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Abstract. In this paper, we present a reduced basis method for pricing European and Amer-
ican options based on the Black-Scholes and Heston model. To tackle each model numerically, we
formulate the problem in terms of a time dependent variational equality or inequality. We apply
a suitable reduced basis approach for both types of options. The characteristic ingredients used in
the method are a combined POD-Greedy and Angle-Greedy procedure for the construction of the
primal and dual reduced spaces. Analytically, we prove the reproduction property of the reduced
scheme and derive a posteriori error estimators. Numerical examples are provided, illustrating the
approximation quality and convergence of our approach for the different option pricing models. Also,
we investigate the reliability and effectivity of the error estimators.

1. Introduction. We consider the problem of European and American option
pricing and refer to [1, 22, 37] and the references therein for an introduction into
computational methods for option pricing. While European options can be modeled
by a parabolic partial differential equation, American options result in additional
inequality constraints. Different models can be used to price European and Ameri-
can options. The simplest ones, e.g., the Black-Scholes model [2], assume that the
volatility is constant. However, in most of the cases, the real market violates this as-
sumption due to its stochastic nature. Thus, alternative models, which try to capture
this phenomenon are frequently used, e.g., the Heston stochastic volatility model [21].

Another difficulty which arises with solving partial differential equations (PDEs)
for option pricing, in particular for pricing American options, is that for most of the
models no closed form solution exists. Thus one has to develop appropriate numerical
methods. The common methods to solve pricing equations with the Heston model
are finite differences, cf. [9, 24, 26, 27] and finite elements, cf. [8, 31, 41, 44]. We refer
to [20] for a possible numerical treatment of basket options with the Black-Scholes
model by primal-dual finite elements and to [10, 13, 30] for an abstract framework on
the theory of constrained variational problems.

We are interested in providing fast numerical algorithms to accurately solve the
variational equality and inequality systems associated with European and American
call and put options for a large variety of different parameter values such as, e.g.,
interest rate, dividend and correlation. Reduced basis (RB) methods are an ap-
propriate means for standard parametrized parabolic partial differential equations,
cf. [5, 15, 17, 35, 39] and the references therein. These techniques are based on
low-dimensional approximation spaces, that are constructed by greedy procedures.
Convergence behavior is known in some cases [5, 16]. The computational advantage
of RB-methods over standard discretization methods is obtained by its possible of-
fline/online decomposition: First, a typically expensive offline-phase involving the
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computation of the reduced spaces is performed. This phase only needs to be pre-
computed once. Then, the online phase allows an extremely fast computation of the
RB solutions for many new parameters as only low dimensional systems need to be
solved. Recently, we adopted the RB methodology to constrained stationary elliptic
problems [18], which we extend here to the instationary case.

We refer to the recent contribution [6] for a tailored RB approach in option pric-
ing with diffusion and jump-diffusion models, which later was generalized to basket
options [33] and, in fact, was shown to be a variant of a Proper Orthogonal Decompo-
sition method (POD) [34]. The application of the reduced basis method can be also
extended to the calibration of option pricing models, e.g., [32, 36]. In contrast to our
setting, no inequality constraints are taken into account there. Further work relevant
for RB-methods and variational inequalities comprises [12], which addresses a time-
space formulation of the problem and corresponding analysis. Also, recently, ongoing
work has been presented in [38], which alternatively treats the inequality constraints
both by a primal-dual technique and a penalization approach.

One main challenge in our problem setting is the construction of a suitable low
dimensional approximation of the dual cone required for the treatment of the con-
straints. In this work, we present an algorithm to overcome this difficulty which is
based on the greedy procedure and tries to capture as much “volume” as possible in
the construction of the dual cone. This is obtained by iteratively selecting snapshots
maximizing the angle to the current space. As second main ingredient for treat-
ment of additional inequality constraints, we provide analytical results, in particular
a posteriori error control.

Let us briefly relate the current presentation to our previous works. In contrast
to [18], which dealt with RB methods for stationary variational inequalities, we treat
here instationary problems. In this way, we apply sharper a posteriori error estimator
strategies, which can straightforwardly be applied to the stationary case and gives
improvements over [18]. In [19] we presented an RB procedure for American option
pricing with a Black-Scholes model and gave first simple examples. The current pre-
sentation considerably extends this by including the Heston model and both European
and American options and providing an analysis for the corresponding RB scheme.

The content of this paper is structured as follows: In Section 2, we present both
a strong and a variational formulation of pricing of European and American options
with the Black-Scholes and Heston model. In Section 3, a reduced basis method
is introduced together with the construction of the primal and dual reduced basis
spaces. Section 4 contains the a posteriori error analysis induced by the method and
derived from equality and inequality residuals. The implementational aspects of the
reduced basis method together with the construction algorithms for reduced basis
spaces are presented in Section 5. Numerical results, given in Section 6, illustrate the
performance of the method for pricing options in one dimensional Black-Scholes and
two dimensional Heston models.

2. Variational formulations for European and American Options.

2.1. Option Pricing Models. In this section, we give a brief introduction
to the theory of option pricing. An option is a contract which permits its owner
the right to buy or sell an underlying asset (a stock, or a parcel of shares) at a
prespecified fixed strike price K ≥ 0 before or at a certain time T ≥ 0, called maturity.
There are two basic types of an option: a call option which gives a holder a right to
buy and a put option which allows an owner to sell an underlying asset. Also one
distinguishes between European options, where exercise is only permitted at maturity
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T and American options which can be exercised at any time before an expiration time
T . We will denote the price of the underlying asset by S = Sτ ∈ R+, where τ ≥ 0 is
the time to maturity T .

In standard option pricing models, e.g., the Black-Scholes model [1, 2, 25], a price
of the underlying asset Sτ follows a stochastic process, governed by the following
stochastic differential equation

dSτ = ιSτdt+ στSτdWτ , (2.1)

with a Wiener process Wτ , a drift ι and a volatility στ > 0. One of the main
limitations of these models is the assumption that the volatility of the return on the
underlying asset is constant στ = σ, while in financial markets, the volatility is not a
constant, but a stochastic variable. The Heston stochastic volatility model [21] takes
into account the randomness of the volatility and is based on the following stock price
and variance dynamics

dSτ = ιSτdt+
√
vτSτdW

1
τ , (2.2)

dvτ = κ(γ − vτ )dτ + ξ
√
vτdW

2
τ , (2.3)

where vτ = σ2 follows a square root process (known as a Cox-Ingersoll-Ross (CIR)
process) with the mean variance γ > 0, rate of mean reversion κ > 0 and so called
volatility of volatility ξ > 0. The Wiener processes W 1

τ and W 2
τ are correlated with

the correlation parameter ρ ∈ [−1, 1].
With the use of Ito’s formula [25], each model can be formulated in terms of a

partial differential equation (PDE). For purposes of brevity, we omit the derivation
of the equations. The reader is referred to [1, 21, 22] for further details.

We define the spatial differential operators corresponding to the Black-Scholes
and Heston model as follows

LBSP : =
1

2
σ2S2∂SSP + rS∂SP − (r − q)P, (2.4)

LHP : =
1

2
ξ2v∂vvP + ρξvS∂vSP +

1

2
vS2∂SSP + κ(γ − v)∂vP + rS∂SP − rP,

(2.5)

where r is the interest rate and q is the dividend payment. Then the value of an
option P (τ, S) in the Black-Scholes model and P (τ, v, S) in the Heston model paying
P0(S) at maturity time T must satisfy the following partial differential equation

∂τP + LP = 0, (2.6)

where the value P0(S) is called a payoff function and L := Ls, s = {BS,H} for the
Black-Scholes and the Heston model, respectively.

Remark 1. Assuming a constant volatility in the Heston model and no dividend
payment in the Black-Scholes model, q = 0, we have v = γ and ξ = 0, and the Heston
equation reduces to the Black-Scholes equation with the constant volatility σ =

√
v.

For further derivation of the weak formulation of the problem (2.6), we introduce
the following notation. Let Ω ⊂ Rd, d = 1, 2, be a bounded open domain with
Lipschitz continuous boundary ∂Ω. We consider d = 1 for the Black-Scholes model
and d = 2 for the Heston model. Note that this is not a limitation for the RB-
approach that we present. Higher dimensional problems can readily be treated, as
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soon as suitable solvers for the discretized PDE are available. We introduce the
following functional space

V :=
{
φ ∈ H1(Ω) : φ = 0 on ∂ΩD

}
, (2.7)

where ∂ΩD denotes a Dirichlet portion of the boundary ∂Ω. Further 〈·, ·〉V and ‖ · ‖V
denote the inner product and norm of V , similar for other spaces. In the error analysis,
we make use of a norm bound, i.e. we denote by CΩ a constant that satisfies, for any
v ∈ V :

‖v‖L2(Ω) ≤ CΩ‖v‖V . (2.8)

In the experiments, we use H1 or weighted H1 norms for V , but for the sake of general-
ity of our analysis, we introduce this generic constant that includes other frameworks,
e.g., H1

0 norm for which CΩ is the Friedrichs-Poincaré constant.
We define a backward time variable t := T − τ which we will use throughout the

paper. This transforms the PDE (2.6) into a standard forward evolution problem. We
denote by (·)+ := max(0, ·), by “◦” the Hadamard product and introduce a parameter
µ ∈ P ⊂ Rp, p = 3, 5, which parametrizes (2.6). We set µ := (σ, q, r) for the Black-
Scholes model and µ := (ξ, ρ, γ, κ, r) for the Heston model.

2.2. Pricing of European options. We start our consideration with the sim-
plest case of pricing the European type of options. Since puts and calls of the European
option can be easily interchanged via a put-call parity relation [25, p. 163], it suffices
for us to consider, e.g., only call options. In addition, there exists a semi-closed ana-
lytical solution for these options in the Black-Scholes and Heston models. However,
while the Black-Scholes formula [2] provides almost the exact value of the European
option, the Heston semi-analytical formula [21] requires some numerical techniques
to approximate the integral. Thus, it is more interesting to consider the case of the
Heston model. Then the value of a European call option P (t, v, S), (v, S) ∈ R2

+ (the
relation to Ω being established soon) satisfies the following linear equation

∂tP − LHP = 0, t ∈ (0, T ], (2.9)

subject to initial and boundary conditions

P (0, v, S) = (S −K)+, lim
S→0

P (t, v, S) = 0,

lim
S→+∞

PS(t, v, S) = 1, lim
v→+∞

P (t, v, S) = S,

rP (t, 0, S) = rSPS(t, 0, S) + κγPv(t, 0, S) + Pt(t, 0, S). (2.10)

The description of the boundary conditions can be interpreted as follows: For a large
stock price S, we use a Neumann boundary condition which establishes a linear growth
of an option price. When the volatility v is 0, we cannot impose any boundary
conditions and assume that the equation (2.9) is satisfied on the line v = 0. When the
stock price is worthless S = 0, it is natural to assume that the value of the call is also
worthless. The option price is increasing with the volatility but it remains bounded
by the stock price, hence when the volatility v is large, we assume the value of the
option tends to reach the value of the stock price S. Note, this is not the only way to
prescribe boundary conditions for the problem, other types of boundary conditions
can be found, e.g., in [7, 9, 44].
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Remark 2. The variance process (2.3) is strictly positive if the condition on the
parameters ξ2 < 2κγ is satisfied, which is often referred as the Feller condition, see,
e.g., [28]. This condition plays a crucial role in the calibration process of the Heston
model, and it is uncommon that the parameters violate it. Thus we restrict ourselves
to the choice of model parameters, such that the Feller condition is fulfilled.

Since the operator LH in (2.5) is a degenerate parabolic differential operator, the
standard way to eliminate the variable coefficient S is to perform the log-transformation
of S by introducing a new variable x := log

(
S
K

)
. Then we are looking for the so-

lution w(t, v, x) := P (t, v, log( SK )), with the initial condition w0(x) := w(0, v, x) =
(Kex −K)+ which satisfies the transformed Heston equation

∂tw − LHw = 0, (2.11)

for all (v, x) ∈ R+ × (−∞,+∞). The operator LH corresponds to the operator LH
in (2.5) with respect to a change of variables and is defined as follows

LHw := ∇ ·A∇w − b · ∇w − rw, (2.12)

with

A :=
1

2
v

[
ξ2 ρξ
ρξ 1

]
, b :=

[
−κ(γ − v) + 1

2ξ
2

−r + 1
2v + 1

2ξρ

]
(2.13)

and first oder spatial differential operator ∇ := (∂v, ∂x)
T

.
To perform a numerical simulation, we localize the problem (2.11) to a bounded

computational domain Ω = (vmin, vmax)× (xmin, xmax) ⊂ R2 with the variance vmin >
0. Then the boundary conditions transform into

Γ1 : v = vmin w(t, vmin, x) = KexΦ(d+)−Ke−rtΦ(d−),

Γ2 : v = vmax w(t, vmax, x) = Kex,

Γ3 : x = xmin w = λw(t, vmax, xmin) + (1− λ)w(t, vmin, xmin),

λ =
v − vmin

vmax − vmin
,

Γ4 : x = xmax A
∂w

∂n
(t, v, xmax) =

1

2
vKex,

with n being an outward normal vector at the boundary, σ =
√
v and d± and a

cumulative distribution function Φ(x) defined as

d± =
x+ (r ± σ2

2 )t

σ
√
t

, Φ(x) =
1√
2π

∫ x

−∞
e−

z2

2 dz.

Using the test function φ ∈ V yields the following weak formulation of (2.11)

〈∂tw, φ〉L2(Ω) + aH(w, φ;µ) = fE(φ;µ), ∀φ ∈ V, (2.14)

where

aH(w, φ;µ) := 〈A∇w,∇φ〉L2(Ω) + 〈b · ∇w, φ〉L2(Ω) + r〈w, φ〉L2(Ω), (2.15)

fE(φ;µ) := 〈A∂w
∂n

, φ〉L2(Γ4). (2.16)

Various methods can be applied to solve this problem numerically, e.g., [24, 28, 41].
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2.3. Pricing of American options. We extend our considerations to American
options based on the Black-Scholes and Heston model, for which, in general, a closed
form solution does not exist. Since American calls are equal to European calls on
non-dividend paying stocks [25, p. 159], we will focus only on American put options
in both models. Following the same arguments as in Section 2.2, we consider the
price of the American put in the log-transformed variable w(x) := P (Kex) with a
log-transformed payoff w0(x) := (K −Kex)+ which solves the following problem

∂tw − Lw ≥ 0, w − w0 ≥ 0, (2.17)

(∂tw − Lw) ·
(
w − w0

)
= 0. (2.18)

The operator L := Ls, s = {BS,H} for the Black-Scholes or Heston model, where

LBSw :=
1

2
σ2∂2

xxw + (r − q)∂xw − rw. (2.19)

The boundary conditions for the Heston model are set to w = w0(x) on ∂ΩD := Γ1 ∪
Γ3∪Γ4 and ∂w

∂n = 0 on Γ2. For the Black-Scholes model we define ∂ΩD := {xmin, xmax}
and on this boundary we prescribe w = w0(x).

Our aim is to reformulate the system (2.17)–(2.18) in a variational saddle point
form [29]. Define W := V ′ to be the dual space of V and M ⊂W to be a dual cone.
For all η ∈W , v ∈ V introduce a duality pairing b : W × V → R, b(η, v) = 〈η, v〉V ′,V

and g̃(η;µ) := b(η, w0). The bilinear form of the Black-Scholes equation reads

aBS(w, φ;µ) :=
1

2
σ2〈∂xw, ∂xφ〉L2(Ω) − (r − q)〈∂xw, φ〉L2(Ω) + r〈w, φ〉L2(Ω). (2.20)

To treat the problem numerically, we use a θ-scheme for the discretization in time
and conforming piecewise linear finite elements for the discretization in spatial di-
rection. We divide (0, T ] into L subintervals of equal length ∆t := T

L and define
wn := w(tn, v, x) ∈ H1(Ω), tn := n∆t, 0 < n ≤ L. In order to ensure Dirichlet
boundary conditions, we set wn = un + ung , where un := u(tn, ·, ·) ∈ V solves (2.17)–
(2.18) with homogeneous Dirichlet boundary conditions and ung := ug(t

n, ·, ·) ∈ H1(Ω)
is a Dirichlet lift function, which extends non-homogeneous boundary conditions to
the interior of the domain. For 0 < n ≤ L− 1 we introduce the operators

fn(φ;µ) := −

〈
un+1
g − ung

∆t
, φ

〉
L2(Ω)

− a(θun+1
g + (1− θ)ung , φ;µ), (2.21)

gn(η − λn+1;µ) := g̃(η − λn+1;µ)− b(η − λn+1, un+1
g ), (2.22)

and the discrete problem in a saddle point form reads:
Definition 2.1 (Detailed problem). For µ ∈ P and given initial data u0 ∈ V

find (un+1(µ), λn+1(µ)) ∈ V ×M for 0 < n ≤ L− 1 and φ ∈ V, η ∈M satisfying〈
un+1 − un

∆t
, φ

〉
L2(Ω)

+ a(θun+1 + (1− θ)un, φ;µ)− b(λn+1, φ) = fn(φ;µ), (2.23)

b(η − λn+1, un+1) ≥ gn(η − λn+1;µ). (2.24)

The bilinear form a(·, ·;µ) := as(·, ·;µ), s = {BS,H} is specified for each model
in (2.20) or (2.15). Here and in the following, we frequently omit the argument
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µ whenever the parameter value is clear from the context. The problem (2.23)–
(2.24) can be considered as a model independent formulation for pricing American
put options. Moreover, the European call option is also enclosed in this formulation
by the exchange of fn(·;µ) with fn(·;µ) + fE(·;µ), initial conditions and omitting
b(·, ·) and gn(·, µ) terms. Therefore, in the further discussions of the implementation
aspects and analysis, we will focus only on the general American put option case,
and we will not distinguish the models which are used to price the option. However
in Section 6, we present and compare numerical results for European and American
options in both models.

By a generalized Lax-Milgram argument, a problem of type (2.23)–(2.24) is well-
posed if the bilinear form a(·, ·, µ) is continuous and coercive, fn(·, µ), gn(·;µ) are
linear and continuous and b(·, ·) is inf-sup stable. In particular, for the Heston model,
if v ≥ vmin > 0 the matrix A in (2.13) is positive definite on Ω and under the suitable
relation on the coefficients, we obtain the coercivity and continuity of a(·, ·;µ). This
issue for the European call option was studied in great detail in [41]. The well-
posedness of the problem in the Black-Scholes settings can be found, e.g., in [1, Ch.
6]. The coercivity, continuity, and inf-sup constants are defined as follows

αa(µ) := inf
u∈V

a(u, u;µ)

‖u‖2V
> 0, γa(µ) := sup

u∈V
sup
v∈V

a(u, v;µ)

‖u‖V ‖v‖V
<∞, ∀µ ∈ P, (2.25)

β := inf
η∈W

sup
v∈V

b(η, v)

‖η‖W ‖v‖V
> 0. (2.26)

Also, for our choice of a dual space and cone we assume

〈η, η′〉W ≥ 0, ∀η, η′ ∈M. (2.27)

3. Reduced basis setting. In this section, we provide the RB-scheme for the
variational inequality problem and present the main analytical results.

3.1. Reduced basis discretization. Standard finite element approaches do
not exploit the structure of the solution manifold under parameter variation and for a
given parameter value, a high dimensional system has to be solved. In what follows,
we introduce a specific Galerkin approximation of the solution, based on the reduced
basis method. The first step of the reduced basis method mainly consists in computing
parametric solutions in low dimensional subspaces of V and W , defined in Section 2,
that are generated with particular solutions, the so-called snapshots, of our problem.

Let us explain the corresponding formulation in more detail. For N ∈ N, consider
a finite subset PN := {µ1, . . . , µN} ⊂ P with µi 6= µj , ∀i 6= j. The reduced spaces
VN and WN are defined by VN := span {ψ1, . . . , ψNV

} and WN := span {ξ1, . . . , ξNW
}

where ψi ∈ V and ξi ∈M are suitably constructed from the large set of snapshot solu-
tions un(µi), i = 1, . . . , N , n = 0, . . . , L and λn(µi), i = 1, . . . , N , n = 1, . . . , L and the
reduced dimensions NV , NW are preferably small. Both families ΨN = (ψj)j=1,...,NV

and ΞN = (ξj)j=1,...,NW
are supposed to be composed of linearly independent func-

tions, hence are so-called reduced bases. Numerical algorithms to build these two sets
will be presented in Section 5.4. We define the reduced cone as

MN =


NW∑
j=1

αjξj , αj ≥ 0

 ,

which satisfies MN ⊆M due to the assumption of ξi ∈M . In this setting, the reduced
problem reads:

7



Definition 3.1 (Reduced problem). Given µ ∈ P, find un+1
N (µ) ∈ VN and

λn+1
N (µ) ∈MN for 0 ≤ n ≤ L− 1 that satisfy〈
un+1
N − unN

∆t
, vN

〉
L2(Ω)

+ a(θun+1
N + (1− θ)unN , vN ;µ)− b(λn+1

N , vN ) = fn(vN ;µ),

(3.1)

b(ηN − λn+1
N , un+1

N ) ≥ gn(ηN − λn+1
N ;µ), (3.2)

for all vN ∈ VN , ηN ∈ MN and the initial value u0
N is chosen as an orthogonal

projection of u0 on VN , i.e., 〈u0
N − u0, vN 〉V = 0 for all vN ∈ VN .

3.2. Existence, uniqueness and reproduction property. By the construc-
tion procedure for VN ,WN in Section 5, we will assure inf-sup stability of b(·, ·) on
WN × VN and guarantee that βN ≥ β > 0, where

βN := inf
ηN∈WN

sup
vN∈VN

b(ηN , vN )

‖ηN‖WN
‖vN‖VN

, (3.3)

which implies the well-posedness of our reduced problem (3.1)–(3.2) with identical
arguments as for the detailed saddle point problem. Hence, we ensure existence and
uniqueness of the reduced solution. For the details of the proof, we refer to [4, 18,
35]. A further useful property is a basic consistency argument, the reproduction of
solutions:

Lemma 3.2 (Reproduction of Solutions). If for some µ holds un+1(µ) ∈ VN and
λn+1(µ) ∈MN for 0 < n ≤ L− 1 and u0(µ) ∈ VN then

un+1
N (µ) = un+1(µ), λn+1

N (µ) = λn+1(µ), ∀n = 1, . . . , L− 1.

Proof. We prove this property by induction. For n = 0, u0 ∈ VN and for u0
N ∈ VN

we have 〈u0
N − u0, vN 〉V = 0, for all vN ∈ VN . Set vN = u0

N − u0, then

〈u0
N − u0, u0

N − u0〉V = 0,

which is true only for u0
N = u0. For the induction step, we assume that un = unN ,

λn = λnN . Then, choosing v = vN ∈ VN ⊂ V , η = ηN ∈MN ⊂M , we directly obtain〈
un+1 − unN

∆t
, vN

〉
L2(Ω)

+ a(θun+1 + (1− θ)unN , vN ;µ)− b(λn+1, vN ) = fn(vN ;µ),

b(ηN − λn+1, un+1) ≥ gn(ηN − λn+1;µ),

which implies that (un+1, λn+1) ∈ VN ×MN solves the reduced problem (3.1)–(3.2).
Due to the uniqueness of the solution, we obtain un+1

N = un+1 and λn+1
N = λn+1.

4. A posteriori error analysis. In this section, we present an a posteriori
analysis of our RB-scheme. In particular, only the more challenging constraint case of
American options is considered, as for the European option model, the well established
standard RB-error analysis for linear parabolic problems [15, 14, 11] can be applied,
which we omit in this work.

Again, to simplify the presentation, we omit the parameter vector µ in the no-
tation of a, fn, gn. In the same way, we only consider the case θ = 1, that is, an
implicit Euler time discretization. However the analysis presented hereafter holds for
any θ ∈ (0, 1], up to technical supplementary computations. We start by introducing
relevant residuals and preliminary results.
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4.1. Residuals and preliminary results. In order to evaluate the approxi-
mation errors induced by our method, we define, for n = 0, · · · , L − 1, the equality
and inequality residuals by:

rn(v) :=

〈
un+1
N − unN

∆t
, v

〉
L2(Ω)

+ a(un+1
N , v)− b(λn+1

N , v)− fn(v), ∀v ∈ V

sn(η) := b(η, un+1
N )− gn(η), ∀η ∈M.

We also introduce the primal and dual errors

enu = unN − un, enλ = λnN − λn. (4.1)

Using the linearity of rn, one finds that:

rn(v) =

〈
en+1
u − enu

∆t
, v

〉
L2(Ω)

+ a(en+1
u , v)− b(en+1

λ , v). (4.2)

As a consequence of inf-sup stability, one can bound the dual error by the primal
error, as stated in the next lemma.

Lemma 4.1 (Primal/Dual Error Relation). For n = 0, · · · , L− 1, the dual error
at time step tn can be bounded by the primal error as

‖en+1
λ ‖W ≤

1

β

(
CΩ

∆t
‖en+1
u − enu‖L2(Ω) + γa‖en+1

u ‖V + ‖rn‖V ′

)
. (4.3)

Proof. The inf-sup stability of b(·, ·) guarantees the existence of a v? ∈ V, v? 6= 0
such that

β‖v?‖V ‖en+1
λ ‖W ≤ b(v?, en+1

λ ).

Using (4.2), we find that:

β‖v?‖V ‖en+1
λ ‖W ≤

〈
en+1
u − enu

∆t
, v?
〉
L2(Ω)

+ a(en+1
u , v?)− rn(v?)

≤ 1

∆t
‖en+1
u − enu‖L2(Ω)‖v?‖L2(Ω) + γa‖en+1

u ‖V ‖v?‖V + ‖rn‖V ′‖v?‖V

and the result then follows from (2.8).

4.2. Projectors on the cone. Let us then introduce, for n = 0, · · · , L− 1, the
Riesz-representer ηns ∈W of our inequality residual:

〈η, ηns 〉W = sn(η), η ∈W.

Contrary to ‖rn‖V , the quantity ‖sn‖W = ‖ηns ‖W is not a straightforward error esti-
mator component because of the inequality constraint. We obviously would correctly
penalize if sn(η) > 0 for some η ∈M as desired, but we would also penalize sn(η) < 0
which is not necessary. Hence, we need to cope with the inherent nonlinearity induced
by the inequalities. For this purpose, we consider a family of projectors on the cone
πn : W →M which are assumed to satisfy, for n = 0, · · · , L− 1,

〈πn(ηns ), λn+1
N 〉W = 0. (4.4)

9



Having (4.4) and the characterization (2.27) of the dual cone M we find that

〈en+1
λ , πn(ηns )〉W = 〈λn+1

N − λn+1, πn(ηns )〉W = −〈λn+1, πn(ηns )〉W ≤ 0. (4.5)

Remark 3. Projectors satisfying (4.4) improve the one proposed in [18], namely
one term in the error bound can be cancelled. We also refer to [40, 43] where such
techniques are applied for finite element based error estimators in contact mechanics
and for obstacle problems.

4.3. A posteriori error estimators. We are now in a position to define an a
posteriori error estimator associated with our method.

Theorem 4.2. Define the a posteriori quantities

δns = ‖ηns − πn(ηns )‖W , δnr = ‖rn‖V ′ .

One has:

1

2
‖eLu‖2L2(Ω) +

αa
2

∆t

L∑
n=0

‖enu‖2V ≤
L∑
n=0

1

2

(
CΩδ

n
s

β

)2

+ ∆t
δns δ

n
r

β
+

∆t

2αa

(
δnr +

γaδ
n
s

β

)2

+
1

2
‖e0
u‖2L2(Ω).

Proof. First, we note that we have for all n = 0, . . . , L− 1:

sn(λn+1
N ) = 0, (4.6)

and we recall that for all n = 1, . . . , L:

b(λn, un) = gn(λn). (4.7)

From (4.2), we then have:〈
en+1
u − enu

∆t
, en+1
u

〉
L2(Ω)

+ a(en+1
u , en+1

u ) = rn(en+1
u ) + b(en+1

λ , en+1
u ). (4.8)

Let us focus on the term b(en+1
λ , en+1

u ). Thanks to (4.5), (4.6), (4.7), definition of
sn and the fact that gn(λn+1

N ) − b(λn+1
N , un+1) ≤ 0 from (2.24), this term can be

simplified as follows:

b(en+1
λ , en+1

u ) = b(λn+1
N , un+1

N )− b(λn+1, un+1
N )− b(λn+1

N , un+1) + b(λn+1, un+1)

≤ gn(λn+1
N )− sn(λn+1)− gn(λn+1)− gn(λn+1

N ) + gn(λn+1)

= −sn(λn+1) = sn(en+1
λ ) = 〈en+1

λ , ηns 〉W
= 〈en+1

λ , πn(ηns )〉W + 〈en+1
λ , ηns − πn(ηns )〉W

≤ ‖en+1
λ ‖W ‖ηns − πn(ηns )‖W = δns ‖en+1

λ ‖W .

This estimate combined with (4.8) and the coercivity of a, gives rise to:〈
en+1
u − enu

∆t
, en+1
u

〉
L2(Ω)

+ αa‖en+1
u ‖2V ≤ δnr ‖en+1

u ‖V + δns ‖en+1
λ ‖W . (4.9)
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The first term of the inequality (4.9) can be expressed as〈
en+1
u − enu

∆t
, en+1
u

〉
L2(Ω)

=
1

2∆t
‖en+1
u ‖2L2(Ω) −

1

2∆t
‖enu‖2L2(Ω)

+
1

2∆t
‖en+1
u − enu‖2L2(Ω). (4.10)

Using Lemma 4.1 and Young’s inequality, we then bound ‖en+1
λ ‖W in (4.9):

δns ‖en+1
λ ‖W ≤

1

2∆t

(
CΩδ

n
s

β

)2

+
δns δ

n
r

β
+

1

2∆t
‖en+1
u − enu‖2L2(Ω) +

γaδ
n
s

β
‖en+1
u ‖V .

Combining this estimate with (4.10), we can simplify (4.9) as follows:

1

2∆t
‖en+1
u ‖2L2(Ω) + αa‖en+1

u ‖2V ≤
1

2∆t
‖enu‖2L2(Ω) +

1

2∆t

(
CΩδ

n
s

β

)2

+
δns δ

n
r

β

+

(
δnr +

γaδ
n
s

β

)
‖en+1
u ‖V . (4.11)

Using Young’s inequality gives:(
δnr +

γaδ
n
s

β

)
‖en+1
u ‖V ≤

1

2αa

(
δnr +

γaδ
n
s

β

)2

+
αa
2
‖en+1
u ‖2V .

We get the result by combining the latter with (4.11), summing the resulting inequal-
ities from n = 0 up to L− 1 and multiplying the result by ∆t.

Remark 4. We point out that δns can be regarded as measure for the violation
of the constraint. Thus it plays a similar role as typical penalty terms in primal
methods.

5. Implementational aspects. In this section, we mainly discuss the imple-
mentational aspects of solving a reduced basis problem (3.1)–(3.2) associated with
our detailed formulation (2.23)–(2.24).

5.1. Solution of the detailed problem. Let us give a few remarks about the
solvability of the detailed problem. The differential operator in (2.23) is of convection-
diffusion type with constant (in the Black-Scholes model) or variable (in the Heston
model) coefficients. Thus for the specific range of the parameters, the convective
term may dominate the diffusive one, and applying the standard Galerkin method
might lead to instabilities and inaccurate results. To overcome this difficulty and
enhance the quality of the discrete solution, one can use a different discretization
scheme, e.g., a streamline upwind Petrov-Galerkin method [3]. However, for our
numerical simulations, we restrict the parameter range such that the diffusive term is
large enough compared to the convective one and a standard Galerkin finite element
method can be applied.

For the remainder of the paper, V is now a standard conforming piecewise linear
finite element space used for the discretization of the variational inequality (2.23)–
(2.24). More precisely, consider a triangulation Th of Ω, consisting of J simplices Kj

h,
1 ≤ j ≤ J , such that Ω = ∪Kh∈ThKh. We then use a standard conforming nodal
first order finite element space. We define the discrete space Vh := {v ∈ V |v|Kj

h
∈

P1(Kj
h), 1 ≤ j ≤ J} of dimension HV := H. For the sake of simplicity, we omit the
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index h and consider V to be a discrete finite element space. We associate the basis
functions φi ∈ V with its Lagrange node mi ∈ Ω, i.e., φi(mj) = δij , i, j = 1, . . . ,H.

For the discretization of the Lagrange multipliers in M ⊂ W , we use dual ba-
sis functions [42], that is, we consider a dual finite element basis χj of W := V ′,
so that b(φi, χj) = δij , i, j = 1, . . . ,HW = H. The cone M is defined by: M ={∑HW

i=1 ηiχi, ηi ≥ 0
}
.

As these spaces are assumed to be sufficiently accurate a priori, that is, the finite
element discretization error is neglegible compared to the reduction error, we do not
discriminate notationally between the true and the finite element spaces. However
a more extensive analysis has to take into account also the quality of the detailed
solution.

5.2. Solution algorithm for the reduced problem. We shall now present
a method to solve the problem (3.1)–(3.2). The approach we follow is mainly based
on the Primal-Dual-Active-Set-Strategy [20, 23], which is equivalent to semi-smooth
Newton method, thus a superlinear convergence of the algorithm can be achieved.

We expand the solution (unN (µ), λnN (µ)) of (3.1)–(3.2) as unN (µ) =
∑NV

j=1 u
n
N,jψj

and λnN (µ) =
∑NW

j′=1 λ
n

N,j′ξj′ with the coefficient vectors UnN = (uN,j)
NV

j=1 ∈ RNV ,

ΛnN =
(
λN,j′

)NW

j′=1
∈ RNW . We also introduce the following set of notations: For

ν ∈ [−1, 1], denote byM, Aν(µ) and B the matrices of coefficients (M)i,j = 〈ψi, ψj〉V ,
(Aν(µ))i,j = 〈ψi, ψj〉 + ν∆ta(ψi, ψj ;µ) and (B)i,j′ = b(ξj′ , ψi) with 1 ≤ i, j ≤ NV
and 1 ≤ j′ ≤ NW , respectively. Denote also by Fn(µ) and Gn(µ) the vectors of
components fn(ψi;µ) and gn(ξj′ ;µ), respectively. Let U and Λ be generic coefficient
vectors of length NV and NW , respectively, then we introduce the function ϕ(U,Λ) =
Λ−max(0,Λ−c(BTU−Gn(µ))), where c > 0 and max(·) applies componentwise. With
the use of these notations, the problem (3.1)–(3.2) can be rewritten in the algebraic
form

Aθ(µ)Un+1
N − BΛn+1

N = Aθ−1(µ)UnN + Fn(µ), (5.1)

ϕ(Un+1
N ,Λn+1

N ) = 0, (5.2)

and the initial data is obtained by solving MU0
N =

(
〈u0, ψj〉V

)NV

j=1
. To employ the

the Primal-Dual-Active-Set-Strategy, we introduce the active and inactive sets

A(U,Λ) =
{
p : 1 ≤ p ≤ NW ,

(
Λ− c(BTU − Gn(µ)

)
p
≥ 0
}
,

I(U,Λ) =
{
p : 1 ≤ p ≤ NW ,

(
Λ− c(BTU − Gn(µ)

)
p
< 0
}
,

where we have denoted by (·)p the p-th component of a vector. A Newton iteration
can then be applied, which gives rise to the next algorithm.

Algorithm 1 (Time solver for the reduced system). Given a tolerance ε > 0
and initial conditions (U0

N ,Λ
0
N ), the trajectory (UnN ,Λ

n
N ), n = 0, · · · , L is computed

recursively as follows. Suppose that at time step tn = n∆t, (UnN ,Λ
n
N ) is known.

1. Set (Un+1,0
N ,Λn+1,0

N ) := (UnN ,Λ
n
N ) and Tol = +∞.

2. While Tol > ε, do
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(a) Define (Un+1,k+1
N ,Λn+1,k+1

N ) as the solution of:

Aθ(µ)Un+1,k+1
N − BΛn+1,k+1

N = Aθ−1(µ)UnN + Fn(µ),(
BTUn+1,k+1

N

)
p

= (Gn(µ))p , ∀p ∈ A(Un+1,k
N ,Λn+1,k

N ),(
Λn+1,k+1
N

)
p

= 0, ∀p ∈ I(Un+1,k
N ,Λn+1,k

N ).

(b) Set Tol = ‖Un+1,k+1
N − Un+1,k

N ‖V + ‖Λn+1,k+1
N − Λn+1,k

N ‖W .

3. Define (Un+1
N ,Λn+1

N ) = (Un+1,k+1
N ,Λn+1,k+1

N ).

Note that Un+1,k
N and Λn+1,k

N do not appear in the iteration (except in the defini-

tions of the sets A(Un+1,k
N ,Λn+1,k

N ) and I(Un+1,k
N ,Λn+1,k

N )) as the functions involved
in (5.1)–(5.2) are either linear or piecewise linear. Using the previous time-step so-
lution as a start iterate the active set is already a very good guess and thus we can
expect a good convergence of the Newton iteration.

5.3. Projectors. For the a posteriori error estimators, we require suitable pro-
jectors on the cone. In the case of our finite element basis, we simply choose them by
their discrete vectorial representation in the dual finite element space as

πn(η) := I|{Λn+1
N =0} ◦

(
[BTU − Gn(µ)]+

)
,

where for p = 1, . . . , Nw, I|{Λn+1
N =0} is defined by

(
I|{Λn+1

N =0}

)
p

= 0 if
(
Λn+1
N

)
p
6= 0,

and
(
I|{Λn+1

N =0}

)
p

= 1 else. Given a coefficient vector X, we denote by [X]+ its

positive part, that is ([X]+)p = 0, if (X)p ≤ 0 and ([X]+)p = (X)p else. With this
definition, the property (4.4) is trivially fulfilled.

5.4. Computation of primal and dual reduced basis. In this section, we
present a method to build the reduced primal basis ΨN ⊂ V and dual basis ΞN ⊂M .
The approach we follow consists in building iteratively and simultaneously the reduced
primal and dual basis in a greedy fashion, as presented in Algorithm 2. We consider
a finite training set Ptrain ⊂ P small enough such that it can be scanned quickly,
but sufficiently large to represent the parameter space well. After a (quite arbitrary)
choice of the initial reduced spaces, we proceed in a greedy loop: For a given primal
and dual space at stage k, we identify the parameter vector µk+1 in the training set
that currently leads to the worst reduced basis approximation. For this parameter,
new primal and dual basis vectors are generated, and this loop is repeated Nmax ∈
N times. To be more precise, the selection of new primal vectors is based on the
idea of the POD-Greedy procedure, which meanwhile is standard for RB-methods for
time-dependent parametric problems [17, 19] and has provable convergence rates [16].
The main step consists in computing the complete simulation of the worst-resolved
trajectory, extracting the new information by an orthogonal projection on the current
primal space and a compression by a Proper Orthogonal Decomposition (POD) to a
single vector, the so called dominant POD-mode. In the algorithm ΠV k

N
denotes the

orthogonal projection on V kN with respect to 〈·, ·〉V and the dominant POD-mode is
given as

POD1

(
{vn}Ln=0

)
:= arg min

‖z‖V =1

L∑
n=0

‖vn − 〈vn, z〉V z‖
2
V .
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The new dual basis vectors are selected using an Angle-Greedy argument, which aims
at maximizing the volume of the resulting cone [19]. This means, we include the
snapshot showing the largest deviation from the current reduced dual space, that
is, the vector λnk+1(µk+1) that maximizes ]

(
λnk+1(µk+1),W k

N

)
where ](η, Y ) :=

arccos ||ΠY η||W /||η||W denotes the angle between a vector η ∈ W and a linear space
Y ⊂W .

We point out that our system (3.1)–(3.2) has a saddle point structure. Thus
ignoring the dual basis in the construction of the primal basis may lead to a reduced
system for which the stability cannot be guaranteed. To guarantee the inf-sup stability
of our approach, we follow the “inclusion of supremizers” idea introduced in [35] for
the Stokes problem. This enrichment consists in including Bξk+1 into the primal
space, where Bξk+1 ∈ V is the solution of b(ξk+1, v) = 〈Bξk+1, v〉V , for v ∈ V .
Then v = Bξk+1 is the element that supremizes the expression 〈Bξk+1, v〉V , hence it
is called a “supremizer”. This extension ensures that the reduced inf-sup condition
(3.3) is satisfied, which can be proven following the lines of [18], and hence the reduced
problem is well-posed. We conclude by defining the final reduced space VN := spanΨN

of dimension NV := dimVN .

The selection of the “worst” parameter in the greedy loop requires a measure
E(µ), which is an error estimator that can be chosen as one of these three quantities:

EtrueL2 (µ) = ∆t

L∑
n=0

‖enu‖2V , (5.3)

Etrueenergy(µ) =
1

2
‖eLu‖2L2(Ω) +

αa(µ)

2
∆t

L∑
n=0

‖enu‖2V , (5.4)

EApostenergy(µ) =

L∑
n=0

1

2

(
CΩδ

n
s

β

)2

+ ∆t
δns δ

n
r

β
+

∆t

2αa(µ)

(
δnr +

γa(µ)δns
β

)2

+
1

2
‖e0
u‖2L2(Ω).

(5.5)

Hence EtrueL2 is the squared true L2-error, Etrueenergy is the true error measured in a space-

time energy, and EApostenergy is the a posteriori error bound from the previous section,
cf. Theorem 4.2. With these notations, the resulting POD-Angle-Greedy algorithm is
fully specified.

Algorithm 2 (POD-Angle-Greedy algorithm). Given Nmax > 0, Ptrain ⊂ P
1. choose arbitrarily µ1 ∈ Ptrain and n1 ∈ 1, . . . , L
2. set ξ1 := λn1(µ1)/‖λn1(µ1)‖W , Ξ1

N = {ξ1}, W 1
N := span(Ξ1

N ),
3. set Ψ1

N := orthonormalize {un1(µ1), Bξ1}, V 1
N := span(Ψ1

N ),
4. for k = 1, . . . , Nmax − 1, do

(a) define µk+1 := argmaxµ∈Ptrain
(E(µ)),

(b) find nk+1 := argmaxn=1,...,L

(
]
(
λn(µk+1),W k

N

))
,

(c) set ξk+1 := λnk+1(µk+1)/‖λnk+1(µk+1)‖W ,
Ξk+1
N := ΞkN ∪ {ξk+1}, W k+1

N := span(Ξk+1
N ),

(d) define ψ̃k+1 := POD1

({
un(µk+1)−ΠV k

N
(un(µk+1))

}
n=0,...,L

)
,

set Ψk+1
N := orthonormalize

(
Ψk
N ∪

{
ψ̃k+1, Bξk+1

})
, V k+1

N := span(Ψk+1
N ),

5. define ΞN := ΞNmax

N , WN := span(ΞN ), NW := dim(WN ),

6. define ΨN := ΨNmax

N , VN := span(ΨN ), NV := dim(VN ).
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Let us give some additional comments on this procedure. First note, that the
extension steps in the algorithm are only performed if the sets remain linearly in-
dependent. Another way of stating this is to say that if a supremizer is already
contained in the current space, it will not be inserted again in order to maintain the
linear independence of the reduced bases. This results in |Ψk

N | ≤ 2k and |ΞkN | ≤ k.
Note also that the orthonormalization steps can either be done by a simple Gram-

Schmidt orthonormalization, or a singular value decomposition (SVD). In particular
the former is very attractive, as V kN and ψ̃k+1 are already orthonormal, hence in Step
4.(d) it is sufficient to orthonormalize the single vector Bξk+1.

Further, we emphasize that the supremizer enrichment in practice also may be
skipped: This results in smaller and hence faster reduced models, by accepting the
loss of a theoretical stability guarantee, see, e.g., [18].

Using the error estimator Etrueenergy(µ) or EtrueL2 (µ) corresponds to work with quan-
tities associated with the true error and is consequently more expensive, as the full
trajectories for all parameters in the training set must be precomputed. This is in
contrast to the case of working with EApostenergy(µ), which only involves the reduced solver
used in the online phase, and only detailed trajectories for the selected parameters
must be computed. Hence, when using EApostenergy(µ), the training set Ptrain can be
potentially chosen much larger and hence much more representative for the complete
parameter domain.

We finally give a short comment on the European option case: In that case, we
use the EtrueL2 (µ) measure for selecting the worst parameter. Due to the absence of the
Lagrange multiplier, we do not obtain a saddle point structure of the problem. Hence,
we omit the supremizer enrichments and the Angle-Greedy step, and the algorithm
then reduces to the classical (strong) POD-Greedy algorithm.

6. Numerical results.

6.1. Numerical setting. We start with a description of the numerical values
and methods we consider for the offline solver for Black-Scholes and Heston models.

We use the θ-scheme presented in Section 2 for the time-discretization with θ = 1
2

for European and θ = 1 for American options. The time domain [0, T ] = [0, 1] is
discretized with a uniform mesh of step size ∆t := T/L, L = 20. The space domain
is set to Ω = (Smin, Smax) = (0, 300) ⊂ R1 and Ω = (vmin, vmax) × (xmin, xmax) =
(0.0025, 0.5) × (−5, 5) ⊂ R2 for the Black-Scholes and Heston model, respectively.
The Black-Scholes model is treated in the original S variable, while the Heston
model is considered with respect to the log-transformation x = log

(
S
K

)
. As a con-

sequence, we use the H1 norm for the Heston model and the weighted H1 norm

u 7→
(∫

Ω
u2 + S2(∂su)2dS

)1/2
for the Black-Scholes model.

For the Black-Scholes model we set H = 200 nodes and the Heston model H =
49× 97 = 4753 nodes. To build the basis, we consider a subset Ptrain of P, which is
specified for the Black-Scholes model as in (6.1) and for the Heston model as in (6.2)
for European options and as in (6.3) for American options.

P ≡ [0.0475, 0.0525]× [0.0014, 0.0016]× [0.4750, 0.5250] ⊂ R3, (6.1)

P ≡ [0.1, 0.4]× [0.21, 0.9]× [0.08, 0.15]× [1.2, 3]× [0.01, 0.2] ⊂ R5, (6.2)

P ≡ [0.6, 0.9]× [0.21, 0.9]× [0.16, 0.25]× [3, 5]× [0.01, 0.2] ⊂ R5. (6.3)

For the Black-Scholes setting we use Ptrain composed of 43 values chosen equidistantly
distributed in P, while for the Heston model the set Ptrain is varying and specified

15



−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

X

 

 

t = 1

t = 0.9

t = 0.8

t = 0.7

t = 0.6

t = 0.5

t = 0.4

t = 0.3

t = 0.2

t = 0.1

t = 0

−0.8 −0.6 −0.4 −0.2 0 0.2

0.1

0.2

0.3

0.4

0.5

0.6

x

 

 

r = 0.01

r = 0.06

r = 0.10

r = 0.15

r = 0.20

−0.8 −0.6 −0.4 −0.2 0 0.2

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x

 

 

κ = 1.20

κ = 1.65

κ = 2.10

κ = 2.55

κ = 3.00

Figure 6.1. Top: The value of the European call option with the Heston model for µ =
(0.4, 0.55, 0.06, 2.5, 0.0198)T at t = T = 1 (left) and a time evolution of the option at v = 0.1683
(right). Bottom: Snapshots of the solution for different parameter values extracted at a fixed volatil-
ity v = 0.1683.

in every particular case. We define our model parameters µ ∈ P as µ ≡ (ρ, q, σ) and
µ ≡ (ξ, ρ, γ, κ, r) for the Black-Scholes and Heston models, respectively. The strike K
is not considered as a model parameter, since it scales the value of the option. We set
K = 100 and K = 1 for the Black-Scholes and Heston model, respectively. In order to
design the reduced primal and dual bases, we use the POD-Angle-Greedy algorithm
with different error measures E(µ).

6.2. European options. We first consider the numerical results and a perfor-
mance of the reduced basis method for the simpler linear case of the European call
option with the Heston model. To illustrate the motivation to apply the reduced
basis approach, we demonstrate the variability of the solution in parameter and time.
In Figure 6.1 (top left) the detailed solution for a fixed parameter value at the final
time t = T is presented. The evolution of the solution for different time t is shown in
Figure 6.1 (top right) and the variation with respect to parameters in Figure 6.1 (bot-
tom). After computing the set of snapshots which consists of the detailed solutions
for different µi ∈ Ptrain, we employ the POD-Angle-Greedy algorithm with EtrueL2 (µ)
as a selection criterion to construct the reduced basis space VN . As mentioned earlier,
this procedure corresponds to the standard strong POD-Greedy algorithm.
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Figure 6.2. First six vectors of the reduced basis {ψk}
NV
k=1 ⊂ ΨN , obtained by Algorithm 2 for

the European option with the Heston model using E(µ) = Etrue
L2 (µ) for the case of µ = (γ, κ).

We test the reduced basis approach for different dimension of the parameter
domain P ⊂ Rd, d = 2, 3, 5, namely we consider µ = (γ, κ) ∈ R2, µ = (γ, κ, r) ∈
R3 and µ = (ξ, ρ, γ, κ, r) ∈ R5. For each choice of µ, the remaining parameter
values are assumed to be fixed and taking the value from the default parameter
vector µ∗ = (0.3, 0.21, 0.095, 2, 0.0198)T . In our first test, we consider µ = (κ, γ)
and |Ptrain| = 152 = 225 equidistantly distributed points. The first six orthonormal
reduced basis vectors produced by the algorithm are presented in Figure 6.2.

To quantify the efficiency of the reduced basis method, we investigate the error
decay when increasing the dimension NV . For each reduced model, we compute
the maximal error maxµ∈Ptest

{
EtrueL2 (µ)

}
over a random test set |Ptest| = 400. In

Figure 6.3, we observe that the error plotted versus the dimension of the reduced
model decays exponentially. The analogous results for other choices of µ = (γ, κ, r)
and µ = (ξ, ρ, γ, κ, r) are presented in Figure 6.4 and Figure 6.5. For both cases the
exponentially decaying behavior of the error is shown, however it can be observed that
the convergence is slower for larger dimension of the parameter, which is explained by
the increasingly complex parameter dependence of the model. In Figure 6.5, we also
present the evolution of the train error maxµ∈Ptrain

{
EtrueL2 (µ)

}
used for the reduced

basis construction in the step 4.(a) of Algorithm 2.

6.3. American options. In this section, we present the numerical results cor-
responding to the performance of the reduced basis approach for pricing American
options with the Black-Scholes and Heston model and the corresponding a posteriori
error estimates.

6.3.1. Examples on the Heston model. For the American option case with
the Heston model, we consider the settings of the parameter domain defined in (6.3).
For the experiments presented in this section, we consider µ ≡ (γ, κ) and, if not
stated, the remaining parameter values are set to the corresponding entries of µ∗ =
(0.9, 0.21, 0.16, 3, 0.0198)T .

The detailed primal solution and a corresponding Lagrange multiplier are pre-
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Figure 6.3. Left: Evolution of maxµ∈Ptest

{
Etrue
L2 (µ)

}
for the European option with the He-

ston model and µ = (γ, κ). The test grid is random |Ptest| = 400. Right: Plot of the selected
parameters µ1, ..., µN ∈ Ptrain and their frequency of the selection in the construction of the re-
duced basis in Algorithm 2. The train set composed of |Ptrain| = 152 = 225 equidistantly distributed
points.

0 50 100 150
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

N
0.08

0.1

0.12

0.14

1.5

2

2.5

3

0.05

0.1

0.15

0.2

 

γκ

 

r

1

2

3

4

5

6

7

8

9

10

Figure 6.4. Left: Evolution of maxµ∈Ptest

{
Etrue
L2 (µ)

}
for the European call option with the

Heston model with µ = (γ, κ, r). The test grid is random |Ptest| = 1024. Right: Plot of the selected
parameters µ1, ..., µN ∈ Ptrain and their frequency of the selection in the construction of the reduced
basis in Algorithm 2. The train set composed of |Ptrain| = 93 = 729 equidistantly distributed points.

sented in Figure 6.6. In Figure 6.7, we show the snapshots of the primal solutions
and their Lagrange multipliers at different parameter values, which motivates us to
apply the reduced basis method to this model. To study the efficiency of the reduced
basis approach, we consider the POD-Angle-Greedy algorithm with the true error
indicator E(µ) = EtrueL2 (µ). We build the hierarchical reduced basis with NV = 70
and NW = 35 using the training set |Ptrain| = 72 = 49 uniformly distributed points.
The evolution of the error produced by the algorithm is depicted in Figure 6.8. Each
reduced basis model is tested on the random test set |Ptest| = 200 and the correspond-
ing error maxµ∈Ptest

EtrueL2 (µ) is also depicted in Figure 6.8. Similar to the European
option case, we observe a good approximation property of the reduced basis method
and an exponential convergence of the error.
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µ = (ξ, ρ, γ, κ, r). The test grid is random |Ptest| = 10000. The train set composed of |Ptrain| =
65 = 7776 equidistantly distributed points.

Figure 6.6. The solution of the American put with the Heston model for µ =
(0.9, 0.21, 0.1750, 3, 0.0198)T at t = T (left) and a corresponding Lagrange multiplier (right).

6.3.2. Examples on the Black-Scholes model. Now, we restrict ourselves to
the Black-Scholes model. We first demonstrate the parameter and time dependence
of our model. In Figure 6.9, the examples of the primal and dual solutions at different
parameter values σ and time steps are presented.

As the next set of experiments, we consider the performance of the reduced basis
approach using Algorithm 2 with the true energy error E(µ) = Etrueenergy(µ). We
construct the bases using the proposed algorithm with NV = 50, NW = 25 and test
the reduced basis approach first for a random value of the parameter µ = (4.8470 ·
10−2, 7.6785 · 10−3, 4.1856 · 10−1) ∈ P \ Ptrain. Some steps of the simulation are
represented in Figure 6.10. The reduced basis and fine detailed simulation curves are
hardly distinguishable, that reveals a good reduced basis approximation.

We then test our algorithm on a larger set of parameters. We consider Ptest ⊂ P,
a random set of |Ptest| = 20 parameters and estimate the mean value of the error
Etrueenergy(µ) over Ptest. More precisely, we evaluate 1

|Ptest|
∑
µ∈Ptest

Etrueenergy(µ). The
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Figure 6.7. Top: the primal solutions of the American put option with the Heston model with
different values of γ, r at the final time t = T (top) and corresponding Lagrange multipliers (bottom).
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Figure 6.8. Evolution of the train error maxµ∈Ptrain
Etrue
L2 (µ) during the iterations of Algo-

rithm 2 (green stars) and the test error maxµ∈Ptest E
true
L2 (µ) (blue crosses) for the American put

with the Heston model.

results are plotted in the diagram presented in Figure 6.11. We observe an error decay
of several orders in magnitude when simultaneously increasing NV and NW .

6.3.3. Efficiency of a posteriori error estimates. We now focus on the
efficiency of the design procedure and an inclusion of an a posteriori error estimate
using as an example the American put option with the Black-Scholes and Heston
model. For this, we consider the POD-Angle-Greedy algorithm and use alternatively
E(µ) = Etrueenergy(µ) and E(µ) = EApostenergy(µ) as selection criterion with Nmax = 25, i.e.,
NV = 50, NW = 25 for both models. The other parameter settings remain the same
as introduced in Section 6.3.2 and Section 6.3.1. The visualization of the reduced basis
vectors of ΨN , ΞN for the Black-Scholes model with E(µ) = EApostenergy(µ) is represented
in Figure 6.12.
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Figure 6.9. The primal solutions (left) and corresponding Lagrange multipliers (middle) of
the American put option with the Black-Scholes model with different values of the parameter σ at a
final time step t = T . The evolution of the solution for different times (right).
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Figure 6.10. A finite element (solid red line) and a reduced basis approximation (blue +) at
time steps t/∆t = 1, t/∆t = 10 and t/∆t = T/∆t = 20 for the American put option with the
Black-Scholes model, with µ = (4.8470 · 10−2, 7.6785 · 10−3, 4.1856 · 10−1)T . The payoff function is
represented as the black line.

We now comment on an employment of the a posteriori error bounds developed
in Section 4. We consider the values of the quantity maxµ∈Ptrain E(µ) along the
iterations of Algorithm 2, choosing either E(µ) = Etrueenergy(µ) or E(µ) = EApostenergy(µ).
The corresponding results for the Black-Scholes model are presented in Figure 6.13
and for the Heston model in Figure 6.14. We observe that for both models using
E(µ) = Etrueenergy(µ) as an error measure in Algorithm 2 results in less monotone

error convergence of EApostenergy(µ) with respect to Nmax and vice versa. Overall we

obtain similar accuracy when using the (cheap) EApostenergy(µ) measure in contrast to
the expensive true error Etrueenergy(µ), which illustrates the relevance of our a posteriori
analysis.

As a measure of the quality of the proposed error estimate, we define the associ-
ated effectivities

ηN (µ) =

√
EApostenergy(µ)

Etrueenergy(µ)
. (6.4)

Table 6.1 and Table 6.2 provide the maximum effectivities maxµ∈Ptrain
ηN (µ) asso-

ciated with the error bounds for the Black-Scholes and Heston model using different
error measures in the POD-Angle-Greedy algorithm. Note, that the choice of E(µ) in
the algorithm does not have a significant impact on the values of the maximum effec-
tivities. We also observe that for the Heston model the effectivity values are higher
than for the Black-Scholes one, which can be justified by a more complex nature of the
model. Overall the effectivities of two orders of magnitude are very well acceptable
for instationary RB problems.
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obtained with Algorithm 2 for the American put option with the Black-Scholes model.
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Figure 6.12. The eight first vectors of the primal (left) and dual (right) bases obtained with

Algorithm 2 with E(µ) = EApostenergy(µ) for the American put option with the Black-Scholes model.
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Figure 6.13. Evolution of the train error maxµ∈Ptrain
E(µ) for the American put option with

the Black-Scholes model during the iterations of Algorithm 2 with error estimator E(µ) = Etrueenergy(µ)

(left) and with E(µ) = EApostenergy(µ) (right). Blue stars: values of Etrueenergy(µ), green crosses: values

of EApostenergy(µ).
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Figure 6.14. Evolution of the train error maxµ∈Ptrain
E(µ) for the American put option with

the Heston model during the iterations of Algorithm 2 with error estimator E(µ) = Etrueenergy(µ)

(left) and with E(µ) = EApostenergy(µ) (right). Blue stars: values of Etrueenergy(µ), green crosses: values

of EApostenergy(µ).

The choice of E(µ) = EApostenergy(µ)

Nmax (NV , NW ) n = 5 n = 10 n = 15 n = 20

4 (8, 4) 4.9e+00 5.0e+00 6.2e+00 1.1e+01
8 (16, 8) 4.5e+01 4.3e+01 4.3e+01 4.2e+01
16 (32, 16) 6.4e+01 6.2e+01 6.4e+01 6.5e+01
20 (40, 20) 1.2e+01 7.1e+01 7.9e+01 8.5e+01
24 (48, 24) 6.4e+01 6.7e+01 7.4e+01 1.0e+02

The choice of E(µ) = Etrueenergy(µ)

Nmax (NV , NW ) n = 5 n = 10 n = 15 n = 20
4 (8, 4) 5.4e+00 6.1e+00 7.2e+00 1.0e+01
8 (16, 8) 5.1e+01 5.3e+01 5.0e+01 4.8e+01
16 (32, 16) 7.3e+01 7.0e+01 7.0e+01 6.3e+01
20 (40, 20) 3.7e+01 5.4e+01 5.1e+01 7.0e+01
24 (48, 24) 3.8e+01 5.1e+01 4.4e+01 7.2e+01

Table 6.1
Maximum effectivities for the American put with the Black-Scholes model at different time steps

n = 5, 10, 15, 20 and for different error measures E(µ) and Nmax = 25 in Algorithm 2.
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[20] C. Hager, S. Hüeber, and B. Wohlmuth, Numerical techniques for the valuation of basket
options and its Greeks, Journal of Computational Finance, 13 (2010), pp. 1–31.

[21] S. L. Heston, A closed-form solution for options with stochastic volatility with applications to

24



bond and currency options, The Review of Financial Studies, 6 (1993), pp. 327–43.
[22] N. Hilber, O. Reichmann, C. Schwab, and C. Winter, Computational methods for quanti-

tative finance. Finite element methods for derivative pricing., Springer Finance, 2013.
[23] M. Hintermuller, K. Ito, and K. Kunisch, The primal-dual active set strategy as a semis-

mooth Newton method, SIAM Journal on Optimization, 13 (2002), pp. 865–888.
[24] K. J. I. Hout and S. Foulon, ADI finite difference schemes for option pricing in the heston

model with correlation., International Journal of Numerical Analysis & Modeling, 7 (2010).
[25] J. C. Hull, Options, Futures, and Other Derivative Securities, Prentice-Hall, Englewood-Cliff,

N.J., 1993.
[26] S. Ikonen and J. Toivanen, Efficient numerical methods for pricing American options un-

der stochastic volatility, Numerical Methods for Partial Differential Equations, 24 (2008),
pp. 104–126.

[27] , Operator splitting methods for pricing American options under stochastic volatility,
Numerische Mathematik, 113 (2009), pp. 299–324.

[28] A. Janek, T. Kluge, R. Weron, and U. Wystup, FX smile in the Heston model, in Statistical
tools for finance and insurance, Springer, Heidelberg, 2011, pp. 133–162.

[29] N. Kikuchi and J. T. Oden, Contact problems in elasticity: a study of variational inequalities
and finite element methods, vol. 8 of SIAM Studies in Applied Mathematics, Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1988.

[30] D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their
applications, vol. 31 of Classics in Applied Mathematics, Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 2000. Reprint of the 1980 original.

[31] A. Kunoth, C. Schneider, and K. Wiechers, Multiscale methods for the valuation of Amer-
ican options with stochastic volatility, International Journal of Computer Mathematics, 89
(2012), pp. 1145–1163.

[32] O. Pironneau, Calibration of options on a reduced basis, Journal of Computational and Ap-
plied Mathematics, 232 (2009), pp. 139–147.

[33] , Reduced basis for vanilla and basket options, Risk and Decision Analysis, 2 (2011),
pp. 185–194.

[34] , Proper orthogonal decomposition for pricing options, Journal of Computational Fi-
nance, 16 (2012), p. 33.

[35] G. Rozza, Shape design by optimal flow control and reduced basis techniques: applications to
bypass configurations in haemodynamics, PhD thesis, EPFL, Lausanne, 2005.

[36] E. Sachs and M. Schu, Reduced order models (POD) for calibration problems in finance, in
Numerical mathematics and advanced applications, Springer, 2008, pp. 735–742.

[37] R. U. Seydel, Tools for computational finance, Universitext, Springer-Verlag, Berlin,
fourth ed., 2009.

[38] K. Veroy, Online-efficient RB methods for contact and other problems in nonlinear solid me-
chanics. Slides of the presentation on workshop: Numerical methods for high-dimensional
problems, Ecole des Ponts Paristech, 2014.

[39] K. Veroy, C. Prud’homme, D. V. Rovas, and A. T. Patera, A posteriori error bounds
for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic par-
tial differential equations, in In Proceedings of 16th AIAA computational fluid dynamics
conference, 2003. Paper 2003-3847.

[40] A. Weiss and B. Wohlmuth, A posteriori error estimator and error control for contact prob-
lems, Math. Comp., 78 (2009), pp. 1237–1267.

[41] G. Winkler, T. Apel, and U. Wystup, Valuation of options in Heston’s stochastic volatility
model using finite element methods, Foreign Exchange Risk, (2001), pp. 283–303.

[42] B. Wohlmuth, A mortar finite element method using dual spaces for the Lagrange multiplier,
SIAM Journal on Numerical Analysis, 38 (2000), pp. 989–1012.

[43] B. Wohlmuth, Variationally consistent discretization schemes and numerical algorithms for
contact problems, Acta Numerica, 20 (2011), pp. 569–734.

[44] R. Zvan, P. Forsyth, and K. Vetzal, Penalty methods for American options with stochastic
volatility, Journal of Computational and Applied Mathematics, 91 (1998), pp. 199 – 218.

25


