈[0,T ]

|Ψt|
8p

]



1/2

≤ λp.

(4.31)

The proof is complete.
Remark 4.1. We have shown in Steps 1 and 2 that (K,L) solves BSRE (1.5)

with K being nonnegative and uniformly bounded. Then from Tang [20, Theorem 5.1,
page 62], we have the desired estimate. Here we have given a different proof to the
estimate (4.6).

Immediately, we have the following existence of adapted solution to BSRE (1.5).
Corollary 4.4. (Existence result for BSRE). Let assumptions (A1) and (A2)

be satisfied. Then (K,L) is an adapted solution to BSDE (1.5).

5. Verification theorem and uniqueness result for BSRE. In the theory of
linear quadratic optimal stochastic control, the Riccati equation as a nonlinear system
of backward (stochastic) differential equations is an equivalent form of the underlying
Bellman equation as a nonlinear backward (stochastic) partial differential equations,
and both the optimal control and the value function are expected to be given in terms
of the solution to the Riccati equation. The following verification theorem illustrates
such a philosophy, which, however, has more or less been addressed in the author’s
work [20, Theorem 3.2, page 60].

Theorem 5.1. (Verification Theorem). Let assumptions (A1) and (A2) be
satisfied. Let (K,L) be an adapted solution to BSDE (1.5) such that K is essen-
tially bounded and nonnegative (and consequently L satisfies estimate (4.6) in view of
Tang [20, Theorem 5.1, page 62]). Then, (i) the following linear SDE





dXt =
[
At −BtN

−1
t (Kt)M

′
t (Kt, Lt)

]
Xt dt

+
d∑

i=1

[
Ci

t −Di
tN

−1
t (Kt)M

′
t (Kt, Lt)

]
Xt dW

i
t , t ∈ [0, T ];

X0 =x

(5.1)

has a unique strong solution X such that

E

[
max
t∈[0,T ]

|Xt|
2

]
< ∞;(5.2)

(ii) the following given process

ut = −N
−1
t (Kt)M

′
t (Kt, Lt)Xt, t ∈ [0, T ],(5.3)
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belongs to L 2
F
(0, T ;Rm), and is the optimal control for the SLQ; and (iii) the value

field V is given by

V (t, x) = 〈Ktx, x〉, (t, x) ∈ [0, T ]× R
n.(5.4)

Remark 5.1. A proof using the stochastic maximum principle (the so-called
stochastic Hamilton system) is given in Tang [20, Section 3, pages 58–60]. The main
difficulty of the proof comes from the appearance of L in the optimal feedback law (5.3)
since L is in general not expected to be essentially bounded. Since the coefficients of
the optimal closed system (5.1) contain L, we could directly have neither the inte-
grability (5.2) nor the square integrability of u, which prevent us from going through
the conventional method of “completion of squares” in a straightforward way. In what
follows, we get around the difficulty via the technique of localization by stopping times,
and develop a localized version of the conventional method of “completion of squares”,
which give a different self-contained proof.

Proof. Since the coefficients of the optimal closed system (5.1) is square integrable
on [0, T ] almost surely, SDE (5.1) has a unique strong solution X (see Gal’chuk [5]).
Define for sufficiently large integer j, the stopping time τj as follows:

τj := T ∧min{t ≥ 0 : |Xt| ≥ j},(5.5)

with the convention that min ∅ = ∞. It is obvious that τj ↑ T almost surely as j ↑ ∞.
Then, we have

〈K0x, x〉 = E〈KτjXτj , Xτj 〉+ E

∫ τj

0

l(t,Xt, ut) dt,(5.6)

which together with assumption (A2) implies the following (with the constant δ > 0)

E

∫ τj

0

|ut|
2 dt ≤ δ−1E

∫ τj

0

〈Ntut, ut〉 dt ≤ δ−1〈K0x, x〉.(5.7)

Using Fatou’s lemma, we have u ∈ L 2
F
(0, T ;Rm). Since X = X0,x;u, we have from

estimate (2.2) the integrability (5.2). Assertion (i) has been proved.
From Assertion (i), we see that

0 ≤ 〈KτjXτj , Xτj 〉 ≤ λ max
t∈[0,T ]

|Xt|
2 ∈ L1(Ω,FT , P )

and

0 ≤

∫ τj

0

l(t,Xt, ut) dt ≤ ( and
x)
∫ T

0

l(t,Xt, ut) dt ∈ L1(Ω,FT , P ).

Using Lebesgue’s dominant convergence theorem, we have

lim
j→∞

E〈KτjXτj , Xτj 〉 =E〈KTXT , XT 〉,

lim
j→∞

E

∫ τj

0

L(t,Xt, ut) dt =E

∫ T

0

l(t,Xt, ut) dt.
(5.8)

In view of the equality (5.6), we have

〈K0x, x〉 = E〈KTXT , XT 〉+ E

∫ T

0

l(t,Xt, ut) dt = J(u; 0, x).(5.9)
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It remains to prove that for any u ∈ L 2
F
(0, T ;Rm), we have J(u; 0, x) ≥ 〈K0x, x〉.

For given u ∈ L 2
F
(0, T ;Rm) and sufficiently large integer j, define the stopping

time τuj as follows:

τuj := T ∧min{t ≥ 0 : |Xu
t | ≥ j},(5.10)

with the notation Xu := X0,x;u. It is obvious that τuj ↑ T almost surely as j ↑ ∞.
Define

ũt := −N
−1
t (Kt)M

′
t (Kt, Lt)X

u
t , t ∈ [0, T ].(5.11)

Then, the restriction of ũ to the random time interval [0, τuj ] lies in L 2
F
(0, τuj ;R

m)
for any j. Using BSRE (1.5) to complete the square in a straightforward manner, we
have

E〈Kτu
j
Xu

τu
j
, Xu

τu
j
〉+ E

∫ τu
j

0

l(t,Xu
t , ut) dt

= 〈K0x, x〉 + E

∫ τu
j

0

〈N −1
t (Kt)(ut − ũt), ut − ũt〉 dt.

(5.12)

Therefore, we have

E〈Kτu
j
Xu

τu
j
, Xu

τu
j
〉+ E

∫ τu
j

0

l(t,Xu
t , ut) dt ≥ 〈K0x, x〉.(5.13)

In view of estimate (2.2) in Lemma 2.1, we see that

0 ≤ 〈Kτu
j
Xu

τu
j
, Xu

τu
j
〉 ≤ λ max

t∈[0,T ]
|Xu

t |
2 ∈ L1(Ω,FT , P )

and

0 ≤

∫ τu
j

0

l(t,Xu
t , ut) dt ≤ ( and

x)
∫ T

0

l(t,Xu
t , ut) dt ∈ L1(Ω,FT , P ).

Passage to the limit in inequality (5.13), again using Lebesgue’s dominant convergence
theorem, we have

J(u; s, x) = E〈KTX
u
T , X

u
T 〉+ E

∫ T

0

l(t,Xu
t , ut) dt ≥ 〈K0x, x〉.(5.14)

The proof is then complete.
Immediately, we have the following uniqueness of adapted solution to BSRE (1.5).
Corollary 5.2. (Uniqueness result for BSRE). Let assumptions (A1) and (A2)

be satisfied. Let (K̃, L̃) be an adapted solution to BSDE (1.5) such that K̃ is essentially

bounded and nonnegative and L̃ satisfies estimate (4.6). Then, K̃ = K and L̃ = L.
The corollary and its proof can be found in Tang [20, the beginning paragraph of

Section 8, page 70].

6. Comments and possible extensions. The results of this paper can be
adapted to the singular case (N is allowed to be only nonnegative) but with suitable
additional conditions such as the following:

(A3) Assume that the matrix process
∑d

i=1(D
i)′Di and the terminal state weight-

ing random matrix M are uniformly positive.
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This subject will be detailed elsewhere.
The singular case has received much recent interests because of its appearance in

financial mean-variance problems. More generally, N can also be possibly negative—
this is the so-called indefinite case. On these features, the interested reader is referred
to Chen and Yong [3], Hu and Zhou [6], Kohlmann and Tang [7, 10], Yong and Zhou
[21], and the references therein.

Finally, the main results of the paper can also be adapted to the quadratic opti-
mal control problem for linear stochastic differential system driven by jump-diffusion
processes under suitable assumptions. The details will be presented elsewhere.

Consider a general non-Markovian nonlinear optimal stochastic control problem.
Let A be a separable metric space, and Us be the set of A-valued predictable processes
on [s, T ].

For any triplet (u, s, ξ) ∈ Us × [0, T ] × L2(Ω,Fs, P ;Rn), consider the following
SDE:

Xt = ξ +

∫ t

s

σ(r,Xr, ur) dWr +

∫ t

s

b(r,Xr, ur) dr, t ∈ [s, T ].

Assume that the following functions

σ(t, x, α) ∈ Rn×d, b(t, x, α) ∈ Rn,

l(t, x, α) ∈ R, g(x) ∈ R; (t, x, α) ∈ [0, T ]× Rn ×A

are continuous in (x, α) and continuous in x uniformly over α for each (t, ω). Also,
assume thatthere is positive constant λ such that

‖σ(t, x, α)− σ(t, y, α)‖ + |b(t, x, α)− (t, y, α)| ≤ λ|x− y|,
‖σ(t, x, α)‖ + |b(t, x, α)| ≤ λ(1 + |x|),

|l(t, x, α)|+ |g(x)| ≤ λ(1 + |x|)m.

For (s, ξ, u) ∈ [s, T ]× L2(Ω,Fs, P ;Rn)× Us, define

J(u; s, ξ) = Es,ξ;u

[∫ T

s

l(t,Xt, ut) dt+ g(XT )

∣∣∣∣ Fs

]
,

V (s, ξ) := ess. inf
u∈Us

J(u; s, ξ).

Denote by V(s, ·) the restriction of V (s, ·) to Rn. In the nonlinear context, the re-
stricted value field V can be proved to satisfy the stochastic dynamic programming
principle:

(i) For s ≤ t ≤ T and ξ ∈ L2(Ω,Fs, P ;Rn),

V(s, ξ) = ess. inf
u∈Us

Es,ξ;u

{∫ t

s

l(r,Xr, ur) dr + V(t,Xt)

∣∣∣∣ Fs

}
.

(ii) For (s, x, u) ∈ [0, T ]×Rn × Us, the process

κ
s,x;u
t := V(t,Xs,x;u

t ) +

∫ t

s

l(r,Xs,x;u
r , ur) dr

defined for t ∈ [s, T ], is a submartingale w.r.t. {Ft}.
Using the above dynamic programming principle and Kunita’s stochastic calcu-

lus [13], we can still show that V is a Sobolev space valued semi-martingale and satisfy
the associated backward Bellman equation in the strong sense. All the details shall be
given in our forthcoming paper to extend Krylov [11] to the non-Markovian framework
for optimal stochastic control problem.
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tique, in Séminaire de Probabilités XII, Lecture Notes in Math. 649, C. Dellacherie, P. A.
Meyer, and M. Weil, eds., Springer-Verlag, Berlin, 1978, pp. 180–264.

[3] S. Chen and J. Yong, Stochastic linear quadratic optimal control problems, Appl. Math.
Optim., 43 (2001), pp. 21–45.

[4] P. Faurre, Sur les points conjugus en commande optimale (French), C. R. Acad. Sci. Paris
Sr. A-B, 266(1968), pp. A1294–A1296.

[5] L. I. Gal’chuk, Existence and uniqueness of a solution for stochastic equations with respect
to semimartingales, Theory Probab. Appl., 23 (1978), pp. 751–763.

[6] Y. Hu and X. Zhou, Indefinite stochastic Riccati equations, SIAM J. Control Optim., 42
(2003), pp. 123–137.

[7] M. Kohlmann and S. Tang, Minimization of risk and LQ theory, SIAM J. Control Optim.,
42 (2003), pp. 1118–1142.

[8] M. Kohlmann and S. Tang, Global adapted solution of one-dimensional backward stochas-
tic Riccati equations, with application to the mean-variance hedging, Stochastic Process.
Appl., 97 (2002), pp. 255–288.

[9] M. Kohlmann and S. Tang, Multidimensional backward stochastic Riccati equations and ap-
plications, SIAM J. Control Optim., 41 (2003), pp. 1696–1721.

[10] M. Kohlmann and S. Tang, New developments in backward stochastic Riccati equations and
their applications, in Mathematical Finance (Konstanz, 2000), M. Kohlmann and S. Tang,
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