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ZOLOTAREV QUADRATURE RULES AND LOAD BALANCING

FOR THE FEAST EIGENSOLVER

STEFAN GÜTTEL∗, ERIC POLIZZI† , PING TAK PETER TANG‡ , AND GAUTIER VIAUD§

Abstract. The FEAST method for solving large sparse eigenproblems is equivalent to subspace
iteration with an approximate spectral projector and implicit orthogonalization. This relation allows
to characterize the convergence of this method in terms of the error of a certain rational approx-
imant to an indicator function. We propose improved rational approximants leading to FEAST
variants with faster convergence, in particular, when using rational approximants based on the work
of Zolotarev. Numerical experiments demonstrate the possible computational savings especially for
pencils whose eigenvalues are not well separated and when the dimension of the search space is only
slightly larger than the number of wanted eigenvalues. The new approach improves both convergence
robustness and load balancing when FEAST runs on multiple search intervals in parallel.

Key words. generalized eigenproblem, FEAST, quadrature, Zolotarev, filter design, load bal-
ancing
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1. Introduction. The FEAST method [22] is an algorithm for computing a few
eigenpairs (λ, x ) of a large sparse generalized eigenproblem

(1.1) Ax = λBx ,

where A ∈ CN×N is Hermitian and B ∈ CN×N is Hermitian positive definite. This
method belongs to the class of contour-based eigensolvers which have attracted much
attention over the past decade. Contour-based methods utilize integrals of the form

(1.2) Cj :=
1

2πi

∫

Γ

γj(γB −A)−1B dγ =
1

2πi

∫

Γ

γj(γI −M)−1 dγ,

where M = B−1A and Γ is a contour in the complex plane enclosing the wanted
eigenvalues of (A,B). Typically a quadrature rule is then applied to evaluate this
contour integral numerically.

Probably the first practical method which combined contour integrals and quadra-
ture was presented by Delves and Lyness [6], although this was for the (related)
purpose of finding roots of scalar analytic functions (see also [3] for an overview of
various methods for this purpose). The method presented by Sakurai and Sugiura in
[26] (see also [15, 25]) makes use of the moments µj = u

∗Cjv for solving (1.1). This
is done by constructing a matrix pencil of small size whose eigenvalues correspond to
the targeted ones of the original system. The procedure terminates after the reduced
system is constructed and its eigenvalues are obtained. In this sense the method in
[26], sometimes referred to as SS method, is non-iterative in nature. The SS method
based on explicit moments may become numerically unstable and the so-called CIRR
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method [27] tries to address this problem by using explicit Rayleigh–Ritz projections
for Hermitian eigenproblems. A block-version of CIRR applicable to non-Hermitian
eigenproblems was presented in [14].

Expressed in terms of moments, FEAST uses only the zeroth moment matrix
C0, which corresponds to the spectral projector onto the invariant subspace associ-
ated with the eigenvalues enclosed by Γ. Since this projector can be computed only
approximately, FEAST must be an iterative algorithm: it applies an approximate
spectral projector repeatedly, progressively steering the search space into the direc-
tion of an invariant subspace containing the wanted eigenvectors. The original paper
[22] demonstrated the effectiveness of the approach without analysis of convergence,
which was then completed only very recently in [28].

Consistent with [28], we use the fact that the FEAST method is equivalent to
subspace iteration with implicit orthogonalization applied with a rational matrix func-
tion rm(M). In the original FEAST derivation [22], the rational function rm(z) was
obtained via quadrature approximation of an indicator function f(z) represented as

(1.3) f(z) =
1

2πi

∫

Γ

dγ

γ − z
,

where Γ is a contour enclosing the wanted eigenvalues of M . We will show that the
convergence of FEAST is governed by the separation of the wanted and unwanted
eigenvalues of rm(M), and that this separation is determined by the accuracy of the
quadrature approximation rm for f . We then use this argument to motivate our new
choice of rm, which is not based on contour integration but on a rational approximant
constructed by Zolotarev.

Zolotarev’s rational functions are ubiquitous in the design of electronic filters
(see, e.g., [5, 31]) and in this context often referred to as elliptic filters or Cauer
filters. Examples from numerical analysis where these functions have proven use-
ful are the choice of optimal parameters in the ADI method [33], the construction
of optimal finite-difference grids [16], in parameter selection problems with rational
Krylov methods for matrix functions [12], or for the optimization of time steps in the
Crank–Nicolson method [20], see also [29]. The use of Zolotarev rational functions
(or equivalently, elliptic filters) in the context of FEAST is very natural but does
not seem to have been considered before in the literature, with the exception of the
master thesis [32].

The outline of this paper is as follows. In Section 2 we briefly review the FEAST
method and its connection with subspace iteration. In Section 3 we compare two
different quadrature approaches that are commonly used, namely the approach based
on mapped Gauss quadrature as proposed by Polizzi [22], and another one based on
the trapezoid rule which is close in spirit to that of Sakurai and coauthors (see, e.g.,
[26, 14]). We also derive a relation between the rational functions obtained from the
trapezoid rule on ellipsoidal contours and so-called type-1 Chebyshev filters. While the
trapezoid rule seems most natural, Gauss quadrature turns out to be advantageous
if the wanted and unwanted eigenvalues of M are not well separated. In Section 4
we derive an improved quadrature rule based on the optimal Zolotarev approxima-
tion to the sign function, and compare it in Section 5 with the previous quadrature
rules. In Section 6 we discuss the implications of the Zolotarev approach on the
load balancing problem which arises when FEAST runs on multiple search intervals
synchronously. We end with Section 7 which demonstrates the improvements with
numerical experiments.
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2. The FEAST method. In this section we will explain how the FEAST
method is mathematically equivalent to subspace iteration applied with a rational
matrix function rm(M), where M = B−1A. Let M = XΛX−1 be an eigendecompo-
sition of M , where Λ ∈ RN×N is a diagonal matrix whose real diagonal entries are
the eigenvalues of M and the columns of X ∈ C

N×N correspond to the eigenvectors,
chosen to be B-orthonormal, i.e., X∗BX = I. Here is a step-by-step listing of the
FEAST method:

1. Choose n < N random columns of Y0 := [y1, . . . , yn] ∈ CN×n.
2. Set k := 1.
3. Compute Zk := rm(M)Yk−1 ∈ C

N×n.

4. Compute Âk := Z∗

kAZk and B̂k := Z∗

kBZk.

5. Compute a B̂k-orthonormal matrix Wk ∈ Cn×n and the diagonal matrix
Dk = diag(ϑ1, . . . , ϑn) such that ÂkWk = B̂kWkDk.

6. Set Yk := ZkWk.
7. If Yk has not converged, set k := k + 1 and goto Step 3.

For the rational matrix function rm(M) in Step 3 to be well-defined we assume
here and in the following that none of the poles of rm coincides with an eigenvalue
of M . When rm has a partial fraction expansion

rm(z) =

2m∑

j=1

wj

zj − z
,

then Step 3 amounts to the solution of 2m decoupled linear systems which can be
solved in parallel (with an appropriate choice of rm only m linear systems need to be
solved in some cases, see Section 3):

Zk = rm(M)Yk−1 =

2m∑

j=1

wj(zjB −A)−1(BYk−1).

In the original formulation of FEAST in [22] the B-factor in (BYk−1) is not applied in
Step 3 but at the end of each loop. This makes a difference only in the first iteration.

Note that the columns of Yk for k ≥ 1 are B-orthogonal because the eigenvector
matrix Wk of the reduced pencil (Âk, B̂k) computed in Step 5 is B̂k-orthonormal and

Y ∗

k BYk = W ∗

kZ
∗

kBZkWk = W ∗

k B̂kWk = In.

The orthogonalization procedure is therefore implicitly built into the Rayleigh–Ritz
extraction procedure. FEAST can hence be viewed and analyzed as a subspace it-
eration with implicit orthogonalization run with the matrix rm(M); see, e.g., [24,
§5.2].

The following results are adopted from [32] and [28]. We include them for com-
pleteness and to motivate our derivations in the following sections. Let the eigenpairs
(λj , xj) of M be ordered such that

(2.1) |rm(λ1)| ≥ |rm(λ2)| ≥ · · · ≥ |rm(λN )|.
We introduce the following notations. For any integer n, 1 ≤ n < N :

Xn = [x1, x2, . . . , xn] ∈ CN×n,
Xn′ = [xn+1, xn+2, . . . , xN ] ∈ CN×(N−n),
Λn = diag(λ1, λ2, . . . , λn) ∈ Rn×n,

Λn′ = diag(λn+1, λn+2, . . . , λN ) ∈ R(N−n)×(N−n).
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With these notations, the matrix XnX
∗

nB corresponds to the B-orthogonal projector
onto span({x1, x2, . . . , xn}), and likewise Xn′X∗

n′B is the B-orthogonal projector onto
span({xn+1, xn+2, . . . , xN}), for any 1 ≤ n < N . In particular, since X∗BX = I
implies X−1 = X∗B, the eigendecomposition of M and rm(M) can be written as

M = XnΛnX
∗

nB +Xn′Λn′X∗

n′B,

and

rm(M) = Xn rm(Λn)X
∗

nB +Xn′ rm(Λn′)X∗

n′B,

for any 1 ≤ n < N . Note also that XnX
∗

nB +Xn′X∗

n′B = I. The following lemma
provides a characterization of span(Zk).

Lemma 2.1. Consider the FEAST method as described in Steps 1–7 previously.
Suppose |rm(λn)| > 0, and that Y0 in Step 1 is such that the n× n matrix X∗

nBY0 is
invertible. Then the matrices Zk of Step 3 always maintain full column rank n and

span(Zk) = span(rkm(M)Y0)

for all iterations k ≥ 1.
Proof. We will first use an induction argument to show that the matrices Zk

have full column rank and that the matrices Wk are invertible. Suppose X∗

nBYk−1 is
invertible for some k ≥ 1. Then the n× n matrix

X∗

nBZk = X∗

nB [Xn rm(Λn)X
∗

nB +Xn′ rm(Λn′)X∗

n′B] Yk−1

= rm(Λn)X
∗

nBYk−1

is invertible because rm(Λn) = diag(rm(λ1), . . . , rm(λn)) is invertible by the as-
sumption |rm(λn)| > 0. In particular Zk has full column rank. This means that

B̂k = Z∗

kBZk is positive definite, resulting in an invertible matrix Wk. Hence
X∗

nBYk = (X∗

nBZk)Wk is also invertible. By assumption, X∗

nBY0 is invertible and
hence by induction Zk has full column rank and Wk is invertible for k ≥ 1.

Finally, it is easy to see that Z1 = rm(M)Y0, and that

Zk = rkm(M)Y0 W1 W2 · · · Wk−1 for k ≥ 2.

Consequently, span(Zk) = span(rkm(M)Y0) for k ≥ 1 as claimed.

The following theorem is a straightforward adaptation of [24, Thm. 5.2] (see [4]
for the original result). Here the B-norm of a vector w ∈ CN is defined in the usual
way as ‖w‖B = (w∗Bw)1/2.

Theorem 2.2. Consider the FEAST method as described in Steps 1–7 previously.
Suppose that |rm(λn)| > 0 and Y0 in Step 1 is such that the n× n matrix X∗

nBY0 is
invertible. Let Pk be the B-orthogonal projector onto the subspace span(Zk). Then
for each j = 1, 2, . . . , n there is a constant αj such that

‖(I − Pk)xj‖B ≤ αj

∣∣∣∣
rm(λn+1)

rm(λj)

∣∣∣∣
k

for iterations k ≥ 1, where (λj , xj) is the j-th eigenpair of M with the ordering (2.1).
In particular, ‖(I − Pk)xj‖B → 0 as long as |rm(λj)| > |rm(λn+1)|.
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Proof. As observed previously, I = XnX
∗

nB +Xn′X∗

n′B. Therefore

Y0 = (XnX
∗

nB +Xn′X∗

n′B)Y0

= (Xn +Xn′(X∗

n′BY0)(X
∗

nBY0)
−1)X∗

nBY0.

Hence span(Y0) = span(Xn +Xn′W ), where W is the (N − n)× n matrix

W = (X∗

n′BY0)(X
∗

nBY0)
−1.

Writing W as [w1,w2, . . . ,wn], the vector xj + Xn′ wj is an element of span(Y0).
Define the constant αj as ‖wj‖2. By Lemma 2.1, span(Zk) = span(rkm(M)Y0) and
thus rkm(M)(xj +Xn′wj) ∈ span(Zk). But r

k
m(M) = X rkm(Λ)X−1 and thus

rkm(M)(xj +Xn′wj) = rkm(λj)xj +Xn′ rkm (Λn′)wj .

Therefore, the vector xj +Xn′w̃j is an element of span(Zk), where

w̃j = diag

(
rkm(λn+1)

rkm(λj)
,
rkm(λn+2)

rkm(λj)
, . . . ,

rkm(λN )

rkm(λj)

)
wj .

Hence ‖w̃j‖2 ≤ αj |rm(λn+1)/rm(λj)|k. Therefore, inside span(Zk) lies a vector xj +

ej with ‖ej‖B = ‖w̃j‖2 ≤ αj |rm(λn+1)/rm(λj)|k . Finally,
‖(I − Pk)xj‖B = min

z∈span(Zk)
‖xj − z‖B

≤ ‖ej‖B

≤ αj

∣∣∣∣
rm(λn+1)

rm(λj)

∣∣∣∣
k

,

which completes the proof.
We learn from Theorem 2.2 that fast convergence can be achieved for a wanted

eigenpair (λj , xj) if the ratio |rm(λn+1)/rm(λj)| is small (j ≤ n). This is an approxi-
mation problem which we will investigate closer in the following sections.

3. Two simple quadrature rules. We assume without loss of generality that
the pencil (A,B) has been transformed linearly to (αA−βB,B) such that the wanted
eigenvalues are contained in the interval (−1, 1). For a given scaling parameter S > 1
we define a family of ellipses ΓS as

(3.1) ΓS =

{
γ : γ = γ(θ) =

Seiθ + S−1e−iθ

S + S−1
, θ ∈ [0, 2π)

}
.

Note that γ(θ) = cos(θ) + iS−S−1

S+S−1 sin(θ), hence these ellipses enclose the interval
(−1, 1) and pass through the interval endpoints ±1. As S → ∞, the ellipses approach
the unit circle. After a straightforward change of variables one can evaluate the
integral (1.3) with contour Γ = ΓS via integration over [0, 2π] as

f(z) =
1

2πi

∫ 2π

0

γ′(θ)

γ(θ)− z
dθ =:

∫ 2π

0

gz(θ) dθ,(3.2)

where

gz(θ) :=
1

2π

(Seiθ − S−1e−iθ)/(S + S−1)

(Seiθ + S−1e−iθ)/(S + S−1)− z
.

Two different approaches for the numerical approximation of the integral (3.2) have
been considered in the context of contour-based eigensolvers.
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3.1. Gauss quadrature. It was proposed in [22] to use m Gauss quadrature

nodes θ
(G)
j (j = 1, . . . ,m) on the interval [0, π], and another set ofm Gauss quadrature

nodes θ
(G)
j (j = m + 1, . . . , 2m) on the interval [π, 2π]. Denoting the corresponding

Gauss weights by ω
(G)
j , we have for (3.2) the quadrature approximation

f(z) ≈
2m∑

j=1

ω
(G)
j gz(θ

(G)
j ) =: r(G)

m (z),

with a rational function r
(G)
m . Defining the mapped Gauss nodes and weights

z
(G)
j =

Seiθ
(G)
j + S−1e−iθ

(G)
j

S + S−1
, w

(G)
j =

ωj

2π

Seiθ
(G)
j − S−1e−iθ

(G)
j

S + S−1
, j = 1, . . . , 2m,

the function r
(G)
m can be written in the form

(3.3) r(G)
m (z) =

2m∑

j=1

w
(G)
j

z
(G)
j − z

.

This is a rational function of type (2m− 1, 2m). By construction, its 2m poles have
a four-fold symmetry about the origin,

z
(G)
j = −z

(G)
m+1−j = −z

(G)
m+j = z

(G)
2m+1−j for j = 1, . . . ,m,

in particular, the poles occur in complex conjugate pairs. If A and B are real sym-
metric this can be computationally convenient because for a real vector v one has

(zB −A)−1v = (zB −A)−1
v ,

and hence the number of linear systems to be solved for computing r
(G)
m (B−1A)v is

only m instead of 2m.

A graphical illustration of r
(G)
m is given in Figure 3.1. When S decreases this

rational function becomes quite “wiggly” on the interval (−1, 1), with the oscillations
being caused by the nearby poles and hence becoming larger as the ellipse gets flatter.

3.2. Trapezoid rule. As the integrand gz in (3.2) is a 2π-periodic function, it
appears most natural to use the trapezoid rule for its integration over [0, 2π]. Indeed
this is the preferred choice of quadrature rule in the moment-based methods (see, e.g.,
[26, 14]). We refer to [30] for a review of the trapezoid rule and its properties.

Let us take equispaced quadrature nodes θ
(T )
j = π(j − 1/2)/m and equal weights

ω
(T )
j = π/m, j = 1, . . . , 2m, and use for (3.2) the trapezoid approximation

f(z) ≈
2m∑

j=1

ω
(T )
j gz(θ

(T )
j ) =: r(T )

m (z),

with a rational function r
(T )
m of type at most (2m − 1, 2m). Defining the mapped

trapezoid nodes and weights

z
(T )
j =

Seiθ
(T )
j + S−1e−iθ

(T)
j

S + S−1
, w

(T )
j =

1

2m

Seiθ
(T)
j − S−1e−iθ

(T)
j

S + S−1
, j = 1, . . . , 2m,
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Fig. 3.1. The contours ΓS along with the associated rational functions r
(G)
m obtained from the

mapped Gauss quadrature rule for three different values of S ∈ {∞, 2, 1.25}. The modulus of r
(G)
m

is plotted for each value of S and for three different values of m ∈ {3, 5, 8} over the interval [0, 2]

(it is a symmetric function). For clarity, the poles of r
(G)
m are shown for the case m = 3 only.

the rational function r
(T )
m can be written in the form

(3.4) r(T )
m (z) =

2m∑

j=1

w
(T )
j

z
(T )
j − z

.

We now show that r
(T )
m has a close connection with Chebyshev polynomials.

Lemma 3.1. The rational function r
(T )
m can be written as fractional transfor-

mations of Tj(z) = cos(j arccos(z)), the first-kind Chebyshev polynomial of degree j.
More precisely,

(3.5) r(T )
m (z) =

1

α+ β T2m(S+S−1

2 z)
=

1

(α− β) + 2β Tm(S+S−1

2 z)2

with

(3.6) α =
S2m + S−2m

S2m − S−2m
, β =

2

S2m − S−2m
.

Therefore, r
(T )
m is of exact type (0, 2m). Moreover, it is equioscillating 2m+ 1 times

on the interval [−2/(S+S−1), 2/(S+S−1)], alternating between the values (α±β)−1.
Proof. We only consider the first equality in (3.5), the second following from the

relation T2m(z) = 2Tm(z)2 − 1. Let the rational function

(3.7) w(z) =
1

α+ β T2m(S+S−1

2 z)

be defined with α and β as in (3.6). Being clearly of type (0, 2m), it suffices to

prove that w has the same poles as r
(T )
m defined in (3.4) and the same residues at



8 S. GÜTTEL, E. POLIZZI, P. TANG, AND G. VIAUD

these points. We make use of the following formulas for Chebyshev polynomials of a
complex variable [19], namely

T2m

(
z + z−1

2

)
=

z2m + z−2m

2
,

U2m−1

(
z + z−1

2

)
=

z2m − z−2m

z − z−1
,

d

dz
T2m(z) = 2mU2m−1(z),

where U2m−1 is the Chebyshev polynomial of the second kind of degree 2m − 1.

Defining uj = Seiθ
(T )
j , then

S + S−1

2
z
(T )
j =

uj + u−1
j

2
and u2m

j = S2me2i·mθ
(T )
j = −S2m.

Therefore,

α+ β T2m

(
S + S−1

2
z
(T )
j

)
= α+ β T2m

(
uj + u−1

j

2

)

= α+ β
u2m
j + u−2m

j

2

= α− β
S2m + S−2m

2
,

which gives zero when inserting the values of α and β. It remains to show that the

residue of w at z
(T )
j is precisely −w

(T )
j . To this end we make use of the fact that

the residue at a point z of a rational function p/q, where p and q are polynomials
such that q has a simple root at z and p is nonzero there, is given by p(z)/q′(z). The

residue of w at z = z
(T )
j is hence given by

1

d
dz

(
α+ β T2m

(
S+S−1

2 z
))

∣∣∣∣∣∣
z=z

(T )
j

=
1

β m (S + S−1)U2m−1

(
S+S−1

2 z
(T )
j

)

=
1

β m (S + S−1)U2m−1

(uj+u−1
j

2

)

=
1

β m (S + S−1)
u2m
j

−u−2m
j

uj−u−1
j

=
uj − u−1

j

β m (S + S−1) (−S2m + S−2m)
,

which indeed agrees with −w
(T )
j . The equioscillation property of r

(T )
m follows directly

from the equioscillation of T2m.

We learn from Lemma 3.1 that r
(T )
m is precisely a type-1 Chebyshev filter as com-

monly used in electronic filter design; see, e.g., [13, § 13.5]. A graphical illustration of

r
(T )
m is given in Figure 3.2. Note that this rational function is perfectly equioscillating
on the interval [−2/(S + S−1), 2/(S + S−1)], which becomes wider as the ellipse gets



ZOLOTAREV QUADRATURE RULES AND LOAD BALANCING FOR FEAST 9

0 0.5 1 1.5 2
z

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

lo
g 10

|r m

(T
) (z

)|

-1 -0.5 0 0.5 1
Re(z)

-1.0

-0.5

0.0

0.5

1.0

Im
(z

)

S=∞

0 0.5 1 1.5 2
z

m=3
m=5
m=8

-1 -0.5 0 0.5 1
Re(z)

-1.0

-0.5

0.0

0.5

1.0

S=2

0 0.5 1 1.5 2
z

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

-1 -0.5 0 0.5 1
Re(z)

-1.0

-0.5

0.0

0.5

1.0

S=1.25

Fig. 3.2. The contours ΓS along with the associated rational functions r
(T )
m obtained from the

mapped trapezoid quadrature rule for three different values of S ∈ {∞, 2, 1.25}. The modulus of r
(T )
m

is plotted for each value of S and for three different values of m ∈ {3, 5, 8} over the interval [0, 2]

(it is a symmetric function). For clarity, the poles of r
(T )
m are shown for the case m = 3 only.

flatter (S → 1). On the other hand, the function values are between (α ± β)−1 with
β = 2/(S2m−S−2m), so the oscillations become larger as S → 1. In the other limiting
case, when S → ∞, there are no oscillations and

(3.8) r(T )
m (z) =

1

2m

2m∑

j=1

eiπ(j−1/2)/m

eiπ(j−1/2)/m − z
,

which is also known as the Butterworth filter ; see, e.g., [13, § 12.6] or [3]. This relation
between the type-1 Chebyshev and Butterworth filters is well known in the literature

(see, e.g., [5, p. 119]). By symmetry considerations one can show that r
(T )
m in (3.8)

attains the value 1/2 for z = ±1. This property is also shared by r
(G)
m as we show in

the following remark.
Remark 1. Assume that the poles and corresponding weights have a four-fold

symmetry about the origin, i.e., if (w, z) is a weight–pole pair, then also (−w,−z),
(−w,−z), and (w, z) are weight–pole pairs. In this case one can verify that

rm(±1) =

2m∑

j=1

wj

zj − 1
=

m/2∑

j=1

ωj

π

S8 − 1

S8 − 2 cos(2θj)S4 + 1
.

Whatever the values θj, we have

1

π

S4 − 1

S4 + 1

m/2∑

j=1

ωj < rm(±1) <
1

π

S4 + 1

S4 − 1

m/2∑

j=1

ωj .

For S → ∞ we obtain rm(±1) = π−1
∑m/2

j=1 ωj . Therefore for both the Gauss and the
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trapezoid quadrature rules we have
∑m/2

j=1 ω
(G),(T )
j = π/2, hence

lim
S→∞

r(G),(T )
m (±1) =

1

2
.

4. A method based on Zolotarev approximants. Both quadrature rules in
Section 3 achieve a small approximation error for (1.3) throughout the complex plane,
except when z is close to the contour Γ. Assume again that the wanted eigenvalues
of M are contained in the interval (−1, 1). Then for a fast convergence of FEAST,
in view of Theorem 2.2, our main concern should be the accuracy of rm(M) as an
approximation to the indicator function ind[−G,G](M), where

ind[−G,G](z) =

{
1 if z ∈ [−G,G]

0 otherwise,

with some G < 1. We will refer to G as the gap parameter, because it is related
to the gap between the wanted and unwanted eigenvalues. The smaller the value of
G, the larger the gap. Since M has real eigenvalues, it seems natural to concentrate
all of rm’s “approximation power” to the real line. In other words, we are looking
for a rational function rm of degree 2m such that rm is closest to 1 on a largest
possible interval [−G,G] ⊂ (−1, 1), and closest to 0 on a largest possible subset of
the complement. Such a rational function is explicitly known due to an ingenious
construction of Zolotarev [35] and in the filter design literature typically referred to
as band-pass Cauer filter or elliptic filter (see, e.g., [5, § 3.7.4] or [31, § 13.6]). The
construction of this filter makes use of elliptic functions.

Let the Jacobi elliptic function sn(w;κ) = x be defined by1

w =

∫ x

0

1√
(1− t2)(1 − κ2t2)

dt,

and let the complete elliptic integral for the modulus κ be denoted by

K(κ) =

∫ 1

0

1√
(1− t2)(1− κ2t2)

dt.

The following well-known theorem summarizes one of Zolotarev’s findings; we use a
formulation given by Akhiezer [2, Chapter 9].

Theorem 4.1 (Zolotarev, 1877). The best uniform rational approximant of type
(2m − 1, 2m) for the signum function sgn(x) on the set [−R,−1] ∪ [1, R], R > 1, is
given by

sm(x) = xD

∏m−1
j=1 (x2 + c2j)∏m
j=1(x

2 + c2j−1)
with cj =

sn2(jK(κ)/(2m);κ)

1− sn2(jK(κ)/(2m);κ)
,

where κ =
√
1− 1/R2 and the constant D is uniquely determined by the condition

min
x∈[−R,−1]

sm(x) + 1 = max
x∈[1,R]

−sm(x) + 1.

1The definition of elliptic functions is not consistent in the literature. We stick to the defini-
tions used in [2, §25]. For example, in Matlab one would type sn = ellipj(w,kappa^2) and K =

ellipke(kappa^2) to obtain the values of sn(w;κ) and K(κ), respectively.
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Fig. 4.1. Transformed rational function r
(Z)
m (z) based on Zolotarev’s approximant. The param-

eters are m = 3 and R ∈ {1e2, 1e4, 1e6} is varied. The interval of equioscillation about the value 1
is [−G,G], where G = (

√
R − 1)/(

√
R + 1); see formula (4.4). As stated in Corollary 4.2 all poles

lie on the unit circle and appear in complex conjugate pairs.

The last normalization condition in Theorem 4.1 ensures that sm(x) is equioscil-
lating about the value −1 on [−R,−1], and equioscillating about the value 1 on [1, R].
In fact, it is known that there is a number of 4m+2 equioscillation points, a number
that clearly has to be even due to the symmetry sm(−x) = −sm(x). This is one
equioscillation point more than required by Chebyshev’s characterization theorem for
uniform best rational approximations (see, e.g., [21, §2.2]), which states that a ra-
tional function of type (µ, ν) with µ + ν + 2 equioscillation points is a unique best
approximant2.

Let us briefly highlight some properties of sm(x). First of all, sm(0) = 0 due to
the symmetry, and sm(∞) = 0 as sm is a rational function of type (2m− 1, 2m). Let
us define by Em the maximal modulus of the error function em(x) := sgn(x)− sm(x)
over the set [−R,−1] ∪ [1, R], i.e.,

Em := max
x∈[−1,R]∪[1,−R]

|em(x)| = max
x∈[−1,−R]∪[1,R]

| sgn(x)− sm(x)|.

Then |em(x)| takes on its maximum Em at the points x ∈ {−R,−1, 1, R}. In [20,
eq. (3.17)] lower and upper bounds on Em have been given as

(4.1)
4ρm

1 + ρm
≤ Em ≤ 4ρm,

2Note that Chebyshev’s classical equioscillation criterion is typically stated for a single closed
interval and does not strictly apply in the case of two intervals. However, looking closer at Zolotarev’s
construction [35] we find that it is based on a weighted best rational approximant for 1/

√
x on the

single interval [1, R2], on which the equioscillation criterion holds. Zolotarev then uses the relation

sgn(x) = x/
√
x2 to find sm(x).
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where

µ =

(√
R− 1√
R+ 1

)2

, µ′ =
√
1− µ2, ρ = ρ(µ) = exp

(
−πK(µ′)

2K(µ)

)
.

Our aim is to determine a Moebius transformation

(4.2) x = t(z) =
a+ bz

c+ dz

such that the rational function

(4.3) r(Z)
m (z) :=

sm(t(z)) + 1

2

is an approximation of the indicator function ind[−G,G](z) on some interval [−G,G] ⊂
(−1, 1) with gap parameter G < 1.

Due to the symmetry of the indicator function, it is natural to demand that

r
(Z)
m (z) = r

(Z)
m (−z) for real z, and we will also prescribe r

(Z)
m (−1) = r

(Z)
m (1) = 1/2.

This yields the following conditions for the transformation t:

t(−1) = 0, t(−G) = 1, t(G) = R, t(1) = ∞.

From these conditions the transformation t and G are readily determined as

(4.4) x = t(z) =
√
R

1 + z

1− z
, G =

√
R− 1√
R+ 1

.

By construction, the rational function r
(Z)
m is indeed equioscillating about the value

1 for z ∈ [−G,G], and equioscillating about the value 0 for z ∈ [−∞,−G−1] and
z ∈ [G−1,+∞]. The number of 4m + 2 equioscillation points of sm(x) is inherited

by r
(Z)
m (z). Note that a rational transformation of type (1, 1) inserted into a rational

function of type (2m − 1, 2m) in general gives a rational function of type (2m, 2m).
For a visual example see Figure 4.1.

The following corollary summarizes the above findings.

Corollary 4.2. The rational function r
(Z)
m given by (4.3) and (4.4) is the best

uniform rational approximant of type (2m, 2m) of the indicator function ind[−G,G](z)
on

[−G,G] and [−∞,−G−1] ∪ [G−1,+∞].

The error curve e′m(z) := ind[−G,G](z)− r
(Z)
m (z) equioscillates on these sets with error

E′

m := maxz∈[−G,G] |e′m(z)| bounded by

2ρm

1 + ρm
≤ E′

m ≤ 2ρm,

where

µ = G2, µ′ =
√
1− µ2, ρ = ρ(µ) = exp

(
−πK(µ′)

2K(µ)

)
.

Moreover, all 2m poles of r
(Z)
m lie on the unit circle and appear in complex conjugate

pairs.
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Proof. The first statement follows from the fact that r
(z)
m defined in (4.3) has been

obtained from sm(x) by the bijective transformation x = t(z) in (4.2).
The error inequalities follow from (4.3) and (4.1), and the fact that µ = G2.

Finally, from (4.3), we find that zj is a pole of r
(Z)
m if and only if t(zj) is a pole

of sm defined in Theorem 4.1. Inverting the relation x = t(z) and using the fact that

the poles of sm are ±i
√
c2j−1, j = 1, . . . ,m, the poles of r

(Z)
m are found to be

±i
√
c2j−1 −

√
R

±i
√
c2j−1 +

√
R

=
c2j−1 −R

c2j−1 +R
± i

2
√
c2j−1R

c2j−1 +R
, j = 1, . . . ,m,

which are complex conjugate and of modulus 1.
Remark 2. When G (and hence µ) is sufficiently close to 1, it is possible to

use [1, (17.3.11) and (17.3.26)] to derive the asymptotically sharp estimates K(µ) ≃
log(4/µ′) and K(µ′) ≃ π/2 (see also [20]), and thereby give the estimate

E′

m ≃ 2 exp

(
−m

π2

4 log(4/µ′)

)
= exp

(
−m

π2

2 log(16/(1−G4))

)

in terms of elementary functions.

Remark 3. It may be instructive to study the simplest Zolotarev function r
(Z)
m

for m = 1, that is, a rational function of type (2m, 2m) = (2, 2). Let a gap parameter

G < 1 be given. As the poles of r
(Z)
m lie on the unit circle, and due to symmetry must

be ±i, this rational function is of the form

r
(Z)
1 (z) = γ +

2δ

z2 + 1
,

with real numbers γ and δ. Due to the equioscillation property we have r
(Z)
1 (∞) =

γ = 1 − r
(Z)
1 (0), from which we find that 2δ = 1 − 2γ. Also due to equioscillation we

have r
(Z)
1 (G) = 1 + γ, from which we then find γ = −G2/2, i.e.,

r
(Z)
1 (z) = −G2

2
+

1 +G2

z2 + 1
= −G2

2
+

(i+ i G2)/2

z + i
− (i+ i G2)/2

z − i
.

5. Comparison of the three quadrature rules. We are now in the position

to assess the three discussed rational functions r
(G)
m , r

(T )
m , and r

(Z)
m in view of their

performance within the FEAST method for computing eigenpairs. A main tool will be
Theorem 2.2, which allows us to characterize the convergence of FEAST in terms of
the underlying rational function. Again assume that all eigenvalues are ordered such
that for a given rational function rm we have (2.1). We also assume that a number of
ℓ ≤ n wanted eigenvalues λ1, λ2, . . . , λℓ of M are scaled and shifted to be contained
in the interval [−G,G] ⊂ (−1, 1) for some gap parameter G < 1. Finally, assume that
the eigenvalues λn+1, λn+2, . . . , λN , which are those outside the search interval not
“covered” by the n-dimensional search space, are contained in the set (−∞,−G−1] ∪
[G−1,+∞). Such a situation can always be achieved for an appropriately chosen G
provided that rm can separate λℓ and λn+1, i.e., |rm(λn+1)| > |rm(λℓ)|. We can then
compute for each quadrature rule and parameter m the shape parameter S > 1 (for
the Gauss and trapezoid rules), or parameter R > 1 (for the Zolotarev case), so that
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the worst-case convergence factor

(5.1) factorworst(m,G) =
maxz∈(−∞,−G−1]∪[G−1,+∞) |rm(z)|

minz∈[−G,G] |rm(z)|

is smallest possible.

In Table 5.1 we show a comparison of the worst-case convergence factors for
various values of G and m. In practice, the gap paramter G is of course unknown
so that we better consider a whole range of this parameter. As can be seen for all
gap parameters G listed in Table 5.1, the optimal worst-case convergence factors of
the Zolotarev rule consistently outperform those obtained via trapezoid and Gauss
quadrature (with Gauss being slightly better than trapezoid). Let us discuss this
table in some more detail.

Trapezoid rule. For the trapezoid rule (3.4), a “natural” choice of the parameter S
(in Table 5.1 denoted as “S = nat”) is to achieve equioscillation on [−G,G], and by
Lemma 3.1 this means that 2/(S + S−1) = G should be satisfied. Due to the strictly

monotone decay of r
(T )
m outside the interval [−G,G] of equioscillation, the maximum

in (5.1) is always attained at z = ±G−1 and the worst-case convergence factor is given
by

factor
(T )
worst(m,G) =

r
(T )
m (G−1)

r
(T )
m (G)

=
α+ β

α+ βT2m

(
S+S−1

2 G−1
) =

α+ β

α+ βT2m(G−2)
,

with α and β defined in Lemma 3.1.

However, this “natural” choice does not necessarily minimize (5.1), see also Ta-
ble 5.1. We observed numerically that (5.1) decreases monotonically when S → 1.
However, taking S very close to 1 may be problematic from a numerical point of view
because it means that the ellipse ΓS given by (3.1) degenerates to an interval. This

means that the poles of r
(T )
m , which lie on ΓS , come potentially close to the wanted

eigenvalues, rendering the shifted linear systems in FEAST ill-conditioned or even
singular. In our numerical minimization of (5.1) for finding S we have therefore en-
forced the constraint S ≥ 1.01. In most cases reported in Table 5.1 the optimum for
(5.1) was attained for S = 1.01 (or S being very close to this value).

Gauss rule. Due to the irregular behaviour of r
(G)
m defined in (3.3) it appears

difficult to make a direct link between the gap parameter G and the optimal shape
parameter S in the case of Gauss quadrature. For given m and G we have therefore
computed the optimal parameter S by minimizing (5.1) numerically (in Table 5.1
denoted as “S = opt”). Again, similar to the case for the trapezoid rule, we find that
the optimal value for S is very close to 1, causing the ellipse ΓS given by (3.1) to be
very close to the search interval.

Zolotarev rational function. Corollary 4.2 tells us that the interval of equioscil-

lation of r
(Z)
m about the value 1 is [−G,G] when R is chosen such that G = (

√
R −

1)/(
√
R+1) (see also (4.4)). In Table 5.1 this choice is denoted as “R = opt”. More-

over, using the error bounds in that same corollary, the worst-case convergence factor
can be bounded from above as

factor
(Z)
worst(m,G) =

r
(Z)
m (G−1)

r
(Z)
m (G)

=
E′

m

1− E′
m

≤ 2ρm

1− 2ρm
.
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Table 5.1
Worst-case convergence factors (5.1) for various parameter gaps G and (half-) degrees m.

G m
Trapezoid Gauss Zolotarev

S = ∞ S = nat S = opt S = ∞ S = opt R = opt

3 8.86e-1 6.01e-1 6.02e-1 (1.22) 8.15e-1 5.43e-1 (1.41) 1.36e-1
6 7.85e-1 3.15e-1 3.00e-1 (1.02) 4.96e-1 3.40e-2 (1.22) 7.46e-3
9 6.95e-1 1.89e-1 1.01e-1 (1.01) 2.13e-1 5.24e-3 (1.01) 4.51e-4

0.98 12 6.16e-1 1.18e-1 3.14e-2 (1.01) 4.83e-2 1.07e-3 (1.13) 2.74e-5
15 5.45e-1 7.38e-2 9.52e-3 (1.01) 2.37e-2 6.55e-5 (1.08) 1.67e-6
30 2.98e-1 6.24e-3 2.39e-5 (1.01) 1.06e-3 7.89e-10 (1.06) 9.73e-13
40 1.99e-1 1.16e-3 4.50e-7 (1.01) 5.38e-5 1.56e-13 (1.06) 1.23e-16

3 9.88e-1 9.33e-1 9.33e-1 (1.07) 9.80e-1 9.23e-1 (1.28) 3.58e-1
6 9.76e-1 7.84e-1 7.84e-1 (1.07) 9.33e-1 6.64e-1 (1.19) 4.23e-2
9 9.65e-1 6.29e-1 6.29e-1 (1.07) 8.63e-1 1.43e-1 (1.01) 5.83e-3

0.998 12 9.53e-1 5.03e-1 5.04e-1 (1.07) 7.75e-1 1.89e-3 (1.06) 8.26e-4
15 9.42e-1 4.09e-1 4.09e-1 (1.07) 6.76e-1 1.17e-3 (1.11) 1.18e-4
30 8.87e-1 1.79e-1 8.89e-2 (1.01) 2.06e-1 5.63e-6 (1.03) 6.87e-9
40 8.52e-1 1.10e-1 2.73e-2 (1.01) 3.98e-2 6.14e-8 (1.03) 1.05e-11

3 9.99e-1 9.93e-1 9.93e-1 (1.02) 9.98e-1 9.92e-1 (1.26) 6.32e-1
6 9.98e-1 9.72e-1 9.72e-1 (1.02) 9.93e-1 9.51e-1 (1.15) 3.81e-2
9 9.96e-1 9.40e-1 9.40e-1 (1.02) 9.85e-1 8.60e-1 (1.10) 2.31e-2

0.9998 12 9.95e-1 8.98e-1 8.99e-1 (1.02) 9.75e-1 7.36e-1 (1.09) 5.09e-3
15 9.94e-1 8.51e-1 8.52e-1 (1.02) 9.62e-1 5.94e-1 (1.08) 1.14e-3
30 9.88e-1 6.07e-1 6.10e-1 (1.02) 8.60e-1 1.66e-3 (1.04) 6.44e-7
40 9.84e-1 4.81e-1 4.83e-1 (1.02) 7.66e-1 3.71e-4 (1.02) 4.41e-9

3 1.00 9.99e-1 9.99e-1 (1.01) 1.00 9.99e-1 (1.26) 1.00
6 1.00 9.97e-1 9.97e-1 (1.01) 9.99e-1 9.95e-1 (1.15) 2.15e-1
9 1.00 9.94e-1 9.94e-1 (1.01) 9.99e-1 9.84e-1 (1.09) 5.55e-2

0.99998 12 1.00 9.89e-1 9.89e-1 (1.01) 9.97e-1 9.65e-1 (1.07) 1.59e-2
15 9.99e-1 9.82e-1 9.83e-1 (1.01) 9.96e-1 9.35e-1 (1.06) 4.67e-3
30 9.99e-1 9.34e-1 9.38e-1 (1.01) 9.85e-1 6.60e-1 (1.04) 1.08e-5
40 9.98e-1 8.89e-1 8.99e-1 (1.01) 9.74e-1 2.21e-1 (1.01) 1.90e-7

Remark 4. To also appreciate the fact that the Gauss and trapezoid rational
approximants decay for |z| → ∞, whereas Zolotarev equioscillates, we could define
another parameter Geff ≥ G−1, and compute the effective convergence factor

factoreff(m,G,Geff) =
maxz∈(−∞,−Geff ]∪[Geff ,+∞) |rm(z)|

minz∈[−G,G] |rm(z)| .

The parameter Geff corresponds to the modulus of the first unwanted eigenvalue outside
the search interval that is not captured by the n-dimensional search space. As the
Zolotarev rational function is equioscillating towards infinity3, factoreff(m,G,Geff)
will be equal to factorworst(m,G) independently of Geff . On the other hand, for the
trapezoid and Gauss rules, factoreff(m,G,Geff) will decrease as Geff increases.

In practice, however, it is very difficult to get a hand on G and Geff , and even
the number of wanted eigenvalues, in the first place. It is therefore problematic to rely
on the faster convergence that FEAST could potentially exhibit using the trapezoid

3By dropping the absolute term in the partial fraction expansion of r
(Z)
m , which is precisely of

modulus E′
m, this rational function could also be forced to decay for |z| → ∞.



16 S. GÜTTEL, E. POLIZZI, P. TANG, AND G. VIAUD

or Gauss quadrature rules with a sufficiently large n-dimensional search space. An
exceptional case is when storage and communication are not an issue and n can be
made (much) larger than the number of wanted eigenvalues ℓ.

The Zolotarev rule, on the other hand, makes FEAST robust in the sense that
the convergence factor is independent of Geff , and in the following we will discuss this
property in view of the load balancing problem.

6. Load balancing over interval partitions. In order to achieve perfect load
balancing when using FEAST in parallel over multiple search intervals one would
need to know in advance the number of wanted eigenvalues in each search interval,
and then distribute the available parallel resources accordingly. This problem requires
information about the eigenvalue distribution over the whole spectrum of interest, and
this information is often not available (though we also mention the possibility to use
stochastic estimates; see, e.g., [8]). Instead we assume here that the location of the
search intervals as well as an estimate for the number of eigenvalues in each interval
are given. Our goal is then to obtain fast convergence within approximately the
same number of FEAST iterations on each search interval. Some problems related to
dissecting the FEAST method and choosing the subspaces appropriately have been
discussed in [10, 17].

In the original FEAST publication [22] it was suggested to use a subspace size
of ×1.5 the estimated number of eigenvalues ℓ inside a given search interval (i.e.,
n = 1.5ℓ) to obtain a fast convergence using at least 8 nodes for the Gauss quadrature
rule along a semi-circle. While these choices for n and m worked well for a large
number of examples, it is now well understood from the discussions in the previous
sections that they are also far from optimal. In particular, we note the following two
limiting cases for the choice of n when the number of contour points m stays fixed:

• If n is chosen too small (but still n ≥ ℓ), λn+1 could be located very close
to the edges of the search interval. This situation is likely to occur, e.g.,
if the eigenvalues are not evenly distributed and particularly dense at the
edges of the interval. By Theorem 2.2 the convergence is expected to be poor
in particular when |rm(z)| does not decay quickly enough near the search
interval and this is the case with the Gauss and trapezoid quadrature rules;
see Figure 6.1. The dependence of convergence on the value |rm(λn+1)| can
cause difficulties for achieving load balancing when FEAST runs on several
search intervals in parallel. While on some search intervals the method may
converge in, say, 2 to 3 iterations because |rm(λn+1)| ≤ 10−5, other intervals
could require much longer if the subspace size n is not sufficiently large.

• If n is chosen too large, |rm(λn+1)| is likely to be very small and hence con-
vergence would be rapid (see Figure 6.1 in the case of m = 8). However,
the location of λn+1 is not known a priori and using a very large search
space leads to three major problems: (i) a considerable increase in computa-
tion time since n represents the number of right-hand sides to solve for each
shifted linear system, (ii) an increase in communication cost as n vectors need
to be communicated to a master processor at each iteration, and (iii) a possi-
bly highly rank-deficient search subspace Zk which may prevent the reduced
pencil to be constructed stably without explicit orthogonalization of Zk.

Figure 6.1 shows that the Zolotarev rational function (using R = 1e6) has a much
steeper slope near the edges of the search interval than the Gauss and trapezoid rules
(see, in particular, the magnified part). As a result, the a-priori known convergence
factor for Zolotarev can often be obtained using a very small subspace size n (n ≥ ℓ
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with n ≃ ℓ). Moreover, the convergence factor will stay almost constant if n is
increased further. In this sense the convergence of FEAST with the Zolotarev rule is
predictable and robust. In fact, the a priori knowledge of the convergence factor can
be useful for detecting whether the subspace size is chosen large enough: After a few
FEAST iterations one calculates an approximate convergence factor from the decrease
of the eigenvector residuals. If the approximate convergence factor is much worse than
expected from Theorem 4.2 (see also Table 5.1) then n should be increased.
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Fig. 6.1. Comparison of moduli of the rational function r8(λ) for the Gauss (S = ∞), trapezoid
(S = ∞), and Zolotarev (R = 1e6) rules over a larger z-range than the one used in Figures 3.1,
3.2, and 4.1. The magnified part focuses on the variation of the rational functions near the edge
|z| = 1 of the search interval (we also recall that all these functions take the value 1/2 at |z| = 1).

In summary, the delicate choice of n to achieve load balancing and computational
efficiency is greatly simplified with the Zolotarev approach. In practice one can achieve
a uniform convergence behaviour over multiple search intervals by simply covering the

region of interest by translated Zolotarev rational functions r
(Z)
m (z+ t), possibly with

a small overlap. An example of three concatenated Zolotarev functions on the interval
[−3, 3] is given in Figure 6.2. The expected convergence factor for all three FEAST
runs will be the same (provided that n is sufficiently large) and can be calculated from
G = 0.98 and m = 6 using Theorem 4.2 (in this example we read off from Table 5.1
that the expected convergence factor is 7.46e− 3).

7. Numerical experiments. In this section we discuss three numerical exper-
iments stemming from electronic structure calculations and aiming to compare the
robustness and efficiency of FEAST running with Gauss and trapezoid quadrature,
as well as the Zolotarev rational function, respectively. All results have been obtained
using the sparse solver interface of FEAST v2.1 [9], which has been modified for
this article to integrate the Zolotarev nodes and weights for the parameter R = 1e6
(cf. Section 4). All numerical quadratures with the Gauss and trapezoid rules have
been performed along a semi-circle (i.e., S = ∞; cf. Section 3), taking advantage of
the eigenvalue counting approach introduced in FEAST v2.1 [28] (this approach re-
quires the value of rm to be 1/2 at the interval endpoints, see also Remark 1). Finally,
all spectral values λ (including the edges of the search interval) are implicitly stated
in the physical unit of electron Volt (for consistency with the unscaled matrix data all
numerical values should be multiplied by the electron charge q = 1.602176× 10−19).
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Fig. 6.2. Translated rational functions r
(Z)
m (z+2jG), j ∈ {−1, 0, 1}, covering a larger interval

[−3G, 3G]. In this example we have chosen G = 0.98 and m = 6.

7.1. Example I. Let us first consider the cnt matrix which was presented in
[22] and can be found in the FEAST package [9, 23]. This matrix stems from a 2D
FEM discretization of the DFT/Kohn–Sham equations at a cross-section of a (13,0)
Carbon nanotube (CNT) [34]. The corresponding eigenproblem takes the generalized
form (1.1) with A real symmetric and B symmetric positive definite. The size of both
matrices is N = 12, 450 and their sparsity patterns are identical with a number of
nnz = 86, 808 nonzero entries. We are looking for the ℓ = 100 eigenvalues contained
in the search interval [λmin = −65, λmax = 4.96].

Figure 7.1 shows the residual norms (more precisely, the maximum among all
residual norms of all approximate eigenpairs in the search interval) at each FEAST
iteration using three (m = 3) and eight (m = 8) integration nodes for both Gauss,
trapezoid, and Zolotarev. We observe poor convergence with Gauss and trapezoid
using a subspace of small dimension n = 102, i.e., n = ℓ + 2. As expected the
convergence with Gauss and trapezoid systematically improves when the subspace size
n is increased. Zolotarev, on the other hand, converges robustly even with n = 102
and remains to converge at the same rate when n is increased further.

A more detailed comparison between Gauss and Zolotarev for m = 8 is provided
in Figure 7.2. Clearly n = 102 is insufficient for the Gauss rule to achieve a small

value |r(G)
8 (λn+1)|, but for larger subspace sizes this value decreases and hence Gauss

converges faster. As |r(Z)
8 (λ103)| is sufficiently small, Zolotarev attains its theoretical

convergence factor of 1.12×10−2 (calculated using the results of Section 5) for n = 102.

7.2. Example II. We now present a case where even a large subspace size of n =
1.5ℓ is not enough to yield satisfactory FEAST convergence with Gauss quadrature.
This generalized eigenproblem, Caffeinep2, is obtained from a 3D quadratic FEM dis-
cretization of the Caffeine molecule (C8H10N4O2), using an all-electron DFT/Kohn–
Sham/LDA model [18, 11]. The size of both matrices A and B is N = 176, 622 and
their sparsity patterns are identical with nnz = 2, 636, 091 nonzero entries. The eigen-
values can be classified into so-called core, valence, and extended/conduction electron
states. We are here searching for the first ℓ = 57 eigenvalues contained in the interval
[λmin = −711, λmax = −0.19] covering the three physical state regions.

Figure 7.3 shows the moduli of the Gauss and Zolotarev rational functions with
m = 8. For Gauss, the choice of two subspace sizes n = 71 (i.e., n ≃ 1.25ℓ) and

n = 85 (i.e., n ≃ 1.5ℓ) are highlighted with their corresponding values |r(G)
m (λn+1)|.

Both values make us expect very poor convergence factors for FEAST, and indeed
after 41 iterations the residual norms are found to have decreased only to 2.4× 10−5

(n = 71) and 4.8× 10−6 (n = 85), respectively. For Zolotarev the figure indicate that
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Fig. 7.1. FEAST residual convergence for the cnt matrix using Gauss, trapezoid, and
Zolotarev. We have used m = 3 (left) and m = 8 (right) nodes while varying the subspace size
n ∈ {102, 125, 150, 200}. The residual norms are reported starting with the iteration where the
number of eigenvalues in the search interval stabilizes at 100.

the theoretical converge rate is already attained using a subspace size of n = 71, in
which case FEAST converges within 9 iterations to a residual norm of 7.8 × 10−14.
With n = 59 Zolotarev-FEAST converges to about the same residual norm in 23
iterations.

From the results in Examples I and II we conclude that the suggested choice of
n = 1.5ℓ for Gauss (see [22]) is capable of providing good convergence rates but it
lacks robustness. The initial choice of a subspace size n = 1.5ℓ with Zolotarev will
typically be safer in practice. Note that the subspace size can easily be truncated after
the first few FEAST iterations without affecting the theoretical convergence factor.

7.3. Example III. With the matrix Caffeinep2 from Example II we now evalu-
ate the efficiency of Zolotarev in terms of load balancing when using two search inter-
vals. The first one, [−711,−4], captures the ℓ1 = 51 core and valence electron states
while the second one, [−4, 1.995], captures the first ℓ2 = 55 extended/conduction
electron states.

Table 7.1 reports the number of FEAST iterations needed to converge to a residual
norm below 10−13 using both Gauss and Zolotarev with a subspace size of nj ≃ 1.5ℓj
for the two intervals, i.e., n1 = 76 and n2 = 83. The results indicate that the number of
FEAST iterations required on different search intervals can differ significantly using
Gauss, whereas Zolotarev is capable of providing reliable load balancing. This is
consistent with the discussions in Section 6.

Summary and future work. We have studied Zolotarev rational functions as
filters in the FEAST eigensolver. We have quantified the expected Zolotarev con-
vergence factor and compared it analytically and numerically with the convergence
factors obtained via trapezoid and Gauss quadrature. The Zolotarev rational func-
tions possess a very steep slope at the interval endpoints which often allows for a
decrease of the search space dimension. Moreover, these functions do not decay to-
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(G)
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8 at the eigenvalues of the Caffeinep2

matrix in the search interval [λmin = −711, λmax = −0.19]. The moduli of the rational functions are
given by the height of the vertical lines, and the λ-position indicates the eigenvalue. For visual clarity
we have removed from the plots the large gap between the core eigenvalues (part on the left) and
valence/conduction eigenvalues (part on the right), where no eigenvalues are found. The function
values for Gauss (in the top) are plotted in linear scale while the ones for Zolotarev (in the bottom)
are plotted in logarithmic scale. There are 57 eigenvalues located in the search interval, and the
horizontal lines provides information about the moduli of the rational functions evaluated at λn+1

for various subspace sizes n, namely n ∈ {71, 85} for Gauss and n ∈ {59, 71} for Zolotarev.
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Table 7.1
Number of required FEAST iterations for the Caffeinep2 example using Gauss and Zolotarev

rules on two search intervals. Three cases m = 8, m = 16, and m = 32 are considered. The number
of eigenvalues in the intervals is ℓ1 = 51 and ℓ2 = 55, and the sizes of the search subspaces has been
set to n1 = 76 and n2 = 83, respectively. For m = 32, the symbol “ ∗” indicates that the size of the
subspace Zk has been resized to a smaller dimension by FEAST v2.1 [28].

Gauss Zolotarev
Intervals m = 8 m = 16 m = 32 m = 8 m = 16 m = 32

[−711,−4] 39 9 5 8 4 3∗

[−4, 1.995] 5 3 3∗ 9 4 2∗

wards infinity which causes FEAST to converge at a predictable, and analytically
known, rate (for a sufficiently large search space dimension). We discussed the impli-
cations in view of load balancing. The new Zolotarev rules will be part of the next
FEAST release, version 3.

Several questions remain open for future work. First of all, some of the poles of
the Zolotarev rational functions move very close to the real line. The same is true
for the mapped Gauss rule, and even the trapezoid rule when a flat ellipse is used as
the contour. It is not clear what is the effect of these poles nearby the search interval
on the accuracy of the linear system solver. We have observed numerically that the
weights are approximately proportional to the imaginary parts of their associated
poles so that, possibly, inaccuracies in the linear system solves are damped out. The
numerical experiments performed did not indicate any problems with instability.

Another question is how the Zolotarev “quadrature rules” generalize to moments
of higher order. We have numerically observed that the Zolotarev rules integrate
higher-order moments quite accurately when a polynomial weight function is intro-
duced in (1.2). Also it may be beneficial to distribute the number of equioscilla-
tion points of the Zolotarev rational function differently, for example, placing more
equioscillation points outside the search interval than inside. Such a rational function
can easily be constructed using, e.g., the two-interval Zolotarev approach in [7].
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[10] M. Galgon, L. Krämer, and B. Lang. The FEAST algorithm for large eigenvalue problems.

PAMM, 11(1):747–748, 2011.
[11] B. Gavin and E. Polizzi. Non-linear eigensolver-based alternative to traditional SCF methods.

J. Chem. Phys., 138(19):194101, 2013.
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