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Abstract. We consider the linear time-dependent Schrödinger equation with a time-
dependent smooth potential on an unbounded domain. A Galerkin spectral method
with a tensor-product Hermite basis is used as a discretization in space. Discretizing
the resulting ODE for the Hermite expansion coefficients involves the computation of
the action of the Galerkin matrix on a vector in each time step. We propose a fast
algorithm for the direct computation of this matrix-vector product without actually
assembling the matrix itself. The costs scale linearly in the size of the basis. Together
with the application of a hyperbolically reduced basis, this reduces the computational
effort considerably and helps cope with the infamous curse of dimensionality. The ap-
plication of the fast algorithm is limited to the case of the potential being significantly
smoother than the solution. The error analysis is based on a binary tree representation
of the three-term recurrence relation for the one-dimensional Hermite functions. The
fast algorithm constitutes an efficient tool for schemes involving the action of a ma-
trix due to spectral discretization on a vector, and it is also applicable in the context
of spectral approximations for linear problems other than the Schrödinger equation.
Keywords: linear Schrödinger equation, spectral Galerkin methods, reduced index
sets, fast algorithm, direct computation, curse of dimensionality, binary trees

Introduction
We consider the linear time-dependent Schrödinger equation

i
∂

∂t
ψ(x, t)=(Hψ)(x, t)=−1

2
(∆ψ)(x, t)+V (x, t)ψ(x, t), x=(x1, . . . , xN )∈RN (1)

in N spatial dimensions with a possibly time-dependent multiplicative potential V that
meets certain regularity conditions on a cube Ω = [−L,L]N and a solution ψ(·, t) that
is essentially supported within Ω, for all times t ∈ [0, T ]. For an underlying geometry
as simple as in (1), spectral methods are a natural means of discretization in space.
In a naive approach, the resulting ODE system grows exponentially in N , making an
accurate approximation practically unfeasible even for moderate choices of N . For this
difficulty, the catch phrase curse of dimensionality has been coined. Time propagation
typically requires computing the action of the Galerkin matrix on a vector in each step,
and, in case of a time-dependent potential, the matrix has to be re-assembled.
1E-mail: brumm@na.uni-tuebingen.de.
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A promising strategy is a suitable reduction of the spectral approximation basis. E.g.,
[15, 16] study a spectral approach with collocation on a sparse grid in case of a time-
independent potential and periodic boundary conditions with a hyperbolically reduced
tensor-product Fourier basis. As is pointed out in [19], Chapter III.1.4, unlike on a full
grid, the resulting coefficient ODE does not exhibit a Hermitian matrix, which possibly
gives rise to numerical troubles and limits the range of applicable time-stepping meth-
ods. As a remedy, a Fourier Galerkin method in combination with an approximation
of the potential by a trigonometric polynomial is proposed. We adopt this basic idea
from the simpler setting of a periodic problem.
In the present paper, we also employ a spectral Galerkin approach with a reduced
basis in combination with a polynomial approximation of (parts of) the potential, but
we consider an unbounded domain instead of a periodic problem. Hermite functions
are a natural and, thus, widely-used spectral basis for the Schrödinger equation on
unbounded domains, see, e.g., [19], Chapter III.1, [10] for the linear and [12] for a
nonlinear case. Furthermore, we allow the potential to be time-dependent.
Besides basis reduction and potential approximation, we develop a fast algorithm for
the direct (i.e., matrix-free) computation of the aforementioned matrix-vector product
that further speeds up propagation in time considerably. The basic idea for the fast
algorithm was proposed in [11] in the context of a splitting procedure for the linear
Schrödinger equation in the semi-classical regime: One uses a recurrence relation for
the univariate Hermite functions and orthogonality to define (never actually assem-
bled) coordinate matrices for each coordinate direction that act directly on vectors;
these matrices are then formally inserted into the polynomially approximated poten-
tial. In the present paper, we start from the fact that this is equivalent to a suitable
entrywise approximation of the Galerkin matrix by Gauss–Hermite quadrature, which
is briefly derived as is commonly done in the context of Discrete Variable Represen-
tations, see [18]. However, this is only true if the matrices are indexed over a full
set of multi-indices. We give a detailed analysis for the resulting quadrature error
as well as for the error due to a hyperbolical index reduction based on binary tree
representations. Both errors are well-behaved if the potential can be sufficiently well
approximated by a multivariate polynomial. If so, we get bounds C(R,W,L)K−β and
C(N,R,W, β, L)K−β for the errors due to quadrature and grid reduction, respectively.
Here, W is the part of the potential V that is approximated over an N -dimensional in-
dex set R(R) with maximal univariate polynomial degree R, K is the maximal number
of basis functions employed in each coordinate direction in the Galerkin approxima-
tion, and the coefficients of the approximate solution exhibit a decay of order β with
increasing index.
The fast algorithm has the following advantages: First of all, it scales only linearly
in the size of the basis. In addition, it allows for more general kinds of index reduc-
tions than the hyperbolically reduced index set considered in the present work. Our
approach avoids quadrature at all. In contrast, in the chemical literature, there is a
matrix-free approach based on ingenious sequential summations for the matrix-vector
product that employs a (still exponentially large) reduced basis and treats the problem
of huge quadrature-grids using a nonproduct Smolyak grid quadrature, see [2, 3, 4, 5].
Finally, our algorithm constitutes a useful tool for a variety of time integration schemes
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involving Galerkin matrix-vector products, and the strategy is generic and, thus, ser-
viceable also for spectral Galerkin approximations to other linear problems using a
Galerkin basis of algebraic orthogonal polynomials. An article on the treatment of
second-order partial differential equations on bounded domains with different kinds of
boundary conditions involving a Legendre Galerkin basis is currently in preparation.
The limitations of the fast algorithm are as follows: The method is applicable only if
the potential is significantly smoother than the solution, i.e., K � R, wherever the
solution does not essentially vanish. In the present work, we use it in the context of a
Lanczos-based time propagation scheme, which yields an error due to a perturbation
of the Lanczos process. This error may become dominant in cases where the size of
the basis is not sufficiently large. Finally, our presentation is limited to the setting
where the solution stays within a cube and basis functions localized around zero are
applicable. This restriction is dispensable, see [11] for an application of the fast algo-
rithm with a moving wavepacket basis. An adaptation of the error analysis as given
in the present work to the case of an evolving basis is possible, but complicated and
technically more involved. For the sake of readability, we therefore restrict the scope
of the present work to this somewhat idealized setting.
In Section 1, we deduce the ODE system for the Hermite expansion coefficients

from the Galerkin ansatz with a reduced index set and a polynomially approximated
potential. Section 2 briefly outlines the discretization in time by Magnus integrators,
where the matrix exponential is approximated using the Lanczos method. Section
3 contains the fast algorithm for the matrix-free computation of the action of the
Galerkin matrix on a vector in each Lanczos step and illustrates the computational
speed-up. The connection between the algorithm and Gauss–Hermite quadrature for
the Galerkin matrix is shown in Section 4. A detailed error analysis is given in Section
5. Section 6 presents some numerical experiments confirming the theoretical results.

1 Semi-discretization in space

1.1 Hermite basis
Starting from ϕ−1 ≡ 0 and ϕ0(x) = π−1/4e−x

2/2, the three-term reccurrence relation

xϕk(x) =

√
k + 1

2
ϕk+1(x) +

√
k

2
ϕk−1(x), k ≥ 0, (2)

yields a complete L2(R)-orthonormal set {ϕk}k∈N of Schwartz functions, in particular,
(ϕj , ϕk) = δjk, where (f, g) =

∫
fg denotes the standard L2-inner product. An explicit

expression is ϕk(x) = π−1/4
(
2kk!

)−1/2
Hk(x)e−x

2/2, where Hk denotes the classical
Hermite polynomial of degree k. The Hermite functions are readily seen to be the
eigenfunctions of the harmonic oscillator, i.e.,

1

2
(p2 + q2)ϕk =

(
k +

1

2

)
ϕk, (3)
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Figure 1: Univariate Her-
mite functions for some
choices of k. ϕk is even if k
is even, otherwise odd. The
largest extremal is bounded
by
√

2(k + 1).

where (qψ)(x) = xψ(x) and (pψ)(x) = −i ∂∂xψ(x) denote the position and momentum
operators, respectively, see, e.g., [1], Section 22, [19], Chapter III.1.1, or [23], Section
7.7, for the construction of the Hermite basis and its properties. In higher dimensions,
we consider tensor-products of Hermite functions, i.e.,

ϕk(x) = ϕk1(x1) . . . ϕkN (xN ),

where k = (k1, . . . , kN ) ∈ NN is a multi-index and ϕkl are univariate Hermite functions
as above, 1 ≤ l ≤ N . Again, {ϕk}k∈NN is a complete L2(RN )-orthonormal set of
functions. Due to the eigenfunction property (3), we find

1

2

N∑
l=1

(
p2l + q2l

)
ϕk =

1

2

(
−∆ +

N∑
l=1

q2l

)
ϕk =

N∑
l=1

(
kl +

1

2

)
ϕk, (4)

where (qlψ)(x) = xlψ(x) and (plψ)(x) = −i ∂
∂xl

ψ(x).

1.2 Galerkin ansatz with reduced index set
An approximation

ψK(x, t) =
∑
k∈K

ck(t)ϕk(x) ∈ span {ϕk |k ∈ K} ⊆ L2(RN ) (5)

on a finite-dimensional subspace is determined such that(
i
∂

∂t
ψK −HψK, ϕj

)
= 0, ∀ j ∈ K, (6)

where K is a multi-dimensional index set

K ⊆ Kfull =
{
k = (k1, . . . , kN ) ∈ NN

∣∣ 0 ≤ kl ≤ K
}

(7)
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with at most K + 1 indices in each direction. If necessary, we write K = K(K)
to emphasize the bound K for components kl of any k ∈ K. Abbreviating c(t) =
(ck(t))k∈K and inserting the ansatz (5) into (6) yields a linear system of ODEs

iċ(t) = HK(t)c(t).

Furthermore, the eigenfunction relation (4) yields a decomposition (j,k ∈ K)

(HK)jk = (ϕj, Hϕk) =

(
ϕj,

1

2

(
−∆ +

N∑
l=1

q2l

)
ϕk

)
+

(
ϕj,

(
V − 1

2

N∑
l=1

q2l

)
ϕk

)

=

N∑
l=1

(
kl +

1

2

)
δjk + (ϕj,Wϕk) = (DK)jk + (WK)jk,

where DK = diagk∈K
(∑N

l=1

(
kl + 1

2

))
is a diagonal matrix and (WK)jk = (ϕj,Wϕk)

stems from a multiplicative potential W (x, t) = V (x, t)− 1
2

∑N
l=1 x

2
l . Hence,

iċ(t) = DKc(t) +WK(t)c(t). (8)

k1

k2

k2

k3

k1

Figure 2: Hyperbolically reduced index set.
Left: N=2, K=32. Right: N=3, K=16.

In case K = Kfull, the system (8) consists
of |K| = (K + 1)N equations. For grow-
ing N andK being only moderate, this is
not feasible for time integration that re-
quires assembling the matrices DK (once)
and WK(t) (in each step) and multiply-
ing them with a vector. Thus, the index
set needs to be reduced. We study a hy-
perbolically reduced index set

K =

{
k = (k1, . . . , kN )

∣∣∣∣∣ kl ≥ 0,

N∏
l=1

(1 + kl) ≤ K + 1

}
,

see the illustration in Figure 2. The number of indices employed shrinks to |K| =
O(K ln(K)N−1), see [7]. Approximating a sufficiently regular function by a Hermite
tensor-product expansion over a hyperbolically reduced index set still gives a decent
approximation under certain regularity assumptions, see [19], Thm. III.1.5. More
generally, the proposed method allows for any index set K such that, if k ∈ K with
kl > 0, then k− el ∈ K, for all 1 ≤ l ≤ N , where el is the lth unit vector.

1.3 Approximation of the potential
A basic assumption for our fast algorithm is that the potential W can be sufficiently
well approximated by an interpolation polynomialW pol on a given cube Ω = [−L,L]N

indexed over a set R(R) ⊆ NN with only few nodes, i.e., |R| � |K|, hence, R � K.
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See Section 1.4 for the definition of L. We consider Chebyshev interpolation, i.e.,

W (x, t) ≈W pol(x, t) =
∑
r∈R

αr(t)Tr(x/L) =
∑
r∈R

αr(t)

N∏
l=1

Trl(xl/L)

with coefficients αr(t) that depend on L, but not on K. The univariate functions Trl
are the Chebyshev polynomials of the first kind that obey the recurrence relation

T0(x) = 1, T1(x) = x,

Tk+1(x) = 2xTk(x)− Tk−1(x), k ≥ 1,
x ∈ [−1, 1]. (9)

In case of a full product grid R = Rfull, we have exponentially decaying coefficients αr,
see, e.g., [8] for a detailed theory of approximation by orthogonal polynomials. In case
of a reduced index set R, a fast polynomial transform on sparse grids can be employed
to compute the interpolation coefficients efficiently, see, e.g., [9] for an O(R ln(R)N+1)
algorithm with still exponentially decaying coefficients αr(t) (for W being sufficiently
regular) with a hyperbolically reduced set R. Due to R � K, the additional costs of
doing polynomial interpolation in each time step are negligible. In place of (8), this
yields a coefficient ODE

iċpol(t) = DKcpol(t) +WK,pol(t)cpol(t). (10)

1.4 Assumption on the solution
For any t, we assume the exact solution ψ(·, t) to be essentially supported within a
cube Ω = [−L,L]N , for given K-independent L, possibly in a much smaller subregion
(as in the case of a moving wavepacket). We may define adequately compressed or
stretched basis functions

ϕ̃k(x) =

N∏
l=1

ϕkl(Sxl), k ∈ K,

for some positive S, to vary resolution. As the univariate ϕK is negligibly small outside
the interval [−

√
2(K+1)−1,

√
2(K+1)+1], we require S and K to be chosen such

that SL ≥
√

2(K + 1) + 1. For a higher resolution within Ω, we have to increase S
and K simultaneously. For ease of presentation, we restrict ourselves to S = 1.
The restrictive assumption on ψ being confined to a fixed cube during propagation
in time is indeed dispensable: if ψ(·, t) has support outside Ω, a reasonable Galerkin
approximation might require a larger choice of K, or the polynomial approximation of
the potential beyond the cube might become useless without increasing R. This is an
issue of (10) being a good approximation to (1). As long as the potential is sufficiently
smooth in a region where the solution does not essentially vanish, the fast algorithm is
applicable. This is true for the numerical example considered in Section 6.3. A set of
moving basis functions that adapt to the localisation of ψ might be preferable. In fact,
the fast algorithm has been applied successfully with a moving wavepacket basis, see
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[11]. However, an adaptation of the following error analysis to this setting complicates
the presentation due to the presence of time-dependent evolution parameters in the
basis recursion, and we restrict our attention to the case of confined ψ and basis
functions localized around zero.

2 Discretization in time

2.1 Need for matrix-vector products
The resulting coefficient initial value problem (10) is of the general form iẏ(t) =
A(t)y(t) with a time-dependent Hermitian matrix A(t) and initial value y(0) = y0.
Polynomial integrators of the form yn+1 = P (−ihA(t))yn as well as discretizations of
the matrix exponential with a splitting procedure or a Magnus integrator each require
multiplications of A with a vector in each time step. In the present paper, we restrict
our attention to the latter choice, see [6], in particular, Sections 5 and 6, for numerical
integration methods based on Magnus expansions. Magnus integrators consist of an
exponential stepping procedure of the form yn+1 = exp(Ωn)yn, where yn ≈ y(tn),
tn = hn with time-step size h, for a suitable choice of Ωn. Possible choices are the
exponential mid-point rule

Ωn = −ihA(tn + h/2) (11)

or the 2-stage Gauss–Legendre based method with nodes c1,2 = 1
2 ∓

√
3
6 ,

Ωn = − i
2
h(A1 +A2)−

√
3

12
h2[A2, A1], Aj = A(tn + cjh), j = 1, 2, (12)

where [·, ·] denotes the commutator of matrices. In our setting, we have

A(t) = HK,pol(t) = DK +WK,pol(t).

[17] show that the methods (11) and (12) are of optimal temporal orders 2 and 4,
respectively, for the Schrödinger equation with a bounded potential.

2.2 Lanczos method for the matrix exponential
We apply the Lanczos method in order to approximate the matrix exponential exp(Ωn),
see [19], Chapter III.2.2, for a more detailed outline including further references and
an algorithmic description. Consider a general initial value problem iẏ(t) = Ay(t)
with an d × d Hermitian matrix A and y(0) = y0. The Hermitian Lanczos process
generates recursively the basis Vm = (v1| . . . |vm) ∈ Cd×m and a tridiagonal coefficient
matrix Tm ∈ Cm×m such that Tm = V ∗mAVm. This requires m multiplications of A on
a vector, where m� d. The matrices Vm and Tm are used to approximate

y(t) = exp(−itA)y0 ≈ Vm exp(−itTm)e1, e1 = (1, 0, . . ., 0)T ∈ Rm.

In our setting, we have −ihA = Ωn, y0 = yn. In each time step, for all specific choices
of Ωn, this involves the action of WK,pol(t) on Lanczos vectors vk, evaluated at times
t depending on the chosen Magnus integrator.
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3 The fast algorithm

3.1 Coordinate matrices for a direct operation
We consider the product of WK,pol, see (10), and an arbitrary vector v ∈ C|K|. For
each direction, we define coordinate matrices over an arbitrary index set K by

X
(l)
K , 1 ≤ l ≤ N,

(
X

(l)
K

)
jk

= (ϕj, qlϕk), j,k ∈ K.

Due to the orthonormality of the basis and with the help of the one-dimensional
recurrence relation (2), the action of X(l)

K on v is given by(
X

(l)
K v
)
j

=
∑
k∈K

(ϕj, qlϕk)vk

=
∑
k∈K

(
ϕj,

√
kl + 1

2
ϕk+el

+

√
kl
2
ϕk−el

)
vk =

√
jl
2
vj−el

+

√
jl + 1

2
vj+el

,

(13)

for all j ∈ K and 1 ≤ l ≤ N . In case jl = 0 or jl = k, the next-to-last or last term
vanishes, respectively. The matrix-vector product X(l)

K v can thus be computed directly
in O(|K|) operations.

3.2 Insertion into the polynomial
In caseW pol(x) = xl, for some l, the Galerkin matrix reduces to the lth coordinate ma-
trix andWK,polv = X

(l)
K v. As proposed in [11], the idea is to computeWK,polv for any

polynomial W pol by formally inserting the coordinate matrices into the polynomial.
We can thus compute

WK,pol(t)v ≈W pol(XK, t)v =
∑
r∈R

αr(t)

(
N∏
l=1

Trl

(
1

L
X

(l)
K

))
v

=
∑
r∈R

αr(t)

(
Tr1

(
1

L
X

(1)
K

)
·
(
. . .

(
TrN

(
1

L
X

(N)
K

)
v

)
. . .

)
,

(14)

where the products of Trl
(

1
LX

(l)
K

)
and a vector are computed with the help of the

recurrence (9) using the direct operation (13).

3.3 Algorithmic description
The procedures as given in Figure 3 describe the fast algorithm for the action of
WK,pol(t) on a vector v ∈ C|K| for given index sets K(K) for the Galerkin basis
and R(R) for the polynomial approximation W pol(x, t) of the potential over a (K-
independent) cube Ω = [−L,L]N with coefficients αr(t).
Given the time-step size h, a number of Lanczos steps m in each time step, and the
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Algorithm 1: fast_algorithm

input: K(K), R(R) ⊂ NN ,
(αr(t))r∈R, L∈R, v∈C

|K|

output: res = W pol(XK, t)v
res = 0
for r ∈ R do

for l = 1 to N do
ifrl > 0:
w− = v
w+ = 1

L
direct_op(K, l, v)

for r = 2 to rl do
temp= w+

w+= 2
L
direct_op(K, l, w+)

w+= w+ − w−, w− = temp

v = w+

res = res +αr(t)v

Algorithm 2: direct_op

input: K(K) ⊂ NN ,
l ∈ {1, . . ., N}, v ∈ C|K|

output: res = X
(l)
K v

for j ∈ K do

resj =



√
1
2
vj+el , jl=0,√

K
2
vj−el , jl=K,√

jl
2
vj−el+√

jl+1
2
vj+el , else.

Figure 3: Algorithmic description of the fast algorithm (14) for a matrix-vector product
using (9) and direct operation (13) on a vector with X(l)

K .

initial coefficient vector c0pol of unit norm, time propagation of (10) using a Magnus
integrator is done as outlined in Figure 4. Step (1) has to be repeated in each time
step only in case of a time-dependent potential. Step (3) requires a diagonalization of
(small) T (n)

m , and the product of V (n)
m and a vector costs O(|K|m2) operations.

Algorithm 3: time_propagation

input: K(K),R(R) ⊂ NN , h, L ∈ R, m ∈ N, c0pol ∈ C|K|

output: res = ctendh
−1

pol ≈ cpol(tend)

for n = 0 to tendh
−1 do

(1) Compute coefficients αr(t) of W pol(x, t) =
∑

r∈R αr(t)Tr(x/L) as pre-
scribed by the chosen integrator.

(2) Do m Lanczos steps to obtain V (n)
m = (v1| . . . |vm) and T (n)

m starting
from v1 = cnpol. In each Lanczos step, use:

(DKvk)j =
∑N

l=1(jl +
1
2
)(vk)j

W pol(XK, t)vk = fast_algorithm(K,R, (αr)r∈R, L, vk)

(3) Compute cn+1
pol = V

(n)
m exp(−ihT (n)

m )e1.

Figure 4: Time propagation using the fast algorithm with a Magnus integrator.
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N K (1) (2) ≈(1)/(2)

2
20 2.83e-01 1.16e-03 2.4e+02

60 ≈8.7 secs 1.55e-03 2.6e+03

100 ≈ 50 secs 2.87e-03 1.4e+04

3
20 2.51e+00 4.57e-03 5.5e+02

60 >2.5 min 8.38e-03 1.5e+04

100 > 16 min 1.67e-02 6.0e+04

4 60 ≈ 23 min 3.29e-02 4.2e+04

Figure 5: Observed CPU times in secs for
assembling the hyperbolically indexed ma-
trix WK,pol and multiplying it with a ran-
dom vector v ∈ R|K| (column (1)) and for
the fast algorithm (column (2)) with a tor-
sional potential as given in (15) approxi-
mated by Chebyshev interpolation (R = 8).
Last column: approximate ratios of compu-
tation times. All figures have been obtained
on a desktop computer with an Intel Core 2
Duo E8400 3.00 GHz processor with 4 GB
RAM.

3.4 Computational complexity
For fixed l, direct_op as given in Figure 3 requires O(|K|) operations. Thus, using (9),
Trl

(
1
LX

(l)
K

)
v is computed in O(|K| · rl) operations, which gives

∏N
l=1 Trl

(
1
LX

(l)
K

)
v in

O(|r| · |K|). Therefore, fast_algorithm allows to compute the product W pol(XK, t)v
termwise in

O
(∑

r∈R
|r| · |K|

)

operations, i.e., linearly in the size of the basis. Due to |R| � |K|, the factor |K|
is the dominant contribution and, in case of W being time-dependent, the costs for
re-computing the interpolation coefficients in each step are negligible. In Figure 5,
we compare assembling WK,pol to a direct computation of W pol(XK)v with respect to
CPU time for a hyperbolically reduced index set K and a stretched torsional potential

W (x) =

N∑
l=1

(1− cos(xl/L)) , x ∈ Ω, L = 16, (15)

as approximated by Chebyshev interpolation with R = 8 nodes on each coordinate
axis (yielding an interpolation error of size ≈ 1e-10). The entries of WK,pol are dis-
cretized using Gauss–Hermite quadrature (done as explained in Section 4). As the
figures reveal, on a hyperbolically reduced index set, the fast algorithm lowers the
computational effort by several orders of magnitude for reasonable choices of K. The
larger K, the better the reduction (for fixed N).

4 Relation to Gauss–Hermite quadrature

4.1 Product Gauss–Hermite quadrature
In preparation for the subsequent error analysis, we consider Gaussian quadrature
for the weight function e−x

2

over R in each direction (see, e.g., [13], Chapter 3.2).
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Let ξm denote the zeros of HM+1 with corresponding weights wm. The resulting
quadrature formula (wm, ξm)Mm=0 is exact for polynomials of degree ≤ 2M + 1. In
higher dimensions, we set

ξm = (ξm1 , . . . , ξmN
), ωm =

N∏
l=1

ωml
=

N∏
l=1

wml
eξ

2
ml , m ∈Mfull(M),

with a full N -dimensional index setMfull(M). This yields a product quadrature

(WK,pol(t))jk ≈ (WGH(M)
K,pol (t))jk =

∑
m∈M

ωmϕj(ξm)W pol(ξm, t)ϕk(ξm)

=
∑
r∈R

αr(t)

N∏
l=1

M∑
ml=0

ωml
ϕjl(ξml

)Trl(ξml
/L)ϕkl(ξml

)︸ ︷︷ ︸
?

,
(16)

which is exact if W pol(·, t)HjHk is a polynomial of degree ≤ 2M + 1 in each direction,
where Hk(x) =

∏N
l=1Hkl(xl) is a tensor product of univariate Hermite polynomials.

Having obtained ξm and wm (see [21], Chapter 4.6), the recursions (2) and (9) allow
us to compute ϕk(ξm) and Tr(ξm), for 0 ≤ k ≤ K, 0 ≤ r ≤ R, 0 ≤ m ≤M , in O((R+
K)M) in advance. Thus, given the terms ?, we compute the whole expression (16) in
O(|R|MN), and the assembly of WGH(M)

K,pol requires O
(
|K|2 · |R| ·M ·N

)
operations.

We choose M = K, see Lemma 1.
Smolyak sparse grid quadrature (see [22, 25, 14]) adapted to the increasingly oscillatory
behavior of the high-order Hermite functions is discussed in [19], Chapter III.1.2.,
where it is pointed out that a sufficiently accurate sparse grid quadrature requires at
least O(|K|2 ·M) evaluations of the potential anyway.

4.2 Insertion of coordinate matrices revisited
We define X(l)

full = X
(l)
Kfull

to be the coordinate matrices over the full index set. The
matrices

Ξ(l) = diagk∈K(ξkl) ∈ R|Kfull|×|Kfull|, Ujk =
√
ωjϕk(ξj), j,k ∈ Kfull,

yield a diagonalization X(l)
full = UTΞ(l)U ∈ R|Kfull|×|Kfull|, which is readily seen from

(UTΞ(l)U)jk =
∑
m∈K

ωmξml
ϕj(ξm)ϕk(ξm) = (ϕj, qlϕk)

GH(K)
= (X

(l)
full)jk,

by the fact that there are exactly K + 1 quadrature nodes in each direction and
that this yields an exact integration. The matrix U is unitary, which follows from
orthonormality of the basis and

(UTU)jk =
∑
m∈K

umjumk =
∑
m∈K

ωmϕj(ξm)ϕk(ξm) = (ϕj, ϕk)GH(K) = (ϕj, ϕk) = δjk.

11



This allows to compute

Xr
full =

(
X

(1)
full

)r1
. . .
(
X

(N)
full

)rN
=

N∏
l=1

(
UTdiag

(
ξrlml

)
U
)

= UTdiag(ξrm)U, (17)

and we get the following

Lemma 1. Choosing M = Kfull (i.e., M = K) for the full product quadrature and
basis index sets, respectively, we get

W pol(Xfull, t)jk = (WGH(K)
Kfull,pol(t))jk, j, k ∈ Kfull,

where W pol(Xfull, t) denotes formal insertion of X(l)
full into W

pol according to (17).

This argument is common in the context of DVR techniques, see [18]. The ordering
of the factors

(
X

(l)
full

)rl
in W pol(Xfull, t) is arbitrary.

Deriving the equivalence of full product quadrature and formal insertion requires a
bijectionM↔ Kfull. Simultaneously reducingM and Kfull invalidates the exactness
of the Gauss–Hermite quadrature, reducing only Kfull makes the above diagonaliza-
tion argument no longer correct at all. For a reduced index set K ( Kfull, an assertion
analogous to Lemma 1 can therefore not be expected. In the fast algorithm, we employ
the above reduced coordinate matrices X(l)

K . Hence, we expect the fast algorithm to
induce errors due to quadrature and index set reduction, and a consideration of full
product quadrature facilitates the error analysis.

5 Error analysis

5.1 Preliminaries
Definition of errors: Consider an arbitrary vector v ∈ C|K|. We are interested in
computing the product WK,pol(t)v with a matrix WK,pol as given in Section 1.3. The
fast algorithm as developed in Section 3 gives rise to an error due to quadrature and
to an error due to index set reduction, the former being given by

Equad = (Ej,k)j,k∈K , Ej,k = (WK,pol(t))jk − (WGH(K)
K,pol (t))jk. (18)

Formally inserting the reduced coordinate matrices into the polynomial yields an error

W pol(XK, t)v −WGH(K)
K,pol (t)v =

[
W pol(XK, t)v − Ω(W pol(Xfull, t))v

]
+
[
Ω(W pol(Xfull, t))−WGH(K)

K,pol (t)
]

︸ ︷︷ ︸
?

v,

12



where the operator

Ω : C|Kfull|×|Kfull| → C|K|×|K|, Ω(A) = (Ajk)j,k∈K (19)

cuts a fully indexed matrix to a reduced index set. The difference ? vanishes by virtue
of Lemma 1. One easily verifies

Ω(W pol(Xfull, t))v = Ω
(
W pol(Xfull, t)Ω+(v)

)
where the operator

Ω+ : C|K|→C|Kfull|, (Ω+(v))j =

{
vj, j ∈ K,
0, j /∈ K,

blows up a vector with zeros at indices missing in K, and Ω is defined as in (19) both
for matrices and vectors. Hence, the error due to index set reduction is given by

Ered(v) = (Ej)j∈K , Ej =
(
W pol(XK, t)v

)
j −
(
W pol(Xfull, t)Ω+(v)

)
j , j ∈ K. (20)

Assumption: For the following error analysis, we make the general decay assumption

vk = O
(

N∏
l=1

max(kl, 1)−β

)
, k ∈ K, (21)

for the vector coefficients of v, with some β ∈ N. Thus, the larger its index, the
smaller the vector component. Assumption (21) reflects the natural decay behavior of
the coefficients in a product Hermite expansion of a sufficiently smooth function over
a hyperbolically reduced index set, see [19], Thm. III.1.5. It is used in Sections 5.2
and 5.3 to compensate large error components in matrix-vector products.
Finally, for r ∈ NN , we set rmax(r) = max1≤l≤N rl.

5.2 Error Equad due to quadrature
Theorem 1. Let W pol(·, t) ≈W (·, t) be the Chebyshev interpolation polynomial of the
potential W on Ω = [−L,L]N over R(R) for fixed L. Let K(K) be a hyperbolically
reduced index set with K � R. Then, under assumption (21) on v ∈ C|K| (i.e.,
componentwise decay of order β ∈ N), the error due to quadrature behaves as∣∣∣∣((WK,pol(t)−WGH(K)

K,pol (t)
)
v
)
j

∣∣∣∣ ≤ C(R,W,L, t)K−β , j ∈ K,

where the matrices WK,pol(t) and WGH(K)
K,pol (t) are defined according to Sections 1.3

and 4.1, respectively. The constant C(R,W,L, t) behaves as in (29), see below, and
depends only on R, the regularity of W , L, and time t.

13



ϕjTrϕk

ϕjTr−1ϕk+1

ϕjTr−2ϕk+2
ϕjTr−2ϕk

+ϕjTr−3ϕk+1

ϕjTr−1ϕk−1 + ϕjTr−2ϕk

ϕjTr−2ϕk

+ϕjTr−3ϕk+1

ϕjTr−2ϕk−2

+ϕjTr−3ϕk−1

+ϕjTr−4ϕk

left descent: degree ±0

right descent: degree −2

...

de
pt
h
r

Figure 6: Expansion of 1D quadrature error as a binary tree. In case r=1, we just use (2)
on a term, in case r=0, terms are added to the left child without expanding.

Proof. Termwise consideration of W pol gives rise to error matrices

Equad
jk =

∑
r∈R

αr(t)Er
jk, E

r
jk =(ϕj(S·), Tr(·/L)ϕk(S·))−(ϕj(S·), Tr(·/L)ϕk(S·))GH(K)

.

Conversion of 1D-error into binary tree: In one dimension, applying recursions (9)
and (2) yields a decomposition

ϕj(Sx)Tr(x/L)ϕk(Sx) =

(√
2(k + 1)

SL
ϕj(Sx)Tr−1(x/L)ϕk+1(Sx)

)

+

(√
2k

SL
ϕj(Sx)Tr−1(x/L)ϕk−1(Sx)− ϕj(Sx)Tr−2(x/L)ϕk(Sx)

)
.

(22)

Due to SL ≥
√

2(K + 1) + 1 (see Section 1.3), all coefficients are bounded by
√

2k

SL
≤
√

2(k + 1)

SL
≤ 1. (23)

Termwise r-fold application of (22) yields the binary tree pattern T as given in Figure 6
(arguments and coefficients omitted). Descending right reduces the polynomial degree
by 2, descending left leaves it unaltered. In case r > k, we may define ϕk(x) = 0
for k ≤ −1, preserving the recurrence relation (2) for negative indices. We expand
termwise until each leaf carries a single term of the form ϕjϕk+λ−ρ, where ρ and λ are
the numbers of index-changing right and left descents, respectively, and λ+ ρ ≤ r. By
the same procedure for the corresponding quadrature formulas, we convert Erjk into a
binary tree T of depth r. We examine non-vanishing leaves in T, how many these are,
and what quantity they sum up to.
Characterization of non-vanishing leaves: Fix a leaf in T connected to the root Erjk by
ρ and λ right and left descents, respectively. For the quadrature error not to vanish,
we require 2(K + 1) ≤ j + k + λ − ρ for each single term. For the exact integral
not to vanish, orthogonality yields the requirement j = k + λ − ρ, leading to the

14



contradiction 2(K + 1) ≤ 2j. Thus, leaves with non-vanishing quadrature errors carry
only the quadrature formulas.
Number of non-vanishing leaves: The condition for a non-vanishing quadrature error
at a particular leaf yields 2(K + 1) ≤ j + k + λ− ρ ≤ j + k + r − 2ρ. We define

ρmax(j, k, r) =

⌊
j + k + r − 2(K + 1)

2

⌋
+

≤ r

2
− 1,

which is the maximal number of right descents that does not reduce the polynomial
degree of the integrand sufficiently for exact quadrature, where a+ = max(a, 0). In
an arbitrary full binary tree of depth r, the number of leaves connected to the root
by a path containing exactly s right descents equals

(
r
s

)
. Hence, the number of non-

vanishing leaves in T is given by a(j, k, r) =
∑ρmax

s=0

(
r
s

)
. To investigate further, consider

a sum
∑b
s=a

(
c
s

)
with a, b, c ∈ N and a ≤ 2b < c. For s ≤ b,(

c

s

)/(
c

b

)
=
b!(c− b)!
s!(c− s)! =

b · . . . · (s+ 1)

(c− s) · . . . · (c− b+ 1)
<

(
b

c− b+ 1

)b−s
.

The assumption c > 2b implies b/(c− b+ 1) < 1. Therefore,

b∑
s=a

(
c

s

)
=

(
c

b

) b∑
s=a

(
c

s

)/(
c

b

)
<

(
c

b

) b∑
s=a

(
b

c− b+ 1

)b−s
<

(
c

b

)
(b− a+ 1). (24)

By definition, we have 2ρmax < r, thus,

a(j, k, r)<

(
r⌊

r
2 − 1

⌋
+

)
r

2
. (25)

At best, j + k + r = 2K + 2, and we have a(j, k, r) = 1. At worst, j, k = K, thus,
ρmax =

⌊
r
2 − 1

⌋
+
, which makes the last estimate almost sharp.

Error accumulation in 1D: Taking into account boundedness of the coefficients (23)
and vanishing exact integrals at non-vanishing leaves, summing up yields

∣∣Erjk∣∣ ≤ a(j, k, r) · max
0≤j≤K,−r≤k≤K+r

j+k≥2K+2

∣∣∣∣∣
K∑
m=0

ωmϕj(ξm)ϕk(ξm)

∣∣∣∣∣ = a(j, k, r) · µ(K, r). (26)

Due to cancellation effects by Hermite function evaluations with rapidly alternating
signs, the term µ(K, r) is of size O(1).
Decomposition of error in multiple dimensions: We set N = {1, . . . , N} and consider
the error matrix for N ≥ 2. For arbitrary j,k ∈ K and r ∈ R: If kl ≤ K − rl + 1, for
all l ∈ N , we have jl + kl + rl ≤ 2K + 1, and the one-dimensional error matrices Erljlkl
vanish. Hence, Er

jk = 0. Conversely, for fixed j ∈ K and r ∈ R, if there is k ∈ K such
that Er

jk 6= 0, we find a subset of components Ñ = Ñ (k) ⊆ N such that, for every
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l ∈ Ñ , kl ≥ K − rl + 2, and Erljlkl does not vanish. This allows for a decomposition
(omitting factors M and L−1 in ϕ and T , respectively)

Er
jk = (ϕj, Trϕk)− (ϕj, Trϕk)GH(K) =

[
N∏
l=1

(ϕjl , Trlϕkl)

]
−
[
N∏
l=1

(ϕjl , Trlϕkl)
GH(K)

]

=


∏
l∈Ñ

(ϕjl , Trlϕkl)


︸ ︷︷ ︸

A

−

∏
l∈Ñ

(ϕjl , Trlϕkl)
GH(K)


︸ ︷︷ ︸

B


∏
l/∈Ñ

(ϕjl , Trlϕkl)


︸ ︷︷ ︸

C
(27)

of a non-vanishing entry Er
jk. On a hyperbolically reduced set K, non-vanishing errors

Er
jk have indices k satisfying

K+1≥
∏
l∈N

(kl+1)=

∏
l/∈Ñ

(kl+1)

∏
l∈Ñ

(kl+1)

≥
∏
l/∈Ñ

(kl+1)

∏
l∈Ñ

(K − rl+3)

 .

Clearly, for every k ∈ K, if K � rmax, then |Ñ (k)| ≤ 1. Thus, the terms A and B
consist of exactly one factor each, and A−B equals the one-dimensional quadrature
error Erl0jl0kl0 for some l0 ∈ N .
Error estimation in multiple dimensions: Consider a non-vanishing entry Er

jk. By
the above considerations for the one-dimensional case, the term A vanishes. Due to
|Ñ (k)| = 1, there is l0 ∈ N such that B equals Erl0jl0kl0 . For a factor in C, using
Cauchy–Schwarz, we find (ϕjl , Trlϕkl) ≤ C(rl). Thus, from (25) and (26), we have

Er
jk = O

(
E
rl0
jl0kl0

)
= O

((
rl0⌊ rl0

2 − 1
⌋
+

)
rl0
2

)
.

For a hyperbolically reduced index set K(K) with R ≤ K−1
2 + 2, it is easily seen that

the total number of non-vanishing entries in Er is at most 1
2rmax(rmax−1). Multiplying

the matrix with a rapidly decaying vector, we thus find

(Erv)j = O
(
r2max(rmax − 1)

4

(
rmax⌊

rmax

2 − 1
⌋
+

)
(K − rmax + 2)−β

)
. (28)

Summing up, the time-dependent and rapidly decaying, L-dependent interpolation
coefficients enter into the constant

C(R,W,L, t) =
∑
r∈R

αr(t)
1

4
r2max(rmax − 1)

(
rmax⌊

rmax

2 − 1
⌋
+

)
, (29)

and, together with the assumption K � R, this proves the claim.

16



Trl,j

rl−1∑
s=1,
s odd

(−1)s+1Trl−s,j−el
± v,j rl−1∑

s=1,
s odd

rl−s−1∑
t=1,
t odd

(−1)s+tTrl−s−t,j−2el

+
rl−1∑
s=1,
s odd

(−1)s+1vj−2el ± vj

(. . . )j +
rl−1∑
s=1,
s odd

(−1)s+1vj

rl−1∑
s=1,
s odd

(−1)s+1Trl−s,j+el

(. . . )j +
rl−1∑
s=1,
s odd

(−1)s+1vj

(. . . )j+2el
+

rl−1∑
s=1,
s odd

(−1)s+1vj+2el

left descent: −1

right descent: +1

. . .

Figure 7: Expansion of Trl,j as a binary tree T(l)(j) of depth rl (90 Âř rotation, coefficients
omitted). The figure illustrates the case of rl being even. Terms with reduced or unaltered
index are attached to the left child, otherwise to the right child.

5.3 Error Ered due to index set reduction
Theorem 2. Let W pol(·, t) ≈W (·, t) be the Chebyshev interpolation polynomial of the
potential W on Ω = [−L,L]N over R(R) for fixed L. Let K(K) be a hyperbolically
reduced index set with K � R. Then, under assumption (21) on v ∈ C|K| (i.e.,
componentwise decay of order β ∈ N), the error due to index set reduction behaves as∣∣∣∣((W pol(XK, t)−WGH(K)

K,pol (t)
)
v
)
j

∣∣∣∣ ≤ C(N,R,W, β, L, t)K−β , j ∈ K.

The matrix W pol(XK, t) results from formally inserting the hyperbolically reduced co-
ordinate matrices X(l)

K into the polynomial (see Section 3) and WGH(K)
K,pol (t) is defined

as in Section 4.1. The constant C(N,R,W, β, L, t) behaves as in (32), see below, and
depends only on N,R, the regularity of W , β, L, and the time t.

Proof. As in the previous theorem, we consider a partition of the error

Ered(v)j =
∑
r∈R

αr(t)

[(
Tr

(
1

L
XK

)
v

)
j
−
(
Tr

(
1

L
Xfull

)
Ω+(v)

)
j

]
, j ∈ K.

Construction of binary trees: For fixed l ∈ {1, . . . , N}, rl ∈ {1, . . . , R} and j ∈ Kfull,
applying the Chebyshev recursion (9) together with (13) yields an expansion

Trl,j =

√
2jl
L

rl−1∑
s=1,
s odd

(−1)s+1Trl−s,j−el
+

√
2(jl + 1)

L

rl−1∑
s=1,
s odd

(−1)s+1Trl−s,j+el
+ τrl,j,
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where we use the abbrevations Trl,j =
(
Trl

(
1
LX

(l)
full

)
v
)
j
and

τrl,j =

±vj, rl even and 4 | (-) rl,
± 1
L

(√
jl
2 vj−el

+
√

jl+1
2 vj+el

)
, rl odd and 4 | (-) (rl + 1).

Repeated application allows for a binary tree expansion T(l)(j) of depth rl as given in
Figure 7 (coefficients omitted). With each left or right descent, all indices of newly
expanded T -terms have their lth component reduced or increased by 1, respectively.
Clearly, leaves carry sums of at most 1

2rl(rl − 1) terms. Starting from j ∈ Kfull, a
binary tree Tfull(j) for the product(

Tr

(
1

L
Xfull

)
v

)
j

=

(
Tr1

(
1

L
X

(1)
full

)
·
(
. . .

(
TrN

(
1

L
X

(N)
full

)
v

)
. . .

))
j

is then obtained by attaching to each term in each leaf of T(l) analogously defined
trees T(l+1) starting from l = 1, such that a leaf in layer l is a root of a subtree in
layer l+ 1, see the pattern given in Figure 8, where the topmost and lowermost layers
are numbered 1 and N , respectively. Along the path to a proper leaf in layer N (an
N -leaf ), let λl and ρl denote the number of left and right descents in layer l, respec-
tively. Starting from j, in layer l, only the lth component of j is changed.

...d
ep

th
|r|

|r N
|

|r 1
|

|r 2
|

Figure 8: Layerwise attaching to form T.

The same considerations apply with
X

(l)
K in place of X(l)

full, yielding an analo-
gously defined binary tree TK(j) starting
from j ∈ K. We consider the difference
tree D(j) = TK(j) − Tfull(j) for j ∈ K,
using the vectors v ∈ C|K| and Ω+(v). If
an index does not belong to Kfull or K,
we say that the corresponding term van-
ishes in Tfull(j) or TK(j), respectively. A
term in the difference tree D(j) vanishes
if corresponding terms in Tfull(j) and TK(j) vanish or do not vanish both at the same
time. We state the following obvious, yet important observations: Terms with an index
belonging not even to Kfull vanish in D(j) anyway. An N -leaf does not vanish in D(j)
if and only if, along the path connecting it to the root vj, there is at least one node
belonging to Kfull \ K. As in Section 5.2, we examine non-vanishing N -leaves in D(j).
Characterization of non-vanishing leaves: We consider a root index m in layer l, where
ml = jl. We have the following requirements for a term depending on m not to vanish
in Tfull(j) or TK(j), respectively:

(Tfull) For the lth component index, it is required that 0
!
≤ jl+ρl−λl ≤ jl+rl−2λl

!
≤ K,

which gives the bounds

λlmin(r, j) =

⌊
jl + rl −K

2

⌋
≤ λl ≤

⌊
jl + rl

2

⌋
= λlmax(r, j).
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(TK) The upper bound is the same as in (Tfull). By the definition of K, one needs

jl + rl − 2λl + 1
!
≤ (K + 1)

( N∏
i=1
i6=l

(1 +mi)
)−1

. (30)

From m ∈ K, it follows that

1 + jl ≤ (K + 1)
( N∏
i=1
i 6=l

(1 +mi)
)−1

,

thus, rl − 2λl
!
≤ 0, i.e., the leaf in TK(j) does not vanish for

λl ≥
⌈rl

2

⌉
= λlmin,hyp(r). (31)

Non-vanishing leaves in D(j) satisfy (Tfull), but not the more restrictive (TK). The
converse is not true, since a leaf violating TK might still fulfill (30), and thus vanish
in D(j). We consider the simpler condition (31). Obviously, λlmin ≤ λlmin,hyp.
Number of non-vanishing leaves: Summing up as in Section 5.2, we have at most

λl
max∑

s=λl
min

(
rl
s

)
−

λl
max∑

s=λl
min,hyp

(
rl
s

)
=

λl
min,hyp−1∑
s=λl

min

(
rl
s

)
= al(r, j)

non-vanishing l-leaves. We use (24) with a = λlmin, b = λlmin,hyp − 1, c = rl. The fact
λlmin,hyp =

⌈
rl
2

⌉
implies 2(λlmin,hyp − 1) < rl, hence,

al(r, j) <
(

rl
b rl2 − 1c

)
rl
2
.

Error accumulation: Along the path to any l-leaf, the most unfavorable weight

bl(r, j) = 2rl/2
rl∏
s=1

(jl + s)1/2

L

comes from descending right only. Using (21), the largest N -leaf is bounded by

c(r, j) ≤
N∏
l=1

1

2
rl(rl − 1)

{
max

−rl≤s≤rl
|vj−sel

|
}

= O
(

N∏
l=1

1

2
rl(rl − 1)(jl − rl)−β

)
.

A path in D(j) does not vanish only in case j + r ∈ Kfull \ K, thus,

K+2≤
N∏
l=1

(1+jl+rl)=

N∏
l=1

(jl−rl) ·
N∏
l=1

(
1 +

1+2rl
jl − rl

)
≤

N∏
l=1

(jl−rl) · 2N
N∏
l=1

(1+rl).
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Hence, the error over all layers is bounded as

|Er
j | ≤

N∏
l=1

{al(r, j) · bl(r, j)} · c(r, j)

= O
(

2(β−2)N
N∏
l=1

{(
rl

b rl2 −1c

)
· 2rl/2

rl∏
s=1

(jl+s)
1/2

L
· rβ+3
l (K+2)−β

})
.

Finally, we sum up and set

C(N,R,W, β, L, t)=
∑
r∈R

αr(t)2(β−2)N
N∏
l=1

{(
rl

b rl2 −1c

)
2rl/2

rl∏
s=1

(jl+s)
1/2

L
rβ+3
l

}
. (32)

Remarks: According to the choice of j ∈ K or R(R), the above error estimate might
improve. If there is more than one large component in j, say n(R, j) = minr∈R n(r, j) ≥
2, where n(r, j) ∈ {1, . . . , N} is the number of components jl such that K ≈ jl � rl,
we get c(r, j) = O(K−n(R,j)β). On the other hand, if j + r ∈ K (i.e., only small index
components), all paths in D(j) cancel out and the error Er

j vanishes.

6 Numerical experiments
All figures have been obtained on a desktop computer with an Intel Core 2 Duo E8400
3.00 GHz processor with 4 GB RAM.

6.1 Local errors due to quadrature and index set reduction
Let K = K(K) be a hyperbolically reduced N -dimensional index set. We illustrate the
errors

Equadv =
(
WK,pol −WGH(K)

K,pol

)
v, Ered(v) =

(
W pol(XK)−WGH(K)

K,pol

)
v

due to quadrature and index set reduction as given in Theorems 1 and 2, respectively,
for different choices of N and K, see Figure 9. In both cases, the chosen potential
is the aforementioned stretched torsional potential as given in (15), i.e., W (x) =∑N
l=1 (1− cos(xl/L)) with L = 16 approximated by Chebyshev interpolation with

R = 8 nodes on each axis as in Section 3.4. For the vector v ∈ C|K| to exhibit a decay
behavior according to (21), we set

vk =

N∏
l=1

max(kl, 1)−β , β = 5,

and then normalize such that ‖v‖2 = 1. As explained in Section 5.3, for K being
sufficiently large, the error

(
Ered(v)

)
j decreases the faster the more components jl of
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j are large with respect to R, see Theorem 2 and the remarks thereafter. Figure 10
illustrates this decay behavior in the individual components of Ered(v) for N = 2 and
β = 3. The matrix WGH(K)

K,pol is assembled as explained in Section 4.1. For a full index
set Kfull, Lemma 1 has been confirmed numerically for all our choices of K and N .

K0 25 50 75
1e− 12

1e− 10

1e− 08

1e− 06

1e− 04

1e− 02
max. error: max

j

∣

∣

∣

(

Equadv
)

j

∣

∣

∣
, max

j

∣

∣

∣

(

Ered(v)
)

j

∣

∣

∣

β = 5, torsional potential

N = 2
N = 3
N = 4

K ↓ N = 2 N = 3 N = 4

25 1.270e-09 8.978e-10 6.347e-10

50 7.629e-11 5.392e-11 3.812e-11

75 1.466e-11 1.037e-11 7.328e-12

time 19.0 secs 5.9 min 55.8 min

25 2.975e-08 1.344e-06 6.834e-05

50 1.621e-09 4.207e-08 1.426e-06

75 2.729e-10 5.540e-09 1.879e-07

time 0.002 secs 0.011 secs 0.047 secs

Figure 9: Errors Equadv (black) and Ered(v) (gray) for the torsional potential (15) (L =
16, S = 1, R = 8, β = 5). The solid lines represent N = 2, selected errors in cases N =
3, 4 are indicated by plus signs and circles, respectively. Increasing N worsens the factor
C(N,R,W, β, L) in Ered, see (32). In the rows labeled “time”, computation times forWGH(K)

K,pol v
(assembly and multiplication) and for the fast algorithm in case K = 75 are shown. As for
N=4, assembling the matrix (plus operating on a vector) takes almost one hour – even with
a reduced index set.
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K = 40
# = 2

Figure 10: Errors
(
Ered(v)

)
j due to in-

dex set reduction for a torsional potential
with N=2 and different choices of K (as
above, L=16, S=1, R=8, β=3). Each
entry represents an error vector compo-
nent. Errors being small with respect
to the largest observed error component
emax ≈ 5.264e-05 are simply indicated by
a dot, indices carrying larger errors are
indicated by a grey box. The darker the
box, the closer the error to emax. The pic-
tures corresponding to K = 30, 40 show
an enlarged view. The symbol # points
to the number of large error components.
The errors decrease with growingK as in-
dicated by increasingly lighter boxes and
are concentrated in the region with only
“intermediate” index components.
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6.2 Perturbed Lanczos process
For a problem of the form iẏ(t) = Ay(t), we approximate the matrix exponential
exp(−ihA)v using an m-step Lanczos process. In each Lanczos step, applying the fast
algorithm

(Avk)fast = Avk −
(
Avk − (Avk)fast

)
= Avk − fk

instead of Avk produces perturbed basis vectors and coefficients Ṽm and T̃m, respec-
tively. This yields A = ṼmT̃mṼ

∗
m + FmṼ

∗
m, where Fm = (f1| . . . |fm) are the per-

turbations. Thus, the relation to the unperturbed counterparts Vm and Tm reads
VmTmV

∗
m = ṼmT̃mṼ

∗
m + FmṼ

∗
m. We approximate exp(−ihA)v ≈ Ṽm exp(−ihT̃m)e1,

and, by a sensitivity analysis for the matrix exponential as done in [24], the local error
is readily seen to be∥∥∥Vm exp(−ihTm)e1 − Ṽm exp(−ihT̃m)e1

∥∥∥
2
≤ h‖Fm‖2 exp(h(‖A‖2 + ‖Fm‖2)). (33)

We consider A = DK +WK,pol, see (8), where DK is the diagonal matrix given in
Section 1.2, and the underlying potential is again the torsional potential,

W (x) =

N∑
l=1

(1− cos(xl/L))− 1

2

N∑
l=1

x2l , x ∈ Ω, (34)

(Chebyshev interpolation as in Section 3.4, L = 16, R = 8). The linear decay of the
error (33) with respect to h is shown in Figure 11. Additionally, for a fixed choice of
h, the error is seen to become worse for constant K and increasing N (as predicted by
Theorem 2), and it becomes arbitrarily small for constant N and a sufficiently large
choice of K. We apply only 5 Lanczos steps in each time step. Note that if m is

h→ 1/10 1/20 1/40 1/80

N=2, K=10 3.731e-06 1.874e-06 9.380e-07 4.691e-07

N=2, K=20 6.565e-07 3.285e-07 1.644e-07 8.222e-08

N=2, K=30 2.650e-07 1.305e-07 6.526e-08 3.264e-08

N=2, K=40 1.464e-07 6.956e-08 3.468e-08 1.734e-08

N=3, K=40 6.310e-07 3.151e-07 1.576e-07 7.880e-08

N=4, K=40 5.313e-06 2.661e-06 1.331e-06 6.658e-07

Figure 11: Perturbation er-
ror (33) depending linearly
on h for fixed m = 5 and
various choices of N and K
(torsional potential, L= 16,
S=1, R=8, β=3).

chosen too large, the vectors vk, k ≥ 2, might fail to decay sufficiently fast, and the
perturbation error might dominate the error due to Lanczos itself. A comparison of
(33) to the unperturbed Lanczos error

‖Vm exp(−ihTm)e1 − exp(−ihA)v‖2 (35)

(see, e.g., [19], Thm. III.2.10) is given in Figure 12, where we illustrate the error
behavior for various choices of N , K, and m and for a fixed choice of h. As the figures

22



reveal, there is an antagonism: On the one hand, increasing m improves (35), but (33)
might dominate unless K is chosen sufficiently large. On the other hand, increasing
K requires a larger choice of m for a decent Lanczos approximation (for fixed h). In
our examples, moderate m (say, m = 5) is a good choice. Increasing m is always
possible, but yields additional costs without further reducing the overall error due to
(33) (unless h is chosen smaller). Presently, we lack further analytical insight into how
to relate m, K, and h in an optimal way.

K10 20 30 40

1e− 09

1e− 07

1e− 05

1e− 03

perturbation error vs. unperturbed Lanczos
β = 3, torsional potential, h = 1

10

error (6.1)
error (6.3)

m = 3

m = 5

m = 7

m = 9

N = 2 only

1e− 07

1e− 06

1e− 05

1e− 04

N=2
N=3
N=4

m = 5 only

K→ 10 20 30 40

N=2 8.196e-05 1.077e-04 1.270e-04 1.427e-04

m=3 3.878e-06 8.279e-07 4.181e-07 2.779e-07

N=2 2.324e-07 1.709e-06 4.415e-06 7.881e-06

m=5 3.731e-06 6.565e-07 2.650e-07 1.464e-07

N=2 2.522e-10 9.192e-09 5.211e-08 2.003e-07

m=7 3.730e-06 6.533e-07 2.588e-07 1.374e-07

N=2 1.179e-13 2.973e-11 5.241e-10 3.354e-09

m=9 3.730e-06 6.533e-07 2.587e-07 1.371e-07

N=3 2.796e-07 1.612e-06 4.062e-06 8.531e-06

m=5 1.363e-04 5.035e-06 1.405e-06 6.310e-07

N=4 2.628e-07 1.666e-06 3.966e-06 7.500e-06

m=5 1.493e-04 1.437e-04 2.103e-05 5.313e-06

Figure 12: Errors (33) (black) and (35) (gray) as functions of K for fixed h = 1/10 and
various choices of N and m (torsional potential, L=16, S=1, R=8, β=3). Upper figure:
N =2, m=3,. . ., 9 (dashed, solid, chain dotted, and dotted line, respectively). Lower figure:
N=2, 3, 4, m=5 (solid, dashed, and chain dotted line, respectively). In each cell of the table,
the upper and lower figure corresponds to (35) and (33), respectively.

6.3 Time integration
We propagate (10), i.e.,

iċpol(t) = DKcpol(t) +WK,pol(t)cpol(t),

(c̃pol(0))k =
∏
kl 6=0

k−βl , (cpol(0))k = (c̃pol(0))k / ‖c̃pol(0)‖2 , (36)

over [0, 1], where DK is the above diagonal matrix and the underlying potential W is
a stretched Hénon-Heiles potential with a linear time-dependent perturbation,

W (x, t) =

N−1∑
l=1

[
(xl/L)2(xl+1/L)− 1

3
(xl+1/L)3

]
−sin2(t)x1 −

1

2

N∑
l=1

x2l , x ∈ Ω, (37)
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(fully-indexed Chebyshev interpolation, L = 16, R = 3). This models the interaction
of an atom or a molecule with a high-intensity CW laser in x1-direction, see [20]
(with a quantum harmonic oscillator in place of a HH-potential). Our aim is to show
numerically the expected order of convergence with respect to h and to illustrate the
error behavior if K and m vary individually. Figure 13 shows the error

max
j∈K

∣∣∣(cnpol − cpol(t
n)
)
j

∣∣∣ (38)

at time tn = 1 when using the schemes (11) and (12) of orders 2 and 4, respectively,
with β = 3 for the initial decay. In each time step, we apply the Lanczos process
together with the fast algorithm. The left figure gives (38) using (11) for fixed N =
2, m = 7, and various choices of K, revealing the expected order of convergence.
Additionally, we use asterisks to indicate the perturbation error

max
j∈K

∣∣∣(cnpol − c̄npol
)
j

∣∣∣ , (39)

where c̄npol comes from an unperturbed application of Lanczos. The latter error be-
comes eventually dominant, but decreases arbitrarily for increasing K. The middle
picture shows the case of fixed N = 2, K = 40, and various choices of m using (11).
Due to the perturbation error being dominant, larger choices of m yield no additional
accuracy. Finally, the right picture illustrates the error behavior for fixed K = 40,
m = 7, and various choices of N using both schemes. The order of (12) is not revealed
before the perturbation error dominates. In all cases, (12) has been employed with
h = 1e-04 and 20 unperturbed Lanczos steps in each time step to obtain a reference.

Conclusion
We have presented a fast algorithm for the efficient treatment of the coefficient ODE
resulting from spatial discretization of the linear Schrödinger equation in higher di-
mensions by a spectral Galerkin method. As time discretization of this ODE typically
involves products of the time-dependent Galerkin matrix with a vector, assembling this
matrix and doing the multiplication explicitly is prohibitive due to the complexity of
the problem – even with a reduced basis and even more so in each time step. The fast
algorithm provides a direct approach for this problem to circumvent complexity issues
and reduce computational efforts considerably. It consists of a sequential, fast appli-
cation of coordinate matrices formally inserted into the polynomially approximated
potential and scales only linearly in the size of the chosen basis for any choice of index
set reduction. Using a full index set, our quadrature-free procedure is equivalent to
Gauss–Hermite quadrature with exactly as many nodes as there are basis functions in
each direction. For a hyperbolically reduced index set, we have analyzed the resulting
quadrature and index set reduction errors by casting the problem as an examination
on binary trees. As it turns out, both errors decay rapidly if the underlying potential
is sufficiently smoother than the exact solution. Possible issues in the context of a
Lanczos-based time propagation scheme have been discussed. The analysis as given
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m = 7, K = 40, various N

N = 2
N = 3
N = 4

scheme (2.1)

scheme (2.2)

max. error at tn = 1, β = 3, pert. Hénon-Heiles

N m K scheme h=1/10 1/20 1/40 1/80 1/160

2 7 10 (11) 1.665e-05 1.103e-05 1.069e-05 1.060e-05 1.058e-05

2 7 20 (11) 1.627e-05 4.063e-06 1.014e-06 7.214e-07 7.213e-07

2 7 30 (11) 1.623e-05 4.062e-06 1.014e-06 3.141e-07 3.141e-07

2 7 40 (11) 1.666e-05 4.062e-06 1.014e-06 2.523e-07 1.837e-07

2 3 40 (11) 1.568e-02 4.047e-03 2.763e-04 2.044e-05 4.987e-06

2 5 40 (11) 9.066e-05 5.330e-06 1.045e-06 2.537e-07 1.843e-07

2 9 40 (11) 1.629e-05 4.063e-06 1.014e-06 2.523e-07 1.837e-07

3 7 40 (11) 1.353e-05 3.224e-06 8.026e-07 4.770e-07 4.770e-07

4 7 40 (11) 1.036e-05 5.830e-06 5.933e-06 5.960e-06 5.967e-06

2 7 40 (12) 1.973e-06 1.974e-07 1.840e-07 1.837e-07 1.837e-07

3 7 40 (12) 1.918e-06 4.719e-07 4.769e-07 4.770e-07 4.770e-07

4 7 40 (12) 6.266e-06 5.975e-06 5.969e-06 5.969e-06 5.969e-06

Figure 13: Propagation of (36) with W (x) as in (37) (Chebyshev interpolation, L = 16,
S = 1, R = 3, β = 3) using the schemes (11) and (12) as given in the table containing the
observed errors (38). Corresponding errors (39) due to a perturbation of Lanczos as observed
in the last time step are indicated by asterisks (not included in the table).

in the present work is limited to the case of the solution being essentially supported
within a cube. However, we point out that the fast algorithm has been successfully
used in combination with a moving wavepacket basis, and that it constitutes a generic
strategy that can be adopted for spectral discretizations based on orthogonal polyno-
mials for linear problems involving boundary conditions other than the Schrödinger
equation with Hermite functions.
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