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Continuation of Bifurcations of Periodic Orbits for Large-Scale Systems∗
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Abstract. A methodology to track bifurcations of periodic orbits in large-scale dissipative systems depending
on two parameters is presented. It is based on the application of iterative Newton–Krylov techniques
to extended systems. To evaluate the action of the Jacobian it is necessary to integrate variational
equations up to second order. It is shown that this is possible by integrating systems of dimension
at most four times that of the original equations. In order to check the robustness of the method,
the thermal convection of a mixture of two fluids in a rectangular domain has been used as a test
problem. Several curves of codimension-one bifurcations, and the boundaries of an Arnold’s tongue
of rotation number 1/8, have been computed.

Key words. continuation methods, numerical computation of invariant objects, periodic orbits, bifurcation
tracking, extended systems, Newton–Krylov methods, variational equations

AMS subject classifications. 37G15, 37L15, 37L20, 37M05, 37M20, 65P30, 65Z05, 76D05, 76E06, 76M22

DOI. 10.1137/140981010

1. Introduction. The study of dynamical systems involves, in addition to pure numerical
simulations, the computation of invariant manifolds (fixed points, periodic orbits, invariant
tori, etc.) and the connections among them (homo- and heteroclinic orbits and heteroclinic
chains), the investigation of the stability of these objects, and the examination of their bifur-
cations when the parameters present in the system are varied. These essential tools help to
understand the full dynamics of the system and its dependence on the parameters. The ex-
istence of robust continuation and bifurcation packages such as AUTO [10], CONTENT [22],
MATCONT [7], etc., allows many of these calculations to be almost routinely performed for
moderate-dimensional systems of ordinary differential equations (ODEs). These packages in-
clude the continuation of codimension-one bifurcations of fixed points, and even of periodic
orbits, and some also include the detection and analysis of codimension-two points. They
implement direct solvers for the linear systems involved in the computations, and find the full
spectrum when solving eigenvalue problems to study of the stability of the invariant objects.

The theory of the extended systems used in these packages to follow bifurcations of fixed
points is well developed and can be found in, among others, [42, 26, 18, 53, 29, 5, 16]. The
bordered systems for periodic orbits, based on boundary value problems, are analyzed in [11].
In this latter case piecewise collocation in time is used instead of shooting methods.

The difficulties in the application of these methodologies to high-dimensional systems,
obtained in most cases by discretizing systems of partial differential equations (PDEs), come
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from the implementation of the linear algebra. Relatively new techniques, based on Krylov
or Arnoldi methods [30, 31], have allowed the study of large systems; in many cases in com-
putational fluid dynamics. Inexact Newton–Krylov methods are used to find mainly fixed
points, along with subspace iteration or Arnoldi methods to study their stability [12, 2, 24, 9].
Preconditioning is usually needed to overcome the difficulty of achieving fast convergence of
these iterative methods when computing steady solutions.

The computation of periodic orbits in high-dimensional systems is more recent. Newton–
Picard algorithms were used in [25] and implemented in the package PDECONT, a limited
memory Broyden method was applied in [46], and Newton–Krylov techniques were used in [38].
Nontrivial extensions to parallel-shooting [36] and to the calculation of the coefficients of a
normal form at a multicritical periodic orbit [41] were later implemented. The continuation
of invariant tori was considered first in [40] and then improved with a parallel method in [37].
The computation of two-dimensional unstable manifolds of periodic orbits was tackled in [47].

The continuation of bifurcations of fixed points of large-scale dynamical systems has its
starting point in the work of Cliffe [4]. He computed saddle-node and pitchfork bifurcations
in the Taylor–Couette problem, a classical subject in fluid mechanics, using finite elements.
He also detected the presence of cusp points. The only general purpose package designed for
large-scale applications, LOCA [33], allows tracking steady solutions, their codimension-one
points [34], and phase transitions. As far as we know, the only attempt to compute bifurcations
points of periodic orbits was reported in [13]. The authors obtained period-doubling points
of cycles by using Newton–Picard methods in an extension of their previous work on the
computation of limit cycles [25].

Two recent reviews [19, 9] present the current status of the application of dynamical
systems techniques in fluid dynamics, including several examples showing the relevance of
these methods in the understanding of turbulence.

In this paper we develop a new efficient methodology for the continuation of the codi-
mension-one bifurcations of periodic orbits, including the pitchfork bifurcation present in
reflection-symmetric systems. It is based on the combination of Newton–Krylov techniques
applied to extended systems and the integration of systems of variational equations up to
second order. Shooting methods are used to solve the boundary value problems defining
the periodic orbits. Collocation methods in time would add a new dimension to discretize,
leading to huge systems to solve. The initial dimension of the system, already large, would be
multiplied by the number of collocation points. The extended systems used here are adapted
from those usually found in the literature for fixed points of maps [21]. A deflation term is
needed in some cases to remove the trivial +1 multiplier of the periodic orbits. As far as
we know, this is the first time these techniques are used in the numerical study of curves of
bifurcations in PDEs. It will be shown that once the problem has been discretized, it is only
necessary to integrate systems of ODEs of dimension at most four times that of the original
system. This minimizes the computational cost.

Two main tools are required to implement the algorithms presented here: a generic contin-
uation code and a time integrator for the particular problem at hand, including the required
variational equations. Section 2 describes a general Newton–Krylov continuation code, with-
out referring to any specific software package, and it is recalled how it can be applied to
compute periodic orbits. With this information it is easy to see how to adapt such a code to
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follow loci of bifurcation points of cycles. It is also assumed that the time integrator properly
solves initial value problems. If a multistep method is used for a system of truncated PDEs,
then a mechanism for starting the time integration, for instance with variable step size and/or
variable order, is essential.

The thermal convection of a mixture of two fluids in a two-dimensional rectangular box
is used as a test problem. It is known that the onset of convection is oscillatory below a
certain negative value of one of the parameters (the separation ratio), giving rise to very
complex dynamics. A nontrivial diagram of periodic orbits is first deployed by varying only
a parameter (the Rayleigh number), and some of the bifurcations found on the main branch
of periodic orbits are followed by adding a second parameter (the Prandtl number). Several
codimension-two points are found, and one of them, a double-Hopf, is studied in more detail
to show the robustness and power of the method. Finally, the boundaries of a resonance region
(Arnold’s tongue) found in [40] are also computed.

The layout of the paper is as follows. As mentioned, section 2 describes Newton–Krylov
continuation methods and their application to the computation of cycles, and section 3
describes the extended systems used to track the different codimension-one bifurcations. Sec-
tion 4 describes the example problem, including the particular form of the variational equations
in section 4.1. Section 5 contains the results, starting with the bifurcation diagrams of periodic
orbits and invariant tori. Section 5.1 describes the curves of bifurcation, section 5.2 presents
results on the resonance region, and section 6 includes information on the performance of the
algorithms on the test problem. Finally, the paper concludes with section 7 which includes
some remarks on the straightforward extensions to bifurcations of fixed points and to higher
codimension cases.

2. Matrix-free continuation methods. Continuation methods allow following one-dimen-
sional manifolds of solutions of a nonlinear system

(1) H(X) = 0,

starting at an initial X0, with X ∈ U ⊂ R
m+1, H(X) ∈ R

m, and U being the domain of defi-
nition of H. If rank(DXH(X0)) = m, (1) defines, locally, a curve of solutions passing through
X0 [20, 43]. To fix ideas, the first m components of X, X̃ = (X1, . . . ,Xm) can be regarded
as state variables, and the last as a parameter of the system. Predictor-corrector implemen-
tations compute an approximate new solution by extrapolation from previously computed
points, which is corrected by different variants of Newton’s method. To do so, continuation
algorithms add a new equation to system (1), which is usually the equation of a hyperplane
passing through the predicted point and with normal vector an approximation of the tangent
to the curve of solutions, which can also be approximated from previous points. In this way
the hyperplane cuts the manifold of solutions transversely, and the full system defines a unique
new set of state variables and the corresponding value of the parameter satisfying (1). Possible
implementations differ in the way the extrapolation is performed [43] and in the variant of
Newton’s method employed. In some cases globalization techniques are used [27] in order to
extend the domain of convergence.

In the case of large-scale systems, the direct linear solvers are substituted by iterative
methods. Among them, matrix-free methods based on Krylov subspaces are preferred [30, 9].
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The restarted generalized minimal residual method (GMRES(M)) [32] has always been used
in this paper. To solve a linear system Ax = b, these methods require a subroutine that
computes the action by the matrix, v → Av, and a preconditioning subroutine that solves
linear systems with a matrix M, which approximates A. The latter subroutine is needed to
accelerate the convergence of the linear solvers. Instead of Ax = b, the left preconditioned
system M−1Ax = M−1b, for instance, is solved. To apply M−1 the operator M must be
relatively easy to invert. When equilibria of fluid mechanics or reaction-diffusion problems are
computed, the operator M might correspond to the discretization of only the dissipative part
of the equations, since in most cases it is responsible for the bad conditioning of the Jacobian
of H with respect to the first m components, DX̃H (see [45], for instance).

Therefore, a generic continuation code needs the user to provide an initial solution, X0,
and the following three main subroutines:

• fun(X, h), computing the function h = H(X) from X;
• dfun(X, δX, δh), which computes the action by the Jacobian δh = DXH(X)δX from
X and δX; and

• prec(X, δY, δZ), which solves MδZ = δY from X and δY , with M being an approxi-
mation of DX̃H(X).

Newton–Krylov continuation codes, including other refinements such as studying the sta-
bility of the solutions, bifurcation detection [15], and branch switching at bifurcation points,
have been developed by many authors (see [9] and references therein), usually to compute
fixed points of large-scale vector fields. By properly defining H, other invariant objects can be
obtained using the same basic algorithm. The availability of several libraries of linear solvers
(see, for instance, [1, 14]) makes the coding of Newton–Krylov continuation programs rela-
tively easy. In the rest of the paper we will assume that one such code is available, and we will
only focus on setting the function H, specifying the different invariant objects or bifurcation
loci, and on how the action by the Jacobian of H can be efficiently computed.

For the kind of problems we will study, the preconditioning subroutine will not be needed,
and therefore no further references to prec will be made. The reasons are explained in
section 6.

2.1. Continuation of periodic orbits. We explain here, for completeness, how to use the
previous techniques for the computation of periodic orbits by Newton–Krylov methods. The
changes required to go one step forward and compute their bifurcation loci will then be easier
to follow. Since their introduction in [39], these methods have been applied by several authors
for the computation of limit cycles in different problems [48, 28, 49, 51, 50, 52, 17]. Poincaré
sections were used in [39], but in this paper they are avoided just to simplify the formulation
of the extended systems for the loci of bifurcations in the next section.

Consider a high-dimensional autonomous system of dissipative ODEs,

(2) ẏ = f(y, p), (y, p) ∈ V ⊂ R
n × R

k,

with V being the domain of definition of f . We assume, for the moment, that it depends
on a single distinguished parameter p (k = 1). The system could have been obtained, as in
section 4, after the spatial truncation of a system of parabolic PDEs. Let ϕ(t, x, p) be its
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solution with initial condition x at t = 0 for a fixed p. It satisfies

(3) Dtϕ(t, x, p) = f(ϕ(t, x, p), p) and ϕ(0, x, p) = x.

A one-dimensional manifold of periodic orbits of (2) (more precisely, a point of each cycle)
is given by the system

H(X) =

(
x− ϕ(T, x, p)

g(x)

)
= 0,(4)

with X = (x, T, p), and where g(x) = 0 is a phase condition selecting a single point on the
orbit. For simplicity we use the equation of a hyperplane, cutting transversely the periodic
orbit, of the form g(x) = v�π (x − xπ) = 0, passing through a point xπ and with normal
vector vπ. Each solution of (4) obtained during a continuation process provides a point on the
periodic orbit x, its period T , and the value of the parameter p corresponding to the orbit.

For this particular invariant object, the subroutines fun and dfun of a generic continuation
code have to work as follows. If X = (x, T, p), fun(X, h) has to integrate the system (2) T
units of time, with initial condition y(0) = x, to compute x − ϕ(T, x, p), with T being the
approximate period contained in X. It also has to evaluate g(x). If X = (x, T, p) and
δX = (δx, δT, δp), dfun(X, δX, δh) must compute the action of the Jacobian DXH on the
vector δX, i.e.,

(5) DXH(X)δX =

(
δx−Dtϕ(T, x, p)δT −Dxϕ(T, x, p)δx −Dpϕ(T, x, p)δp

Dxg(x)δx

)
.

For this purpose let us define

y(t) = ϕ(t, x, p),(6)

y1(t) = Dxϕ(t, x, p)δx +Dpϕ(t, x, p)δp.(7)

Since ϕ(t, x, p) is the solution of (2), i.e., (3) holds, then Dtϕ(T, x, p) = f(y(T ), p) = ẏ(T ). In
addition, by taking time derivatives of (6) and (7), the system

ẏ = f(y, p),(8)

ẏ1 = Dyf(y, p)y1 +Dpf(y, p)δp(9)

is obtained for y(t) and y1(t). Moreover, y(0) = x, and since ϕ(0, x, p) = x for any p,
Dxϕ(0, x, p) = I and Dpϕ(0, x, p) = 0. Then y1(0) = Dxϕ(0, x, p)δx +Dpϕ(0, x, p)δp = δx.

Summarizing, dfun must integrate (8) and (9) from t = 0 to t = T , with initial conditions
y(0) = x and y1(0) = δx, for the values of T , p, and δp contained in X and δX. Then

(10) DXH(X)δX =

(
δx− ẏ(T )δT − y1(T )

Dxg(x)δx

)
.

Equation (9) is a first order variational equation obtained by linearizing (8) about y(t).
These calculations imply the integration of systems of at most 2n equations. The bifur-

cation diagrams of periodic orbits in section 5 were obtained in this way.
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It has been supposed that equations (4) completely determine a unique periodic orbit.
Some problems may require additional conditions. For instance, in systems with translational
or rotational invariances in periodic domains, the spatial phases must be specified (see [48, 35]).
This can be solved by fixing some components of the state vector x or, in general, by adding
new phase conditions like that used to fix the translational time invariance (g(x) = 0). Their
inclusion does not modify the above setup.

3. Continuation of bifurcation curves. Suppose now that the system (2) depends on
two distinguished parameters p = (p1, p2) (k = 2). We are interested in tracking curves
of codimension-one bifurcations of periodic orbits in systems with or without symmetries.
Therefore, we must define, for each particular kind of bifurcation, the corresponding extended
system H(X) = 0. The augmented systems are described in the following subsections. The
case of turning points (saddle-nodes) or period-doubling bifurcations is treated in more detail
to show how to deal with the computation of the action by the Jacobian, which involves the
integration of second order variational equations.

3.1. Saddle-node and period-doubling bifurcations. The saddle-node and period-
doubling bifurcations of periodic orbits can be treated simultaneously by means of a vari-
ant of the formulation in [42, 26]. It was originally studied for fixed points of ODEs, and
it is adapted here for the singularities of the equation x − ϕ(t, x, p) = 0. The two types of
bifurcation points are solutions of the system H(x, u, T, p) = 0 given by

x− ϕ(T, x, p) = 0,(11)

g(x) = 0,(12)

λu−
(
Dxϕ(T, x, p)u− 1

2
(1 + λ)

〈w, u〉
〈w,w〉w

)
= 0,(13)

〈ur, u〉 = 1,(14)

with w = f(x, p) and 〈· , ·〉 being the Euclidean dot product. The two cases are distinguished
by setting λ = +1 and λ = −1, respectively. The first two equations are the same as in (4).
They define a single point on a periodic orbit of (2), satisfying the phase condition g(x) = 0.

In the case of saddle-node bifurcations (λ = +1) the third equation becomes

Dxϕ(T, x, p)u − 〈w, u〉
〈w,w〉w = u,

which states that there is an eigenvector u corresponding to the eigenvalue +1 of Dxϕ(T, x, p)
orthogonal to the trivial w = f(x, p). This is the main difference from the classical formulation
in [26]. The Wieland’s deflation term (see [30]), (〈w, u〉/〈w,w〉)w, shifts the trivial +1 to zero.
This guarantees the regularity of the global system (11)–(14).

For period-doubling bifurcations (λ = −1) the third equation is Dxϕ(T, x, p)u = −u,
stating that there is an eigenvector u corresponding to the eigenvalue −1 of Dxϕ(T, x, p).

Finally, 〈ur, u〉 = 1 fixes the undetermined multiplicative constant of the eigenvector, with
ur being a reference vector. We have used ur = u in the computations of section 5, changing
the derivatives of this equation accordingly.
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The extended system (11)–(14) fits into the general framework of Newton–Krylov methods
presented in section 2, with X = (x, u, T, p) a vector of unknowns of dimensionm+1 = 2n+3,
andH(x, u, T, p) = 0 a system ofm = 2n+2 equations. This defines, locally, a one-dimensional
manifold of codimension-one bifurcations, close to any initial solution X0.

In order to obtain H(x, u, T, p), we proceed as in section 2.1. Let us define

y(t) = ϕ(t, x, p),

y1(t) = Dxϕ(t, x, p)u,

which satisfy

ẏ = f(y, p), y(0) = x,

ẏ1 = Dyf(y, p)y1, y1(0) = u.

By integrating these equations a time T , ϕ(T, x, p) = y(T ) and Dxϕ(T, x, p)u = y1(T ) are
obtained. The computation of the deflation term and (12) and (14) is straightforward. The
corresponding subroutine fun would be similar to the dfun for the computation of periodic
orbits, except for the deflation term and (14), which must be added.

The action of DXH(x, u, T, p) on (δx, δu, δT, δp) is

δx−Dtϕ(T, x, p)δT −Dxϕ(T, x, p)δx −Dpϕ(T, x, p)δp,(15)

Dg(x)δx,(16)

λδu −D2
txϕ(T, x, p)(u, δT ) −D2

xxϕ(T, x, p)(u, δx) −D2
xpϕ(T, x, p)(u, δp)(17)

−Dxϕ(T, x, p)δu

+
1 + λ

2〈w,w〉

(
〈w, u〉z +

(
〈z, u〉 + 〈w, δu〉 − 2〈w, z〉

〈w,w〉 〈w, u〉
)
w

)
,

〈ur, δu〉,(18)

where w = f(x, p) and z = Dxf(x, p)δx+Dpf(x, p)δp.
In order to compute the different terms in (15) and (17) let us define

y(t) = ϕ(t, x, p),(19)

y1(t) = Dxϕ(t, x, p)u,(20)

y2(t) = Dxϕ(t, x, p)δx +Dpϕ(t, x, p)δp,(21)

y3(t) = D2
xxϕ(t, x, p)(u, δx) +D2

xpϕ(t, x, p)(u, δp),(22)

y4(t) = Dxϕ(t, x, p)δu.(23)

The vectors yi(T ), i = 1, . . . , 4, contain the required derivatives of ϕ(T, x, p) and Dxϕ(T, x, p)u
with respect to x and p. By taking time derivatives like in the case of the periodic orbits, it
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is not difficult to see that the system which must be integrated to obtain them is

ẏ = f(y, p), y(0) = x,(24)

ẏ1 = Dyf(y, p)y1, y1(0) = u,(25)

ẏ2 = Dyf(y, p)y2 +Dpf(y, p)δp, y2(0) = δx,(26)

ẏ3 = Dyf(y, p)y3 +D2
yyf(y, p)(y1, y2) +D2

ypf(y, p)(y1, δp), y3(0) = 0,(27)

ẏ4 = Dyf(y, p)y4, y4(0) = δu.(28)

Finally, the second term of (15) is computed as before, and that of (17) needs only the
evaluation of the action by Dyf(y(T ), p), i.e.,

Dtϕ(T, x, p)δT = f(y(T ), p)δT = ẏ(T )δT,

D2
txϕ(T, x, p)(u, δT ) = δT Dyf(ϕ(T, x, p), p)Dxϕ(T, x, p)u = δT Dyf(y(T ), p)y1(T ).

Obtaining the rest of the terms in (17) is straightforward, requiring also derivatives of f(y, p).
The difference between systems (8)–(9) and (24)–(28) is the presence of two new first

order variational equations, (25) and (28), and one second order variational equation, (27). If
a subroutine dfun for cycles is already available, it could be completed for this new task.

Summarizing, the evaluation of H(X) requires the integration of a system of ODEs of
dimension 2n, and that of DXH(X)δX requires the integration of a system of dimension 5n.
Since (28) is only coupled with (24), it is possible to separate the system into two subsystems,
which can be solved sequentially or in parallel. Equations (24)–(27) form a coupled triangular
system of ODEs, with a total dimension 4n, which provide y, y1, y2, and y3. Equations (24)
and (28), with total dimension 2n, must be solved together to obtain y4.

It is important to notice that, since the way DXH(X)δX is computed gives the exact
action of the Jacobian DXH(X), the quadratic convergence of Newton’s method can be
preserved. This is an essential ingredient for efficiency, and it is what happens in the example
presented below. The approximation of DXH(X)δX by finite differences usually leads to a
slower convergence, if any.

3.2. Neimark–Sacker bifurcations. A Neimark–Sacker bifurcation point of a periodic
orbit, with critical multiplier eiθ and associate eigenvector u+ iv, is a solution of the system
H(x, u, v, T, θ, p) = 0, defined in [18] for fixed points of ODEs and in [21] for that of maps,
and modified here to include the phase condition. It is given by

x− ϕ(T, x, p) = 0,(29)

g(x) = 0,(30)

u cos θ − v sin θ −Dxϕ(T, x, p)u = 0,(31)

u sin θ + v cos θ −Dxϕ(T, x, p)v = 0,(32)

〈u, u〉 + 〈v, v〉 = 1,(33)

〈u, v〉 = 0.(34)

The first two equations define again a single point on a periodic orbit of (2), satisfying the
phase condition g(x) = 0. The third and fourth are obtained by separating real and imaginary
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parts of Dxϕ(T, x, p)(u+iv) = eiθ(u+iv), and the last two uniquely determine the eigenvector.
The vector of unknowns X = (x, u, v, T, θ, p) has dimension m + 1 = 3n + 4, and the m =
3n+3 equations define the curve of Neimark–Sacker bifurcation points. The work required to
evaluate H(X) and DXH(X)δX doubles since there are now two products by Dxϕ(T, x, p) in
the system. They can obviously be computed in parallel. All the terms required to compute
H or the action by its Jacobian have already been considered in the previous subsection.

3.3. Pitchfork bifurcations. Suppose now that the initial system is T -invariant, i.e.,
f(T x, p) = T f(x, p), with T a linear transformation verifying T 2 = I, and that we are looking
for symmetry-breaking bifurcations of fixed cycles satisfying T x(t) = x(t) ∀t. Two possible
extended systems are available in the literature to follow the pitchfork bifurcations. The first
consists in using the same system as that for the saddle-node bifurcation, but restricting x to
the subspace of T -symmetric vectors and u to that of T -antisymmetric vectors [53]. To benefit
from the reduced dimension of the system to be solved, the time integration should be able
to work on symmetric or antisymmetric subspaces. Another possibility, which is only a slight
modification of the saddle-node system, was introduced in [16] for the pitchfork bifurcations
of fixed points of ODEs. For periodic orbits, a deflation term must be added, as in the case
of saddle-node points, to avoid the singularity of the system due to the presence of the trivial
+1 multiplier. Let H(x, u, T, ξ, p) = 0 be

x− ϕ(T, x, p) + ξφ = 0,(35)

g(x) = 0,(36)

〈x, φ〉 = 0,(37)

u−
(
Dxϕ(T, x, p)u − 〈w, u〉

〈w,w〉w
)

= 0,(38)

〈ur, u〉 = 1,(39)

with w = f(x, p). The slack variable ξ and the third equation are introduced to make the
system regular, with φ being a given antisymmetric vector, T φ = −φ. At the solution ξ = 0.
See [16] for details. Now X = (x, u, T, ξ, p) has dimension m+1 = 2n+4, and the m = 2n+3
equations define the curve of pitchfork points.

In the case of symmetric cycles, i.e., when T ϕ(T/2, x, p) = x, the same methods can be
used but the time required to integrate the systems is reduced by half.

All of the above extended systems can also be written in terms of a Poincaré map. Then
the deflation term is not needed, and T is obtained as a by-product (the time needed to
come back to the initial point at the last iteration of Newton’s method), but then some kind
of interpolation must be included to compute the intersection of the trajectories with the
section, and the action of the derivatives of the map ϕ(t, x, p) involves projections onto the
section [44, 23, 38]. In any case this is a second option.

The bifurcations of steady solutions can also be continued with the preceding systems by
taking as T a characteristic time of the problem, which is no longer an unknown, and removing
the phase condition. This is not, in general, the most efficient method because it involves time
integrations, but it prevents the need for finding adequate preconditioners for the standard
extended systems.
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4. Thermal convection in binary fluid mixtures. The thermal convection of a binary
mixture, filling a two-dimensional rectangular domain Ω heated from below, has been used as
a test problem. It is not trivial and gives rise to a very rich dynamics with all the types of
bifurcations we are interested in continuing, and, in addition, since it was also used in [40, 37],
we had already located some bifurcation points, which are taken here as initial conditions to
follow the curves of bifurcations.

The equations of the system are the conservation of mass, momentum, and energy and that
for the evolution of one of the concentrations (the denser in this case) [6]. The units used to
write them in nondimensional form are the height of the domain h, the thermal diffusion time
h2/κ, where κ is the thermal diffusivity, the temperature difference, ΔT , between the top and
bottom sides, and C̄(C̄ − 1)D′ΔT/D, where C̄ is the volume-average concentration, D > 0
the mass diffusion coefficient, and D′ the thermal diffusion coefficient. In nondimensional
units Ω = [0,Γ] × [0, 1], where Γ is the width l to the height ratio, and now x and y are the
horizontal and vertical coordinates, respectively.

The basic conductive and linearly stratified state, which is a solution of the equations for
any value of the parameters, is given by zero velocity vb = 0, and nondimensional temperature
Tb = Tb(0) − y and concentration Cb = Cb(0) − y linear profiles. The values Tb(0) and Cb(0)
are related constants because of the boundary conditions defined below. The Boussinesq
approximation of the equations for the perturbation (v,Θ,Σ), of the basic state (vb, Tb, Cb),
is written in terms of a stream–function, ψ, i.e., v = (−∂yψ, ∂xψ), and an auxiliary function
η = Σ−Θ. They are

∂t∇2ψ + J(ψ,∇2ψ) = σ∇4ψ + σRa [(S + 1)∂xΘ+ S∂xη] ,(40)

∂tΘ+ J(ψ,Θ) = ∇2Θ+ ∂xψ,(41)

∂tη + J(ψ, η) = L∇2η −∇2Θ,(42)

with J(f, g) = ∂xf∂yg−∂yf∂xg. No-slip (v = 0 on ∂Ω) and nonporous (∂n(Σ−Θ) = 0 on ∂Ω)
conditions at the boundaries become ψ = ∂nψ = ∂nη = 0, and constant temperature at top
and bottom and insulating lateral sides, in terms of the temperature perturbation, are Θ = 0
on y = 0, 1 and ∂xΘ = 0 on x = 0,Γ. Notice that in this way the incompressibility condition
is identically fulfilled, the boundary conditions for Θ and Σ decouple, and the number of
unknowns is reduced.

The problem depends on the aspect ratio, Γ, the nondimensional Rayleigh, Ra, Prandtl,
σ, and Lewis, L, numbers, and the separation ratio, S, defined as

Γ =
l

h
, Ra =

αgΔTh3

κν
, σ =

ν

κ
, L =

D

κ
, S =

C̄(1− C̄)βD′

αD
,

respectively. In the definitions of the parameters ν means the kinematic viscosity, and α and
β (taken positive) are the thermal and compositional expansion coefficients, respectively.

In the continuation experiments of bifurcation points we fix Γ = 4, L = 0.03, and S =
−0.1. The last two values correspond to a mixture of two isotopes of helium in liquid state.
According to the definition of S, D′ < 0, and initially the concentration gradient is stabilizing
in opposition to the destabilizing temperature gradient. If S is below a negative critical value,
as it is in the test problem, the primary bifurcation from the basic state is a Hopf bifurcation.
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The group of symmetries of this system is Z2×Z2 generated by the reflections Rx and Ry,
with respect to the vertical and horizontal midplanes; i.e., changing x by Γ− x and the sign
of ψ, or changing y by 1 − y and the sign of all three functions, leaves the system invariant.
These symmetries give rise to pitchfork bifurcations of fixed points, periodic orbits, and even
of invariant tori as sets.

To obtain the numerical solutions, the functions ψ, Θ, and η are approximated by a pseudo-
spectral method. Collocation on a mesh of nx ×ny = 64× 16 Gauss–Lobatto points has been
used in all of the calculations shown. This gives n = 3072 unknowns. The mesh is enough to
have a good accuracy in the range of parameters considered because the solutions are quite
smooth. Finer resolutions nx × ny = 96× 24 were used to check the results and, for instance,
the relative difference between the leading multipliers at the double-Hopf bifurcation shown
below is less than 10−6. The stiff system of ODEs obtained after the spatial discretization
is integrated by using BDF-extrapolation formulas, as described, for instance, in [40]. Other
details on the physical problem can also be found there.

4.1. Variational equations. In the following sections the two continuation parameters
will be Ra and σ. Then the terms J(·, ·), σΔ2ψ, and σRa [(S + 1)∂xΘ+ S∂xη] in (40)–(42)
are quadratic or cubic in the unknowns (ψ, Θ, η, σ, and Ra), and the variational equations
are easily computed. Now (25)–(27) become

∂tΔψ1 + J(ψ,Δψ1) + J(ψ1,Δψ) =σΔ
2ψ1 + σRa [(S + 1)∂xΘ1 + S∂xη1] ,

∂tΘ1 + J(ψ,Θ1) + J(ψ1,Θ) =ΔΘ1 + ∂xψ1,

∂tη1 + J(ψ, η1) + J(ψ1, η) =LΔη1 −ΔΘ1,

∂tΔψ2 + J(ψ,Δψ2) + J(ψ2,Δψ) =σΔ
2ψ2 + σRa [(S + 1)∂xΘ2 + S∂xη2] + δσΔ2ψ

+ (σδRa + δσRa) [(S + 1)∂xΘ+ S∂xη] ,

∂tΘ2 + J(ψ,Θ2) + J(ψ2,Θ) =ΔΘ2 + ∂xψ2,

∂tη2 + J(ψ, η2) + J(ψ2, η) =LΔη2 −ΔΘ2,

and

∂tΔψ3 + J(ψ,Δψ3) + J(ψ3,Δψ) =σΔ
2ψ3 + σRa [(S + 1)∂xΘ3 + S∂xη3] + δσΔ2ψ1

+ (σδRa + δσRa) [(S + 1)∂xΘ1 + S∂xη1]

− J(ψ1,Δψ2)− J(ψ2,Δψ1),

∂tΘ3 + J(ψ,Θ3) + J(ψ3,Θ) =ΔΘ3 + ∂xψ3 − J(ψ1,Θ2)− J(ψ2,Θ1),

∂tη3 + J(ψ, η3) + J(ψ3, η) =LΔη3 −ΔΘ3 − J(ψ1, η2)− J(ψ2, η1),

respectively, and (28) is like the first. They differ only in some forcing terms which have the
same structure as those in the original equations. Therefore, any time integrator for the initial
system can be easily adapted to integrate these equations.

The simplicity in finding the variational equations up to order two (or even to higher
orders) is common for many problems in fluid mechanics and other branches of mathematical
physics governed by equations with linear diffusion and polynomial nonlinear terms.
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Figure 1. Bifurcation diagrams for σ = 0.6.

The time-stepping method and time-step size used for the coupled system (24)–(28) are
the same as those used for the initial equation (24) of the test problem. This has been the
case every time we have added first order variational equations in several fluid mechanics
problems, and is the case here when including those of second order. Only the diffusion terms
were taken implicitly, and therefore a trivial block diagonal system had to be solved at each
time step.

5. Results. To show the origin of the initial conditions for the continuation of the bifurca-
tion curves, we present the bifurcation diagram of fixed points, periodic orbits, and invariant
tori for σ = 0.6 in Figure 1. This value was used in [36, 40, 37] to provide examples of the
continuation of periodic orbits by multiple shooting, and of invariant tori with two differ-
ent algorithms, so the main branch of periodic orbits and that of invariant tori were already
known. The Euclidean norm of the vector U = (ψij ,Θij, ηij), containing the values of the
three functions ψ, Θ, and η at the mesh of inner collocation points, is plotted versus Ra. In
the case of periodic orbits it corresponds to the norm of one of their intersections with the
hyperplane ψ38,9 = 0, where the subindex refers to the indices of the collocation mesh, and
for the tori it refers to their intersections with ψ38,9 = 0 and Θ58,8 = 0. Solid and dashed lines
mean stable and unstable solutions, respectively. The curve ψ = 0, separating clockwise and
counterclockwise rotating vortices, sweeps the full rectangular domain Ω in a period. There-
fore all of these periodic orbits cut transversely the surface ψ(x, y) = 0 for any (x, y) ∈ Ω.
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The point (x38, y9), close to the horizontal midplane y = 1/2 and to x = 2.5, was selected. In
this way it was not necessary to change the phase condition during these calculations.

The upper branches in Figure 1(a) (in blue) correspond to fixed points (FP). They appear
at a saddle-node bifurcation at Ra = 1983.40. The upper part is stable, and three pitchfork
bifurcations can be seen along the unstable lower branch. A small stable portion, limited by
two saddle-node points, can be observed in the middle branch of fixed points. The steady
states extend below the critical value given by the linear stability of the basic conductive state
‖U‖ = 0 (blue horizontal lower line).

Figures 1(b) and (c) are details of branches of periodic orbits (PO). The conduction state
loses stability at Ra = 2074.76 at a subcritical Hopf bifurcation (H). The periodic orbits
emerging here (in red) become stable at a saddle-node point (SN) at Ra = 2061.85 and lose
stability at Ra = 2066.74 at a Neimark–Sacker (NS) bifurcation. The solutions on this main
branch of periodic orbits are always symmetric with respect to the vertical midplane and are
also symmetric cycles with respect to the horizontal midplane. So they have, as sets, the same
symmetry group Z2 × Z2 as the equations. By following this curve, we have a first pitchfork
bifurcation (PF) which breaks the vertical reflection symmetry. The two new branches (in
black) join again at another pitchfork bifurcation on the main branch. The solutions on these
new branches are still symmetric cycles with respect to the horizontal midplane. There are
secondary pitchfork bifurcations on them, that break the remaining symmetry. Finally, two
period-doubling bifurcations were found, one on the new branch without any symmetry (in
magenta) and the other on the period-doubled branch (in cyan). The three unstable Floquet
multipliers at the end of the latter curve are 2.23 × 107, −1.50 × 106, and 51.9. It was not
possible to continue beyond this point by using simple shooting.

A detail of the branches of tori (T) (in green) is given in Figure 1(d). The main branch
starts at Ra = 2066.74 and is stable up to a pitchfork bifurcation at Ra = 2115.92. The
rotation number ρ decreases along this curve when Ra is increased, starting near, but below,
1/6 and ending close to 1/8 with a 1/7-resonance in 2102.79 < Ra < 2102.80. One of the two
stable branches of tori after the pitchfork bifurcation was continued up to a 1/8-resonance
in 2116.18 < Ra < 2116.20. The periodic orbits inside this region were also computed by
continuation methods (see below). Details on the final breakdown of the tori at Ra ≈ 2115.92
can be found in [40].

5.1. Curves of bifurcations. Figure 2(a) shows the bifurcation curves computed by the
methods described in section 3. The norm of the intersection of the periodic orbits with the
hyperplane used as phase condition, ψ38,9 = 0, is plotted against the two parameters σ and
Ra. The sections at constant σ = 0.1, 0.2, 0.4, 0.6, 1, 1.5, 2.0, and 2.5 (in red) represent
periodic orbits computed by continuation with respect to Ra. The curve for σ = 0.6 is that
shown in Figure 1(b), with the Hopf, saddle-node, Neimark–Sacker, and pitchfork bifurcation
points labeled as H, SN, NS, and PF, respectively. They were used as initial conditions to start
the bifurcation curves up and down in σ, which was selected as the distinguished continuation
parameter. The linear stability analysis at these points provided the initial eigenvectors. We
have not followed period-doubling curves because the system (11)–(14) needed to obtain them
is the same as for the saddle-nodes, without the deflation term. Although the maximum value
of σ in the plots is σ = 3, some curves were calculated beyond this limit.
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Figure 2. Curves of bifurcation points and period of the corresponding periodic orbits.

The surface ‖U‖ = 0 in Figure 2(a) represents the conduction state ψ = 0, Θ = 0, and
η = 0. The curve on this surface (in magenta) is that of Hopf bifurcations giving rise to a
first family of periodic orbits. It was computed, as mentioned before, by using the extended
system (29)–(34), but in this case T was taken as a fixed value close to the period of the
periodic orbits near the Hopf bifurcation for σ = 0.6, and it was not necessary to use the two
first equations (29) and (30), since the conduction state is a known trivial solution.

The curve of saddle-nodes (in green) starts at σ = 0.122, Ra = 2209.42 on the Hopf locus
at a Bautin (generalized Hopf) point, which separates the supercritical (σ < 0.122) from the
subcritical (σ > 0.122) bifurcations.

The curve of Neimark–Sacker points (in blue) provides another boundary for the stability
of this first set of periodic orbits. As can be seen in Figure 2(a), they are only stable in the
region limited by the Hopf, saddle-node, and Neimark–Sacker curves. The last two cross at
σ = 1.699 and Ra = 2052.79 at a fold-Hopf bifurcation of periodic orbits.

A movie (98101 01.gif [local/web 8.51MB]) showing the physical behavior of a cycle for σ =
0.5029 and Ra = 2072.86, on the Neimark–Sacker locus, has been included as supplementary
material. It is representative of the first set of periodic orbits. The three contour plots
correspond from top to bottom to the stream–function ψ, the temperature T = Tb + Θ, and
the concentration C = Cb + Σ = Cb + η + Θ. It can be seen, by looking at ψ, that it is a
fixed cycle with respect to the transformation Rx and is a symmetric cycle with respect to Ry.
For the other two functions it must be taken into account that the conduction state has been

98101_01.gif
http://epubs.siam.org/doi/suppl/10.1137/140981010/suppl_file/98101_01.gif
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added. The oscillatory regime takes essentially the form of a standing wave. The intensity of
the vortices and the amplitude of the oscillations of the temperature and concentration are
larger at the two central vortices than at the lateral. The sense of rotation of the vortices
changes sign twice each period, and there is a marked phase lag between the temperature and
concentration oscillations.

The locus of pitchfork bifurcations (in cyan) was calculated down to σ = 3.960 × 10−2,
where the Rayleigh number was Ra = 47825, and up to σ = 6 to show the performance of the
methods in section 6.

The Neimark–Sacker curve also starts on that of Hopf points at σ = 0.028 and Ra =
2910.77 at a double-Hopf bifurcation, as can be seen in Figure 2(b) and, in more detail, in
Figure 2(c). The linear stability analysis of this point provided the initial conditions needed
to follow the second curve of Hopf bifurcations giving rise to a second family of periodic
orbits. By following them along paths of a fixed value of σ or Ra, we find initial conditions
for the new saddle-node and Neimark–Sacker curves on this second family, also represented
in the figures. The diagram obtained, close to the double-Hopf point, is that of the subregion
II of the simple case of this codimension-two bifurcation as described in [21]. The upper
limit of the new Neimark–Sacker curve is a strong 1:1 resonance point, located at σ = 0.617,
Ra = 2174.91, as will be seen later on a plot of the rotation number, θ/2π, where θ is the
phase of the crossing multiplier at the bifurcation.

A second movie (98101 02.gif [local/web 10.4MB]) shows the dynamics of the flow for the
periodic orbit at σ = 0.5078 and Ra = 2182.20 on the second Neimark–Sacker locus. It is a
fixed cycle with respect to the transformation RxRy and is a symmetric cycle with respect to
Rx. The main difference from the first family is that there are now three vortices in the box
instead of four.

The second curve of saddle-node points touches the second locus of Hopf bifurcations at
σ = 0.012 and Ra = 3705.51 at another Bautin point. The Hopf bifurcations are supercritical
for σ < 0.012 and subcritical for σ > 0.012. With this information and that on the stability
of the periodic orbits along the bifurcation loci presented in Table 1, it can be seen that there
are stable periodic orbits of the second family, located above (larger Ra) the second curve of
saddle-nodes. This locus of saddle-node points intersects the second Neimark–Sacker curve
at σ = 0.144 at another fold-Hopf codimension-two point. At σ = 2.15 the arclength steps
taken by the continuation code were too small to continue the curve. We checked that there
were no new multipliers approaching the unit circle on the saddle-node locus nor other nearby
bifurcations on several sections of the second set of periodic orbits around this value of σ,
computed by continuations in Ra. This seems to indicate that multiple shooting is needed
beyond this point due to the growing instability of the periodic orbits.

Figure 2(d) shows the period of the periodic orbits at their onset on the Hopf curves
and along the curves of bifurcations. Since the periods along the former are different at the
double-Hopf bifurcation, the curves passing through this point split into two groups in this
representation. Globally, the period grows when σ decreases to zero making the computations
more expensive.

Table 1 summarizes the results on the stability of the periodic orbits along the bifurcation
loci of Figure 2(b). The first column indicates the type of curve. The 1 and 2 refer to the first
and the second family of limit cycles, respectively. The limits of the segments of the curves,

98101_02.gif
http://epubs.siam.org/doi/suppl/10.1137/140981010/suppl_file/98101_02.gif
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Table 1
Stability of the periodic orbits on the bifurcation curves.

Bif. curve Starting σ Ending σ Mult. on S1 Mult. out of S1

SN1 0.122 1.699 1r 0
SN1 1.699 3.000 1r 2cc

NS1 0.028 1.699 2cc 0
NS1 1.699 3.000 2cc 1r

PF1 0.010 3.000 1r 2cc/2r

SN2 0.012 0.144 1r 0
SN2 0.144 0.411 1r 2cc
SN2 0.411 1.090 1r 1r + 2cc/2r
SN2 1.090 2.150 1r 2r

NS2 0.028 0.144 2cc 1r
NS2 0.144 0.190 2cc 0
NS2 0.190 0.617 2cc 1r

separated by codimension-two points, are given by the Prandtl numbers in the second and
third columns. The number of multipliers on and out of the unit circle are given in the last
two columns. The symbols 1r, 2r, and 2cc mean one real, two real, and two complex conjugate
multipliers, respectively. The symbol 2cc/2r indicates that two complex conjugate multipliers
collide at the real axis becoming real, without crossing the unit circle.

Figure 3 shows the classical projection of the bifurcation curves on the parameter space
σ-Ra, with details of the three codimension-two points on the main family of periodic orbits.
Specifically, Figures 3(b)–(d) display the details close to the Bautin, fold-Hopf of periodic
orbits, and double-Hopf bifurcation points of the conduction state.

5.2. Computation of the boundaries of the 1/8-resonance region. With the tools de-
scribed in section 3 it is also possible to follow the boundaries of resonance regions, since they
are loci of saddle-node bifurcations. Figure 4 shows the continuation of the periodic orbits
inside the resonance region of rotation number 1/8, mentioned earlier in the description of
Figure 1 for σ = 0.6. A section of constant Ra in 2116.18 < Ra < 2116.20 gives 32 intersec-
tions, since due to the remaining symmetries there are two stable and two unstable periodic
orbits on the invariant tori [40].

Two points on the boundaries of the interval were taken as initial conditions to follow the
resonance region in the parameter σ. The results of the continuation are shown in Figure 5.
The saddle-node (in red) and the previously described Neimark–Sacker (in blue) curves can
be seen in plot (a), projected onto the parameter space. The width of the Arnold’s tongue is
so tiny that a blow-up has been added to distinguish the two boundaries. Another possibility
is to plot the norm ‖U‖ versus σ. This representation highlights the presence of turning
points on the upper curve, which do not completely develop in the lower (see Figure 5(b)).
The period on the boundaries is shown in Figure 5(c). It increases rapidly when σ decreases.
This fact, together with the factor eight due to the resonance, makes the computation of
these curves the most expensive of the calculations presented (see Figure 2(d) to compare the
periods). Figure 5(d) displays the rotation number along the two curves of Neimark–Sacker
bifurcations and the line ρ = 1/8. On the second curve, it ends at ρ = 0 and, as mentioned
earlier, this point corresponds to a strong 1:1 resonance.
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Figure 3. (a) Curves of bifurcations on the parameter space and details of three codimension-two points
found on the main family of periodic orbits: (b) Bautin, (c) fold-Hopf of periodic orbits, and (d) double-Hopf
bifurcations.

From the inspection of the characteristics of the periodic orbits (norms and period, for
instance) of Figure 5(a) we have checked that the resonance region does not start on the
upper Neimark–Sacker curve as might seem at first sight. In fact, we have found other
Neimark–Sacker bifurcations at low σ, which could be the origin. It is known that in thermal
convection problems with small σ, many bifurcations can accumulate close to the onset of
convection producing very early chaotic behaviors.

Figure 6 shows several periodic orbits along one of the boundaries of the resonance re-
gion, projected onto the plane (Θ52,8, η58,8). The rectangle represented is (Θ52,8, η58,8) ∈
[−0.04, 0.04] × [−0.25, 0.15]. The growth of their transverse diameter when σ increases is ob-
vious. In the lower right plot, all the intersections of the orbit with the hyperplane used as
phase condition, ψ38,9 = 0, have been included to make clear that there are 16. Red squares
and green circles indicate the two different crossing directions.

There is a single +1 multiplier on the unit circle along the two saddle-node curves, with
the rest being stable, except between the two turning points, where there is a real positive
multiplier out of the unit circle. Only below σ ≈ 0.128 is there an unstable complex conjugate
pair of multipliers.
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Figure 6. Projections of periodic orbits onto the variables (Θ52,8, η58,8) taken along the upper curve of
Figure 5(b). The values of the parameters (σ, Ra) are (0.0991, 2374.56), (0.09965, 2373.02), (0.1010, 2369.28)
(top, left to right), and (0.1070, 2353.63), (0.13175, 2302.51), (0.2148, 2210.32) (bottom, left to right).

6. Performance of the algorithms. Figure 7 shows two examples of the performance of
the methods previously described for the test problem. Figures 7(a) and (b) show the relative
distance between Newton’s iterates after each iteration, ||Xk−Xk−1||/||Xk ||, k = 1, . . . , 5, (see
caption for color codes) versus the point index for the curve of pitchfork bifurcations and for
the second locus of Neimark–Sacker points described above (that ending in a 1:1 resonance
at σ = 0.617). In the first case the cycles are always unstable and the extended system
includes the deflation term and the symmetry-breaking parameter. The second corresponds
to the augmented system of largest size, so one should expect an increased number of GMRES
iterations. The horizontal line at ε = 10−8 represents the tolerance used to stop the iteration
in these cases. When only k iterations are needed, i.e., when the curve of the kth iterate
is below ε, the relative distance for the higher iterations is set to 10−16 to have continuous
curves.

The curve of pitchfork bifurcations was computed in two parts, both starting at σ = 0.6
and going to higher and lower values of this parameter. They are identified by the positive
and negative indices. At the starting point the initial error was relatively large and the initial
arclength step small. This is why there is a peak in the curves of relative distances and a
small plateau of σ at index = 0 in Figure 7(a). As σ goes to zero the corresponding Rayleigh
number grows quickly (see Figure 3(a)), the initial error of the prediction also increases, and
four iterations were often required. The solutions for σ > 4 are close to the large σ limit, and
many of them were found in just two Newton’s iterations.

The curve of Neimark–Sacker bifurcations was started close to the double-Hopf point at
σ = 0.028. Figure 7(b) shows that the highest number of Newton’s iterations (five) was only
needed for the first two points to start the branch and at the end when the singular resonance
point is reached. There the continuation code shortens the arclength steps, as can be seen in
the change of slope of the curve of σ above σ = 0.6.
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Figure 7. (a), (b) Relative distance between Newton iterates for the pitchfork and one of the Neimark–
Sacker curves, respectively, versus the index of the points along the curves. (c), (d) Corresponding number of
GMRES iterations. Red, green, blue, magenta, and cyan correspond to the first, second, third, fourth, and fifth
Newton’s iteration, respectively. The horizontal line in black in (a) and (b) indicates the tolerance level in the
computations. The curve in black in all plots represents the value of the Prandtl number σ versus the index.

The quadratic convergence of Newton’s method can be observed in Figures 7(a) and (b)
except, as can be expected, close to bifurcation points where the Jacobian becomes near
singular. The fourth or fifth iteration, when present, could not reach lower values because of
the presence of time integration errors. Although being of high order (six in all calculations),
errors are introduced in the evaluation of the explicit terms by matrix-matrix products and
in the solution of the implicit terms.

Figures 7(c) and (d) show the number of GMRES(M) iterations needed to complete each
Newton’s step. An absolute criterion of convergence was used. The Euclidean norm of the
residual of the linear systems was reduced to αε with α = 10−2 or 10−1, depending on the
solutions computed, with ε being the tolerance for Newton’s method. The only requirement
was keeping the quadratic convergence of the outer Newton’s iterations. If the dimension of the
Krylov subspace, M, is large enough, GMRES(M) finishes without restarting. The maximal
dimension used was M= 70 for the case of Neimark–Sacker points. In Figure 7(c) the maximal
number of iterations required was always less than 30, but it was less than 20 for most of the
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points, and the dimension of the system being solved was m = 2n+ 4 = 6148. In Figure 7(d)
the number of iterations was always less than 70 for a system of size m = 3n + 4 = 9220.

The reason for the fast convergence of GMRES was explained in detail in [38, 36] for
the computation of periodic orbits and in [40, 37] for that of invariant tori for the serial and
parallel implementations. In particular, in [38] an upper bound was presented for the number
of iterations needed by GMRES in the computation of periodic orbits. It was based on the
knowledge of the distribution of the multipliers of the cycles. In [37] we used the results
in [3] to explain the reason for the independence of the number of GMRES iterations with
the number of points used to approximate an arc of an invariant curve. The main idea is
the same in all of these cases and for the methods presented. All of these algorithms solve
high-dimensional fixed-point problems of the form X−G(X) = 0, where G is a map obtained
by integrating a system of truncated parabolic PDEs, with a few more additional equations
(phase conditions, normalizing conditions for the eigenvectors, pseudoarclength conditions,
etc.). For instance, in the case of the saddle-node points, the map is (see (11) and (13))

(x, u) → G(x, u) = (ϕ(T, x, p),Dxϕ(T, x, p)u − w〈w, u〉/〈w,w〉) ,

with phase and normalizing conditions given by (12) and (14), and X = (x, u). Since the
flow of the evolutionary equations defining G strongly contracts volumes, DXG has most
of its spectrum tightly clustered around zero. The matrix of the linear systems solved at
each Newton’s iteration is the Jacobian I − DXG(X), bordered, for the extended systems
presented here, with at most three more rows and columns. The matrix I − DXG(X) can
be seen as the identity, I, plus a low rank matrix K, the action of −DXG(X) restricted to
the subspace corresponding to the eigenvalues of DXG(X) of modulus greater than a small
ε′, plus a perturbation matrix of small norm E, the action of −DXG(X) restricted to the
subspace corresponding to the eigenvalues of DXG(X) of modulus less than ε′. It was proved
(see [32, 3] among others) that for systems with clusters of eigenvalues, GMRES converges
quickly. Moreover, it was shown in [8] that for systems of the form I + K + E like those
just described, the addition of a row and a column only adds a few units to the number of
iterations of GMRES needed to solve a system with the original matrix.

In our particular test problem, the similar structure of the original problem (40)–(42)
and that of the variational equations in section 4.1, which differ only in the low order forcing
terms, makes the spectrum of the maps defining the extended systems strongly clustered.
The particular number of relevant eigenvalues, i.e., the rank of K, and therefore the number
of iterations needed by GMRES and the time necessary to compute each bifurcation curve,
depend on many factors. Two of them are the number of multipliers of the critical cycle
of modulus larger than a small ε′, and the number of variational equations involved in the
computation of G. When the periodic orbits are very unstable, more iterations might be
required by the linear solver to converge, and shorter arclength steps are usually taken. This
was the case, for instance, for the orbits on the pitchfork curve, which have two unstable
multipliers. In any case, the computational cost is affordable. The CPU time needed to
complete each of the bifurcation curves, using Intel I7 processors with frequencies in the range
of 2.67 to 3.2 GHz and tolerances for the distance between Newton’s iterates between 10−10

and 10−8, was from about two days for the tracking of Hopf points to a week and a half for
the more expensive Neimark–Sacker case. The continuation of the boundaries of resonance
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regions was heavier. Since the period is multiplied by eight, the CPU time was also multiplied
by this factor.

For simplicity, no parallelism was used in our calculations. There are several tasks that
can be done concurrently. Systems (24)–(27) and (24), (28) can be solved in parallel. The
different products in the action by the Jacobian of the extended systems can be computed
separately. An inspection of the variational equations of section 4.1, for the problem presented
here, reveals that the computation of the forcing terms of each equation can also be done
in parallel, and that the linear systems, which must be solved at each time step, decouple
into smaller ones because of the semi-implicit time stepper used. They can also be solved
simultaneously.

7. Final remarks. The methods presented here are very efficient. The number of equations
to integrate is limited to a minimum, Newton’s quadratic convergence is preserved, and the
linear solver converges very quickly. Moreover, they fit into the simple framework of Newton–
Krylov methods. The main requirement is to have a time integration method that properly
solves the systems of equations defining the function and the action by its Jacobian. Three
main causes of breakdown of the algorithms must be taken into account, the presence of
codimension-two bifurcation points that cannot be overshot because the curve followed does
not continue at the other side, the increase of the instability of the periodic orbits, and the loss
of transversality of the phase condition. The first is common to any continuation problem, the
second can be solved by multiple shooting, and the third can be solved by changing adaptively
the phase condition.

The extended systems presented in section 3 have been used to follow geometrical loci of
codimension-one bifurcations, either of periodic orbits or fixed points. In the latter case the
present formulation may be the best option if, for instance, there is no good preconditioner
for the classical methods of tracking bifurcations of fixed points, or if a previous code for time
integration or for the computation of periodic orbits, which needs only slight adjustments, is
available. In our case, the computation of the curves of Hopf bifurcations of the conduction
state of Figure 2 required the shortest CPU time.

Several codimension-two points were found during the computation of the bifurcation loci
of periodic orbits. Some types are easy to detect because the conditions defining them depend
only on the multipliers crossing or moving on the unit circle. This is the case of the two fold-
Hopf points of cycles, and the 1:1 resonance for which the phase of the critical multiplier being
followed vanishes, shown in Figure 2(b). The ending of a saddle-node locus at a Bautin point
is also easy to detect because the diameter of the periodic orbits collapses to zero when the
curve of Hopf bifurcations is reached. A lower bound for this diameter can be easily computed
during the time evolution of a cycle by calculating the distance of each point of the numerical
integration to the initial condition. A cusp point is also easy to see by looking at the projection
onto the two-parameter space of the saddle-node curve being followed. In the case of low–
dimensional systems of ODEs, other codimension-two bifurcations that cannot be classified
by just looking at the spectrum and that depend on degeneracy conditions are detected by
using test functions. They need the computation of the critical eigenvectors of an adjoint
operator [21, 16]. In the case of periodic orbits it is (Dxϕ(T, x, p))

∗. This is a difficult task in
PDEs when the base cycle is only known numerically. Therefore it cannot be suggested as a
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general methodology. The work [41] is the only publication we know of in which this has been
done. Moreover, the extended systems for the codimension-one bifurcations are regular at the
codimension-two points corresponding to the vanishing of normal form coefficients (see [21]).
Consequently, they are overshot when tracing codimension-one loci, and the computation of
the leading eigenvalues of the Jacobian of the augmented systems is, in general, not helpful
to signal these codimension-two singularities. If a rectangular region of parameters is to be
explored, the combination of continuations of cycles for two families of sections at constant
values of one of the two parameters, followed by the study of their stability together with the
continuation of the codimension-one points detected, can be helpful to complete the bifurcation
diagram of the system.

As mentioned earlier, the continuation of codimension-one bifurcations of periodic orbits
can also be formulated in terms of the Poincaré map, with the advantage of eliminating the
need to deflate the extra +1 eigenvalue, but with the disadvantages of introducing projections
to compute the derivatives and of needing to parameterize the map (see [38]).

It is important to realize that, for systems depending on three parameters, the extended
systems presented can be enlarged with extra equations (already written in some of the sys-
tems) to continue the loci of codimension-two points when they are defined exclusively by the
spectrum of the solution at the bifurcation point, eventually including generalized eigenvectors.
This is the case, for instance, of the double-Hopf of the conduction state and the fold-Hopf
bifurcation of periodic orbits of Figure 2. Further investigation is required to understand how
to apply matrix-free Newton–Krylov techniques for the continuation of bifurcations of fixed
points or periodic orbits of large-scale systems in order to include degeneracy conditions as
happens, for instance, with Bautin or Chenciner points.
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