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Abstract

We consider a class of reaction-diffusion equations with a stochastic
perturbation on the boundary. We show that in the limit of fast diffusion,
one can rigorously approximate solutions of the system of PDEs with
stochastic Neumann boundary conditions by the solution of a suitable
stochastic/deterministic differential equation for the average concentra-
tion that involves reactions only. An interesting effect occurs, if the noise
on the boundary does not change the averaging concentration, but is suf-
ficiently large. Then surprising additional effective reaction terms appear.

We focus on systems with polynomial nonlinearities only and give ap-
plications to the two dimensional nonlinear heat equation and the cubic
auto-catalytic reaction between two chemicals.

Keywords: Multi-scale analysis, SPDEs, stochastic boundary conditions,
reaction-diffusion equations, fast diffusion limit.

Mathematics Subject Classification: 60H10, 60H15, 35R60, 35K57.

1 Introduction

Stochastic partial differential equations (SPDEs) appear naturally as models for
dynamical systems with respect to random influences. Sometimes in a complex
physical system the noise has an impact not only on the bulk of the system
but on its physical boundary, too. This happens for instance in heat transfer
in a solid in contact with a fluid [11], chemical reactor theory [12], colloid and
interface chemistry [19], and the air-sea interactions on the ocean surface [17].

Let G be a bounded sufficiently smooth domain in R
d for d ≥ 1, which has a

smooth boundary ∂G. We consider the following system of stochastic reaction-
diffusion equations for n species with respect to random Neumann boundary
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conditions

∂tu = ε−2Au + F(u), for t ≥ 0, x ∈ G,

∂u

∂ν
= σε∂tW (t) for t ≥ 0, x ∈ ∂G, (1)

u(0, x) = u0(x) for x ∈ G,

with

Au =







A1u1
...

Anun






, F(u) =







F1(u1, .., un)
...

Fn(u1, .., un)






and W (t) =







W1(t)
...

Wn(t)






,

where A is the diffusion term, the reaction terms Fi(u1, u2, ...., un) are polyno-
mials of degree mi, Wi are independent Q-Wiener process in L2(∂G), and ∂u

∂ν
is the normal derivative of u on ∂G. The assumption of independence is mainly
for convenience of presentation, as now some terms cancel and the technicalities
are less involved.

Sowers [15] investigated multidimensional stochastic reaction diffusion equa-
tion with Neumann boundary conditions and he showed that there is a unique
solution. Da Prato and Zabczyk [8, 9] discussed the difference between the prob-
lems with Dirichlet and Neumann boundary noises, while [1, 3] study random
Dirichlet boundary conditions. Other results are [13, 2].

An very interesting result is by Schnaubelt and Veraar [18], where regularity
of solutions is studied. Furthermore, mild and weak solutions are shown to
coincide.

Recently, Cerrai and Freidlin [4] considered a class of stochastic reaction-
diffusion equations with Neumann boundary noise. Also, they showed that
when the diffusion rate is much larger than the rate of reaction, it is possible to
replace the SPDE by a suitable one-dimensional stochastic differential equation.
But their result only allowed for weak convergence of the approximation without
any order of the error.

Our aim is to establish rigorously error bounds results for the fast-diffusion
limit for the general class of PDEs with stochastic Neumann boundary condi-
tions given by (1). The error estimates are performed in an Lp-space setting, as
we cannot expect solutions to (1) to be smooth. Especially, at the forced bound-
ary the solution u is expected to be even unbounded, although it is smoother
inside the domain. See [18] or for Dirichlet boundary [1].

We consider two cases. The second on is the relatively simple limit, where
the fast diffusion just disappears in the limit, while in the first case large noise
changes the limiting reaction equation. The reason for large noise might be that
both diffusion and noise are enhanced by stirring.

First case: If the noise does not change the average (Wc = 0) but is suffi-
ciently large (σε = ε−1), then the solutions of Equation (1) are well approxi-
mated by

u(t, x) ≃ b(t) + Zs(t, x) + error, (2)

where b(t) ∈ R
n represents the average concentration of the components of u

given in general formulation as a solution of

∂tb(t) = F(b(t)) + G(b(t)), (3)
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for some polynomial G of degree less than or equal m − 2 depending on the
structure of the noise. The stochastic perturbation Zs(t, x) is defined later
in (27). It is an ε-dependent fast Ornstein-Uhlenbeck process (OU-process)
corresponding to white noise in the limit ε → 0. The index c denotes the
average (i.e., vc = |G|−1

∫

G vdx which is the projection onto the constants).
The ODE ∂tb(t) = F(b) is the expected result, but due to noise an additional

term of noise induced effective reactions appears. We illustrate our results using
a relatively simple auto-catalytic reaction. For the result presented we always
need a square which averages to a constant in the limit ε → 0. This is mainly,
because we assumed independent noise terms for each species. In contrast, if the
noise terms are dependent, then any reaction term could lead to an additional
effective reaction term in the limit.

Second case: If Wc 6= 0 and σε = 1, then the solution of Equation (1) are
well approximated by

u(t, x) = b(t) + error, (4)

and b is the solution of stochastic ordinary differential equation

∂tb(t) = F(b(t)) + ∂tβ̃(t), (5)

for some Wiener process β̃ in R
n, which is essentially the projection of W

onto the dominant constant modes, i.e. the direct impact of the noise on the
average. This is the somewhat expected result, where the reaction-diffusion
equation under fast diffusion is well approximated by the reaction ODE.

As an application of our results, we give some examples from physics (non-
linear heat equation) and from chemistry (cubic auto-catalytic reaction between
two chemicals according to the rule A +B → 2B). To illustrate our results let
us focus for a moment on the relatively simple two dimensional nonlinear heat
equation (also called Ginzburg-Landau or Allen-Cahn), which is partly covered
by the setting of [4], too.

∂tu = ε−2∆u+ u− u3 for t ≥ 0, x ∈ [0, 1]
2
,

∂u

∂ν
= σε∂tW (t) for t ≥ 0, x ∈ ∂ [0, 1]

2
. (6)

For the first case we suppose Wc = 0 and σε = ε−1, and our main Theorem 17
states that the solution of (6) is well approximated by (2) and b is the solution
of

db = [(1− Cα,λ)b − b3]dt,

where Cα,λ is a constant depending on the noise intensity parameters αi,k and
the eigenvalues of the operator ∆.

For the second case Wc 6= 0 and σε = 1 our main Theorem 20 states that
the solution of (6) is of the form (4) and b is the solution of

db = [b− b3]dt+ dB,

where B is a R-valued standard Brownian motion.
The main novelties of this paper are on one hand the explicit error estimate

in terms of high moments of the error, as usually only weak convergence is
treated (see e.g. [4]), and on the other hand the observation that large mass-
conservative noise has the potential to change effective reaction equations in the
limit of large diffusion.
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The paper is organized as follows. Our assumptions and some definitions
are given in the next section. In Section 3 we derive the fast-diffusion limit
with error terms and present the main theorem. Section 4 gives bounds for high
non-dominant modes, while Section 5 provides averaging results over the fast
OU-process. In Section 6, we give the proof of the approximation Theorem I and
some examples from physics and chemistry as applications of our results. Fi-
nally, we prove the approximation Theorem II and apply this result to nonlinear
heat equation and cubic auto-catalytic reaction between two chemicals.

2 Definition and Assumptions

This section states the precise setting for (1) and summarizes all assumptions
necessary for our results. For the analysis we work in the separable Hilbert
space L2(G) of square integrable functions, where G ⊂ R

d is a bounded domain
with sufficiently smooth boundary ∂G (e.g. Lipschitz), equipped with scalar
product 〈·, ·〉 and norm ‖ · ‖.

Definition 1 Define for i = 1, 2, ...., n and diffusion constants di > 0

Ai = di∆ (7)

with
D(Ai) =

{

u ∈ H2 : ∂νu|∂G = 0
}

,

where ∂νu is the normal derivative of u on ∂G.

Let {gk}∞k=1 be an orthonormal basis of eigenfunctions of Ai in L2(G). It
is obviously the same basis for all i with corresponding eigenvalues {diλk}∞k=0

depending on i (cf. Courant and Hilbert [5]). Also, let {ek}nk=1 be the standard
orthonormal basis of Rn. Hence, {gkei} for k ∈ N0 and i = {1, .., n}, is an
orthonormal basis of A in

[

L2(G)
]n

such that A (gkei) = −diλkgkei.

Assumption 2 We assume that for all k ∈ N

‖gk‖∞ ≤ Cλγ1

k for some γ1 ≥ 0 .

This is true in R
2 for instance on squares, hexagons, and triangles with

γ1 = 0, while the worst case is γ1 = (d − 1)/2 realized for balls and spheres.
See [6]. This condition might be relaxed, but we focused in examples mainly on
cases with γ1 = 0.

Define
N := kerA = span{e1g0, ...., eng0},

where g0 = |G|− 1
2 is a constant and λ0 = 0. Define S = N⊥ to be the orthogonal

complement of N in
[

L2(G)
]n
. Denote by Pcu = 1

|G|

∫

G udx the projection

onto N and define Psu := (I − Pc)u for the projection onto the orthogonal
complement, where I is the identity operator on

[

L2(G)
]n
. We define Lp

n :=
[Lp(G)]

n
.

The operatorA given by Definition 1 generates an analytic semigroup {etA}t≥0

(cf. Dan Henry [10] or Pazy [16]), on Lp
n for all p ≥ 2. It has the following prop-

erty: There is an ω > 0 such that for all t > 0 and all u ∈ Lp
n

∥

∥etAPsu
∥

∥

Lp
n
≤Me−ωt ‖Psu‖Lp

n
, (8)

4



where ω depends in general on di.
Moreover, we obtain

∥

∥etAu
∥

∥

Lp
n
≤M ‖u‖Lp

n
. (9)

Also, we suppose

Assumption 3 There is a constant M > 0 such that for all t > 0 and u ∈ Lmp
n

∥

∥etAu
∥

∥

Lmp
n

≤M(1 + t−α) ‖u‖Lp
n

(10)

with α = d
p

(

m−1
m

)

∈ (0, 1).

The previous assumption is needed for the existence of the solutions and
global bounds. Equation (10) follows the Sobolev-embedding of Wα,p into Lmp.
The main assumption is that the coefficient is between 0 and 1.

Immediate conclusion of Assumption 3 and Equation (8) is
∥

∥etAPsu
∥

∥

Lmp
n

≤M(1 + t−α)e−ωt ‖Psu‖Lp
n
, (11)

where for simplicity we denote different constants ω, M by the same name.
For the noise we suppose:

Assumption 4 Let W = (W1, ....,Wn) be a collection of n independent Wiener
process on an abstract probability space (Ω, F , P) with a bounded covariance
operator Qi : L2(∂G) → L2(∂G) defined by Qifk = αi,kfk for i = 1, 2, .., n,
where (αi,k)k∈N0

is a bounded sequence of real numbers and (fk)k∈N0
be any

orthonormal basis on L2(∂G) with f0 ≡Constant. For t ≥ 0 we can write Wi(t)
(cf. Da Prato and Zabczyk [7]) as

Wi(t) =
∑

k∈N0

αi,kβi,k(t)fk for i = 1, 2, .., n, (12)

where (βi,k)k∈N0
are independent, standard Brownian motions in R. Also, we

assume by using the orthonormal basis gk of Ai in L2(G) that for some small
γ ∈ (0, 12 )

∞
∑

k,ℓ=1

(λk + λℓ)
2γ+2γ1−1qi,ik,ℓ <∞ for i = 1, 2, .., n, (13)

where the covariance qi,jk,ℓ is defined by

qi,ℓj,k =
1

t
E

(

W̃i,j
˜(t)Wℓ,k(t)

)

=

{

0 if i 6= ℓ,
〈Qigj , gk〉L2(∂G) if i = ℓ,

(14)

with
W̃i,j = 〈Wi, gj〉L2(∂G) . (15)

For the nonlinearity we assume

Assumption 5 The nonlinearity F is a polynomial of at most degree m. Thus
for all p ≥ 1 it is bounded by

‖F(u)‖Lp
n
≤ C(1 + ‖u‖mLpm

n
) for all u ∈ Lpm

n . (16)

where m = max(m1, .....,mn) and the mi are the degrees of the polynomials Fi.

5



The following assumption ensures, that the noise is mass-conserving and that
various series converge. This is used in Case 1 only.

Assumption 6 Assume for i = 1, 2, .., n that

αi,0 = 0,

and for any N ≤ m and any ℓ ∈ {1, . . . , N}n
∞
∑

k1,k2,..,kN=1

( 1
N
∑

i=1

dℓiλki

N
∏

i=1

λ2γ1−1
ki

qℓi,ℓiki,ki

)
1
2

<∞. (17)

Remark 7 Condition (17) for all N ≥ 1, for example in case γ1 = 0, is implied
by the weaker condition

∞
∑

k=1

(

qi,ik,k

)
1
2

λ
1
2
+ 1

2m

k

<∞.

We fix a universal T0 > 0 that is the upper bound for all times involved.
The following two assumptions are used in the two cases separately. They

are usually lemmas that follows directly from the fact that F is a polynomial.
Note that T1 in general depends on the initial condition b(0).

Assumption 8 Let b(t) in N be the solution of (3). Suppose there is a stopping
time T1 ≤ T0 and a constant C > 0, such that

sup
[0,T1]

|b| ≤ C. (18)

Assumption 9 Let b(t) in N be the solution of (5). Suppose there is a stopping
time T1 ≤ T0 and C > 0, such that for sufficiently large ζ ≫ 1 and for δ > 0
and κ ∈ (0, 1

m+1 )

P

(

sup
t∈[0,T1]

|b(t)|m−1 ≤ C ln(ε−
1
ζ )
)

≥ 1− εδκ. (19)

We remark that ζ depends mainly on T0 and κ (cf. Section 8).

For our result we rely on a cut off argument. We consider only solutions u that
are not too large, as given by the next definition.

Definition 10 For a mild solution u of (1) we define for κ ∈ (0, 1
m+1 ) the

stopping time τ∗ as

τ∗ := T0 ∧ inf
{

t > 0 : ‖u‖L2m
n

> ε−κ
}

. (20)

We give error estimates in terms of the following O-notation.

Definition 11 For a real-valued family of processes {Xε(t)}t≥0 we say that Xε

is of order fε, i.e. Xε = O(fε), if for every p ≥ 1 there exists a constant Cp

such that
E sup

t∈[0,τ∗]

|Xε(t)|p ≤ Cpf
p
ε . (21)

We use also the analogous notation for time-independent random variables.
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Definition 12 (Multi-Index Notation) Let ℓ ∈ N
n
0 , i.e. ℓ = (ℓ1, ℓ2, ......, ℓn) be

a vector of nonnegative integers, u = (u1, u2, ...un). Then we define

|ℓ| =
n
∑

i=1

ℓi, ℓ! =

n
∏

i=1

ℓ1!, uℓ =

n
∏

i=1

uℓii , Dℓ = ∂ℓ1u1
∂ℓ2u2

.....∂ℓnun

3 Random boundary conditions

Definition 13 (Neumann map) The Neumann map D : L2(∂G) → H 3
2 (G) is

a continuous linear operator. It is defined for f ∈ L2(∂G) as the solution Df of

(1−∆)Df = 0 and ∂ν (Df) = f .

With a slight abuse of notation, we also denote by D the extension from L2
n(∂G)

to
[

H 3
2 (G)

]n

.

Definition 14 Define the stochastic convolution Z(t) as

Z(t) = σε(1−∆)

∫ t

0

eε
−2(t−s)ADdW (s). (22)

The next lemma expands the stochastic convolution Z as a Fourier series.

Lemma 15 Under Assumption 4 let Z be the stochastic convolution defined in
(22), then (with W̃i,j defined in (15))

Z(t) = σε

n
∑

i=1

∞
∑

j=0

∫ t

0

e−ε−2di(t−s)λjdW̃i,j(s)gj · ei . (23)

Proof. Writing Z(t) in Fourier expansion yields

Z(t) =

n
∑

i=1

∞
∑

j=0

〈Z(t), eigj〉 gj · ei.

Using Equation (22)

〈Z(t), eigj〉L2
n(G) = 〈Zi(t), gj〉L2(G)

=
〈

σε(1 −∆)

∫ t

0

eε
−2(t−s)di∆DdWi(s), gj

〉

L2(G)

= σε

∫ t

0

e−ε−2di(t−s)λj 〈DdWi(s), (1 −∆)gj〉L2(G)

= σε

∫ t

0

e−ε−2di(t−s)λj{〈DdWi(s), gj〉L2(G) − 〈DdW (s),∆gj〉L2(G)}

= σε

∫ t

0

e−ε−2di(t−s)λj{〈(1 −∆)DdWi(s), gj〉L2(G)

+ 〈∂νDdWi(s), gj〉L2
n(∂G)}

= σε

∫ t

0

e−ε−2di(t−s)λj 〈dWi(s), gj〉L2(G) ,

7



where we used Gauss–Green formula and Definition 13. Hence

Z(t) = σε

n
∑

i=1

∞
∑

j=0

∫ t

0

e−ε−2di(t−s)λjdW̃i,j(s)gj · ei.

It is easy to check, that this series converges in L2
n. �

4 Limiting equation and main theorem

In this section we derive formally the limiting equation for (1) and we state
without proof the main theorem of this paper. First, let us define the mild
solution of Equation (1) according to [8, 9] as follows

Definition 16 For any fixed ε > 0, we call a Lp
n-valued stochastic process u a

mild solution of (1) in Lp
n if for all t > 0 up to a positive stopping time

u(t) = eε
−2tAu(0) +

∫ t

0

eε
−2(t−s)AF(u(s))ds+ Z(t). (24)

Because we are working with a locally Lipschitz nonlinearity, under Assumption
3, the existence and uniqueness of solutions is standard, once Z is sufficiently
regular. See e.g. [7] and [9].

We can rewrite Equation (24) by using Equation (23) as

u(t) = eε
−2tAu(0) +

∫ t

0

eε
−2(t−s)AF(u(s))ds

+σε

n
∑

i=1

∞
∑

j=0

∫ t

0

e−ε−2di(t−s)λjdW̃i,j(s)gj · ei, (25)

with W̃i,j defined in (15).
Now, let us discuss two cases depending on σε and αi,0 for i = 1, ..., n.

4.1 First case: σε = ε−1 and αi,0 = 0 for i = 1, .., n

In this case Equation (25) takes the form

u(t) = eε
−2tAu(0) +

∫ t

0

eε
−2(t−s)AF(u(s))ds+ Zs(t), (26)

where

Zs(t) =

n
∑

i=1

Zi(t)ei :=

n
∑

i=1

∞
∑

j=1

Zi,j(t)gj · ei, (27)

with

Zi(t) =

∞
∑

j=1

Zi,j(t)gj for i = 1, 2...., n, (28)

and

Zi,j(t) = ε−1

∫ t

0

e−ε−2di(t−s)λjdW̃i,j(s). (29)

8



In order to derive the limiting equation, we split the solution u into

u(t, x) = a(t) + ψ(t, x), (30)

with a ∈ N and ψ ∈ S. Plugging (30) into (26) and projecting everything onto
N and S we obtain (with Fc = PcF and Fs = PsF)

a(t) = a(0) +

∫ t

0

Fc(a+ ψ)ds, (31)

and

ψ(t) = eε
−2tAψ(0) +

∫ t

0

eε
−2(t−τ)AsFs(a+ ψ)dτ + Zs(t). (32)

Formally, we see later (cf. Lemma 22) that ψ is well approximated by the fast
Ornstein-Uhlenbeck process Zs. Thus, we can eliminate ψ in (31) by explicitly
averaging over the fast modes.

Now the first main result of this paper is:

Theorem 17 (Approximation I) Under Assumptions 2, 4, 6, 5, and 8, let u
be a solution of (1) with splitting u = a + ψ defined in (30) with the initial
condition u(0) = a(0) + ψ(0) with a(0) ∈ N and ψ(0) ∈ S where a(0) and ψ(0)
are of order one, and b is a solution of (3) with b(0) = a(0). Then for all p > 0
and all κ ∈ (0, 1

2m+1 ), there exist a constant C > 0 such that

P

(

sup
t∈[0,T1∧τ∗]

∥

∥

∥u(t)− b(t)−Q(t)
∥

∥

∥

Lp
n

> ε1−2mκ−κ
)

≤ Cεp, (33)

where with fast OU-process Zs defined in (27)

Q(t) = eε
−2tAsψ(0) + Zs(t). (34)

We see that the first part of (34) depending on the initial condition decays
exponentially fast on the time-scale of order O(ε2).

Corollary 18 If in the previous theorem we additionally assume that Assump-
tion 3 holds and ‖ψ(0)‖Lmp

n
≤ C for some C > 0, then we can replace T1 ∧ τ∗

in (33) by T1.

Remark 19 In case of Corollary 18 we can bound the error even in Lpm
n .

4.2 Second case σε = 1 and αi,0 6= 0 for i = 1, .., n

In this case (25) takes the form

u(t) = eε
−2tAu(0) +

∫ t

0

eε
−2(t−s)AF(u(s))ds

+

n
∑

i=1

∞
∑

j=0

∫ t

0

e−ε−2di(t−s)λjdW̃i,j(s)gj · ei. (35)

Again (cf. (30)) we split the solution u into u(t, x) = a(t) + εψ(t, x). Plugging
(30) into (35) and projecting everything onto N and S yields

a(t) = a(0) +

∫ t

0

Fc(a+ εψ)ds+
n
∑

i=1

W̃i,0(t)g0 · ei, (36)

9



and

ψ(t) = eε
−2tAψ(0) +

1

ε

∫ t

0

eε
−2(t−τ)AsFs(a+ εψ)dτ + Zs(t), (37)

where Zs(t) was defined in (27). We write (36) as

ai(t) = ai(0) +

∫ t

0

Fc
i (a+ εψ)ds+ W̃i,0(t)g0 for i = 1, 2..., n.

Now, applying Taylor’s expansion to the function Fc
i : L2(G) → R, yields the

following stochastic limiting equation with error

ai(t) = ai(0) +

∫ t

0

Fi(a)ds+ W̃i,0(t)g0 +R
(2)
i (t), (38)

where

R
(2)
i (t) =

∑

|ℓ|≥1

Pc

∫ t

0

DℓFi(a)

ℓ!
(εψ)ℓdτ = O(ε1−). (39)

The second main result of this paper is:

Theorem 20 (Approximation II) Under Assumptions 2, 4, 5 and 9, let u be a
solution of (1) with splitting u = a+εψ defined in (30) with the initial condition
u(0) = a(0) + εψ(0) with a(0) ∈ N and ψ(0) ∈ S where a(0) and ψ(0) are of
order one, and b is a solution of (5) with b(0) = a(0). Then for all p > 0, for
sufficiently large ζ ≫ 1 and all κ ∈ (0, 1

m+2 ), there exists C > 0 such that

P

(

sup
t∈[0,T1∧τ∗]

‖u(t)− b(t)‖Lp
n
> ε1−(m+2)κ

)

≤ Cεδκ. (40)

In our examples if we assume E exp{cδ|b(0)|m−1} ≤ C for some suitable c > 0
and for one δ > 0, then Assumption 9 is true. See Section 8.1.

Corollary 21 If in the previous theorem additionally Assumption 3 holds and
‖ψ(0)‖Lmp

n
≤ C for C > 0, then we can replace T1 ∧ τ∗ in (40) by T1.

The sufficiently large ζ depends mainly on κ and T0.

5 Bounds for the high modes

Let us summarize Equations (32) and (37) for ρ ∈ {0, 1} by

ψ(t) = eε
−2tAψ(0) + ε−ρ

∫ t

0

eε
−2(t−τ)AsFs(a+ εψ)dτ + Zs(t). (41)

In the first lemma of this section, we see that ψ is well approximated by the
fast Ornstein-Uhlenbeck process Zs (cf. (27)).

Lemma 22 Under Assumption 5, there is a constant C > 0 such that for p ≥ 1
and κ > 0 from the definition of τ∗

E sup
t∈[0,τ∗]

∥

∥

∥ψ(t)− eε
−2tAψ(0)−Zs(t)

∥

∥

∥

p

Lp
n

≤ Cε2p−pρ−mpκ. (42)

10



Proof. From (41) using semigroup estimates and Assumption 5 we obtain

∥

∥

∥ψ(t)− eε
−2tAψ(0)−Zs(t)

∥

∥

∥

Lp
n

=
1

ερ

∥

∥

∥

∫ t

0

eε
−2As(T−τ)Fs(u)dτ

∥

∥

∥

Lp
n

≤ Cε−ρ sup
τ∈[0,τ∗]

‖Fs(u)‖Lp
n

∫ t

0

e−ε−2ω(t−τ)dτ

≤ Cε2−ρ sup
τ∈[0,τ∗]

(1 + ‖u‖mLpm
n

) ≤ Cε2−ρ−mκ.

�

Lemma 23 Under Assumptions 2 and 4, for every κ0 > 0 and p ≥ 1 there is
a constant C, depending on p, αk, λk, κ0 and T0, such that

E sup
t∈[0,T0]

‖Zs(t)‖pLp
n
≤ Cε−κ0 , (43)

where Zs(t) was defined in (27).

Proof. We use the celebrated factorization method introduced in [7] to prove
the bound on Zs(t) =

∑n
i=1 Zi(t)ei, which is based on the following elementary

identity

∫ t

σ

(t− r)γ−1(r − σ)−γdr =
π

sin(πγ)
for 0 ≤ r ≤ t, 0 < γ < 1. (44)

Fix γ ∈
(

0, 12
)

. To prove (43), it is enough to bound Zi for i = 1, . . . n. We
obtain from Equation (28) that

Zi(t) =

∞
∑

j=1

ε−1

∫ t

0

e−ε−2di(t−s)λjdW̃i,j(s)gj = ε−1

∫ t

0

eε
−2(t−s)AidW̃i(s), (45)

where

W̃i(t) =

∞
∑

j=1

W̃i,j(s)gj for i = 1, 2, . . . , n.

Using Identity (44) with Equation (45), we obtain:

Zi(t) = Cγε
−1

∫ t

0

eε
−2(t−σ)Ai

[∫ t

σ

(t− s)γ−1(s− σ)−γdr

]

dW̃i(σ).

From the stochastic Fubini theorem, we obtain

Zi(t) = Cγε
−1

∫ t

0

eε
−2(t−s)Ai(t− s)γ−1yi(s)ds, (46)

where

yi(s) =

∫ s

0

eε
−2(s−σ)Ai(s− σ)−γdW̃i(σ)

=

∞
∑

j=1

∫ s

0

e−ε−2di(s−σ)λj (s− σ)−γdW̃i,j(σ)gj . (47)

11



Taking ‖·‖pLp
n
on both sides of (46) and using (8), we obtain

‖Zi(t)‖pLp ≤ Cp
γε

−p
(

∫ t

0

e−ε−2(t−s)ω(t− s)γ−1 ‖yi(s)‖Lp ds
)p

.

Using Hölder inequality with 1
p + 1

q = 1 for sufficiently large p implies

‖Zi(t)‖pLp ≤ Cp
γε

−p
(

∫ t

0

e−ε−2(t−s)ω(t− s)qγ−qds
)

p
q ·

∫ t

0

‖yi(s)‖pLp ds

≤ Cε−2+2p(γ− 1
2
)

∫ t

0

‖yi(s)‖pLpds.

Taking supremum after expectation, yields

E sup
t∈[0,T0]

‖Zi(t)‖pLp ≤ Cε−2+2p(γ− 1
2
) ·

∫ T0

0

E ‖yi(s)‖pLp ds. (48)

Now, we bound E ‖yi(s)‖pLp . By Gaussianity

E ‖yi(s)‖pLp = E

∫

D

|yi(s, x)|pdx ≤ Cp

(

∫

D

E|yi(s, x)|2
)

p
2

dx.

Hence by Definition of yi (47)

E |yi(s, x)|2 = E
∣

∣

∞
∑

j=1

∫ s

0

e−ε−2di(s−σ)λj (s− σ)−γdW̃i,j(σ)gj(x)
∣

∣

2

= C

∞
∑

j,k=1

qi,ij,k

∫ s

0

e−ε−2di(s−σ)(λj+λk)(s− σ)−2γdσgj(x)gk(x),

where we used the definition of covariance operator (14). Hence, using the
bounds on gj

E |yi(s)|2 ≤ Cε2−4γ
∞
∑

j,k=1

(λj + λk)
2γ+2γ1−1qi,ij,k ≤ Cε2−4γ , (49)

where we used (13). Thus

sup
t∈[0,T0]

E ‖yi(s)‖pLp ≤ Cεp−2pγ . (50)

Now, returning to Equation (48) and using Equation (50), yields

E sup
t∈[0,T0]

‖Zi(t)‖pLp
n
≤ Cε−2.

We finish the proof by using Hölder inequality to derive for all p > 1 and
sufficiently large q > 2

κ0

E sup
t∈[0,T0]

‖Zi(t)‖pLp
n
≤

(

E sup
t∈[0,T0]

‖Zi(t)‖pqLp
n

)
1
q ≤ Cε−κ0 .

�

The following corollary states that ψ(t) is with high probability much smaller
than ε−κ as assumed the Definition 10 for t ≤ τ∗. We show later τ∗ ≥ T0 with
high probability.
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Corollary 24 Under the assumptions of Lemmas 22 and 23, if ψ(0) = O(1),
then for p > 0 and ρ = 0 or 1 there exist a constant C > 0 such that for κ0 ≤ κ

E sup
t∈[0,τ∗]

‖ψ(t)‖pLp
n
≤ Cε−κ0 . (51)

Proof. By triangle inequality and Lemma 23, we obtain from (42)

E sup
t∈[0,τ∗]

‖ψ(t)‖pLp
n
≤ C + Cε2p−pρ−mpκ + Cε−κ0 ,

which implies (51) for κ < 2−ρ
m . �

Let us now state a result similar to averaging. When we integrate over the
fast decaying contribution of the initial condition in ψ, then this leads to terms
of order O(ε2).

Lemma 25 For q ≥ 1 there exists a constant C > 0 such that

∫ t

0

∥

∥

∥eτε
−2Asψ(0)

∥

∥

∥

q

Lp
n

dτ ≤ Cε2 ‖ψ(0)‖qLp
n

for ψ(0) ∈ Lp
n.

Proof. Using (8) we obtain

∫ t

0

∥

∥

∥eε
−2Asτψ(0)

∥

∥

∥

q

Lp
n

dτ ≤ c

∫ T

0

e−qε−2ωτ ‖ψ(0)‖qLp
n
dτ ≤ ε2

qω
‖ψ(0)‖qLp

n
.

�

6 Averaging over the fast OU-process

Lemma 26 Let Assumption 4 hold and consider Zi,j(t) as defined in (29).
Then for arbitrary δ0 ∈ (0, 12 ) we obtain

Zi,j(t) = λ
− 1

2
(1−δ0)

j

(

qi,ij,j

)
1
2 O(ε−δ0), (52)

and

Zi,j(t)Zℓ,k(t) =
(

λjλk

)− 1
2
(1−δ0) (

qi,ij,jq
ℓ,ℓ
k,k

)
1
2 O(ε−2δ0). (53)

Moreover, the O-terms are uniform in i, j, k and ℓ.

Proof. For the first part, we follow the same steps as in Lemma 23 to obtain

E sup
t∈[0,T0]

|Zi,j(t)|p ≤ Cε−2 (λj)
1− 1

2
p
(

qi,ij,j

)
p
2

.

Using Hölder inequality, we derive for sufficiently large q and for a constant
independent on i and j

(

E sup
t∈[0,T0]

|Zi,j(t)|p
)1/p

≤ Cλ
− 1

2

j (ε−2λj)
1
pq

(

qi,ij,j

)
1
2

.

We finish the proof by fixing δ0 = 2
pq <

1
2 for large q and p.

13



For the second part we use Cauchy-Schwarz inequality to obtain

E sup
[0,T0]

|Zi,jZℓ,k|p ≤
(

E sup
[0,T0]

|Zi,j |2
)1/2(

E sup
[0,T0]

|Zℓ,k|2p
)1/2

.

Using the first part, yields (53). � In next corollary we
state without proof the general case of Lemma 26. For the proof we can follow
the same steps as in the proof of Lemma 26.

Corollary 27 Under the assumptions of Lemma 26 we have

N
∏

j=1

Zℓj ,kj
=

( N
∏

j=1

λkj

)− 1
2
(1−δ0)( N

∏

j=1

q
ℓj ,ℓj
kj ,kj

)
1
2O(ε−Nδ0). (54)

Lemma 28 Let the assumptions of Lemma 26 hold and let X be a real valued
stochastic process such that for some small r ≥ 0 we have X(0) = O(ε−r). If
dX = GdT with G = O(ε−r), then

sup
t≥0

E|Zi,j(t)|2 ≤
qi,ij,j
2diλj

, (55)

∫ t

0

XZi,jdW̃k,m =
(qk,km,mqi,ij,j

λj

)
1
2O(ε−r), (56)

and
∫ t

0

X
N
∏

j=1,
j 6=i

Zℓj ,kj
dW̃ℓi,ki

=
( N

∏

j=1,
j 6=i

λkj

)− 1
2
( N
∏

j=1

q
ℓj ,ℓj
kj ,kj

)
1
2O(ε−r). (57)

Again all O-terms are uniform in the indices ℓj and kj.

Proof. For the first part, we use Itô isometry to obtain

E |Zi,j |2 =
1

ε2
E

∣

∣

∣

∫ t

0

e−ε−2di(t−s)λjdW̃i,j

∣

∣

∣

2

=
qi.ij,j
ε2

∫ t

0

e−2ε−2di(t−s)λjds ≤
qi,ij,j
2diλj

.

For the second part using Burkholder-Davis-Gundy theorem and Hölder inequal-
ity, yields

E sup
t∈[0,T0]

∣

∣

∫ t

0

XZi,jdW̃k,m

∣

∣

p ≤ Cp

(

qk,km,m

)

p
2
E

(

∫ T0

0

|X |2
∣

∣Zi,j

∣

∣

2
dσ

)
p
2

≤ Cp,T0
ε−pr

(

qk,km,m

)

p
2

∫ T0

0

E|Zi,j |pdσ.

By Gaussianity and the first part we obtain

E sup
t∈[0,T0]

∣

∣

∫ t

0

XZi,jdW̃k,m

∣

∣

p ≤ Cp,T0
ε−pr

(qk,km,mqi,ij,j
λj

)
p
2

.

Analogously, for the last term

E sup
t∈[0,T0]

∣

∣

∫ t

0

X
N
∏

j=1,
j 6=i

Zℓj ,kj
dW̃ℓi,ki

∣

∣

p ≤ Cp,T0

(

qℓi,ℓiki,ki

)
p
2

E

∫ T0

0

|X |p
N
∏

j=1,
j 6=i

∣

∣Zℓj,kj

∣

∣

p
dσ.

Using Hölder, Gaussianity and the first part, we obtain (57). �

In the following we state and prove the averaging lemma over the fast OU-
process Zi,j (cf. (29)).
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Lemma 29 Under Assumption 2, 4 and 6, let X be as in Lemma 28 and N ≤
m. Then for N odd

∫ t

0

X
N
∏

i=1

Zℓi,ki
ds = Aℓ1,···ℓN

k1,··· ,kN
O(ε1−r), (58)

and for N even

∫ t

0

X
N
∏

i=1

Zℓi,ki
ds =

1

2
N
2

∑

j∈Per(N)

N/2
∏

η=1

q
ℓj2η−1

,ℓj2η
kj2η−1

,kj2η

dℓj2η−1
λkj2η−1

+ dℓj2η λkj2η

∫ t

0

Xds

+Aℓ1,···ℓN
k1,··· ,kN

O(ε1−r), (59)

with
∞
∑

k1=1

· · ·
∞
∑

kN=1

Aℓ1,··· ,ℓN
k1,··· ,kN

N
∏

i=1

λγ1

ki
<∞.

The O-terms are again uniform in all indices.

We used j ∈ Per(N) if j = (j1, . . . , jN ) is a permutation of {1, . . . , N} .

Remark 30 The term

∑

j∈Per(N)

N/2
∏

η=1

q
ℓj2η−1

,ℓj2η
kj2η−1

,kj2η

dℓj2η−1
λkj2η−1

+ dℓj2η λkj2η

is summable over k1, · · · , kN by Condition (13).

Let us state explicitly some A’s appearing in the proof of the theorem.

Example 31 For N = 1 we have Aℓ
k = 1

λk

(

qℓ,ℓk,k

)
1
2

, and for N = 2

Aℓ1,ℓ2
k1,k2

=
(

2
∑

i=1

dℓiλki

)−1/2( 2
∏

i=1

λ−1
ki
qℓi,ℓiki,ki

)1/2

,

and for N = 3

Aℓ1,ℓ2,ℓ3
k1,k2,k3

=
( 1

3
∑

i=1

dℓiλki

3
∏

i=1

λ−1
ki

qℓi,ℓiki,ki

)
1
2

+

3
∑

j1,j2=1
j1 6=j2

q
ℓj1 ,ℓj2
kj1

,kj2

dℓj1λkj1
+ dℓj2λkj2

(

qi,ij,j

)
1
2

λj
.

For larger N the terms have similar structure, but there are about N/2 many.

Proof. Fix a small δ0 <
1
N for N > 1. First, recall |X | = O(ε−r). For the first

part we treat N = 1 and 3. The general case follows by induction.
For N = 1 we apply Itô formula to the term XZi,j to obtain

∫ t

0

XZi,jds = − ε2

diλj
X(t)Zi,j(t) +

ε2

diλj

∫ t

0

GZi,jds+
ε

diλj

∫ t

0

XdW̃i,j .
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Using Lemmas 26 and Burkholder-Davis-Gundy theorem, yields

∫ t

0

XZi,jds =
(

qi,ij,j

)
1
2
[ 1

(diλj)λ
1
2
− 1

2
δ0

j

O(ε2−r−δ0) +
1

diλj
O(ε1−r)

]

=
1

λj

(

qi,ij,j

)
1
2 O(ε1−r). (60)

For N ∈ {3, 5, ..} we apply Itô formula to the term X
N
∏

i=1

Zℓi,ki
to obtain

∫ t

0

X
N
∏

i=1

Zℓi,ki
ds =

1
N
∑

i=1

dℓiλki

{

ε2X
N
∏

i=1

Zℓi,ki
+ ε2

∫ t

0

G
N
∏

i=1

Zℓi,ki
ds

+ε

N
∑

j=1

∫ t

0

X
N
∏

i=1,
i6=j

Zℓi,ki
dW̃ℓj ,kj

+

N
∑

j1 6=j2=1

∫ t

0

X
N
∏

i=1,
i/∈{j1,j2}

Zℓi,ki
dW̃ℓj1 ,kj1

dW̃ℓj2 ,kj2

}

.

Using Corollary 27 and Lemma 28 to obtain

∫ t

0

X
N
∏

i=1

Zℓi,ki
ds =

( N
∏

i=1

λ−1
ki

qℓi,ℓiki,ki

)
1
2

N
∑

i=1

dℓiλki

{

N
∏

i=1

λ
1
2
δ0

ki
O(ε2−r−3δ0) +

N
∑

i=1

λ
1
2

ki
O(ε1−r)

}

+
1

N
∑

i=1

dℓiλki

N
∑

j1,j2=1,
j1 6=j2

q
ℓj1 ,ℓj2
kj1

,kj2

∫ t

0

X
N
∏

i=1,
i/∈{j1,j2}

Zℓi,ki
ds.

We use
∑N

i=1 dℓiλki
≥ c

∏N
i=1 λ

1/N
ki

with c =
∏N

i=1 d
1/N
ℓji

and the equivalence of

norms in R
N which implies for C1, C2 > 0

C1

(

N
∑

i=1

λki

)
1
2 ≤

N
∑

i=1

λ
1
2

ki
≤ C2

(

N
∑

i=1

λki

)
1
2

. (61)

Hence,

∫ t

0

X
N
∏

i=1

Zℓi,ki
ds =

( 1
N
∑

i=1

dℓiλki

N
∏

i=1

λ−1
ki

qℓi,ℓiki,ki

)
1
2O(ε1−r) (62)

+
1

N
∑

i=1

dℓiλki

N
∑

j1,j2=1
j1 6=j2

q
ℓj1 ,ℓj2
kj1

,kj2

∫ t

0

X
N
∏

i=1,
i/∈{j1,j2}

Zℓi,ki
ds.
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In the case N = 3, for example, Equation (62) takes the form
∫ t

0

X
3
∏

i=1

Zℓi,ki
ds =

( 1
3
∑

i=1

dℓiλki

3
∏

i=1

λ−1
ki

qℓi,ℓiki,ki

)
1
2O(ε1−r)

+

3
∑

j1,j2=1
j1 6=j2

q
ℓj1 ,ℓj2
kj1

,kj2

dℓj1λkj1
+ dℓj2λkj2

(

qi,ij,j

)
1
2

λj
O(ε1−r),

where we used Equation (60) and dℓj1λkj1
+ dℓj2λkj2

≤ ∑3
i=1 dℓiλki

for j1, j2 ∈
{1, 2, 3}. The general case for N ∈ {5, 7, · · · } follows similarly.

We prove the second part only for N = 2 and we can proceed by induction.
Applying Itô formula to X ·∏2

i=1 Zℓi,ki
and integrating from 0 to t, we obtain

∫ t

0

X
2
∏

i=1

Zℓi,ki
ds =

1
2
∑

i=1

dℓiλki

{

−ε2X(t)
2
∏

i=1

Zℓi,ki
(t) + ε2

∫ t

0

G
2
∏

i=1

Zℓi,ki
ds

+ ε

2
∑

j=1

∫ t

0

X
2
∏

i=1
i6=j

Zℓi,ki
dW̃ℓj ,kj

+

∫ t

0

X dW̃ℓj1 ,kj1
dW̃ℓj2 ,kj2

}

.

Using Corollary 27 and Lemma 28 to obtain

∫ t

0

X
2
∏

i=1

Zℓi,ki
ds =

1
2
∑

i=1

dℓiλki

(

2
∏

i=1

λ−1
ki

qℓi,ℓiki,ki

)
1
2
{

O(ε1−r−2δ0)
2
∏

i=1

λ
1
2
δ0

ki

+ O(ε1−r)
2

∑

i=1

λ
1
2

ki

}

+
qℓ1,ℓ2k1,k2

2
∑

i=1

dℓiλki

∫ t

0

Xds.

Using (61) with
(

∑2
i=1 dℓiλki

)
1
2 ≥ c

∏2
i=1 λ

1
4

ki
we obtain for δ0 <

1
2

∫ t

0

X
2
∏

i=1

Zℓi,ki
ds =

( 1
2
∑

i=1

dℓiλki

2
∏

i=1

λ−1
ki

qℓi,ℓiki,ki

)
1
2O(ε1−r) +

qℓ1,ℓ2k1,k2

2
∑

i=1

dℓiλki

∫ t

0

Xds.

For N ∈ {4, 6, ..} we apply Itô formula to the term X
N
∏

i=1

Zℓi,ki
to obtain

∫ t

0

X
N
∏

i=1

Zℓi,ki
ds =

1
N
∑

i=1

dℓiλki

{

−ε2X(t)
N
∏

i=1

Zℓi,ki
(t) + ε2

∫ t

0

G
N
∏

i=1

Zℓi,ki
ds

+ε

N
∑

j=1

∫ t

0

X
N
∏

i=1,
i6=j

Zℓi,ki
dW̃ℓj ,kj

+

N
∑

j1 6=j2=1

∫ t

0

X
N
∏

i=1,
i6=j1 6=j2

Zℓi,ki
dW̃ℓj1 ,kj1

dW̃ℓj2 ,kj2

}

.
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Using Corollary 27 and Lemma 28 to obtain as in the odd case before

∫ t

0

X
N
∏

i=1

Zℓi,ki
ds =

( 1
N
∑

i=1

dℓiλki

N
∏

i=1

λ−1
ki

qℓi,ℓiki,ki

)
1
2O(ε1−r)

+

N
∑

j1,j2=1
j1 6=j2

q
ℓj1 ,ℓj2
kj1

,kj2

N
∑

i=1

dℓiλki

·
∫ t

0

X
N
∏

i=1,
i/∈{j1,j2}

Zℓi,ki
ds.

The first factor in the sum is summable over j1 and j2 by Condition (13). Now,
we can proceed by induction and apply the assertion for N − 2 to obtain (59).
�

Lemma 32 Under Assumption 2, 4 and 6 let X be as in Lemma 29. Then, for
ℓ ∈ N

n
0 with m ≥ |ℓ| ≥ 1, we obtain:

1- If one of the ℓi is odd, then

Pc

∫ t

0

X(Zs)ℓdτ = O(ε1−r). (63)

2-If all ℓi are even, then there is a constant Cℓ such that

Pc

∫ t

0

X(Zs)ℓdτ = Cℓ

∫ t

0

Xdτ +O(ε1−r), (64)

where Cℓ is given by

Cℓ =
n
∏

i=1

( 1

2ℓi/2d
ℓi/2
i

∞
∑

k1,.,kℓi
=1

∑

j∈Per(ℓi)

ℓi/2
∏

η=1

qi,ikj2η−1
,kj2η

λkj2η−1
+ λkj2η

Pc

ℓi
∏

η=1
gkη

)

. (65)

Proof. From the definition of Zs (cf. (27), we obtain

(Zs)ℓ =
n
∏

i=1

Zℓi
i =

n
∏

i=1

(

∞
∑

j1,··· ,jℓi=1

ℓi
∏

k=1

Zi,jkgjk

)

. (66)

We focus in the proof on the case n = 1 and n = 2 as they are needed for
our applications. The general case follows similarly but it is technically more
involved. For n = 1 we have ℓ = ℓ1 and

Pc

∫ t

0

X(Zs)ℓdτ = Pc

∞
∑

j1,··· ,jℓ=1

ℓ
∏

k=1

gjk

∫ t

0

X
ℓ
∏

k=1

Z1,jkdτ.

Now we consider two cases. First if |ℓ| is odd, then Lemma 29 with N = |ℓ|
yields

∫ t

0

X(Zs)ℓdτ =

∞
∑

k1=1

· · ·
∞
∑

kℓ=1

A1,··· ,1
k1,··· ,kℓ

ℓ
∏

j=1

gkj
· O(ε1−r).

And then as the A’s are summable

Pc

∫ t

0

X(Zs)ℓdτ = O(ε1−r).
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Secondly, if |ℓ| is even, then Lemma 29 implies

∫ t

0

X(Zs)ℓdτ =

∞
∑

k1,··· ,kℓ=1

1

2
ℓ
2 d

ℓ
2

1

∑

j∈Per(ℓ)

|ℓ|/2
∏

η=1

q1,1kj2η−1
,kj2η

λkj2η−1
+ λkj2η

ℓ
∏

η=1
gkη

∫ t

0

Xds

+

∞
∑

k1=1

· · ·
∞
∑

kℓ=1

A1,··· ,1
k1,··· ,kℓ

ℓ
∏

η=1
gkη

O(ε1−r).

As the A’s are summable

Pc

∫ t

0

X(Zs)ℓdτ =

∞
∑

k1,··· ,kℓ=1

1

2
ℓ
2 d

ℓ
2

1

∑

j∈Per(ℓ)

|ℓ|/2
∏

η=1

q1,1kj2η−1
,kj2η

λkj2η−1
+ λkj2η

Pc

ℓ
∏

η=1
gkη

∫ t

0

Xds

+O(ε1−r).

For n = 2, we have N = |ℓ| = ℓ1 + ℓ2 and from Equation (66)

∫ t

0

X(Zs)ℓdτ =

∞
∑

j1=1

· · ·
∞
∑

j|ℓ|=1

∫ t

0

X
|ℓ|
∏

k=1

Zik,jkdτ
|ℓ|
∏

k=1

gjk ,

with i1 = · · · = iℓ1 = 1 and iℓ1+1 = · · · = i|ℓ| = 2. Similarly to the first part, we
consider two cases. First if |ℓ| is odd, then we apply Lemma 29 to obtain

∫ t

0

X(Zs)ℓdτ =

∞
∑

j1=1

· · ·
∞
∑

j|ℓ|=1

A
i1,··· ,i|ℓ|
kj1

,··· ,kj|ℓ|

|ℓ|
∏

k=1

gjkO(ε1−r).

As the A’s are summable

Pc

∫ t

0

X(Zs)ℓdτ = O(ε1−r).

In the second case, when |ℓ| is even, we apply Lemma 29 and analogously to the
first case we obtain

∫ t

0

X(Zs)ℓdτ =
∞
∑

j1,...,j|ℓ|=1

1

2
|ℓ|
2

∑

j∈Per(|ℓ|)

|ℓ|/2
∏

η=1

q
ik2η−1

,ik2η
jk2η−1

,jk2η

dik2η−1
λjk2η−1

+ dik2ηλjk2η

|ℓ|
∏

k=1

gjk

∫ t

0

Xds

+
∞
∑

j1=1

· · ·
∞
∑

j|ℓ|=1

A
i1,··· ,i|ℓ|
kj1

,··· ,kj|ℓ|

|ℓ|
∏

k=1

gjkO(ε1−r).

We obtain

Pc

∫ t

0

X(Zs)ℓdτ =

∞
∑

j1,...,j|ℓ|=1

1

2
|ℓ|
2

∑

j∈Per(|ℓ|)

|ℓ|/2
∏

η=1

q
ik2η−1

,ik2η
jk2η−1

,jk2η

dik2η−1
λjk2η−1

+ dik2ηλjk2η

×Pc

( |ℓ|
∏

k=1

gjk

)

∫ t

0

Xds+O(ε1−r).

We can distinguish between two cases when |ℓ| is even. First one of ℓ1 and ℓ2 is

odd. Here q
iℓ1 ,iℓ1+1

jℓ1 ,jℓ1+1
= 0, where iℓ1 = 1 and iℓ1+1 = 2. Thus

Pc

∫ t

0

X(Zs)ℓdτ = O(ε1−r).
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In the second case when ℓ1 and ℓ2 are both even, we have

Pc

∫ t

0

X(Zs)ℓdτ

= Pc×
∞
∑

j1=1

. . .

∞
∑

jℓ1=1

1

(2d1)
ℓ1
2

∑

j∈Per(ℓ1)

ℓ1/2
∏

η=1

q1,1jk2η−1
,jk2η

λjk2η−1
+ λjk2η

ℓ1
∏

k=1

gjk

×
∞
∑

j1=1

. . .

∞
∑

jℓ2=1

1

(2d2)
ℓ2
2

∑

j∈Per(ℓ2)

ℓ2/2
∏

η=1

q2,2jk2η−1
,jk2η

λjk2η−1
+ λjk2η

ℓ2
∏

k=1

gjk

∫ t

0

Xds

+ O(ε1−r)

=
2
∏

i=1

∞
∑

j1=1

. . .

∞
∑

jℓi=1

1

(2di)
ℓi
2

∑

j∈Per(ℓ1)

ℓi/2
∏

η=1

q2,2jk2η−1
,jk2η

λjk2η−1
+ λjk2η

∫ t

0

Xds · Pc

|ℓ|
∏

k=1

gjk

+ O(ε1−r).

The general case for n > 2 follows in a similar way, as the random variables
( ∞

∑

j1,··· ,jℓi=1

ℓi
∏

k=1

Zi,jkgjk

)

i=1,2,...,n
are independent, and we can thus glue together

the individual averaging results as above. �

7 Proof of the Approximation Theorem I

Lemma 33 Let Assumptions 4, 2 and 5 hold. Then

ai(t) = ai(0) +

∫ t

0

Fi(a)dτ +
∑

|ℓ|=2,4,..

Cℓ

ℓ!

∫ t

0

DℓFi(a)dτ + R̃(t), (67)

where Cℓ was defined in (65) and the error is bounded by R̃ = O(ε1−2mκ−κ0).

Proof. The mild formulation of (37) and Lemma 22 with ρ = 0 yields

ψ(t) = Zs(t) + eε
−2tAψ(0) +O(ε2−mκ) =: Zs(t) + y(t) +R(t), (68)

where
y(t) = eε

−2tAψ(0) and R(t) = O(ε2−mκ).

Substituting from (68) into (36), yields

ai(t) = ai(0) +

∫ t

0

Fi(a+ Zs + y +R)(τ)dτ. (69)

Taylor’s expansion for the polynomial Fi : Lp
n → R yields

ai(t) = ai(0) +

∫ t

0

Fi(a+ Zs)(τ)dτ +R
(1)
i (t), (70)

where R(1)(t) is given by

R
(1)
i (t) =

∑

|ℓ|≥1

Pc

∫ t

0

DℓFi(a+ Zs)

ℓ!
(y +R)ℓdτ.
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We see later that R(1) is small, as all terms contain at least one R = O(ε2−mκ).
Taylor’s expansion again for the polynomial Fi : Lp

n → R, yields

ai(t) = ai(0) +
∑

|ℓ|≥0

Pc

∫ t

0

DℓFi(a)

ℓ!
(Zs)ℓdτ +R1(t).

Applying the Averaging-Lemma 32, yields

ai(t) = ai(0) +
∑

|ℓ|≥0

Cℓ

ℓ!

∫ t

0

DℓFi(a)dτ +O(ε1−miκ) +R
(1)
i (t),

where C0 = 1 and Cℓ = 0 if one ℓi is odd. Thus

ai(t) = ai(0) +
∑

|ℓ|=0,2,4,..

Cℓ

ℓ!

∫ t

0

DℓFi(a)dτ + R̃i(t),

where R̃(t) = R(1)(t) +O(ε1−mκ).
To bound R̃ we use Lemmas 25 and 23 and Assumption 5. �

Definition 34 Define the set Ω∗ ⊂ Ω such that all the following estimates hold
on Ω∗

sup
[0,τ∗]

‖ψ −Q‖Lp
n
< Cε2−mκ−κ , (71)

sup
[0,τ∗]

‖ψ‖Lp
n
< Cε−

3
2
κ0 , (72)

sup
[0,τ∗]

‖R̃‖Lp
n
< Cε1−2mκ−κ , (73)

and
sup
[0,T1]

|b| ≤ C̃0. (74)

Proposition 35 Ω∗ has approximately probability 1.

Proof.

P(Ω∗) ≥ 1− P( sup
[0,τ∗]

‖ψ −Q‖Lp
n
≥ Cε2−mκ−κ)− P( sup

[0,τ∗]

‖ψ‖Lp
n
≥ Cε−

3
2
κ0)

−P( sup
[0,τ∗]

‖R̃‖Lp
n
≥ Cε1−2mκ−κ)− P( sup

[0,T1]

|b| > C̃0).

Using Chebychev inequality and Lemmas 22, 33 and Corollary 24, we obtain for
κ > κ0 and sufficiently large q > 2p

(κ−κ0)
> 0

P(Ω∗) ≥ 1− C[εqκ + ε
1
2
qκ + εq(κ−κ0)]− P( sup

[0,T1]

|b| > C̃0)

≥ 1− Cε
1
2
q(κ−κ0) − P( sup

[0,T1]

|b| > C̃0)

≥ 1− Cεp, (75)

where C̃0 is chosen sufficiently large (sup[0,T1] |b| ≤ C by Assumption 8). �
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Theorem 36 Assume that Assumptions 5 and 8 hold. Suppose a(0) = O(1)
and ψ(0) = O(1). Let b be a solution of (3) and a as defined in (67). If the
initial conditions satisfy a(0) = b(0), then for κ < 1

2m+1 we obtain

sup
t∈[0,T1∧τ∗]

|a(t)− b(t)| ≤ Cε1−2mκ−κ on Ω∗, (76)

and
sup

t∈[0,T1∧τ∗]

|a(t)| ≤ C on Ω∗. (77)

We note that all norms in a finite dimensional space are equivalent. Thus for
simplicity of notation we always use the standard Euclidean norm.

Proof. Subtracting (3) from (67) and defining

h := a− b, (78)

we obtain

h(t) =
∑

|ℓ|=0,2,4,..

Cℓ

ℓ!

∫ t

0

[DℓFi(h+ b)−DℓFi(b)]dτ + R̃(t), (79)

where the error R̃ is bounded by R̃ = O(ε1−2mκ).
Define Q as

Q := h− R̃. (80)

From Equation (79) we obtain

∂tQ =
∑

|ℓ|=0,2,4,..

Cℓ

ℓ!
Dℓ[Fi(Q+ R̃+ b)−DℓFi(b)].

Taking the scalar product 〈Q, ·〉 on both sides, yields

1

2
∂t|Q|2 =

∑

|ℓ|=0,2,4,..

Cℓ

ℓ!

〈

DℓFi(Q+ R̃ + b)−DℓFi(b), Q
〉

.

Using Young and Cauchy-Schwarz inequalities, where F is a polynomial of de-
gree m, we obtain

1

2
∂t|Q|2 ≤ C

(

1 + |Q|m−1 + |R̃|m−1 + |b|m−1
)(

|Q|2 + |R̃|2
)

. (81)

As long as |Q| < 1, using Equations (73) and (74), we obtain for κ < 1
2m+1

1

2
∂t|Q|2 ≤ c |Q|2 + Cε2−2(2m+1)κ on Ω∗,

Using Gronwall’s lemma, we obtain for t ≤ τ∗ ∧ T1 ≤ T0

|Q(t)|2 ≤ Cε1−(2m+1)κe2cT0 ,

and thus |Q(t)| < 1 for t ≤ τ∗ ∧ T1. Taking supremum on [0, τ∗ ∧ T1]

sup
t∈[0,τ∗∧T1]

|Q(t)|2 ≤ Cε1−(2m+1)κ on Ω∗.
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Hence,

sup
[0,τ∗∧T1]

|a− b| = sup
[0,τ∗∧T1]

|Q− R̃| ≤ sup
[0,τ∗∧T1]

|Q(t)|+ sup
[0,τ∗∧T1]

|R̃|

≤ Cε1−(2m+1)κ on Ω∗. (82)

We finish the proof by using (78), (80) and

sup
[0,τ∗∧T1]

|a| ≤ sup
[0,τ∗∧T1]

|a− b|+ sup
[0,τ∗∧T1]

|b| ≤ C.

�

Now we can collect the results obtained previously to prove the main result
of Theorem 17 and Corollary 18 for the system of SPDE (1).

Proof of Theorem 17. Using (30) and triangle inequality, we obtain

sup
t∈[0,T1∧τ∗]

‖u(t)− b(t)−Q(t)‖Lp
n

≤ sup
[0,T1∧τ∗]

‖a− b‖Lp
n
+ sup

[0,T1∧τ∗]

‖ψ −Q‖Lp
n

≤ C sup
[0,T1∧τ∗]

|a− b|+ sup
[0,τ∗]

‖ψ −Q‖Lp
n
.

From (71) and (76), we obtain

sup
t∈[0,T1∧τ∗]

‖u(t)− b(t)−Q(t)‖Lp
n
≤ Cε1−(2m+1)κ on Ω∗.

Hence,

P

(

sup
t∈[0,T1∧τ∗]

‖u(t)− b(t)−Q(t)‖Lp
n
> Cε1−(2m+1)κ

)

≤ 1− P(Ω∗) .

Using (75), yields (33). �

Proof of Corollary 18. We note that by the semigroup estimate based
on Assumptions 3 and Equation (8)

‖ψ(t)‖Lmp
n

≤ ‖eε−2tAψ(0)‖Lmp
n

+ ‖Zs(t)‖Lmp
n

+
1

ερ

∥

∥

∥

∫ t

0

eε
−2As(T−τ)Fs(u)dτ

∥

∥

∥

Lmp
n

≤ e−ε−2tω ‖ψ(0)‖Lmp
n

+ ‖Zs(t)‖Lmp
n

+ Cε2−ρ sup
τ∈[0,τ∗]

(1 + ‖u‖mLpm
n

),

where we used Assumption 5. Thus by the definition of τ∗ and the bounds on
Zs (cf. (43)) we obtain on Ω∗

sup
t∈[0,τ∗]

‖ψ(t)‖Lmp
n

≤ Cε−κ0 .

Thus from the Theorem 36 we derive

Ω ⊃ {τ∗ > T1} ⊇ { sup
[0,T1∧τ∗]

‖u‖Lmp
n

< ε−κ} ⊇ Ω∗.

Hence,

sup
t∈[0,T1]

‖u(t)− b(t)−Q(t)‖Lmp
n

≤ sup
[0,T1]

‖a− b‖Lmp
n

+ sup
[0,T1]

‖ψ −Q‖Lmp
n

≤ C sup
[0,T1]

|a− b|+ sup
[0,τ∗]

‖ψ −Q‖Lmp
n
.

Proceeding as in the proof of Theorem 17 we bound the error in Lmp
n . �
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7.1 Application of Approximation Theorem I

In this subsection we consider all examples with non-homogeneous Neumann
boundary condition on [0, 1]2. Here the eigenfunctions are

gk1,k2
=

{

1 if k1 = k2 = 0
2 cos(πk1x) cos(πk2y) if k1, k2 > 0.

The eigenvalues of the operator −Ai = −di(∂2x + ∂2y) are λk1,k2
= π2(k21 + k22).

Define fℓ(z) as

fℓ(z) =

{

1 if ℓ = 0√
2 cos(πℓz) if ℓ > 0.

Now gk(x, y) = fk1
(x)fk2

(y) for k ∈ N
2
0.

7.1.1 Physical Application (Nonlinear Heat Eq.)

The heat equation plays a significant role in several areas of science including
mathematics, probability theory and financial mathematics. In probability the-
ory for instance, the heat equation is used for studying Brownian motion via
the Fokker–Planck equation.

To apply our main Theorem 17, we consider the following nonlinear heat
Equation with stochastic Neumann boundary condition.

∂tu = ε−2
(

∂2x + ∂2y
)

u+ u− u3 for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

∂xu(t, x, 0) = σε∂tW1(t, x), ∂xu(t, x, 1) = σε∂tW2(t, x) for x ∈ (0, 1)

∂yu(t, 0, y) = σε∂tW3(t, x), ∂yu(t, 1, y) = σε∂tW4(t, y) for y ∈ (0, 1). (83)

Define Wi(t) for i = 1, 2, 3, 4 as Wi(t) =
∞
∑

j=1

αi,jβi,j(t)fj and N = {1}.
Our main Theorem 17 states that the solution of the nonlinear heat equation

(83) with σε = ε−1 is well approximated by

u(t, x, y) = b(t) + Zs(t, x, y) +O(ε1−),

where b is the solution of

∂tb = (1− 3C2)b− b3, (84)

and C2 is a constant given by C2 =
∞
∑

k,j=1

qk,j

λk+λj
Pc (gkgj) .

We calculate

Pc (gkgj) =

{

1
2 if k1 = j1, k2 = j2
0 otherwise,

and

qk,j = δk1,j1α
2
1,k1

fk2
(0)fj2(0) + δk1,j1α

2
2,k1

fk2
(1)fj2(1)

+δk2,j2α
2
3,k2

fk1
(0)fj1(0) + δk2,j2α

2
4,k1

fk1
(1)fj1(1).

Thus

C2 =
1

2π2

∞
∑

k1,k2=1

1

k21 + k22
(α2

1,k1
+ 2α2

2,k1
+ α2

3,k2
+ 2α2

4,k2
).
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If we choose for any µ > 0 that α2
i,k ≤ C|k|−2µ for i = 1, . . . , 4 and all k ∈ N,

then C2 is finite and furthermore, all summability conditions are satisfied.
Let us finally check the bound on b. Taking the product with b on both sides

of (84), yields
1

2
∂t|b|2 = C|b|2 − |b|4 ≤ C|b|2.

Using Gronwall’s lemma, we obtain for 0 ≤ t ≤ T0 that

sup
[0,T0]

|b|2 ≤ |b(0)|2eCT0 .

Thus Assumption 8 is always true for deterministic initial conditions if we choose
C0 sufficiently large.

7.1.2 Chemical Application

A simple archetypical example for a reaction-diffusion system is a cubic auto-
catalytic reaction between two chemicals according to the rule A + B → 2B
with rate r = ρu1u

2
2.

Denoting by u1 and u2 the concentration of A and B, respectively. The two
species satisfy the equations:

∂tu1 =
1

ε2
∆u1 − ρu1u

2
2 & ∂tu2 =

d

ε2
∆u2 + ρu1u

2
2. (85)

with respect to stochastic boundary conditions for i = 1, 2

∂xui(t, x, 0) = σε∂tWi1 (t, x), ∂xui(t, x, 1) = σε∂tWi2(t, x) for x ∈ (0, 1)

∂yui(t, 0, y) = σε∂tWi3 (t, x), ∂yui(t, 1, y) = σε∂tWi4(t, y) for y ∈ (0, 1), (86)

where Wij (t) =
∞
∑

k=1

αij ,kβij ,k(t)fk for j = 1, . . . , 4, and fk defined as before.

We define N =

{(

1
0

)

,

(

0
1

)}

and take σε = ε.

Then our main theorem states that

u(t) = b(t) + Zs(t) +O(ε1−),

with u =

(

u1
u2

)

, b =

(

b1
b2

)

, and Zs =

(

Zs
1

Zs
2

)

,

where b1 and b2 are the solutions of

∂tb1 = −ρb1b22 − ρC2b1

∂tb2 = ρb1b
2
2 + ρC2b1,

with

C2 =
1

2π2

∞
∑

k1,k2=1

1

k21 + k22
(α2

21,k1
+ 2α2

22,k2
+ 2α2

23,k1
+ α2

24,k2
).

We note that high fluctuations in combination with fast diffusion lead to effective
new terms describing the transformation of b1 to b2. Although both terms
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individually do not change the average
∫

uidx = bi, their nonlinear combination
does.

Let us check the bound on b from Assumption 8. We note that

2
∑

i=1

∂tbi = 0 and thus

2
∑

i=1

bi(t) =

2
∑

i=1

bi(0) = C0.

As b1(t) ≥ 0 and thus b2(t) ≥ b2(0) ≥ 0, we have 0 ≤ bi(t) ≤
2
∑

i=1

bi(t) ≤ C0.

Hence, for all times t > 0 we obtain ‖b(t)‖ =
( 2
∑

i=1

b2i (t)
)1/2

≤ C0

√
2.

8 Proof of the Approximation Theorem II

In this section, we use many ideas and lemmas of the previous sections, as the
main ideas are similar.

Lemma 37 Let Assumption 5 holds. Then for R(2) defined in (39) as

R
(2)
i =

∑

|ℓ|≥1

∫ t

0

DℓFi(a)

ℓ!
Pc(εψ)

ℓdτ

we have R(2) = O(ε1−mκ).

Proof. Using Assumption 5

E sup
[0,τ∗]

|R(2)
i |p ≤ C

∑

|ℓ|≥1

1

ℓ!
E sup

[0,τ∗]

∫ t

0

|DℓFi(a)|‖εψ‖|ℓ|p
L

|ℓ|
n

dτ

≤ C
∑

|ℓ|≥1

1

ℓ!
[1 + ε(ℓ−m)pκ]εℓp(1−κ)

≤ Cε1−mκ.

�

Definition 38 Define the set
∗∗

Ω ⊂ Ω such that for sufficiently large ζ ≫ 1 all

the following estimates hold on
∗∗

Ω

sup
[0,τ∗]

‖ψ −Q‖Lp
n
< Cε1−mκ−κ , (87)

sup
[0,τ∗]

‖ψ‖Lp
n
< Cε−

3
2
κ0 , (88)

sup
[0,τ∗]

|R(2)| < Cε1−mκ−κ , (89)

and
sup
[0,T1]

|b|m−1 ≤ ln(ε−
1
ζ ). (90)
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Proposition 39
∗∗

Ω has approximately probability 1.

Proof.

P(
∗∗

Ω) ≥ 1− P( sup
[0,τ∗]

‖ψ −Q‖Lp
n
≥ Cε1−mκ−κ)− P( sup

[0,τ∗]

‖ψ‖Lp
n
≥ Cε−

3
2
κ0)

−P( sup
[0,τ∗]

|R(2)| ≥ Cε1−mκ−κ)− P( sup
[0,T1]

|b|m−1 > ln(ε−
1
ζ )).

Using Chebychev inequality and Lemmas 22, 37 and Corollary 24, we obtain for
κ > κ0 and sufficiently large q > 2p

(κ−κ0)
> 0

P(
∗∗

Ω) ≥ 1− C[εqκ + ε
1
2
qκ + εq(κ−κ0)]− P( sup

[0,T1]

|b|m−1 > ln(ε−
1
ζ ))

≥ 1− Cε
1
2
q(κ−κ0) − P( sup

[0,T1]

|b|m−1 > ln(ε−
1
ζ ))

≥ 1− Cεδκ , (91)

where we used Assumption 9. �

Theorem 40 Assume that Assumptions 4, 5 and 9 hold. Suppose a(0) = O(1)
and ψ(0) = O(1). Let b ∈ N be a solution of (5) and a ∈ N as defined in (38).
If the initial conditions satisfy a(0) = b(0), then for κ < 1

m+2 we obtain

sup
t∈[0,τ∗∧T1]

|a(t)− b(t)| ≤ Cε1−(m+2)κ on
∗∗

Ω. (92)

Proof. We follow the same steps as in the proof of Lemma 36 until Equation
(81) to obtain

1

2
∂t|Q|2 ≤ C

(

1 + |Q|m−1 + |R(2)|m−1 + |b|m−1
)(

|Q|2 + |R(2)|2
)

.

As long as |Q| < 1, using Equations (89) and (90), we obtain

1

2
∂t |Q(t)|2 ≤ c(1 + ln(ε−

1
ζ )) |Q(t)|2 + Cε2−2(m+1)κ on

∗∗

Ω.

Using Gronwall’s lemma, we obtain for t ≤ τ∗ ∧ T1 ≤ T0

|Q(t)|2 ≤ Cε2−2(m+1)κ exp(2c(1 + ln(ε−
1
ζ ))T0)

≤ Ce2cT0ε2−2(m+1)κ−2κ̃,

where κ̃ = cT0

ζ . If we choose κ̃ ≤ κ for sufficiently large ζ, then |Q(t)| < 1 for

κ < 1
m+2 and small ε. Taking supremum on [0, τ∗ ∧ T1]

sup
t∈[0,τ∗∧T1]

|Q(t)| ≤ Cε1−(m+2)κ on
∗∗

Ω. (93)

Hence,

sup
[0,τ∗∧T1]

|a− b| = sup
[0,τ∗∧T1]

|Q−R(2)| ≤ sup
[0,τ∗∧T1]

|Q|+ sup
[0,τ∗∧T1]

|R(2)|

≤ Cε1−(m+2)κ on
∗∗

Ω.
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Now we can use the results obtained previously to prove the main result of
Theorem 20 and Corollary 21 for the SPDE (1).
Proof of Theorem 20. Similar steps than the proof of Theorem 17. �

Proof of Corollary 21. Similar steps than the proof of Corollary 18. �

8.1 Application of Approximation Theorem II

In this subsection we apply our main Theorem 20 to the nonlinear heat equation
(83) and a cubic auto-catalytic reaction (85) with σε = 1 and non-zero αk,0.

8.1.1 Physical Application (Nonlinear Heat Eq.)

Our main Theorem 20 in this case states that the solution of (83) takes the form

u(t) = b(t) +O(ε1−),

where b is the solution of stochastic ordinary differential equation

db = [b− b3]dt+ dB, (94)

and B is a R-valued standard Brownian motion given by

B(t) = α1,0β1,0(t) + α2,0β2,0(t) + α3,0β3,0(t) + α4,0β4,0(t).

To check the bound on b consider exp{δ|b|2}. We note that

d exp{δ|b|2} = δ exp{δ|b|2}d|b|2 + δ2 exp{δ|b|2}(d|b|2)2, (95)

and
d|b|2 = 2b · db+ db · db.

From (94) we obtain for some constant c > 0

d|b|2 = 2|b|2dt− 2|b|4dt+ 2b · dB + dB · dB
= (C + 2|b|2 − 2|b|4)dt+ 2b · dB.

Substituting this into (95), yields

d exp{δ|b|2} = δ(C + (2 + 4δ)|b|2 − 2|b|4) exp{δ|b|2}dt+ 2δ exp{δ|b|2}b · dB
≤ cδ exp{δ|b|2}dt+ 2δ exp{δ|b|2}b · dB. (96)

Integrating from 0 to t and taking expectation, yields

E exp{δ|b(t)|2} ≤ E exp{δ|b(0)|2}+ cδ

∫ t

0

E exp{δ|b|2}dt.

As E exp{3δ|b(0)|2} ≤ C and applying Gronwall’s lemma, yields for t ≤ T1

sup
[0,T1]

E exp{δ |b|2} ≤ C. (97)

With 3δ instead of δ, we have

sup
[0,T1]

E exp{3δ |b|2} ≤ C. (98)
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Taking expectation after supremum on both sides of (96) to obtain

E sup
t∈[0,T1]

exp{δ|b(t)|2})

≤ E exp{δ|b(0)|2}+ cδE sup
t∈[0,T1]

∫ t

0

exp{δ|b(s)|2}ds

+2δE sup
t∈[0,T1]

∫ t

0

b(s) exp{δ|b(s)|2}dB(s)

≤ C + cδE

∫ T1

0

exp{δ|b(s)|2}ds+ 2δE
(

∫ T1

0

b(s)2 exp{2δ|b(s)|2}ds
)1/2

.

Using (98) together with xe2δx ≤ Ce3δx for all x > 0, yields

E sup
t∈[0,T1]

exp{δ|b(t)|2} ≤ C.

Now, using Chebychev inequality

P( sup
[0,T1]

|b(t)|2 > ln(ε−κ)) ≤
E supt∈[0,T1] exp

(

δ|b(t)|2
)

exp (δ ln(ε−κ))
≤ Cεδκ.

8.1.2 Chemical Application

Our main theorem states that the solution of (85) takes the form

u(t) = b(t) +O(ε1−),

with u =

(

u1
u2

)

and b =

(

b1
b2

)

.

In this case b1 and b2 are the solutions of

db1 = −ρb1b22dt+ dB1(t) & db2 = ρb1b
2
2dt+ dB2(t), (99)

where

Bi(t) = αi1,0βi1,0 + αi2,0βi2,0(t) + αi3,0βi3,0(t) + αi4,0βi4,0(t) for i = 1, 2.

To verify the bound on b define first the stopping T1 as

T1 = T0 ∧ inf {t > 0 : ∃ i ∈ {1, 2} : bi(t) < 0} .

This means that our approximation result is only true as long as the concentra-
tions bi are non-negative.

Now, we note that
2

∑

i=1

dbi =

2
∑

i=1

dBi.

Integrating from 0 to t, yields

2
∑

i=1

bi(t) =
2

∑

i=1

bi(0) +
2

∑

i=1

Bi(t). (100)
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Hence, up to T1 we obtain

|b(t)| ≤
2

∑

i=1

bi(t) =

2
∑

i=1

bi(0) +

2
∑

i=1

Bi(t) ≤
√
2|B(t)|+

√
2|b(0)|,

where we used
(

x2 + y2
)1/2 ≤ |x|+ |y| ≤

√
2(x2 + y2)1/2. Moreover,

|b(t)|2 ≤ 4|B(t)|2 + 4|b(0)|2.

Thus

E sup
[0,T1]

exp{δ|b|2} ≤ E sup
[0,T1]

exp{4δ|B|2} · exp{4δ|b(0)|2} ≤ C,

but only for sufficiently small δ. Using Chebychev inequality

P( sup
[0,T1]

|b(t)|2 > ln(ε−κ)) ≤
E supt∈[0,T1]

(

exp
(

δ|b(t)|2
))

exp (δ ln(ε−κ))
≤ Cεδκ.

So the probability is close, but not very close to 1, as δ cannot be arbitrarily
large.
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